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TEM image of a InAs/GaAs dot  Si(111)7×7 Surface 
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HRTEM image: 

segregation of Indium  

in GaN/InGaN  

Quantum Well 

    Examples of Nanostructures   

    Nanotechnology –  

   Low Dimensional Structures    
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Continuum theory- 

Envelope Function Theory 

 

Electron in an external field 
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Periodic potential of crystal Non-periodic external potential 

Strongly varying on atomic scale Slowly varying on atomic scale  
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Band structure  

of Germanium 
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Band Structure 

Envelope Function Theory –  

Effective Mass Equation 
J. M. Luttinger & W. Kohn, Phys. Rev. B 97, 869 (1955). 

[ ( ) ( ) ] ( ) 0ni U r F r     

0( ) ( ) ( )n nr F r u r 

( ) 0U r  ( ) exp( )nF r ik r 

(EME) 

EME does not couple different bands 

Envelope  

Function 

Periodic  

Bloch Function 

―True‖  

wavefunction 

Special case of constant (or zero) external potential 

( )r Bloch function 

( )U z ( ) exp[ ( )] ( )n x y nF r i k x k y F z 

Electron States in Quantum Dots    

A 
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Self-organized quantum dots 

Electrons confined  

in all directions 
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Calculation of the strain tensor 

Strain Map 

GaN 

AlGaN 

SiN 

1

2
ijkl ij klE C ( x )ε ( x )ε ( x )dx Elastic energy 

Minimization of elastic energy gives the strain distribution klε ( x )

0
ij

i

ζ

x






ij ijkl klζ C ε

(for GaN/AlGaN HEMT ) 

Hook’s Law 

It corresponds to 

3D nano-device simulator - nextnano3 

Calculation of electronic structure : 

 8-band kp-Schrödinger+Poisson equation 

 Global strain minimization 

 Piezo- and pyroelectric charges 

 Exciton energies, optical matrix elements,...  

Calculation of current only close to 

equilibrium with new approach 

Simulator for 3D 

semiconductor 

nano-structures: 

 Si/Ge and III-V materials 

 Flexible structures & geometries 

 Fully quantum mechanical  

 Equilibrium & nonequilibrium 

Dot shape and piezoelectric charges 

No light emission Efficient light emission 

Piezoelectric 

charges 

Localization of 

electron and hole 

wavefunction 

How good is effective mass aprox. ? 

EC 

AlGaAs GaAs 

E1 

d 

E1 

d [nm] 
1 2 3 4 5 6 7 8 9 10 11 

Effective mass 

Exact 

Atomistic details sometimes matter ! 
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Farsightedness (hyperopia)  

of the Standard k·p Model 
Alex Zunger, phys. stat. sol. (a) 190, 467 (2002) 

The use of a small number of bands in conventional k·p treatment  

of nanostructures leads to ―farsightedness‖ (hyperopia), 

detailed atomistic symmetry is not seen, 

only the global landscape symmetry is noted,  

the real symmetry is confused with a higher symmetry. 

Number of important symmetry-mandated physical 

couplings are unwittingly set to zero 

These are often introduced, after-the-fact,  

―by hand‖, via an ansatz. 

In atomistic theories of nanostructures,  

the physically correct symmetry is naturally  

forced upon us by the structure itself. 

What about realistic nanostructures ? 

2D (quantum wells):  10-100 atoms in the unit cell 

1D (quantum wires):  1 K-10 K atoms in the unit cell 

0D (quantum dots):  100K-1000 K atoms in the unit cell 

Organics 

Nanotubes, DNA: 100-1000 atoms (or more) 

Inorganics 

3D (bulks)               :  1-10 atoms in the unit cell 

Atomistic methods for modeling of  

nanostructures  

Ab initio methods (up to few hundred atoms) 

Semiempirical methods (up to 1M atoms) 

Empirical Pseudopotential 

Tight-Binding Methods 

Ab initio =  

Density Functional Theory  

Based Methods  
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    Density Functional Theory (DFT)   

One particle density determines the ground state energy  

of the system for arbitrary external potential 

extE[ ρ] d r ρ( r )υ ( r ) F [ ρ] 
3

E[ ρ ] E0 0

ground state density 

ground state energy 

ext S x c
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ] E [ ρ]    

unknown!!! 

