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Hierarchy of Theoretical Approaches  
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Basics of the Monte Carlo Method 

Macroscopic properties of a systems (i.e., how the whole  
system behaves) are of interest  

In a macroscopic system, it is difficult to treat the motions  
of the all (microscopic) atoms or molecules  

Coarse-graining necessary 
If the time evolution of the system is coarse-grained   
stochastically, one achieves one class of models,  
so-called stochastic models.   

Monte Carlo Method – efficient method to realize this  
numerically on a computer  
Monte Carlo methods provide a powerful way to solve  
numerically the fluctuation or relaxation in a stochastic  
system 

Stochastic Processes – Dynamical Variables  
                                               at Equilibrium  

One of the most important subjects in the Monte Carlo method 
distribution of dynamical variables at thermal  
equilibrium of the system ?  

It is not necessary to examine the trajectory of the  
dynamical variable according to some deterministic equation. 

It is important to discuss the value of the dynamical  
variable at a certain place and a certain time 

Markov Process 

!( q ,t | q,t )0 0

Most algorithms used in simulating a realistic system 
by Monte Carlo methods, are based on the following  
Markov process.  

is independent of any information  
about any time t’ before t0 

All the history before time t0 is contracted into the single  
piece of information that the system has  the dynamic  
variable     at the time    .    t0q0
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Markov Process 

                    

p( q,t !t ) p( q,t )

dq p( q ,t )W ( q ;q ) p( q,t )" ( q ) O( !t )

++ !! ==

== !! ++"" 2
1 1 1

Master equation – basis time-evolution equation 

describes the process  
of transition into state q  
(probability increases) 

describes the process  
of transition  
out of the state q 
(probability decreases) 

In order to get               normalized p( q,t )

!( q ) dq W(q;q )== !! 1 1

W(q ;q )1
stochastic operator 
represents transition 
rate 

Markov Process – Random Walk 
Example of master equation – a random walk  on a d-dim. 
                                                     hypercubic lattice   
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! -- diffusion velocity !
ei -- one of the 2d neighbors 
a -- lattice constant 
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diffusion constant  with constant  a,!t D!! 0

p( q,t ) D p( q,t )
t
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2Master equation =  
a finite-difference  
version of diffusion equation  

Ergodicity 
If there is a unique equilibrium state without any periodic  
motion, this Markov process is called ergodic. 
 
Egodicity  -- property of approaching a unique final state  
from an arbitrary initial state   

In many thermodynamic systems, the final state after  
enough time has past is the thermal equilibrium state  

A system at thermal equilibrium obeys the Boltzmann  
distribution 

eq
Bp ( q ) exp[ E( q ) / k T ]

Z
== !!1

Partition function B
q

Z exp[ E( q ) / k T ]== !!""

Algoritms for Monte Carlo Simulations  

The most basic algorithm of the Monte Carlo method:  
 
       (1)  Generate a random number 
       (2)  Take or do not take a new random step,  
              depending on the generated random number  
       (3)  Repeat trial 

Random numbers 
The “random numbers” generated on a computer are not  
mathematically ideal random numbers  
pseudo-random numbers – uniformly distributed numbers  
in the interval [0,1] having long but finite period 

For 32-bit processor,  
                            the period is M = 231 - 1 = 2 147 483 647 
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Algoritms for Monte Carlo Simulations  
Simple Sampling Techniques 

The evaluation of an expectation value of a physical  
quantity   A dqA(q )p( q )== !!
an important theme in the field of Monte Carlo methods 
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==
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Monte Carlo method is  
introduced to extract samples  
of the system in a completely  
random way.  
This method actually offers a  
well–defined stochastic process  

Such a method of Monte Carlo sampling is called  
a Simple Sampling Technique 

Applications of Monte Carlo Simulations  
in the field of condensed-matter &  
                        materials science  

Classical particles  
 
Percolation 
 
Polymers   
 
Classical Spins  
 
Crystal Growth 
 

Kinetic Monte Carlo Methods  
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Kinetic Monte Carlo Simulations –  
An approach to perform epitaxial growth  
simulations  

Epitaxial growth is a key technique in fabricating 
semiconductor-based electronic and optoelectronic 
devices such as  
       light-emitting diodes (LED’s),  
       laser diodes (LDs), or 
       high electron mobility transistors. 

