

Chair of Condensed Matter Physics Institute of Theoretical Physics Faculty of Physics, University of Warsaw

Semester Zimowy 2011/2012

Wykład

Modelowanie Nanostruktur

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

1

Farsightedness (hyperopia) of the Standard k-p Model

Alex Zunger, phys. stat. sol. (a) 190, 467 (2002)

The use of a small number of bands in conventional *k-p* treatment of nanostructures leads to "farsightedness" (hyperopia),

- detailed atomistic symmetry is not seen,
- only the global landscape symmetry is noted,
- ➡ the real symmetry is confused with a higher symmetry.
- Number of important symmetry-mandated physical couplings are unwittingly set to zero
- These are often introduced, after-the-fact, "by hand", via an ansatz.
- In atomistic theories of nanostructures, the physically correct symmetry is naturally forced upon us by the structure itself.

Atomistic methods for modeling of nanostructures

- Ab initio methods (up to few hundred atoms)
- Semiempirical methods (up to 1M atoms)
 - Empirical Pseudopotential
 - Tight-Binding Methods

What about realistic nanostructures ?

Inorganics

- 3D (bulks) : 1-10 atoms in the unit cell
- 2D (quantum wells): 10-100 atoms in the unit cell
- 1D (quantum wires): 1 K-10 K atoms in the unit cell
- 0D (quantum dots): 100K-1000 K atoms in the unit cell

Organics

Nanotubes, DNA: 100-1000 atoms (or more)

Ab initio = Density Functional Theory Based Methods

Why Tight-Binding?

- Allows us to describe the band structure over the entire Brillouin zone
- **Relaxes all the approximations of Envelope Function approaches**
- □ Allows us to describe thin layer perturbation (few Å)
- Describes correctly band mixing
- Gives atomic details
- The computational cost is low
- Lt is a real space approach
- Molecular dynamics
- □ Scalability (from empirical to ab-initio)

Scalability of TB approaches

Empirical Tight-Binding

Hamiltonian matrix elements are obtained by comparison of calculated quantities with experiments or *ab initio* results. **Very efficient, poor transferability**.

Semi-Empirical Hartree-Fock

Methods used in the chemistry context (INDO, PM3 etc.). Medium transferability.

Density Functional based Tight-Binding (DFTB, FIREBAL, SIESTA)

 $\mathsf{DFT}\xspace$ local basis approaches provide transferable and accurate interaction potentials.

The numerical efficiency of the method allows for molecular dynamics simulations in large super cells, containing several hundreds of atoms.

The sp³s* Hamiltonian

[Vogl et al. J. Phys. Chem Sol. 44, 365 (1983)]

In order to reproduce both valence and conduction band of covalently bounded semiconductors a s^* orbital is introduced to account for high energy orbitals (*d*, *f* etc.)

Tight-Binding Formalism – Dependence of the hopping integrals on atomic distance

Calculations for systems with distorted lattice

The dependence of the hopping integrals on the inter-atomic distance

- Harrison's ~d⁻² dependence
- Exponential dependence $t = t_0 exp(-\beta r)$

•
$$t_{\alpha\beta}(R_{ij}) = t_{\alpha\beta}(r_0)f(R_{ij})$$

 $f(r) = \begin{cases} \left(\frac{r_0}{r}\right)^n exp\left\{n\left[-\left(\frac{r}{r_c}\right)^{n_c} + \left(\frac{r_0}{r_c}\right)^{n_c}\right]\right\} & r < r_1 \\ c_0 + c_1(r - r_1) + c_2(r - r_2)^2 + c_3(r - r_2)^3 & r \ge r_1 \end{cases}$
C. Xu *et al.*, J. Phys. Condens. Matter 4, 6047 (1992)

Boundary conditions for transport The transport problem is: active region where symmetry is lost t contact regions (semi-infinite bulk) contact region contact contact open-boundary conditions can be treated within several schemes: . Transfer matrix . Green Functions These schemes are well suited for localized orbital approach like TB

Tight-Binding Formalism – Parametrization of the repulsive term

- Using the interpolated hopping integrals, the tightbinding band-structure energy can be obtained for any geometry and inter-atomic distance.
- We then *define* the repulsive energy as the difference between the 'exact' binding energy, obtained using *ab initio* calculations, and the tight-binding band-structure energy
- Several crystallographic phases of a material are usually used
 - Structure independent parametrization of the repulsive terms

Time Dependent Current CNT without C₆H₄ 12 ΔI = 20% 11 MMMMMCurrent [μA] 10 9 8 7 6 $= 8 \text{ K}\Omega$ 0.0 0.5 1.0 1.5 2.0 2.5 Time [ps]

Coarse-graining & effective approaches

Large scale modeling - Coarse-Graining

- For large scale modeling, one may introduce alternative approaches using simplified *coarse-grained models* (lattice gas models)
- These models can be treated with the methods used commonly in statistical mechanics such as
 - mean-field theory,
 - the cluster variation method (CVM),
 - Monte Carlo methods.
- Question: how to provide a link between atomistic calculations (*ab initio*, classical potentials) and the potential parameters suitable for coarse-grained models.

Simulation of growth processes – Kinetic Monte Carlo (KMC)

- Modeling crystal growth with the KMC method allows one to cover experimentally relevant growth times and system sizes, since each event on the surface is just described by a single quantity—the transition rate rather than by modeling the full reaction path including atomic geometries and energies
 - ➡ Bridging of length and time scales