Total energy 

functional 

External  

energy 

Kinetic   

energy 

Classic Coulomb   

energy 

Exchange   

energy 

Correlation   

energy 

ext S x c
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ] E [ ρ]    

unknown!!! 
Local Density Approximation (LDA) 

LDA
xc xcE dr r r 

hom
[ ] ( ) ( ( ))   

Generalized Gradient Approximation (GGA) 

[ ] ( ( ), ( ))
GGA
xc xcE dr f r r   

    Density Functional Theory (DFT)   

Approximations to the exchange & correlation 

2
2

ext H x c i i i
υ ( r ) υ ( r ) υ ( r ) υ ( r ) θ ( r ) ε θ ( r )

2m
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    The Kohn-Sham Method   

N

i i

i 1

ρ( r ) θ* ( r )θ ( r )

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x
δE [ ρ]

δρ

c
δE [ ρ]

δρ
H

δU ρ( r ')
υ ( r ) dr '

δρ | r r ' |
 



2 s
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s ,n s n

Z
υ ( r ) e

| r η R |
 
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Kohn-Sham equations with local potential 

These equation are nonlinear and must be solved  

iteratively (self-consistently)  

    The Kohn-Sham Method –Total Energy & Forces   

2 N
* 2

i i x c ext

i 1

E[ ρ] drθ ( r ) θ ( r ) U [ ρ] E [ ρ] E [ ρ] drυ ( r )ρ( r )
2m 

       

total electronic energy in the field of ions α β

ion

α ,β α β

Z Z
E

| R R |





1

2

tot α el α ion αE ({ R }) E ({ R }) E ({ R }) 

Energy of ions 

Total energy 

Forces on  ions 

Equilibrium: Dynamics: α α
F  0 α α α

M R F

tot
totRα α

α

E
F E

R


   


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    Solution of the Kohn-Sham Equations - Methods   

Expansion of the Kohn-Sham orbitals in a basis { ( )}
k

r



( ) ( , ) ( )
nk k

r c n k r 


  

Plane waves and pseudopotential      

Linear combination of atomic orbitals (LCAO)      

Discretization in real space       i iχ ( r ) δ( r r ) 

G
χ ( r ) exp( iG r )

Local in space – suitable for transport 

DFT for silicon nanostructures  

Silicon nanoparticles (clusters, dots) 

  optoelectronic materials on silicon basis 

  biosensors to detect biological and chemical warfare agents 

H 
Si 

O 

71 Si atoms  

   ‘passivated’ by hydrogens 

Electrons are in the center  

   of the dot  

2 H replaced by O 

Dramatic change of the optical  

properties (wavelength)  

of the silicon nanostructure 

G. Gali & F. Gygi, Lawrence Livermore National Laboratory 

Tight-Binding methods 

    Tight-Binding Formalism   

i
n n i

i

r c r
,

( ) ( )





 

index of orbital index of atom 

iα iα , jβ

αi αi ,βj

H ε | iα iα | t | iα jβ |    

αi{ χ }orthogonal set  

of functions 

αi βj
n n n n n

iα jβ

ε θ | H | θ ( c )*c iα | H | jβ   

Tight –binding Hamiltonian 

on-site hoping TB-parameters 

NOT ATOMIC  

ORBITALS ! 
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    Tight-Binding Hamiltonian   

† †
iα iα iα iα , jβ iα jβ

αi αi ,βj

H ε c c t c c  

creation & anihilation operators 

On-site energies are not atomic eigenenergies 

They include on average the effects  

of neighbors 

Problem: Transferability 

E.g., Si in diamond lattice (4 nearest neighbors)  

             & in fcc lattice (12 nearest neighbors) 

Dependence of the hopping energies on the distance  

                                                                 between atoms 

Scalability of TB approaches 

DFT  local basis approaches provide transferable and accurate 

interaction potentials.   

