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Basics of the Monte Carlo Method 

Macroscopic properties of a systems (i.e., how the whole  
system behaves) are of interest  

In a macroscopic system, it is difficult to treat the motions  
of the all (microscopic) atoms or molecules  

Coarse-graining necessary 
If the time evolution of the system is coarse-grained   
stochastically, one achieves one class of models,  
so-called stochastic models.   

Monte Carlo Method – efficient method to realize this  
numerically on a computer  
Monte Carlo methods provide a powerful way to solve  
numerically the fluctuation or relaxation in a stochastic  
system 

Brownian Motion 
A typical example of Monte Carlo method 

The bigger colloidal particle  
(Brownian particle) moves  
randomly, colliding with  
small solvent particles.   

When one observes it through  
a microscope, one identifies the  
position (or velocity) of the  
Brownian particle only.   

Applying coarse-graining procedure, the other degrees of  
freedom (e.g., the motion of small solvent particles) are  
removed and, finally they can be regarded as a  
random force acting on the Brownian particle.  

Clearly:  
  I = area under the 
       curve 

Monte Carlo vs. Deterministic Philosophy 

Problem:  
evaluate an integral 

0 a 

f(x) 

x 

a
I f ( x )dx== !!0

Deterministic (calculus  
based) approach 

spatial grid:  

Monte Carlo vs. Deterministic Philosophy 

Monte Carlo-Based Approach 

0 a 

f(x) 

x 

b 
Probabilistic interpretation 

Throw N random darts at the rectangle. 
M = the number of times the dart  
          lands under the curve. 
P =  probability that a random point  
          lies under the curve 

I MP
ab N

== !!

MI ab
N

!!No spatial grid, no discretization error  
Statistical error -  !

N
!!
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Monte Carlo vs. Deterministic Philosophy 

Monte Carlo-Based Approach  
(computer code) 

0 a 
x 

b 
y

( x, y )
( x, f ( x ))

y f ( x )==

accepted point 

Random  
number  
generated  
by computer 

!!! !!0 1

Stochastic Processes – Dynamical Variables  

A set of all variables that characterizes the internal state 
of a dynamical system – dynamical variables  

Examples: 
An assembly of N molecules in the gas phase 

a set of atomic positions and momenta 
(
!
X1 ,
!
X2 ,…,

!
XN ) (

!
P1 ,
!
P2 ,…,

!
PN )

!
q

A system of weakly interacting harmonic oscillators 
e.g., for studies of thermal motion of atoms in a solid 
A set of energies of the oscillators 

A magnetic spin system 
A set of spin variables 

N( ! ,! , ,! )1 2 !

Stochastic Processes – Dynamical Variables  
                                               at Equilibrium  

One of the most important subjects in the Monte Carlo method 
distribution of dynamical variables at thermal  
equilibrium of the system ?  

It is not necessary to examine the trajectory of the  
dynamical variable according to some deterministic equation. 

It is important to discuss the value of the dynamical  
variable at a certain place and a certain time 

Suppose we have obtained successive data for  
the dynamical variables  
by observing the system L times at different time steps 

!
q1 ,
!
q2 ,…,

!
qL

t1 ,t2 ,…,tL

Studies of the time evolution of the dynamic variables  

Stochastic Processes – Dynamical Variables                                                 

If these successive data seem to change stochastically  
with time step, we may call this a stochastic process. 
In the Monte Carlo methods which are used to the dynamics  
of a many-body system,  
    the time evolution is considered as a stochastic process,  
    the dynamical variables at each time step are updated  
    by using random numbers. 
A sample obtained in one simulation  

The real Monte Carlo - simulations repeated many times  
and analyzed using standards of statistical physics 

   
!q1 , !q2 ,…, !qL
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Stochastic Processes – Distribution Function 

Transition probability that the system with a dynamic  
variable       at time     moves to the state  
between               and        at a later time       

iq it
j jq !q++ jq jt

i i j j j!( q ,t | q ,t )"q

Distribution function of q - probability 
that the system is in the state defined by q at time t 

p( q,t )

 p( q,t ) dq p( q ,t )!( q ,t | q,t )== !! 0 0 0 0 0

Transition probability should be normalized 

 i i j j j!( q ,t | q ,t ) dq ==!! 1
for any state qi at time  i jt t<<

Markov Process 

!( q ,t | q,t )0 0

Most algorithms used in simulating a realistic system 
by Monte Carlo methods, are based on the following  
Markov process.  