These devices consist of vertically stacked thin films  
that differ by the material, alloy composition, 
or doping. 

Epitaxial growth of materials 

Substrate 
Layer 1 
Layer 2 
Layer 3 
Layer 4 

Vertically stacked layers 
of various materials 

Epitaxy (from Greek  
epi = upon;  taxis = ordered)  

To employ quantum effects 
some of these structures are 
only a few atomic layers thick. 

For the performance/efficiency  
of such devices the quality  
of the interfaces between  
the different layers is crucial. 

Realistic growth simulations could help to understand  
mechanisms affecting the interface quality but also to 
identify optimum growth conditions or suitable material 
combinations. 

Schematic view of a MBE system for the growth of multi-element films  

Substrate heater 

Effusion cells for constituent 
elements and dopants  

substrate 

Vapor mixing zone 

Molecular beam generation 

Individual shutter 

Molecular Beam Epitaxy (MBE) MBE – real maschine 
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Film Growth Modes  
Nucleation and growth of a film proceeds from energetically  
favorable places on a substrate surface 

Schematic view of the elements  
of surface morphology 

If the surface diffusion is fast  
enough, a randomly deposited 
adatom will diffuse to the  
energetically most favorable  
places like steps and especially  
kinks.       

If at lower temperatures the  
diffusion is slower, several  
mobile addatoms may encounter  
each other within a terrace and  
may form additional immobile  
adatom cluster within terraces    

Simulation of growth processes  

A challenge to perform such growth simulations is  
the large range of relevant length and time scales.  
 
The features interesting for device design (interface 
morphology, formation of nanostructures) are of the order of 
100–1000 nm and the time to grow these structures is of the 
order of seconds. 
 
The origin of these effects, however, lies in the atomic 
processes on the surface (adatom adsorption, desorption, 
nucleation,etc.). 
This requires a resolution in the length scale 0.1 nm  
and in the time scale of 10-13 s. 

Simulation of growth processes –  
Various approaches  

Methods to perform growth simulations can be classified  
in three main categories: 

rate equations (giving only global information such as 
island density or adatom coverage) without spatial 
resolution, 
continuum equations, which describe the surface 
morphology on a mesoscopic scale, 
computer simulations, describing the full atomistic structure 
of the growing surface, such as molecular dynamics (MD) or 
the kinetic Monte Carlo (KMC) simulation. 

The first two approaches do not really bridge the large  
range of length and time scales but work exclusively  
on a mesoscopic scale by using effective parameters. 
A problem - the effective parameters cannot be directly  
related to the actual atomic parameters 

Simulation of growth processes –  
Molecular Dynamic Simulations  

In MD simulations as input no a priori information is needed 

They provide detailed insight into microscopic processes 
of deposition. 

Due to limitations in computational power, MD method is 
mostly restricted to very short simulation times of the 
order of picoseconds and small simulation areas. 

The Molecular Dynamics approaches are important 
tools to identify all relevant diffusion processes a 
priori and calculate their diffusion rates. 
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Molecular Dynamics Simulations of GaAs MBE  

The effect of substrate temperature on film morphology 

 subT K== 473  subT K== 673

D. A. Murdick et al.  

From Molecular Dynamics to   
Kinetic Monte Carlo   

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

Modeling crystal growth with the KMC method allows 
one to cover experimentally relevant growth times and 
system sizes, since each event on the surface is just 
described by a single quantity—the transition rate—
rather than by modeling the full reaction path including 
atomic geometries and energies 

Bridging of length and time scales 

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

In order to describe growth we must in principle follow  
the trajectory of each individual atom starting from the 
adsorption on the surface over the motion on the surface 
until it eventually gets incorporated or desorbed. 

