
Problem Set 4 – Statistical Physics B

Problem 1: Infinite-range Ising model
Consider a one-dimensional Ising model consisting of N spins. Each spin interacts with every

other spin with an exchange coupling −J/N with J > 0. The energy of a spin configuration
{si} is given by

E({si}) = − J

2N

∑
i,j

sisj ,

where each spin variable can take the values si = ±1 with i = 1, ..., N . The canonical partition
function is

Z(N,T ) =
∑
{si}

exp

 J

2NkBT

∑
i,j

sisj

 .

(a) Perform a Hubbard-Stratonovich transformation to the variable m, which satisfies ⟨m⟩ =
⟨N−1

∑
i si⟩. Show that the partition function is given by

Z(N,T ) =

√
NJ

2πkBT

∫ ∞

−∞
dm exp

[
−NfL(m)

kBT

]
,

where
fL(m) =

J

2
m2 − kBT ln

[
2 cosh

(
mJ

kBT

)]
.

(b) For T < Tc the system exhibits a second order phase transition with m as order parameter.
What are the physical differences between the T > Tc and T < Tc case? Explain your
answer in detail.

(c) Determine the critical temperature Tc.

(d) For T ↑ Tc, we find ⟨m⟩ ∝ (Tc − T )β. Determine the critical exponent β.

(e) We now add a magnetic field, such that

fL(m,B) =
J

2
m2 − kBT ln

[
2 cosh

(
mJ

kBT

)]
−mB.

We define the free energy per spin as

F (T,B) = −kBT lim
N→∞

1

N
ln

{∫ ∞

−∞
dm exp

[
−NfL(m)

kBT

}]
.

Show that F (T,B) is non-analytic for T < Tc. In particular, show that F (T < Tc, B) ∝
|B|η and determine η.

(f) The infinite-range Ising model predicts a phase transition in 1D, whereas there is no phase
transition in the 1D Ising model with just nearest-neighbour interactions. Explain this.

Problem 2: Gymnastics with functional derivatives

(a) Consider the functional F [u] =
∫∞
−∞ dx a(x)u(x), for a given function a. Determine

δF [u]

δu(x)
.

(b) Let t1 > 0, on which the functional G[u; t1] depends parametrically. In particular, we set

G[u; t1] =
∫∞
0 dtK(t1, t)u(t). Compute

δG[u; t1]

δu(t)
.
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(c) Take the functional H[u;x′] = u(x′). Compute
δH[u]

δu(x)
.

(d) Determine
δI[u]

δu(x)
for the functional I[u] =

∫∞
−∞ dx ln[1 + u(x)].

(e) Let K : R3 → R be a completely symmetric function. Determine
δJ [u]

δu(x1, x2)
for the

functional

J [u] =

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3K(x1, x2, x3)u(x1, x2)u(x2, x3)u(x3, x1).

(f) Take the functional S[u] =
∫∞
0 dt f(u(t), u̇(t)), where u̇(t) = du/dt. Determine

δS[u]

δu(t)
= 0.

Where have you seen this equation before in physics?

Problem 3: Profile of a magnetic domain wall
Consider the Landau theory for an Ising-like magnet with scalar order parameter m(r).

FL[m] =

∫
d3r

[
K

2
|∇m(r)|2 + a(T − Tc)

2
m(r)2 +

b

4
m(r)4

]
.

In this exercise, we will investigate the structure of a so-called domain wall, where a region of
positive magnetisation is adjacent to a region of negative magnetisation.

(a) Explain why K cannot be negative.

(b) Determine from the saddle-point approximation the equation that governs the shape of
the magnetisation profile m(r).

(c) We now assume that the system is translational invariant in the xy plane and we impose
the boundary conditions m(z → ±∞) = ±m̄. Derive an expression for m̄. What happens
when T > Tc?

(d) Solve the differential equation you found in (b) with the boundary conditions from (c). In
particular, show that the profile of a so-called domain wall within this theory is given by

mdw(z) = m̄ tanh

(
z − z0

ξ

)
and give an expression for z0 and ξ. What is the interpretation of z0 and ξ? Sketch mdw(z)
and indicate in your plot how the parameters z0 and ξ affect the profile.

(e) Determine the free energy cost of creating a domain wall by evaluating ∆F = FL[mdw]−
FL[m̄]. Show that close to the critical point ∆F vanishes as (Tc − T )3/2. What happens
with the size of the domain wall?
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