is independent of any information  
about any time t’ before t0 

All the history before time t0 is contracted into the single  
piece of information that the system has  the dynamic  
variable     at the time    .    t0q0

Markov Process 

!( q ,t | q ,t ;q,t )"q "q0 0 1 1 1The transition probability 

 at      at       at q t ( q ,q !q ) t ( q,q !q ) t!! ++ !! ++0 0 1 1 1 1

!( q ,t | q ,t ;q,t ) !( q ,t | q ,t )!( q ,t | q,t )==0 0 1 1 0 0 1 1 1 1

 !( q ,t | q,t ) dq !( q ,t | q ,t )!( q ,t | q,t )== !!0 0 1 0 0 1 1 1 1

Chapman-Kolmogorov equation 

The stochastic process satisfying these two equations 
is called in general Markov process or Markov chain  

The stochastic process depending on the history is  
called a “non-Markov process” 

Markov Process 

By introducing a kind of random updating of the  
dynamical  variable in compensation for neglecting  
the microscopic details of the real system,  
one may arrive at a Markov process.  
 
Replacement of the neglected details with a random  
updating process is identical to the introduction  
of a heat bath    

Detailed motion of atoms on the microscopic scale  
can be seen as heat on the macroscopic scale. 

The form and amount of the updating probability are  
directly related to the temperature of the equilibrium  
state.  
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Markov Process 
Time evolution of a system obeying a Markov Process 

new variables ! ( q ) W(q ;q )1

!( q ,t | q,t "t ) [ # ( q )]$( q q ) W ( q ;q ) O( "t )++ == !! !! ++ ++ 2
1 1 11

and  

             

!( q ,t | q,t "t ) !( q ,t | q,t )

dq !( q ,t | q ,t )W ( q ;q ) !( q ,t | q,t )# ( q ) O( "t )

++ !! ==

== !! ++""
0 0 0 0

2
1 0 0 1 1 0 0

                    

p( q,t !t ) p( q,t )

dq p( q ,t )W ( q ;q ) p( q,t )" ( q ) O( !t )

++ !! ==

== !! ++"" 2
1 1 1

Transition amplitude 

Change of the Transition amplitude 

Change of the distribution function 

Markov Process 

                    

p( q,t !t ) p( q,t )

dq p( q ,t )W ( q ;q ) p( q,t )" ( q ) O( !t )

++ !! ==

== !! ++"" 2
1 1 1

Master equation – basis time-evolution equation 

describes the process  
of transition into state q  
(probability increases) 

describes the process  
of transition  
out of the state q 
(probability decreases) 

In order to get               normalized p( q,t )

!( q ) dq W(q;q )== !! 1 1

W(q ;q )1
stochastic operator 
represents transition 
rate 

Markov Process – Random Walk 
Example of master equation – a random walk  on a d-dim. 
                                                     hypercubic lattice   

p( q,t ++ !!t )!! p( q,t ) == "" 1
2d

p( q
i

2d

"" ++ a
!
ei ,t )!! p( q,t )

##

$$
%%
%%

&&

''
((
((
++O( !!t2 )

The kernel  
(transition rate) W(q1 ;q ) ==

!!
2d

"" ( q !!
i

2d

!! q1 ++ a
!
ei )

! -- diffusion velocity !
ei -- one of the 2d neighbors 
a -- lattice constant 

!aD
d"t

==
2

2
diffusion constant  with constant  a,!t D!! 0

p( q,t ) D p( q,t )
t
!! == ""
!!

2Master equation =  
a finite-difference  
version of diffusion equation  

Ergodicity 
If there is a unique equilibrium state without any periodic  
motion, this Markov process is called ergodic. 
 
Egodicity  -- property of approaching a unique final state  
from an arbitrary initial state   

In many thermodynamic systems, the final state after  
enough time has past is the thermal equilibrium state  

A system at thermal equilibrium obeys the Boltzmann  
distribution 

eq
Bp ( q ) exp[ E( q ) / k T ]

Z
== !!1

Partition function B
q

Z exp[ E( q ) / k T ]== !!""
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Algoritms for Monte Carlo Simulations  

The most basic algorithm of the Monte Carlo method:  
 
       (1)  Generate a random number 
       (2)  Take or do not take a new random step,  
              depending on the generated random number  
       (3)  Repeat trial 