In general, all information necessary to get this information 
can be obtained by calculating the potential energy surface 
(PES) an atom experiences on a realistic surface 

Realistic means here that the surface has various structural 
features such as surface steps, kinks, and facets. 

Such a potential energy surface (PES) can be calculated 
based on first-principles total energy calculations 

J. Neugebauer, T. Zywietz, M. Scheffler, and J. Northrup,  
Appl. Surf. Sci. 159, 355 (2000). 
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One-dimensional potential energy surface (PES) 

The energy barrier  
that one adatom  
has to overcome  
to hop from  
site i to site i + 1. 

can be obtained from ab initio calculations 

The site in front of the step has a higher coordination 
(the atom can form more bonds with the surface) 
and is thus energetically more favorable than the 
adsorption sites (local minima in the PES) on the flat 
surface. 

i ,i
b BE k T++ >>1

AIMD Simulations of H2 Molecule Adsorption  
on the (100) surface of Pd 

Pd atoms  
on the surface 

X 

Y 

Z d 

H2 

6 coordinates determines  
position of H2 molecule  
relative to the surface 
X, Y, Z - center of the mass 
d – distance between two H 
!," – orientation of the  
           molecular axis 

AIMD Potential Energy Surface (PES) 
for H2 / Pd(100) system 

Contour plot of the PES along  
a two-dimensional cut through the 
six-dimensional coordinate space 

The inset shows the orientation 
of the molecular axis and the 
lateral H2 center-of-mass 
coordinates 

(Z
) 

(d) 

The most favorable path 
towards dissociative 
adsorption 

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

i ,i
diff BE k T++ >>1Condition  well fulfilled in semiconductors  

diffusion barriers on semiconductor surfaces are of the order 
of a few tenths of an eV up to a few eV 

Transition rate for an adatom jump from site i to i+1 

called attempt frequency and can be 
directly calculated from total energy calculations 
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Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

To describe surface growth we have not only to follow  
a single atom but an ensemble of atoms. 

Let certain configuration in this ensemble be n 

As for the individual adatom each possible configuration 
is given by a minimum in the total energy surface and 
neighboring minima are separated by a barrier n,n'

diffE

Master Equation 

Simulation of growth processes –  
Kinetic Monte Carlo (KMC)  

nP ( t ) -! the probability of finding the system  
  at time t in configuration n, 

n' nw !! -! the transition rate to go from    
  configuration n to n’. 

For a typical growth simulation these transitions involve 
     adsorption,  
     desorption,  
     diffusion, and  
     nucleation 

Possible events during film growth  
Simulation of growth processes –  
Kinetic Monte Carlo Method  

start from a configuration n0 

Procedure 

calculate the transition probability n n'w !!0
for all possible events 
select a new configuration by using a 
random number rrand in the interval between 0 and 1 

the time for this event  
can be calculated by 
n’ runs over all neighbor  
configurations of n0 

The above procedure is subsequently repeated and  
one directly obtains how the growing surface evolves  
in time n(t) 
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Simulation of growth processes –  
Kinetic Monte Carlo Method  
Problem  

With increasing growth temperature KMC  
becomes more expensive   

The transition probability increases exponentially  
with temperature T 

Why? 

The transition probability is inversely proportional to the 
time step  
 
The number of time steps and thus the 
computational effort to follow the system over   
a fixed time t increases exponentially 

KMC Simulation for Equilibrium Structures  
at Various Temperatures  

Experiment  Simulations  

380°C 

440°C 

0.083 Ml/s 

ES: Surface bond energy 
EN: Nearest neighbor bond energy 

0 : Prefactor  [O(1013s-1)] 

•! Parameters that can be calculated from first principles (e.g., DFT) 

•! Completely stochastic approach 

 
D = 0 exp(-ES/kT) 

 F 
  

      Ddet = D exp(-EN/kT) 

 Ddet,2 = D exp(-2EN/kT) 
 

KMC Simulations of a Cubic,  
Solid-on-Solid Model  

KMC Simulations: Effect of Nearest  
Neighbor Bond Energy EN 

Large EN: 
Irreversible 
Growth 

Small EN: 
Compact 
Islands 

Experimental Data 
Au/Ru(100) 

