Problem Set 4 – Statistical Physics B

Problem 1: Infinite-range Ising model

Consider a one-dimensional Ising model consisting of N spins. Each spin interacts with every other spin with an exchange coupling -J/N with J>0. The energy of a spin configuration $\{s_i\}$ is given by

$$E(\lbrace s_i \rbrace) = -\frac{J}{2N} \sum_{i,j} s_i s_j,$$

where each spin variable can take the values $s_i = \pm 1$ with i = 1, ..., N. The canonical partition function is

$$Z(N,T) = \sum_{\{s_i\}} \exp\left(\frac{J}{2Nk_{\rm B}T}\sum_{i,j}s_is_j\right).$$

(a) Perform a Hubbard-Stratonovich transformation to the variable m, which satisfies $\langle m \rangle = \langle N^{-1} \sum_i s_i \rangle$. Show that the partition function is given by

$$Z(N,T) = \sqrt{\frac{NJ}{2\pi k_{\rm B}T}} \int_{-\infty}^{\infty} dm \, \exp\left[-\frac{Nf_{\rm L}(m)}{k_{\rm B}T}\right],$$

where

$$f_{\rm L}(m) = \frac{J}{2}m^2 - k_{\rm B}T \ln \left[2\cosh \left(\frac{mJ}{k_{\rm B}T}\right) \right].$$

- (b) For $T < T_c$ the system exhibits a second order phase transition with m as order parameter. What are the physical differences between the $T > T_c$ and $T < T_c$ case? Explain your answer in detail.
- (c) Determine the critical temperature T_c .
- (d) For $T \uparrow T_c$, we find $\langle m \rangle \propto (T_c T)^{\beta}$. Determine the critical exponent β .
- (e) We now add a magnetic field, such that

$$f_{\rm L}(m,B) = \frac{J}{2}m^2 - k_{\rm B}T \ln \left[2\cosh\left(\frac{mJ}{k_{\rm B}T}\right)\right] - mB.$$

We define the free energy per spin as

$$F(T,B) = -k_{\rm B}T \lim_{N \to \infty} \frac{1}{N} \ln \left\{ \int_{-\infty}^{\infty} dm \exp \left[-\frac{N f_{\rm L}(m)}{k_{\rm B}T} \right] \right\}.$$

Show that F(T, B) is non-analytic for $T < T_c$. In particular, show that $F(T < T_c, B) \propto |B|^{\eta}$ and determine η .

(f) The infinite-range Ising model predicts a phase transition in 1D, whereas there is no phase transition in the 1D Ising model with just nearest-neighbour interactions. Explain this.

Problem 2: Gymnastics with functional derivatives

- (a) Consider the functional $F[u] = \int_{-\infty}^{\infty} dx \, a(x) u(x)$, for a given function a. Determine $\frac{\delta F[u]}{\delta u(x)}$.
- (b) Let $t_1 > 0$, on which the functional $G[u; t_1]$ depends parametrically. In particular, we set $G[u; t_1] = \int_0^\infty dt \, K(t_1, t) u(t)$. Compute $\frac{\delta G[u; t_1]}{\delta u(t)}$.

1

- (c) Take the functional H[u; x'] = u(x'). Compute $\frac{\delta H[u]}{\delta u(x)}$.
- (d) Determine $\frac{\delta I[u]}{\delta u(x)}$ for the functional $I[u] = \int_{-\infty}^{\infty} dx \ln[1 + u(x)].$
- (e) Let $K: \mathbb{R}^3 \to \mathbb{R}$ be a completely symmetric function. Determine $\frac{\delta J[u]}{\delta u(x_1, x_2)}$ for the functional

$$J[u] = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \int_{-\infty}^{\infty} dx_3 \, K(x_1, x_2, x_3) u(x_1, x_2) u(x_2, x_3) u(x_3, x_1).$$

(f) Take the functional $S[u] = \int_0^\infty dt \, f(u(t), \dot{u}(t))$, where $\dot{u}(t) = du/dt$. Determine $\frac{\delta S[u]}{\delta u(t)} = 0$. Where have you seen this equation before in physics?

Problem 3: Profile of a magnetic domain wall

Consider the Landau theory for an Ising-like magnet with scalar order parameter $m(\mathbf{r})$.

$$F_{\rm L}[m] = \int d^3\mathbf{r} \, \left[\frac{K}{2} |\nabla m(\mathbf{r})|^2 + \frac{a(T-T_{\rm c})}{2} m(\mathbf{r})^2 + \frac{b}{4} m(\mathbf{r})^4 \right].$$

In this exercise, we will investigate the structure of a so-called domain wall, where a region of positive magnetisation is adjacent to a region of negative magnetisation.

- (a) Explain why K cannot be negative.
- (b) Determine from the saddle-point approximation the equation that governs the shape of the magnetisation profile $m(\mathbf{r})$.
- (c) We now assume that the system is translational invariant in the xy plane and we impose the boundary conditions $m(z \to \pm \infty) = \pm \bar{m}$. Derive an expression for \bar{m} . What happens when $T > T_c$?
- (d) Solve the differential equation you found in (b) with the boundary conditions from (c). In particular, show that the profile of a so-called domain wall within this theory is given by

$$m_{\mathrm{dw}}(z) = \bar{m} \tanh\left(\frac{z - z_0}{\xi}\right)$$

and give an expression for z_0 and ξ . What is the interpretation of z_0 and ξ ? Sketch $m_{\rm dw}(z)$ and indicate in your plot how the parameters z_0 and ξ affect the profile.

(e) Determine the free energy cost of creating a domain wall by evaluating $\Delta F = F_{\rm L}[m_{\rm dw}] - F_{\rm L}[\bar{m}]$. Show that close to the critical point ΔF vanishes as $(T_{\rm c} - T)^{3/2}$. What happens with the size of the domain wall?