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Materials Science: 
Examples of Schrödinger Equation?  

Ab-initio (first principles) Method –  
ONLY Atomic Numbers {Zi} as input parameters 

Materials are composed of nuclei                    and electrons  
            the interactions are known 

{Z! ,M! ,
!
R!} {!ri}

Kinetic energy 
of nuclei 

Kinetic energy 
of electrons 

Nucleus-Nucleus 
interaction 

Electron-Nucleus 
interaction 

Electron-Electron 
interaction 

Interacting particles Independent particles 
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Idea: consider electrons  
as independent particles  
moving in an effective  
potential  

Density Functional Theory (DFT)  
in Kohn-Sham realization  

This reduction is rigorously possible ! 
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DFT- The Kohn- Sham Method    
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 

System of interacting  
electrons with density !(
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The Kohn- Sham Method –   
    The Kohn-Sham Equations   
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Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  
iteratively (self-consistently)  

    The Kohn- Sham Method –   
    ‚Aufbau‘ principle   

HOMO 
LUMO 
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unoccupied 

occupied 

How to calculate one particle density? 

    The Kohn- Sham Method –  The Total Energy   
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Sum of the one-particle Kohn-Sham energies 

Energy of the reference system   
 
differs from the energy of ‘real’ system  

!! i
i==1

N

!! == "" i | ""
! 2

2m

"
##2 ++!!KS (

!
r ) |!! i

i==1

N

!! == TS [ "" ] ++ d
!
r$$ !!KS (

!
r )!!(

!
r )



3!

DFT: Implementations of the Kohn-Sham Method   

Fully relativistic 
Semi-relativistic 
Non-relativistic 

Non-periodic 
periodic 

All-electron full potential 
All-electron muffin-tin 
All-electron PAW 
Pseudopotential 

Non-spin-polarized 
Spin polarized 

Beyond LDA  
Generalized Gradient Approximation (GGA) 
Local Density Approximation (LDA) 

GW (quasi-particles) 
EXX (exact exchange) 
sX-LDA 
Time dependent DFT 
LDA+U 

Atomic orbitals 
 
Plane Waves 
 
Augmentation 
Fully numerical  
(real space) 

Gaussians(GTO) 
Slater type (STO) 
Numerical  

Plane waves (FPLAPW) 
Spherical waves  
(LMTO, ASW) 
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Exchange and Correlation Energy   
of Homogeneous Electron Gas     
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Homogeneous electron gas (free electron gas or “jellium”) 

Wave functions: Constant electron density: 

Dimensionless parameter  
characterizing density:  

Quantum Monte-Carlo simulations for homogeneous electron gas 

Correlation  
energy  

per particle 

D. M. Ceperly & B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) 
Parametrization: J. P. Perdew & A. Zunger, Phys. Rev. B 23, 5048 (1981) 

A B C D 1 2, , , , , ,!! "" "" - fitted parameters 

Local Density Approximation (LDA)     
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In atoms, molecules, and solids the electron density  
is not homogeneous 
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The main idea of the  
Local Density Approximation:  
the density is treated locally as constant 

GGA - Gradient Corrections to LDA    

Gradient Expansion Approximation 
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Generalized Gradient Approximation 
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986) 

D. C. Langreth & M. J. Mehl, Phys. Rev. B 28, 1809 (1983) 

xcf -!constructed to fulfill maximal  
 number of “summation rules”  

Exchange-correlation potential can be calculated very easily,  
since explicit dependence of Exc on the density     is known.  !!
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Becke 88: Becke's 1988 functional,  

Perdew-Wang 91  

Barone's Modified PW91  

Gill 96  

 PBE: The 1996 functional of Perdew, Burke and Ernzerhof  

  OPTX: Handy's OPTX modification of Becke's exchange functional  

TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuseri   

Examples of exchange functionals    

and also many correlation functionals 

Difference in energy per atom  
in the diamond phase and in the !-tin phase of Si.  

Accuracy Benchmarks of the different DTF Functional       

Phys. Rev. B 74, 121102(R) (2006)  

Explicit dependence of            (i.e.,           ) on     is unknown 

Exact Exchange Method (EXX)    

Ex [ !! ] == !! 1
2

d
!
rd""""

i
## !

r'!! i
* (
!
r )

!! j (
!
r )!! j

* (
!
r')

|
!
r !!
!
r' |j

##
$$

%%
&&

''

((
))!! i (

!
r')
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M. Städele et al., Phys. Rev. B 59, 10031 (1999). 