The numerical efficiency of the method allows for molecular dynamics 

simulations in large super cells, containing several hundreds of atoms. 

Density Functional based Tight-Binding  

(DFTB, FIREBAL, SIESTA) 

Empirical Tight-Binding 

Semi-Empirical Hartree-Fock 

Hamiltonian matrix elements are obtained by comparison of calculated  

quantities with experiments or ab initio results.  

Very efficient, poor transferability. 

Methods used in the chemistry context (INDO, PM3 etc.).  

Medium transferability. 

Why Tight-Binding ? 

 Allows us to describe the band structure over the entire Brillouin zone 

 Relaxes all the approximations of Envelope Function approaches 

 Allows us to describe thin layer perturbation (few Å) 

 Describes correctly band mixing 

 Gives atomic details 

 The computational cost is low 

 It is a real space approach 

 Molecular dynamics 

 Scalability (from empirical to ab-initio) 

The sp3s* Hamiltonian 

[Vogl et al. J. Phys. Chem Sol. 44, 365 (1983)] 

In order to reproduce both valence and conduction band of covalently 

bounded semiconductors a s* orbital is introduced to account for high 

energy orbitals (d, f etc.) 
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The sp3d5s* Hamiltonian 

Many parameters, but works quite well !  

z 
y 

x 

For a quantum well and similar 2D heterojunctions, 

the symmetry is broken in one direction, thus the 

Bloch theorem cannot apply in this direction. 

We define the Bloch sums in the m-th atomic plane 





m

mi
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N
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; //

R

Rk
Rk 

mm //RdR 

LCAO wavefunction 

  
m

m mC
 ,planes  orbitals,

//// ;   
//


  kkk

In this case the number of C’s is related to the 

number of planes 

z 

y 

x 

R md 

m

//R

Tight-binding for quantum wells (1) 

Tight-binding for quantum wells (1) 

0;
////  kk  EHm

Schroedinger equation 

Matrix form l

M

Mm
mlmll ECCH


 ,

where M is the number of interacting planes  

For M=1 we have: 

Hl,l+1 

Hl,l-1 Hl,l 

l+1 

l-1 

l 
H = 

…but boundary conditions ? 

Tight-binding for quantum wells (3) 
Boundary conditions 

Finite chain 

Periodic 

Open boundary conditions 

After P planes the structure  

repeats itself.  

Suitable for superlattices 

H= 

After P planes the structure ends. 

Suitable for quantum wells. 
H= 

After P planes there is  

a semiinfinite crystal. 

Suitable for current calculations. 

BULK BULK P 

P P 

P 

… … 
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Where do we put the atoms ? 

To describe the electronic and optical properties of a nanostructure  

we need to know where the atoms are.  

1) We know ―a priori‖ where the atoms are  

                                         (for example X-ray informations) 

2) We need to calculate the atomic positions 

Quantum calculation (DFTB, SIESTA) 

Continum theory – elasticity theory 

Valence Force Field (Keating model & extensions) 

Aditional Repulsive terms added to TB Hamiltonian 

T-B molecular dynamics 

Tight-Binding Formalism – The Total Energy   

Band structure 

energy 

Repulsive  

energy 

Charge transfer  

energy 

The total repulsive energy contains ion–ion repulsion, 

exchange–correlation energy, and accounts for the double 

counting of electron–electron interactions in the band-

structure energy term. 