Ni/Ni(100) 

Hwang et al., PRL 67 (1991) Kopatzki et al., Surf.Sci. 284 (1993) 

KMC Simulations 
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LeoCrystal –  
crystal growth simulation  software   

LeoCrystal is a program that performs modeling of reaction  
on the surface of crystal for educational and research purposes.  

www.leokrut.com/store/leocrystal.html 

LeoCrystal –  
crystal growth simulation  software   

With the help of this program you can estimate influence  
of different parameters of the structure elements  
of crystals on topology and kinetic of the crystallization.  

Process of crystal growth is present in practically  
all major technology processes.  

In depth understanding of complexity of this process  
is essential for professional research.  

The creative presentation of the surface including 3D  
perspective projection and stereo red/blue  
(corresponding glasses required) and separate  
for both eyes are available and make the performing  
of educational and research process a sort of fun.  

Continuum Methods "
in Materials Science "

!! Hierarchy of theoretical approaches"

!! Continuum models of carbon nanotubes"
     composites"

!! Continuum Field Description of Crack"
     Propagation"

!! Continuum models of crystal growth"

"
"
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Elasticity of composite 
materials 

The Young’s Moduli of Engineering Materials  

The different classes  
of material  
tend to cluster: 
 
Metals have relatively  
high moduli and 
high densities.  
 
Polymers have  
low moduli and densities.  

Elastic moduli of composites, anisotropic materials  

What happens  
if the composite  
is loaded by force F ? 

CFRP – carbon fiber reinforced polymers  

Carbon nanotubes (CNTs) 

S. Iijima, Nature 354, 56 (1991) 
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CNTs – Mechanical Properties 

Mechanical strength –  graphite-like strong bonds 
                                    --  no dangling bonds 
                                    --  no weakly bound sheets 

very high Young’s modulus ~ 1012 N/m2  

                                                                       (5 times the value for steel) 
             deformations (bending, squeezing) are elastic,  
             i.e., they disappear when the load is removed 
 
new composite materials with high strength and elasticity 

futuristic applications??? 
            earthquake-resistant buildings; 
            cars which come to its undamaged form  
            after a crash 

CNTs – Mechanical Applications 

Discrete (MD)  
model 

Continuum shell  
model 

Continuum solid  
model 

Continuum Models of Carbon Nanotube-Based  
Composites 

Continuum Models of Carbon Nanotube-Based  
Composites 

Circular  
(Cylindrical)  
RVE 

Square RVE Hexagonal RVE 

Three possible representative volume elements (RVE)  
for the analysis of CNT-based nanocomposites 
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Continuum Models of Carbon Nanotube-Based  
Composites 

A short single-walled carbon nanotube (CNT) embedded  
in a matrix material Matrix:  

height = width = 10 nm,  
length = 100 nm; 

CNT: outer radius = 5 nm,  
inner radius = 4.6 nm,  
length = 50 nm 

The Young’s moduli  
and Poisson’s ratios: 
Matrix: 
EM = 100nN/nm2 (=100GPa)  
#M = 0. 3 

CNT: 
ECNT = 1000nN/nm2 (=1000GPa)  
#CNT = 0. 3 

Continuum Models of Carbon Nanotube-Based  
Composites 

Deformed shapes of the square RVE  
under a bending load. 

Simulations of CNT-based composites using the 
continuum mechanics approach 

Continuum Models of Carbon Nanotube-Based  
Composites 
Effective Young’s moduli in the CNT direction for  
CNT-based Composites with various matrices 

CNT modulus 
1000 GPa 

volume fraction  
= 0.05 (long) 

volume fraction  
= 0.02 (short) 

Hard matrix Soft matrix 

Crack spreading 
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Multiscale Simulations of Fracture    

Fracture: the canonical 
multiscale materials problem 
brittle vs. ductile fracture 

Continuum Field Description of Crack Propagation 

I. S. Aranson et al., Phys. Rev. Lett. 85, 118 (2000)  

Schematic representation of fixed-grips loading 

The two-dimensional geometry focusing 
on the so-called type-I crack mode 

Continuum Field Description of Crack Propagation 

Model of the crack propagation - is a set of the 
elastodynamic equations coupled to the equation  
for the order parameter  $ 

is related to the relative concentration of point defects 
in the amorphous material (e.g., microvoids) and 
characterizes local order 

! 