Exact Exchange for non-homogeneous systems + Ec in LDA or GGA 

Main difficulty: 

Exact Exchange Method (EXX)    
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Systematic improvement in comparison to LDA and GGA  

Very good basis to search for better correlation energy  
functionals   

Numerically very costly in comparison to LDA and GGA 

Exact Exchange Method (EXX) - CONCLUSSIONS    

The work is going on ! (J. Perdew) 

New generation of the energy functionals 

Hybrid  functionals    

A*EX
LSD+(1-A)*EX

HF+B*!EX
OPTX+C*!EC

LYP+(1-C)EC
VWN  

O3LYP: A three-parameter functional similar to B3LYP:  

Hybrid functionals include a mixture of Hartree-Fock exchange  
                                                  with DFT exchange-correlation  

Exc =  

EXAMPLE: 

Lead very often to better accuracy with experiments 

Extensions of the DFT 

( )j xµµ

Relativistic DFT 

Kinetic energy operator (free Dirac field) 

ĥ == c
!
!! !!
!
p ++ !!mc2

The ground-state energy is a functional  
of the four-vector current density 

A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973) !! !!"" ##$$

[ , ]xcE !! !!"" ##

For example, systems with odd number of electrons 

Energy functional of both spin densities 

Local Spin Density Approximation (LSDA) 
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%%==Exchange-correlation potential 

( , )!! == "" ##

U. Von Barth & L. Hedin, J. Phys. C 5, 1629 (1972) 

Alternatively [ , ]xcE m!! m !! !!"" ""== ##where 

Spin polarization (magnetization) 

Important for magnetism ! 

Extensions of the DFT –  
Spin-polarized systems    
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Extensions of the DFT    

Finite - Temperature  ( 0)T !!

Grand canonical ensemble, 
 

N. D. Mermin, Phys. Rev. 137, A1441 (1965) 

The grand potential of the a system at finite temperature  
is a functional of the density in the system at that  
temperature.  

ˆ ˆ( ) /ln [ ]BN H k T
Bk T Tr e µµ !!== !!""

Applications of DFT in statistical physics 

Solution of the Kohn-Sham Equations      

Direct methods on a mesh in r-space 

Expansion of the Kohn-Sham orbitals in a basis 

Eigenvalueproblem 

Bandstructure 

{!!""
!
k (
!
r )}

!!n
!
k (
!
r ) == ! c!! (n,

!
k )!!""

!
k (
!
r )

!!
!!

!! '
!! !!""

!
k | ""
!2

2m

!
##2 ++!!KS (

!
r ) | !!"" '

!
k "" !!n(

!
k ) !!""

!
k | !!"" '

!
k

$$

%%
&&
&&

''

((
))
))
c!! '(n,

!
k ) == 0

[H!!!! '(
!
k ) !! ""n(

!
k )S!!!! '(

!
k )]c!! '(n,

!
k ) == 0

det[H!!!! '(
!
k ) !! !!n(

!
k )S!!!! '(

!
k )] == 0

!!n(
!
k )

Hamiltonian  
matrix elements Overlap integrals 

Solution of the Kohn-Sham Equations –  
Survey of Methods involving basis    

OPW (Orthogonalized Plane Waves) 
     All electron, plane waves orthogonalized to core states 

LCAO (Linear Combination of Atomic Orbitals) 
   All electron & pseudopotential 
   Semiempirical Tight-Binding Method 

Plane waves and pseudopotential 
     EMP – Empirical Pseudopotential Method 

Solution of the Kohn-Sham Equations –  
Survey of Methods    

LAPW [FPLAPW] (Full Potential Linearized Augmented Plane Wave) 
       Plane waves outside muffin-tin spheres 
       Considered to be the most accurate method 

LMTO (Linearized Muffin-Tin Orbitals) 
       Hankel functions outside muffin-tin spheres 

KKR (Kohn – Korringa – Rostoker) 
        Green’s Function Method 

Multi-scattering Methods (All electron) 
Muffin-tin form of the potential used to generate basis 
Basis function – Numerically obtained wave function  
                             inside the muffin-tin sphere +  
                             augmented function outside  

Very important for alloys (VCA, CPA) 
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Density Functional Calculations in Solids     
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Total energy of a solid:  

{
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a j } - primitive translations 

!
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a1 ++ n2

!
a2 ++ n3

!
a3Lattice vectors 

{
!
!! s} - Basis vectors – positions of atoms in the unit cell 

Density Functional Calculations in Solids     

Shape of the unit cell, primitive translations 
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!
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Hellmann-Feynman Theorem 

Hellmann-Feynman Theorem 

R. P. Feynman, Phys. Rev. 56, 340 (1939) 

H. Hellmann, “Einführung in die Quantenchemie”  
(Denieke, Leipzig, 1937), p.285 
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"" ""

-! Ground-state wavefunction of the Hamiltonian  ˆ ( )H !!( )!! ""

Only these terms of the Hamiltonian contribute, which are explicitly  
dependent on the parameter      . !!

M. T. Yin & M. L. Cohen,  
Phys. Rev. B 26, 5668 (1982) Silicon 

DIAMOND 

Tin 

SC 
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First (convincing) LDA Calculations: Stability of crystals  
and pressure induced phase transitions  

(1) (1) (2) (2)

(2) (1)
( ) ( )tot t tot t

transition
t t

E V E VP
V V

!!
==

!!

Interesting prediction:  
Under high hydrostatic pressure  
and in low temperature silicon  
becomes superconducting !  
 
