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o Electrodynamics of heterostructures

o Light propagation perpendicular to the layers
o Propagation of light along the layers

o Light absorption in quantum wells

o Interband transitions

o Intraband (intersubband) transitions
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Optical phenomena

These processes can be described as

= the action of a high-frequency macroscopic
field on a solid

= the interaction between the elementary excitation
of the solid and the quanta of the electromagnetic
field — the photons

e Absorption
e Reflection
e Dispersion
The macroscopic interaction of electromagnetic fields with matter is
already contained in the Maxwell equations
Transverse, electromagnetic waves =—=> LIGHT
Material equations B= ,ul:i D=¢E

For nonmagnetic solids u#=1

The material constant & then contains all information about the
interaction of the fields with the matter

D=¢E Is this equation valid for high-frequency fields?
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Optical phenomena

These processes can be described as

= the action of a high-frequency macroscopic
field on a solid

= the interaction between the elementary excitation
of the solid and the quanta of the electromagnetic
field — the photons

e Absorption
e Reflection
e Dispersion
The macroscopic interaction of electromagnetic fields with matter is
already contained in the Maxwell equations
Transverse, electromagnetic waves ==» LICHT

Material equations B = pﬁ D=¢E

For nonmagnetic solids u#=1

The material constant & then contains all information about the
interaction of the fields with the matter

D=¢E Is this equation valid for high-frequency fields?

Electron-Photon Interaction — Theory of Direct Transitions
O The simplest interaction process — the absorption of a photon by an electron
O The electron changes its energy and momentum by the energy and

momentum of the photon absorbed
O Our aim is to calculate the absorption coefficient (or &) due to such
elementary process

the energy absorbed (per unit volume & time
Absorption coefficient = 2 ® )

the incident energy (per unit volume & time)

W (w) -the number of photons absorbed per unit volume per unit time
W (w)%w -the energy absorbed

@® We represent the incident light by its vector potential

A(F,t) = Ay expli(d - T —@t)] +c.c.
- uc c
@® Theincident energy flux = Uv= ) V=—
7z
o= oW (@)

UV
n

u= i(1':E2 +H?)
8z

Absorption Coefficient & Measurement of Optical Constants
@ The intensity of light is proportional to | ~ E x B ~| E 12

a2 ) = 20k _ dnx Absorption
1(z) = lge with “T¢ 4 coefficient
o ) dl
@® One can deduce that | satisfies the equation @ =-al

@ Physical implification: Absorption coefficient is the amount of radiation
energy absorbed by a unit volume of solid under
unit radiation intensity (photon flux energy)

__________ inunittime_ _ _ _ _ _ _ _ _ .

|’ Empirical formula for semiconductors: n“EGap =77 for ne[2.3-4.6]

1
I
|

T. S. Moss, “Optical Properties of Semiconductors”,

Energy gap in eV
Butterworths Scientific (1959) !

@ The optical constants are often determined by measuring
i) Transmition

Semiconductor

ii) Reflection m— | = (1-R)I Iy ;
I, - 0
—r

I,=RI, | (@) x(®)

Absorption Coefficient and Number of Absorbed Photons
= L. 10A = 2 -
E(r,t):—V¢(r,t)—EE(r,t) B(F,t) =V x A(r, t) = curlA(r, t)

Coulomb gauge: @(F,t)=0 diVA(F,t) =0

E= I?%é’exp[i(df—wt)ﬁc.c.

c_elap 0t 1

& =2 = & @ 2 2
u=—=E.E =—— Uu—=———— =n
¥4 47:(;2A0 n n47rcA0 c4ﬁpb
Az /ic cn A ssc?
(0)=——=W(w) &(0) =—a(w)=——W(a)
Ay (2] DAy
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Interaction of light with solids - QM description

@ To determine W (@) we start from the Schrédinger equation

1 2 e=0» - - . ow(T,1) PO
—(P+=A)?+V =iz -
[Zm(p+c )"+ (r)]u/(r )=i ot p=—izV

p-A-A- 6=$div,&
Since divA(F,t)=0 (chosen gauge)
=) §-A=A-p

A? _small in comparison to A- p

@ We now expand y in terms of the solutions of the unperturbed problem

A D N (R o (7 - - o
Fowo =122 Aopn(K.F) = En(yn(K.P) k) =y, (K, )

w(0) = S (K, Dexpl—— E, (K1)
nk

i " -
e ¥— Schr.Eq. oo |Ix exp[;Em(k)t]<mk'
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Electron-Photon Interaction — Theory of Direct Transitions

O The simplest interaction process — the absorption of a photon by an electron

the energy absorbed (per unit volume & time
Absorption coefficient = 2 ® )

the incident energy (per unit volume & time)

W (w) -the number of photons absorbed per unit volume per unit time
W (w)%@ -the energy absorbed

o The total number of transitions per unit volume and time.