We define  ! = 1 outside the crack (no defects) and  
! = 0 inside the crack (all the atomic bonds are broken).  
 
At the crack surface ! varies from 0 to1 on the scale  
much larger than the interatomic distance, justifying  
the continuum description of the crack. 
 
Material fails to support tensile stress and breaks when ! 
becomes below critical value !c. 

Continuum Field Description of Crack Propagation 

Equations of motion for an elastic medium 

ui - the components of displacements 

the density of material accounts for viscous damping,  
% is the viscosity coefficient 

-- the stress tensor is related to deformations 
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Continuum Field Description of Crack Propagation 

The stress tensor 

uij -- the elastic strain tensor 

E -- the Young’s modulus 
& -- the Poisson’s ratio 

To take into account the effect of weakening of material with 
the decrease of $ one assumes dependence of E upon !,  
E E !== 0

-- accounts for the hydrostatic pressure created due 
   to generation of new defects; # is a constant 

 !! !""

trace of the elastic  
strain tensor  

Continuum Field Description of Crack Propagation 

Equations of motion for order parameter 
We assume that the order parameter ! is governed 
by pure dissipative dynamics which can be derived 
from the “free-energy” type functional F

F dxdy[ D | ! | "( ! )]!! "" ++##
2

Following Landau ideas on phase transitions, 
we adapt the simplest form for the free energy 

“local potential energy” ! has  
minima at " = 0 and " = 1.  

Polynomial form for !(")  

Continuum Field Description of Crack Propagation 

Equations of motion for order parameter 

Coupling of the order parameter 
to the displacement field  
enters through the position of the  
unstable fixed point defined  
by the function 

Coupling of the order  
parameter to  
the velocity.   
It is responsible for  
the localized shrinkage  
of the crack due to  
material motion. 

This term is crucial to maintain 
the sharp form of the crack tip. 

Continuum Field Description of Crack Propagation 

Constrains imposed on function F  
The constraint imposed on 
is that it must have one zero in interval !>> >>1 0

c llF( ! ,u ) == 0

! ll ! !c
F( !,u )

==
!! << 0

c!>> >>1 0

The simplest form of F satisfying this constraint is 

ll llF( !,u ) ( b µu )!== !! !!1

Material constants related to such properties 
as crack toughness and strain to failure 



17!

Continuum Field Description of Crack Propagation 

Constrains imposed on function  f 
The specific form of this function is irrelevant 

f ( ! ) c!( ! )== !!1One takes 

a dimensionless material constant 

to ensure that f vanishes at " = 0 and " = 1 

Continuum Field Description of Crack Propagation 

Static solutions 

The static one-dimensional equations read 

With the fixed-grips boundary conditions (BC) 

yu ( y L ) L!== ±± == ±±

!( y L )== ±± == 1

y ( ! )!! == ==0 0

Continuum Field Description of Crack Propagation 

Static solution 
The width of the crack opening d   defined as 

The solution exists only if      exceeds some critical value !

The strain to failure 

The logarithmic, instead of linear, dependence of crack 
opening on system size L is a shortcoming of the model 
resulting from an oversimplified dependence  
of the function F on ull 

Continuum Field Description of Crack Propagation 

To study the dynamics of cracks, one has to perform 
numerical simulations.  
Usually, one uses an explicit second order scheme. 
 
Discretization methods :  
                                        finite difference  
                                        finite element method (FEM)    
 
The number of grid points used in simulation of the  
model discussed here -- up to 4000 x 800 grid points. 
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Continuum Field Description of Crack Propagation 

Results of the simulation 

The crack produces the stress concentration near the tip, 
while the stress is relaxed behind the tip 

Hydrostatic  
pressure 

xx yyp (! ! )== !! ++

Shear xy!