Later on confirmed experimentally  

EP
V
!!== ""
!!
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LDA calculations for semiconductors: 
lattice constants and bulk moduli  

Experimental lattice constant [Å]
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Experimental bulk modulus [Mbar]
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Sb
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Ge
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Bulk modulus

0

2

0 2

( )

V V

d E VB V
dV =

=

Equilibrium lattice  
constant 

Min. error (InP): -0.1%
Averaged error: 0.46%

Max. error (AlP): -0.7%
Min. error (InSb): -2.8%
Averaged error: 4%

Max. error (AlAs): -9.5%

Wurtzite structure 

uc 

Anion (N) 
Cation (Ga, Al, In) 
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Basis vectors 
Lattice vectors 

1 
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2 

a ( 1 , 0 , 0 ) 
a ( 0 , 0 , 1 ) 

3 1 a ( , , 0 ) 2 2 

a 
c 

a 

= 
= 

= - 

Ground state properties of wurtzite nitride semiconductors 

Generally, LDA gives very good geometry of the unit cell 

a [A]         3.174    3.189   -0.47%   3.091     3.112   -0.67%   3.538    3.544  -0.17% 
c [A]         5.169    5.185   -0.31%   4.954     4.982   -0.56%   5.707    5.718  -0.19%           
u              0.3768   0.377   -0.05%  0.3816    0.382  -0.10%   0.379                         
c/a           1.6283   1.626   0.15%   1.6028    1.6009  0.12%   1.613                        
B0 [GPa]    196       195     0.5%      205        202    1.48%     146       139    5.0%      
Ezb–Ewz     6                                29                                  17  
[meV/atom]     

o 

o 
GaN AlN InN 

Theory Experiment Relative error 

Cohesive energies in semiconductors 
Comparison of LDA, EXX, and HF Methods 

Experimental energy [eV] 
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Cohesive energy =  
Energy of free (separated) atoms – 
Energy of solid 

Cohesive energy = -- Binding energy 

LDA – overestimates (LDA world is 
           smaller than the real one) 
HF   -- underestimates,  
EXX – gives excellent cohesive 
            energies in semiconductors  

DFT – Calculation of the equation of state  
and elastic constants 

Equation of state -  totE (V )
V0 B0 B '0

or P(V )

Elastic constants 

Energy of the strained system 

0
1 6 1 6

1 1
2 3ij i j ijk i j j

i , j , i , j ,k ,
! E(" ) c " " c " " "

! !== ==
== ++ ++!! !! !

Second order  
Elastic constants 

Third order  
Elastic constants 
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LDA calculations in semiconductors  
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GaAs
Experiment
Pseudopotential theory

Wave vector
!" # #L XK
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#15
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L3

L1

!1

!1

!  +3 5!$2

$1

$11"
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$

Valence bands for GaAs as determined  
from angle-resolved photoemission  
experiments and pseudopotential theory 

LDA gives very good  
description of the occupied  
s-p valence bands (4s & 4p)  
in semiconductors  

Various methods of solving  
Kohn-Sham equations give  
very similar results 

EGAP = ELUMO - EHOMO 
Too small by factor of 2 

Si 

Band structure  
of diamond silicon 

En
er

gy
 [e

V]
 

Wave vector 

EGAP 

LDA calculations in semiconductors – Energy gap 

KS
GapE KS KS

cbb vbt!! !!== ""
KS
GapE 1( ) ( )KS KS

N NN N!! !!++== ""

Kohn-Sham gap 

For all semiconductors and insulators,  
LDA (GGA) give energy gaps that are  
40%-70% of experimental gaps  

Is the Kohn-Sham gap generally  
wrong, for  description of  
one particle excitations  ? 

Does the error is caused by the  
approximation of the functionals ?    

“The band gap problem” 

Relation of the Kohn-Sham gap  
to the quasi-particle energy  
(change of system energy  
caused by adding a particle) ? 
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Exp. band gaps [eV] 

Fundamental Band Gaps 

0 1 2 3 4 5 60

1

2

3

4

5

6
LDA
EXX

GeSi
GaAs AlAs

SiC

GaN

AlN C

Fundamental band gaps in semiconductors:  
Local Density Approximation & Exact Exchange  

EXX Method leads to  
Kohn-Sham gaps that agree  
very well with experiment 

Large part of the error in  
the fundamental gaps  
is connected to the  
approximated functionals  
(LDA, GGA)     

DFT (LDA, GGA, EXX) for weakly correlated systems   

!! Accuracy of geometries is better than 0.1 A 
Accuracy of Common DFT implementations 

!! Accuracy of calculated energies (relative) is usually  
    better than 0.2 eV 
    Very often better than 0.01 eV 

Band Gap problem ! 

Unsatisfactory accuracy of discussed approximations  
for highly correlated systems  
(mostly involving 3d – electrons)  
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May we reach so-called chemical accuracy within DFT? 

Exact Exchange Kohn-Sham Method – a step in this direction 
"! Systematic improvement of existing Kohn-Sham schemes 
"!  Computationally very demanding 

•! Bulk systems up to now 
•! Implementations for larger systems going on 

    Crucial - Better correlation energy functionals 

DFT - further developements required   

Density functional theory has revolutionized the way  
scientists approach the electronic structure of atoms,  
molecules,and solid materials in physics, chemistry,  
and materials science 

We are not at the end of this way!  

   DFT - further developements required   

Thank you! 