1 2 3 -
=2.- dk LK o,
W (o) %t(zﬂ)gsjz W(j. 'K o)
2
a(@) = 2w () es@) = @)= 1

oA

Quantum mechanical calculation of absorption coefficient
P § ~ i =, . L
am (K vt)-g%n(kvt)exr{;wm(k )—En(k)]tj<mk ||k

Let us assume: aj(IZ,O) =1 and for all other a,(K,0)=0
It means, at time t = 0 the electron is described by
w(0)=|iK) (s in state| k) )
The probability W (], K, i, lZ';a),t) that at time t it will be in state

. Oy 2
is then equal to |aj:(k",t)|
In the first approximation

ég?)(IZ',t)=%exp[é[Ej(lz')—EJ—.(IZ)]tJ<j'|Z' g

i)

Lo 1
W(j,k,j" k ,w,t)_—?

t .
_r[exp(é[Ej(k')— Ej.(k)]t'J<j'k-

-

o Next we examine the matrix element <j'k' H

i)

j'K’)
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Direct Transitions in Semiconductors

are particularly important if the valence band maximum and conduction
band minimum lie at the same K.

Such direct transitions are the lowest transition
cb A .
I of the absorption spectrum and determine the

b shape of the absorption edge.
: ; :

@® We assume that we can describe the extrema by an effective mass

. . 522 pRR? 5212
w=E; (K)—E;(k)=Egy+—5+ —=
! ) Gap 2m; 2m; Gap

i
{The reduced effective mass of electron and hole

1 1 1 1 1
=—Ft—F=—7F%+—%
Heomb My m;  m, M

v

@ The combined density of states

1 (2u 32
comb E 1/2
g“-(a)) —272[72] (ﬁa)— Gap)

a(®) ~ (- Egy)"'?




Modelowanie Nanostruktur

Direct Optical Transitions: Absorption & Emission
Probability of photon absorption
W, (i, F,K;0,1) ~ t] Mig (K) * 8(E (K) - E;(K) — /5)
Probability of photon emission
W_(i, f,K;@,t) ~ t| My¢ (K) [> 8(E ¢ (K) - E; (K) + A)

Number of absorbed photons

W (@) = 2%%:[% fi(1= f1)=W_f,(a= ;)] =

W(w) = ZZ| Mvc(lz) |2 5(Ec(|2)_ Ev(lz)_ﬁw)[fv(l_ fc)_ fc(l_ fv)]

kev

13/12/2011

W (@) = 23| My (K) F 8(E, (K) - E, (K) = @)L f(E, (K) = f(E¢ (K))]

kev

&(@) ~W(a)

Excitons — General Theory
@ We consider an insulating crystal at T = 0 K
Ground State:

e
CW
Valence band — fully occupied

b fia) Conduction band — completely empty
\
Excited State:

h Valence band — electron VK anihilated
(hole created)
Conduction band — electron ck created

@ Coulomb interaction between electron & hole

When this interaction is strong enough, electron & hole bind together

Electron + hole pair = EXCITON

Direct Optical Transitions: Absorption & Emission

Absorption

wa T %W+ =| Mvc(lz) IZ S(Ec(lz)_ Ev(lz) - /o)

(Stimulated) Emission
1

: SW_= | Mg, (K) [P 8(E, (K) - E¢(K) + @) =
cb i=c t

= My (K) [ 8(-{E,(K) - E, (K) - %a]) =

= My (K) ? 8(E.(K) - E,(K) - o) = %W+
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Optical spectra of a semiconductor
near the fundamental edge

1s

Coulomb enhancement

2s

Absorption coefficient

Energy Gap

Photon Energy 2@

Red line — with electron-hole interaction (excitonic effects)
Black line — without electron-hole interaction




Modelowanie Nanostruktur

13/12/2011

NANOSTRUCTURES -
QUANTUM WELLS

Optical properties of Quantum Structures

Specific features of optical processes originate from two basic
physical peculiarities

® Spatial nonuniformity causes specific characteristics
of the interaction of light with matter, including light propagation,
absorption, etc..

® Electrons in quantum structures have energy spectra different
from these of electrons in bulk materials.