Quasistationary propagation 

Continuum Field Description of Crack Propagation 

Results of the simulation -- Instability of crack propagation 

!( x, y )Order parameter 

propagation  
with  
fragmentation 

Crystal Growth: 
 
Continuum Methods 

Growth science 

A vast variety of phenomena are studied by growth science, 
ranging from  
 
    the spread of a forest fire to  
    the sedimentation of sand on the bottom of a water  
    basin. 
  
These growth phenomena have been recently reviewed  
in beautiful articles and books 

T. Halpin-Healy & Y.-C. Zhang, Phys. Rep. 254, 215 (1995) 

Evans, Rev. Mod. Phys. 65, 1281 (1993) 

In recent times, the evolution processes have ultimately  
become a central object of scientific study in many fields. 

A.L. Barab´asi & H. E. Stanley, Fractal Concepts in Surface  
      Growth (Cambridge: Cambridge University Press, 1995) 
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Crystal growth and growth science 

Crystal growth is special in that it was studied in detail,  
because of its practical importance,  
much before the present fashion 

Hurle D T J (ed) Handbook of Crystal Growth  
(Amsterdam: North-Holland, 1993) 

Atomistic description of crystal growth 
 
Continuum models of crystal growth 

dependent on the physics of growth  

Traditional concepts of crystal growth 

Surface growth 
For stable growth the most widely considered geometry 
is that of a planar or quasi-planar surface, moving in the 
positive z-direction with (on average) constant velocity v. 

The chemical potential of the vapor 

of the crystal 

µ
eqµ

The driving force for crystal growth: eq!µ µ µ== !!

Two basic and related questions are:  
           what is the growth mode and  
           what is the growth kinetics, i.e., how does  
           the rate of growth G depends on the driving force 

Growth modes 

Frank–van der Merwe (layer-by-layer) 
two-dimensional growth. 

Stranski–Krastanov 

Volmer–Weber 
three-dimensional growth 

Growth of rough surfaces 

Quantitatively, the surface roughness is described  
by the surface width w. 

Let us consider a surface in a d-dimensional space given  
by a single-valued function h(x; t) of a d’-dimensional 
(d = d’+1) substrate coordinate x 

The average height 

is a linear  
size of the system, 
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Growth of rough surfaces –  
Stochastic differential equations 

The simplest time-dependent description of a stochastic 
surface is afforded by the Edwards–Wilkinson (EW) 
equation Edwards S F and Wilkinson D R,  

Proc. R. Soc. A 381, 17 (1982) 

has the dimensions of  
a diffusion coefficient 

a noise term 

The solutions of the EW equation give rise to  
a mean square height difference 
behaving asymptotically as ln r 

A non-linear perturbation of the EW equation is the 
Kardar–Parisi–Zhang (KPZ) equation 

Growth of rough surfaces –  
Stochastic differential equations 

The KPZ equation generates surfaces whose roughness 
may be stronger than logarithmic, i.e. of power-law form. 

Kardar M, Parisi G and Zhang Y, 
Phys. Rev. Lett. 56, 889 (1986) 

Growth of rough surfaces –  
Stochastic differential equations 

If the EW equation is perturbed by a periodic force 
favoring the integer levels (i.e. if the crystal structure is 
taken into account) the Chui–Weeks (CW) equation is 
obtained 

and the surface tends to become smoother. 

Chui S. and Weeks J., 
Phys. Rev. Lett. 40, 733 (1978 ) 

Thus a surface obeying the CW equation either 
is smooth, or if it is rough cannot be more than 
logarithmically rough. 

An important class of equations are the conserving equations  
of the form 

Growth of rough surfaces –  
Stochastic differential equations 

J is the surface current depending  
on the derivatives of h and possibly  
on h itself. 

A linear diffusion equation is obtained for 

With the particular choice 

where J is the gradient of the right-hand side of the KPZ 
equation, we obtain the so-called conserved KPZ equation. 
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Thank you ! 