Random numbers 
The “random numbers” generated on a computer are not  
mathematically ideal random numbers  
pseudo-random numbers – uniformly distributed numbers  
in the interval [0,1] having long but finite period 

For 32-bit processor,  
                            the period is M = 231 - 1 = 2 147 483 647 

Algoritms for Monte Carlo Simulations  
Simple Sampling Techniques 

The evaluation of an expectation value of a physical  
quantity   A dqA(q )p( q )== !!
an important theme in the field of Monte Carlo methods 

N

l l
l

N

l
l

A( q )p( q )
A

p( q )

==

==

!!
""

""
1

1

Monte Carlo method is  
introduced to extract samples  
of the system in a completely  
random way.  
This method actually offers a  
well–defined stochastic process  

Such a method of Monte Carlo sampling is called  
a Simple Sampling Technique 

Algoritms for Monte Carlo Simulations  
Simple Sampling Technique  

Handling a thermodynamic ensemble based on a 
stochastic model by the simple sampling technique 

N

l B
l

N

B
l

A( q )exp[ E( q ) / k T ]
A

exp[ E( q ) / k T ]

==

==

!!
""

!!

##

##
1

1

Note, all samples l are 
selected here completely  
randomly, irrespective  
of the Boltzmann weight 

l lA( q ) E( q )==Now assume 
The relative width of the energy fluctuations decreases  
with the number of particles N, in the system  

E E
NE

<< >> !! << >> ""
<< >>

2 2

2
1

Probability to generate states with one particle energy  
close to                     becomes exponentially small for large N 

Algoritms for Monte Carlo Simulations  
Simple Sampling Technique for thermodynamic  
ensamble   

p( ! )The one-particle energy distribution function             
shows a peak of height          and width       
around its expectation value  

N / N1
E / N<< >>

B

( ! E / N )p( ! ) exp N
Ck T

!! ""## << >>$$ ##%% &&
%% &&'' ((

2

22
Note, Gaussian form  
for large N  

E / N<< >>

Simple Sampling Algorithm becomes very inefficient  
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Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  
Simple Sampling Technique offers an efficient algorithm  
to evaluate the average of a physical quantity             , 
only if the distribution function         resembles a more or less 
uniform distribution  

A(q )
p(q )

In contrast, if the distribution function has a big value only  
at an isolated point, it becomes more efficient to choose the  
integration points with the same probability as that given  
by the distribution function          .    p(q )

Such a biased sampling with a probabilistic weight is  
called Importance Sampling Technique 
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. M. Teller, and  
E. Teller, J. Chem. Phys. 21, 1087 (1953).  

Commonly called Metropolis Algorithm 

Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  
If the sample integration points are chosen with the same  
probability as the distribution function         ,  
the expression for the expectation value can be replaced  
simply by  

p(q )

N

l
l

A A( q )
N ==

== !!
1

1

Metropolis et al. considered a Markov process that  
generates a descendant sample l’ from the present sample l  
according to the transition rate l l'W ( q ,q )

They showed that by suitable choice of the transition rate,  
it is possible to bring the distribution of the dynamic variable  
to the expected (prescribed) distribution          in the limit  
     

p(q )
N !!""

Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  

Markov chain 
We consider one particle in the multidimensional space  
of the dynamic variable q and move it step by step  
according to random numbers.   

The movement obeys following rule 
Calculate the value of the distribution function  

q q'!!

p(q')
Compare  p(q') to the present value of the  

distribution function  p(q )
  If p( q') p( q )>> move the particle to the new position 
  If p( q') p( q )<< generate random number ! [ , ]!! 0 1

p( q')
p( q )! <<If 

leave the particle at the same position 

move the particle to the new position 

If p( q')
p( q )! !!

Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  

In IST one updates the particle position with the  
probability min[x,1]  p( q')

p( q )x ==

After repeating this process enough times,  
the distribution of this random walker  
approaches  p(q )
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Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  
Back to the specific problem of the thermodynamic 
                                                             ensembles 

N

l B l
l

N

B l
l

A( q )exp[ E( q ) / k T ] / p( q )
A

exp[ E( q ) / k T ] / p( q )

==

==

!!
""

!!

##

##
1

1

How to choose the distribution function             ? 