Electrodynamics in Homogeneous Systems

O In the simplest homogeneous case
E(F,t) =8, cos(q - T —mt) = 8E,e @79 4 c c.
O The energy of the wave can be characterized by the density of the
electromagnetic energy
1 5 1 2
w=—g¢g E°(t)=—¢E
A r ( ) sz r=0
O The intensity of the wave = the energy flux through the unit area
perpendicular to the wave vector

2
| =gero

Electrodynamics of Heterostructures

In heterostructures, both
® the refractive index A L B A
EGap

® and the band gap, i.e., the fundamental

edge of absorption,
vary spacially. I_ I

=) This changes the light propagation and
character of the interaction of light with matter.

For example, a layer with a larger refractive index causes

O Partial reflection of electromagnetic waves propagating
through the layer,

O localization of electromagnetic modes propagating along the layer.

=) The electromagnetic fields (modes) in quantum structures are
substantially different from plane waves.

=m) Spatial modulation of the bandgap leads to nonuniform
absorption and emission of light.
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Electrodynamics of Heterostructures

@® Sizes of quantum structures are always much less than
the wavelength A of the light in the spectral region of interest

L=100—-200A A >1000A

TWO CASES of light interaction with a quantum-well layer
E(2)

® Light propagation
perpendicularly to the layers

tE‘(Z)

® Propagation along the layers ‘

Electrodynamics of Heterostructures
Light propagation perpendicularly to the layers

@ Another useful characteristic of the interaction of light with matter is
the decay (gain) of the energy of standing waves.

The standing waves are formed by the optical resonator in which
a heterostructure is embedded.

The decrement (increment) of the mode is =——-=

N — the number of photons of the mode under considerations

R — total rate of photon absorption (emission)

R~ Y i H'| f>P8(E; —E;—Aw)[f(E;) - f(E¢)]
i,f

RO
mc

Electrodynamics of Heterostructures
Light propagation perpendicularly to the layers

E(2) Electromagnetic field depends on
the Z coordinate only

7| E@b= %[F(z)ei“’t +F (2)e]

—

1 .
A(z,t) = =[A(z)e' +c.c.
= (2,0)=J[AQ) ]
Heterostructure embedded

F(2)=2A@)
in the optical resonator ¢

@ [ntroduction of a local absorption coefficient is meaningless in this case.

@ Loss or gain of the light energy can be characterized as the change of
the light intensity after the light passes through the layer
to the initial intensity -1

out

out

Electrodynamics of Heterostructures
Light propagation perpendicularly to the layers

@ Since A > L , we can rewrite R in the form
R~ A(z,) P YI<il | T >F8(E¢ - E; - Za)[ T (E;) - F(Ey)]
if

Z, - the position of the center of the quantum-well layer

® The number of photons N of the fixed mode can be calculated as
the total energy of this mode divided by Z@

1 232 S 2
smmjgr(z)lp(z)l d®r _rwwj'g,(z)“:(zn dz

-

y:

z| =l

r
1
|

IR NN < o i 25E. _E A (= T(E
fmwmuwms§k””'” (B¢ —E,—A0)[ F(E) - F(E,)]

L
B=r-te
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Electrodynamics of Heterostructures
Light propagation perpendicularly to the layers

@ The simplest case of a narrow well, the changes in the refractive index
can be neglected and the standing wave is
E(z)=8F,cosqzcosat ==  F(2)=EFR,cosqz

— . -
€ - light polarization q - adiscrete number 4= L n

13/12/2011

1 an 2
y SL kil B, | f >PS(E( ~E—Ao)[f(E)~ f(E()]

Z i, f

}’ depends on the position of the quantum-well layer!

Electrodynamics of Heterostructures

Propagation of light along the layers
Waveguides modes contd.

O One can introduce the total intensity of the waveguide mode: | = WCqt

Ceff = C/\/E - is the group velocity of the mode under consideration

O Now one can define the gain (absorption) coefficient| ~_ 1dl
for the waveguide mode T dx

2 2 N
a= “C’J; '(F)(lz)F'( )led o DK i1E-BIf 5P8(E ~ E - A0)[F(E)- (Ep)]

!e,z z) [dz|SL {5
|F@2) P L

/ o IF@PL_
| Optical confinement factor jgr(z) | F(2)|°dz

® characterizes a portion of the light energy accumulated within
the active layer where the photo-transitions take place

® is always smallerthan1l, I'<1

=) The better the optical confinement,
the larger the light absorption or gain.

Electrodynamics of Heterostructures
Propagation of light along the layers

tE(2) .
\ E =&F(z)cos(§ - T — wt)
7 Form factor of the mode
q lies in the X,y plane

4
@® A narrow-bandgap layer localizes the electromagnetic modes.