The last term imposes an energy penalty on large  

inter-atomic charge transfers  Charge transfer energy  

U ~ eV1Typical 

Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

Calculations for systems with distorted lattice  

The dependence of the hopping integrals on the  

inter-atomic distance  

Harrison‘s ~d-2 dependence 

t t exp( βr ) 0Exponential dependence 

αβ ij ijαβ
t ( R ) t ( r ) f ( R ) 0

                 

        

c c

c c

n nn
r rr

exp n r r
r r rf ( r )

c c ( r r ) c ( r r ) c ( r r ) r r

                  
          


       

0 0
1

2 3
0 1 1 2 2 3 2 1

C. Xu et al., J. Phys. Condens. Matter 4, 6047 (1992)  

Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

LDA (  ) and tight-binding (          ) band structures for GaAs  

in the zinc-blende structure for two different bond lengths 
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Tight-Binding Formalism – The Total Energy   

The binding energy (Ecoh), 

repulsive energy (Erep), and 

band-structure energy (Ebs ) 

for GaAs in the zinc-blende 

structure, as functions of the 

interatomic distance. 

Tight-Binding Formalism – Parametrization of  

                                               the repulsive term    

Using the interpolated hopping integrals, the tight-

binding band-structure energy can be obtained for 

any geometry and inter-atomic distance. 

We then define the repulsive energy as the difference 

between the ‗exact‘ binding energy, obtained using  

ab initio calculations, and the tight-binding band-structure 

energy 

Several crystallographic phases of a material are usually  

used 

Structure independent parametrization  

of the repulsive terms 

Boundary conditions for transport 

The transport problem is: 

active 

region 
contact 

c
o
n
ta

c
t 

contact 

active region where symmetry is lost  

+  

contact regions (semi-infinite bulk) 

Open-boundary conditions can be treated within several schemes: 

• Transfer matrix 

• Green Functions   

These schemes are well suited for localized orbital approach like TB 

Device description: Green Function Approach 



















RRD

DRDDR

LDL

H

H

H







0

0

H

   IGHI  ariE ,

Retarded (r) and advanced (a) Green functions  

are defined as follow (matrix notation) 

Let us write H and G in a block form 



















RRDRL

DRDDL

LRLDL

GGG

GGG

GGG

G

   IHI  RLRL giE ,,

  1
 RLDD HEG

LDLDLL g 

RDRDRR g 

 a

RL

r

RLRL i ,,, 

With these definitions and considering that  

defines the Green function gL,R of the semi-infinite lead (which can be easily calculated) 

Self-energy 

 a

DR

r

DL GGtrT 

Transmission coefficient 

T
e

G


22
 Conductance 

Molecular region 

Lead Lead 

HD HL HR 
LD RD 

- 
+ 
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Tight-Binding method 

Applications 

 Simulations of reactive collisions in biased CNT 

 Optical properties of GaN/InGaN QWs 

Indium fluctuations in InGaN/Gan QWs 

Indium fluctuations 

In 

In 

In 

In 

In 

In 

In 

In 

In 

In 

In 

In 

In 

In In 

In 

Indium fluctuations are obtained from experimental results  

Tight-binding calculations with 100 000 atoms 

4 5 6 7 8 9 

3.1 

3.2 

3.3 

3.4 

3.5 

 Average strained 15% In 

 Pseudomorphic strain on GaN 

C
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e
 [

e
V

] 

Depth [nm] 

Conduction Band Edge Profile 

100 meV 

Typical photoluminescence results exhibit two peaks 
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Green’s Function + Molecular dynamics  

Carbon Nanotubes 

Molecular Dynamics simulations of a reactive collision  

of a biased nanotube (V=100mV) and benzene  

Current flowing in the nanotube calculated at each MD step 

v = 0.6 Å/ps 

Time Dependent Current 

B 

B 

C 

C 

CNT without C6H4 

I = 20% 

RCN-C6H4 = 10KW 

RCN = 8 KW 

A 

A 
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R (nm) 

Tight-Binding 

Pseudo- 

potential 

Ab initio 

Atomistic vs. Continuous Methods 

Microscopic approaches can be applied  

to calculate properties of realistic nanostructures 

Number of atoms in a spherical Si nanocrystal as a function of its radius R. 