We assume that the samples are chosen with the same  
probability as the distribution function  lp( q )

lp( q )
The simplest and most natural choice is the  
Boltzmann distribution  l Bp( q ) exp[ E( q ) / k T ]!! ""

Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  
Using Metropolis’s idea of importance sampling,  
one may bring the distribution function  
close to the thermal-equilibrium distribution   

lp( q )

l Bp( q ) exp[ E( q ) / k T ]
Z

== !!1

A sufficient condition to achieve the equilibrium  
distribution is to impose  
the principle of detailed balance 
eq eq

l l l' l' l' lp ( q )W (q ,q ) p ( q )W (q ,q )==

However, the principle of detailed balance does not  
uniquely determine the transition rate l l'W ( q ,q )

Algoritms for Monte Carlo Simulations 
Importance Sampling Technique  
Two often used choices of transition rate 

B
l l'

B B

exp( !E / k T )!EW(q ,q ) tanh
" k T " [ exp( !E / k T )]
!! ""!! "" ##

== ## ==$$ %%$$ %% ++ ##&& ''&& ''

1 11
2 1

Heat bath method (Glauber algorithm) 
R. J. Glauber, J. Math. Phys. 4, 294 (1963) 

l' l!E E(q ) E( q )== !!
Metropolis Algorithm 

      

                          otherwise

B

l l'

exp( !E / k T ) !E
"W(q ,q )

"

!! "" >>####== $$
##
##%%

1 0

1

Metropolis Monte Carlo Simulation  
Standard, very important sampling technique to realize  
the canonical ensemble  

By using random numbers, produce a new state  
from the present one  

Calculate the energy difference        of the new state  
relative to the present one 

!E

If  !E ,!! 0 update to the new state. 
then generate a random number                , and If  !E ,>> 0 ! [ , ]!! 0 1

if 

else 
update to the new state 

leave the state as it is. 

Bexp( !E / k T ) "!! >>
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Applications of Monte Carlo Simulations  
in the field of condensed-matter &  
                        materials science  

Classical particles  
 
Percolation 
 
Polymers   
 
Classical Spins  
 
Crystal Growth 
 

Monte Carlo Simulations –  
Systems of Classical Particles  

A system of N classical interacting particles 

H ==
!̂
pI
2

2MII==1

N

!! ++U(
!
r1 ,
!
r2 ,!,

"
rN )

Z == 1
h3NN !

exp[ !!H"" / kBT ] d
!
rId
!
pI

I==1

N

## ==
2!mkBT
h2

$$
%%&&

''
(())

3N / 2

Q(T ,V )

Q(T ,V ) == 1
N !

d
!
r1…d

!
rN exp[ !!"" U(

!
r1 ,
!
r2 ,!,

"
rN ) / kBT ]

Hamiltonian 

Partition function 

The distribution function for the coordinates of   
                                                                           the N particles 

   
p(
!
r1 ,
!
r2 ,",

!
rN ) == 1

N !Q(T ,V )
exp[ !!U(

!
r1 ,
!
r2 ,",

!
rN ) / kBT ]

Monte Carlo Simulations –  
Systems of Classical Particles  

Procedure 
One chooses one particle among N particles randomly  
(or one may select them one by one from 1 to N)  

allow this movement 

Move the position        of the selected particle to  
the new position 

!
ri!ri ++ !!
!
ri   

!ri !!
!ri ++ ""!r

a random vector  

Metropolis algorithm 
Check whether the new configuration is energetically  
more stable than the original configuration      

If YES 

If NO further procedure 

Procedure (ctn.) 

Monte Carlo Simulations –  
Systems of Classical Particles  

Calculate the ratio of the distribution function before and  
after this movement   p(

!
r1 ,
!
r2 ,!,

"
ri ++ !!

!
ri ,…
!
rN )

p(
!
r1 ,
!
r2 ,!,

"
ri ,…
"
rN )

Allow this movement if this ratio is larger than a uniform  
random number  [ , ]!! 0 1

The random vector          is chosen so that the allowance  
rate of the movement is roughly several tens of per cent  

  !!
!r

The Monte Carlo procedure is usually performed with  
a fixed particle number N, temperature T, and volume V  

NTV ensemble 
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Monte Carlo Simulations –  
Systems of Classical Particles  

Form of potential U ? 
The simplest one - “Hard sphere system” 
liquid – solid phase transition 
B. J. Alder & T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957) 

W.W. Wood & J.D. Jacobson, J. Chem. Phys. 27, 1207 (1957) 

Molecular dynamics 

Monte Carlo Simulations 

!V( r )
" r

n!! ""== ## $$%% &&
1Soft-core, pair potentials 

ij ij
ij ij

R R
V ( R ) U

R R

!! ""## $$ ## $$%% &&== ''(( )) (( ))(( )) (( ))%% &&** ++ ** ++%% &&,, --

0 0
0 2

12 6
Lennard-Jones potential 

Monte Carlo Simulations –  
Systems of Classical Particles  

System of charged particles ? 
Long-range Coulomb potential !V( r )

" r
!! ""== ## $$%% &&
1

One should pay attention 

Usually, charge neutrality should be preserved 

Periodic boundary conditions usually imposed 

Even if the number of N of particles is small,  
one has to evaluate an infinite sum of Coulomb interact. 