@® The amplitudes of these modes depend on z and decay far away
from the layer.

@® These modes are called the waveguide modes.

® For the waveguide mode, one can define the electromagnetic energy
per unit area of the waveguide plane as

we i]sr(z)éz(z)dz =$J'gr(z)|:2(z)dz

The number of photons of this mode is N, = WS /(Z®)

Lecture 10

Light Absorption by Confined Electrons

A three-layered semiconductor structure (QW) of type |

Band diagram

° Two subbands are shown
for both bands.

° Parabolic dispersion
relations are assumed for
both the conduction and
the simple valence bands.

The first obvious conclusion can be drawn, i.e., that there must be
a shift of the interband spectra toward a short-wavelength region

sw> o) =Ey —E, = EQV> Eg;;k
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Light Absorption in Quantum Wells
R~IY<i|E- Bl f >P&(Es —E - A@)[ (E)) - f(Eq)]

---------------------------

Dejenfn) 17)=

)

. = 1 oy iRy T,
\|>=Y/V|2”Vn(r)=ﬁuv0(r)e' v g7 (2)

= 1 o\ iRy T,
‘ f> = yIclz,/cn(r) = ﬁuco(r)elkﬁC rl/lcn(z)

Uo(F) & Uy(F) - periodic parts of Bloch functions for Ky =0
|Z,,v & IZ//C - two-dimensional (in-plane) wave vectors

Zn(2) & xen(2) - the envelope wave functions of the quantized
transverse motion

S - the area of the quantum well layer

Light Absorption by Confined Electrons
Momentum Matrix Element

| Periodic, strongly oscillating functions |
, X
i) = Uio(F)Fi (F) | £)=uro(F)F¢ (F)

[Smooh functons |~

f)=(uioFi[€- ﬁ‘ufOFf>: (Ui | Fy (8- Bugo) + Uy & - 6Ff)>

B

@]

(i[&- B| F) = [ dFuip (F)E - Buso(PIIF (F)F ¢ (F)]+
+ [ 43P LU (F)uco (PR (F)E - BF¢ (7]
<i\5'6\f>=<uio\§'6‘Ufo>Id3FFi*(F)Ff(F)+<UioHufo>fd3ﬂ:i*(r)§'6Ff(F)
bulk Si
Pif if
(i|8- B| £)= p* [ d°FF (F)F¢ (F) + 8¢ [ d°FF (F)& - B¢ (F)

13/12/2011

Light Absorption in Quantum Wells
Interband Optical Transitions

pie™ [ PR (7)F (7)

For interband transitions: < ‘e p‘f

[A37F (P)F ¢ (7) = [ 0% 20 (2)e ™o g1, (2) =
=(Idzf;,e'(iﬁc—g//v)'ﬁ/)(Idzx:n(Z);(cm(Z))
A\ VAN J

~
5E//vv|z//c <Zvn Zcm>
<i |€' ﬁ' f> p\t/)éjlké‘k”v’g”c <Zvn |Zcm>

® The selection rule for two-dimensional wave vectors k//v = k//c

This selection rule differs from the selection rule for bulk crystals as
a result of the lack of translational symmetry in the z-direction.

® Compared with the bulk case, a new factor appears in the matrix element,

namely, the overlap integral of the envelope functions from different bands.

Light Absorption in Quantum Wells

@ Using the matrix elements (i|€- B| f) , one can calculate
all characteristics, 8,7, a, for geometries presented previously.

aN]"Z Z |pbulk| |<lvn‘lcm>|2

MKy, Ky

X 5(Ecm(lz//c)_ Evn(lz//v)_ﬁa’)[f(Evn)_ F(Ecm)]

S - X
Kyyy Kire

a~r2| Pe™ Pl (Zun | Zom ) [ 42Ky 8 (Eom (k) = Eun (k) — Z@)  (Eyn) = F (Eq)]

® The energy-conservation law following from the § function

Ecm(lzll) - Evn(IZ//) =/

shows that photo-transitions can involve different subbands from both
the valence and the conduction bands.
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Light Absorption in Quantum Wells
Case of parabolic subbands

- 52K} " 52K2
0
Eem(Ky) = Eom + 4 Eyn(Ky) = Efy - ——2
e 2mh
- - ARE(1 1
Ecm (Ky) — Eyn(Ky) = Egm_E\(/]n"' # —t+t—|=
2 \m, my _—
- I 1 1 1 |
0 0 }Ezklf —=—=t—=
=Em—En+ 2u li _me_nl'nj