Current limits of the main techniques for calculating electronic structure. 

Nanostructures commonly studied experimentally  

lie in the size range 2-15 nm. 

Continuous 

methods 

Conclusions – TB Approaches 

 

 can range from empirical to ab-initio,  

 

 avoid all the Envelope Function approximations, 

 

 Green-Function or Transfer matrix techniques  

   can be easily implemented to calculate electronic transport, 

 

 molecular dynamics and current calculations  

    can be coupled together. 
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 Coarse-graining  &  

effective approaches  

What to do with large systems?   

Polyelectrolyte problem: ions around DNA 

Atomistic DFT calculations 

not really possible to  

sample distances  

30 – 40 A from DNA  

Na+ 

Water molecule 

Large scale modeling - Coarse-Graining 

For large scale modeling, one may introduce alternative  

approaches using simplified coarse-grained models  

(lattice gas models) 

These models can be treated with the methods used  

commonly in statistical mechanics such as  

         mean-field theory, 

         the cluster variation method (CVM), 

         Monte Carlo methods. 

          
Question: how to provide a link between atomistic  

calculations (ab initio, classical potentials) and the  

potential parameters suitable for coarse-grained  

models. 

Na+ 

All-atom model  Coarse-grained model  

Coarse-grained model for ions around DNA  
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Coarse-grained model for ions around DNA  

Ions interacting with DNA  

by effective solvent-mediated  

potentials  

Different potentials for  

various parts of DNA 

No explicit water 

Na+ 

density profile and integral  

charge 

0 10 20 30 40 50
0.0

0.2
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1.0

 Li
+

 Na
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 Na
+
*
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+
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 Cs
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a
rg
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r (Å)

Another example: Coarse-grained lipid model  

All-atom model 

118 atoms 

Coarse-grained model 

10 sites 

Lipid bilayer in water 

Picture contains 50000 atoms 

Minimal, reasonable piece of bilayer for atomistic calculations 

72 lipids + at least 20 H2O per lipid = 13000 atoms 

Hierarchy of Theoretical Approaches  

Time [s] 

size 
10-12 

Ab-Initio  

MD 

Classical MD 

Classical MD 

accelerated 

Monte Carlo 

Level Set 

Continuum Methods 

10-6 

10-3 

1 

10-9 

103 

Atomic 

vibrations 

Atomic 

motion 

Formation 

of 

islands 

Device 

growth 

1nm 1μm 1mm 1m length 

islands device circuit wafer 

DFT 
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Kinetic Monte Carlo a tool  

for simulation of growth processes 

From Molecular Dynamics to   

Kinetic Monte Carlo   

Simulation of growth processes –  

Kinetic Monte Carlo (KMC)  

Modeling crystal growth with the KMC method allows 

one to cover experimentally relevant growth times and 

system sizes, since each event on the surface is just 

described by a single quantity—the transition rate—

rather than by modeling the full reaction path including 

atomic geometries and energies 

Bridging of length and time scales 

KMC Simulations: Effect of Nearest  

Neighbor Bond Energy EN 

Large EN: 

Irreversible 

Growth 
Small EN: 

Compact 

Islands 

Experimental Data 

Au/Ru(100) 

Ni/Ni(100) 

Hwang et al., PRL 67 (1991) Kopatzki et al., Surf.Sci. 284 (1993) 

KMC Simulations 
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Computational Materials Science:  

A Scientific Revolution about to Materialize 

Pasteur's Quadrant 

Due to the complexity of materials systems, progress has 

necessarily proceeded either within the Bohr quadrant or  

Edison‘s quadrant 

Realistic simulation is the vehicle  

for moving materials research  

firmly into Pasteur's quadrant. 

experiment and theory done on 

model systems 

research and development  

by trial and error 

Thank you! 