The Ewald sum 

Fast multipole method 

Monte Carlo Studies of  
Ordering in InGaN, AlInN, and 
AlGaN ternary alloys 
 
M. Lopuszynski & J. A. Majewski   
Phys. Rev. B 85, 035211 (2012) 

 

•! Various ordering patterns reported in 
experiments 
–! Clustering 
–! Compositional modulation (LRO) 
–! Uniform alloy, maybe with some SRO 

•! Ordering is important 
–! LRO/SRO influences band structure 

–! Indium clusters are believed to impact  
luminescence 
 

–! Many modeling methods (e.g. VCA,  
CPA, SQS) assumes random 

    uncorrelated alloy (SRO=0, LRO=0).  
    Is that right? 

Ordering in Nitrides 
GaInN 
Z. Liliental-Weber  et al, 
Physica B 376, 468 (2006) 

Qunatum Wells GaInN 
M. Galtrey et al, APL 90, 061903 (2007) 
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Indium Clustering Controversy 
CLUSTERING  

•! HRTEM pictures show 
ordering  

•! It is possible to minimize 
radiative damage 

•! Thermodynamics predicts 
phase separation and 
forbids uniform alloys 

•! Clustering explains high 
luminescence  

•! … 

NO CLUSTERING   
•! This is an artifact due to 

radiative damage of the 
sample, 3DAP does not 
show it 

•! It depends on the employed 
model, inclusion of strains 
etc. 

•! Epitaxial methods are at least 
partially non-equilibrium 

•! Other mechanisms could 
also explain it  

Three thermodynamic states for 
semiconductor alloys AxB1-xN"

Bulk-incoherent thermodynamics 
"!  thick film (> hc) without lattice coherence 
     (binary alloys AN & BN have different lattice constants) 
"!    phase separation AN + BN 
"!   in real systems dislocations & defects 

 
Bulk-coherent thermodynamics 
          thick film (> hc) with lattice coherence  
 
Substrate-coherent epitaxial thermodynamics 
          thin film (< hc)  

THIS example: cubic GaInN, AlInN, AlGaN 

Computational Approach 

•! Keating Model 

•! Monte Carlo Metropolis Method with cationic 
exchange and atomic shifts  

•! Cubic supercell with periodic boundary cond.  
(typical cell with 1728 atoms) 

•! Lattice coherent thermodynamics 
Chan, Liu & Zunger PRB 82 045112 (2010) 

V (3)  - bond 
bending term 

V (2)  - bond 
stretching term 

-! interaction parameters,        
determined on the basis  
of DFT calculations 

bond bending 

bond  
stretching 

Multibody Potential - Keating VFF 
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Bond Length -  Theory vs Experiment 

Good agreement with experimental data 

How to Quantify Ordering?!

Short Range Order 

•! Warren-Cowley Short Range Order (SRO) parameter: 

•! Interpretetation:   
              !AB > 0  - B avoids A 
             !AB < 0  - B likes A   
             !AB = 0  - A neutral for B 

!AB
(1)  = 0.3 !AB

(1) = -- 0.3!

Probability to  find B  
as ith nearest  
neighbor of A 

Concentration of B 

Convergence of !(i) With Cell Size 

M 
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RESULTS: #
Bulk-coherent structures"

 "

•! GaInN - exhibits considerable SRO, no LRO 

Results for Bulk Ternaries - GaInN 

NO  
In clustering! 

Results for Bulk AlInN"

NO  
clustering! 

AlInN (as GaInN) - exhibits considerable SRO, no LRO 
Results For Bulk AlGaN"

Uncorrelated 
alloy! 
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Kinetic Monte Carlo Methods  

Kinetic Monte Carlo Simulations –  
An approach to perform epitaxial growth  
simulations  

Epitaxial growth is a key technique in fabricating 
semiconductor-based electronic and optoelectronic 
devices such as  
       light-emitting diodes (LED’s),  
       laser diodes (LDs), or 
       high electron mobility transistors. 