< o - _ P
Eem(Ky)—En(ky) =20 = | k= \/ﬁ—’z‘(ﬁw— EQ, +ES,

The magnitude of the two-dimensional wave
vector corresponding to vertical transitions
between (vn) and (cm) subbands

Transitions are possible only when s> ES —ES,

13/12/2011

Light Absorption in Quantum Wells
Case of parabolic subbands

The function (@) also has a steplike shape

c e m———
3 /__r;r
= -
(] -~
(e}
o
e |/ i
= 100 A QW
= |/ o aw
8!
2
1 1
0 100 200

Photon energy above bandgap [meV]

Light Absorption in Quantum Wells
Case of parabolic subbands
2
© 8(Eer (Ky) — Eyn(Ky) - ) = 5[ (k// k//)J ”ﬁ(k//—k//)

S(ky —ky) +8(ky +ky)
2k,

o 8(k2—Kk7) =

o Integration I d 2k,,

wn) %

= a"“rlpbu'k Z|<Zvn‘lcm>|2
n,m

x [f(Eyn(ky)) = F(Egm (k)]

@ The optical density of states pﬁﬁf(w)——@(ﬁw E0 +E0
/s

opt

Pam (@) are the step-like functions, which are consistent with the results on

the density of states of two-dimensional electrons (holes).

Lecture 10

Light Absorption in Quantum Wells
Case of parabolic subbands

a(w) can be represented as sum over all pairs of the subbands
involved in the photo-transitions

a(w)= Z agp(@,n,m)

opt

bqu||< (w)x

g (@,n,m)=constxI"| p Zvnllcm>| Prm
X [f(Evn(k//))_ f(Ecm(k//))]

@ Each contribution @gy,(@,n,M) s proportional to the overlap integral
of the envelope functions #n(2) & xem(2)

® These overlap integrals result in new selection rules
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Light Absorption in Quantum Wells
Selection Rules for Interband Transitions

3
CB 1 = |
- nvelope
g [ (2L functions

VB p
B A N g 1/

X2

sk~ 1 AN s

o | <Zvn |ch> |zz 1 “allowed” transitions

° |<Zvn\}{cm>|2<< 1 for n#m “forbidden” transitions

Intraband Transitions in Quantum Structures

Quantum Well

’/\ f\‘c3
CB /% o
HASS

liy=le.nk,) [f)=[enk)

iky-fjy

Xen(2)

|i)= Tclz,,n(F) = % Ugo(T)e

~cl

(i]8-B| £) = (uo 8- 6\uf0>jd3ﬂ:i*(r)|:f (7) +{uig | ugo) [ a7 ()6 - BF, (F)

The quantization of the electron energy leads to major changes in
the selection rules and in the intensity of the band-to-band transitions

=1 ){

|Ugo) =0 {Ugo|Ugo) =1

U

(ifg- B £) = [ d%F zin(2)e™rTE. fei 4. (2)

(ugl€-

Intraband Transitions in Quantum Structures

@ We start by recalling that in an ideal bulk crystal, intraband
photo-transitions are impossible because of the energy- and
the momentum-conservation laws

E(K)-E(K)=/4w & K-K'=G=~0

cannot be satisfied simultaneously.

@ Intraband photo-transitions in a bulk can be induced only by
phonons, impurities, and other crystal imperfections.

® |n contrast to bulk materials, intraband photo-transitions
occur in semiconductor heterostructures.

Intraband Transitions in Quantum Wells

ik

€-ﬁe iky x

o o o iky
Xen(2) = (& Py +eyPyte, p,)e™ e yy/‘fcn'(z) =
= ﬁ(exk;( +exk;<)eiﬁl.rﬂxcn'(z) +ezeiE/‘/.Fﬂ P Xen(2)
(i[8- P F)=ra(eyky +eyk;)( ) dzﬁ,e“k”‘k”"”f)( [t 00 @ 26 (D)) +
+e, U dzﬁ/ei(lz/'/—l?//)f// )(Idzl:n(z) f)zxcn-(z))

= i(Ky—Ky)-T,
d2rel k¥t — 5.
I Z KyyKyy

J’dzlzn(z)lcn'(z) =0 for nn’

<cnk,, |e -p

en'Ky ) =8 ¢ €, [ 02220 (2) Bo e (2)

® k;=ky

@ If the vector of the polarization of light é lies in plane of the quantum
well layer (X,Y — plane), the matrix element is zero and photo-transitions
are impossible.

@ |If the vectror éhas a z-component (# 0 ), intersubband processes
take place.
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