These devices consist of vertically stacked thin films  
that differ by the material, alloy composition, 
or doping. 

Epitaxial growth of materials 

Substrate 
Layer 1 
Layer 2 
Layer 3 
Layer 4 

Vertically stacked layers 
of various materials 

Epitaxy (from Greek  
epi = upon;  taxis = ordered)  

To employ quantum effects 
some of these structures are 
only a few atomic layers thick. 

For the performance/efficiency  
of such devices the quality  
of the interfaces between  
the different layers is crucial. 

Realistic growth simulations could help to understand  
mechanisms affecting the interface quality but also to 
identify optimum growth conditions or suitable material 
combinations. 

Schematic view of a MBE system for the growth of multi-element films  

Substrate heater 

Effusion cells for constituent 
elements and dopants  

substrate 

Vapor mixing zone 

Molecular beam generation 

Individual shutter 

Molecular Beam Epitaxy (MBE) 
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MBE – real maschine Film Growth Modes  
Nucleation and growth of a film proceeds from energetically  
favorable places on a substrate surface 

Schematic view of the elements  
of surface morphology 

If the surface diffusion is fast  
enough, a randomly deposited 
adatom will diffuse to the  
energetically most favorable  
places like steps and especially  
kinks.       

If at lower temperatures the  
diffusion is slower, several  
mobile addatoms may encounter  
each other within a terrace and  
may form additional immobile  
adatom cluster within terraces    

Simulation of growth processes  

A challenge to perform such growth simulations is  
the large range of relevant length and time scales.  
 
The features interesting for device design (interface 
morphology, formation of nanostructures) are of the order of 
100–1000 nm and the time to grow these structures is of the 
order of seconds. 
 
The origin of these effects, however, lies in the atomic 
processes on the surface (adatom adsorption, desorption, 
nucleation,etc.). 
This requires a resolution in the length scale 0.1 nm  
and in the time scale of 10-13 s. 

Simulation of growth processes –  
Various approaches  

Methods to perform growth simulations can be classified  
in three main categories: 

rate equations (giving only global information such as 
island density or adatom coverage) without spatial 
resolution, 
continuum equations, which describe the surface 
morphology on a mesoscopic scale, 
computer simulations, describing the full atomistic structure 
of the growing surface, such as molecular dynamics (MD) or 
the kinetic Monte Carlo (KMC) simulation. 

The first two approaches do not really bridge the large  
range of length and time scales but work exclusively  
on a mesoscopic scale by using effective parameters. 
A problem - the effective parameters cannot be directly  
related to the actual atomic parameters 
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Simulation of growth processes –  
Molecular Dynamic Simulations  

In MD simulations as input no a priori information is needed 

They provide detailed insight into microscopic processes 
of deposition. 

Due to limitations in computational power, MD method is 
mostly restricted to very short simulation times of the 
order of picoseconds and small simulation areas. 

The Molecular Dynamics approaches are important 
tools to identify all relevant diffusion processes a 
priori and calculate their diffusion rates. 

Molecular Dynamics Simulations of GaAs MBE  

The effect of substrate temperature on film morphology 

 subT K== 473  subT K== 673

D. A. Murdick et al.  

From Molecular Dynamics to   
Kinetic Monte Carlo   

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

Modeling crystal growth with the KMC method allows 
one to cover experimentally relevant growth times and 
system sizes, since each event on the surface is just 
described by a single quantity—the transition rate—
rather than by modeling the full reaction path including 
atomic geometries and energies 

Bridging of length and time scales 
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Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

In order to describe growth we must in principle follow  
the trajectory of each individual atom starting from the 
adsorption on the surface over the motion on the surface 
until it eventually gets incorporated or desorbed. 

In general, all information necessary to get this information 
can be obtained by calculating the potential energy surface 
(PES) an atom experiences on a realistic surface 

Realistic means here that the surface has various structural 
features such as surface steps, kinks, and facets. 

Such a potential energy surface (PES) can be calculated 
based on first-principles total energy calculations 

J. Neugebauer, T. Zywietz, M. Scheffler, and J. Northrup,  
Appl. Surf. Sci. 159, 355 (2000). 

One-dimensional potential energy surface (PES) 

The energy barrier  
that one adatom  
has to overcome  
to hop from  
site i to site i + 1. 

can be obtained from ab initio calculations 

The site in front of the step has a higher coordination 
(the atom can form more bonds with the surface) 
and is thus energetically more favorable than the 
adsorption sites (local minima in the PES) on the flat 
surface. 

i ,i
b BE k T++ >>1

AIMD Simulations of H2 Molecule Adsorption  
on the (100) surface of Pd 

Pd atoms  
on the surface 

X 

Y 

Z d 

H2 

6 coordinates determines  
position of H2 molecule  
relative to the surface 
X, Y, Z - center of the mass 
d – distance between two H 
!," – orientation of the  
           molecular axis 

AIMD Potential Energy Surface (PES) 
for H2 / Pd(100) system 

Contour plot of the PES along  
a two-dimensional cut through the 
six-dimensional coordinate space 

The inset shows the orientation 
of the molecular axis and the 
lateral H2 center-of-mass 
coordinates 

(Z
) 

(d) 

The most favorable path 
towards dissociative 
adsorption 
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Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

i ,i
diff BE k T++ >>1Condition  well fulfilled in semiconductors  

diffusion barriers on semiconductor surfaces are of the order 
of a few tenths of an eV up to a few eV 

Transition rate for an adatom jump from site i to i+1 

called attempt frequency and can be 
directly calculated from total energy calculations 

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

To describe surface growth we have not only to follow  
a single atom but an ensemble of atoms. 

Let certain configuration in this ensemble be n 

As for the individual adatom each possible configuration 
is given by a minimum in the total energy surface and 
neighboring minima are separated by a barrier n,n'

diffE

Master Equation 

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

nP ( t ) -! the probability of finding the system  
  at time t in configuration n, 

n' nw !! -! the transition rate to go from    
  configuration n to n’. 

For a typical growth simulation these transitions involve 
     adsorption,  
     desorption,  
     diffusion, and  
     nucleation 

Possible events during film growth  
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Simulation of growth processes –  
Kinetic Monte Carlo Method  

start from a configuration n0 

Procedure 

calculate the transition probability n n'w !!0
for all possible events 
select a new configuration by using a 
random number rrand in the interval between 0 and 1 

the time for this event  
can be calculated by 
n’ runs over all neighbor  
configurations of n0 

The above procedure is subsequently repeated and  
one directly obtains how the growing surface evolves  
in time n(t) 

Simulation of growth processes –  
Kinetic Monte Carlo Method  
Problem  

With increasing growth temperature KMC  
becomes more expensive   

The transition probability increases exponentially  
with temperature T 

Why? 

The transition probability is inversely proportional to the 
time step  
 
The number of time steps and thus the 
computational effort to follow the system over   
a fixed time t increases exponentially 

KMC Simulation for Equilibrium Structures  
at Various Temperatures  

Experiment  Simulations  

380°C 

440°C 

0.083 Ml/s 

ES: Surface bond energy 
EN: Nearest neighbor bond energy 

0 : Prefactor  [O(1013s-1)] 

•! Parameters that can be calculated from first principles (e.g., DFT) 

•! Completely stochastic approach 

 
D = 0 exp(-ES/kT) 

 F 
  

      Ddet = D exp(-EN/kT) 

 Ddet,2 = D exp(-2EN/kT) 
 

KMC Simulations of a Cubic,  
Solid-on-Solid Model  
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KMC Simulations: Effect of Nearest  
Neighbor Bond Energy EN 

Large EN: 
Irreversible 
Growth 

Small EN: 
Compact 
Islands 

Experimental Data 
Au/Ru(100) 

Ni/Ni(100) 

Hwang et al., PRL 67 (1991) Kopatzki et al., Surf.Sci. 284 (1993) 

KMC Simulations 

LeoCrystal –  
crystal growth simulation  software   

LeoCrystal is a program that performs modeling of reaction  
on the surface of crystal for educational and research purposes.  

www.leokrut.com/store/leocrystal.html 

LeoCrystal –  
crystal growth simulation  software   

With the help of this program you can estimate influence  
of different parameters of the structure elements  
of crystals on topology and kinetic of the crystallization.  

Process of crystal growth is present in practically  
all major technology processes.  

In depth understanding of complexity of this process  
is essential for professional research.  

The creative presentation of the surface including 3D  
perspective projection and stereo red/blue  
(corresponding glasses required) and separate  
for both eyes are available and make the performing  
of educational and research process a sort of fun.  

Thank you ! 


