Modelowanie Nanostruktur

Chair of Condensed Matter Physics Institute of Theoretical Physics Faculty of Physics, University of Warsaw

Semester Zimowy 2011/2012

Wykład

Modelowanie Nanostruktur

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

Modelowanie Nanostruktur, 2011/2012 Jacek A. Majewski

Wykład 3 – 18 X 2011

- Teoria Fukcjonału Gęstości \circ
- **Coarse-graining** 0
- Metoda ciasnego wiązania 0 (Tight-binding method)
- Zastosowanie dla grafenu igodol

Kohn – Sham realization of the Density Functional Theory key to computational materials science modeling of complex nanostructures

> Materials Science – Basic Problem: N electrons in an external potential

• Materials are composed of nuclei $\{Z_{\alpha}, M_{\alpha}, \vec{R}_{\alpha}\}$ and electrons $\{\vec{r}_i\}$ the interactions are known

Electron-Nucleus Kinetic energy of electrons

Electron-Electron interaction

Nucleus-Nucleus interaction

External potential

interaction

 $V_{ext} = \sum_{i} v_{ext}(\vec{r}_{i})$ $v_{ext}(\vec{r}) = \sum_{a} \frac{-Z_{a}e^{2}}{|\vec{r} - \vec{R}_{a}|}$

Density Functional Theory (DFT) in Kohn-Sham realization

This reduction is rigorously possible !

DFT- The Kohn- Sham Method

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Density Functional Theory (DFT)

Approximations to the exchange & correlation

•
$$E[\rho] = \int d\vec{r} v_{ext}(\vec{r})\rho(\vec{r}) + T_s[\rho] + U[\rho] + E_x[\rho] + E_c[\rho]$$

• Local Density Approximation (LDA)
 $E_{xc}^{LDA}[\rho] = \int d\vec{r}\rho(\vec{r})\varepsilon_{xc}^{hom}(\rho(\vec{r}))$

• Generalized Gradient Approximation (GGA)

$$E_{xc}^{GGA}[\rho] = \int d\vec{r} f_{xc}(\rho(\vec{r}), \nabla \rho(\vec{r}))$$

The Kohn-Sham Method

Kohn-Sham equations with local potential

 These equation are nonlinear and must be solved iteratively (self-consistently)

The Kohn- Sham Method – ,Aufbau' principle

Solution of the Kohn-Sham Equations - Methods

- Expansion of the Kohn-Sham orbitals in a basis $\{\chi_{\alpha \vec{k}}(\vec{r})\}\$ $\varphi_{n\vec{k}}(\vec{r}) = N \sum c_{\alpha}(n,\vec{k})\chi_{\alpha \vec{k}}(\vec{r})$
- Plane waves and pseudopotential
- Linearized Muffin Tin Orbital (LMTO) Method
- Linearized Augnented Plane Wave (LAPW) Method
- Projector Augnented Waves (PAW) Method
 - takes into account core electrons and keeps simultaneously valence functions smooth
 - state-of-the-art in the pseudopotential based methods

The Kohn-Sham Method –Total Energy & Forces

Cohesive energies in semiconductors Comparison of LDA, EXX, and HF Methods

Energy of free (separated) atoms -Energy of solid Cohesive energy = -- Binding energy

LDA - overestimates (LDA world is smaller than the real one) HF -- underestimates.

EXX – gives excellent cohesive energies in semiconductors

First (convincing) LDA Calculations: Stability of crystals and pressure induced phase transitions

DFT – Calculation of the equation of state and elastic constants

• Equation of state - $E_{tot}(V)$ or P(V)

$$\implies$$
 V_0 B_0 B_0

Elastic constants 0

Energy of the strained system

$$\rho_0 E(\eta) = \frac{1}{2!} \sum_{i,j=1,6} c_{ij} \eta_i \eta_j + \frac{1}{3!} \sum_{i,j,k=1,6} c_{ijk} \eta_i \eta_j \eta_j + \dots$$
Second order
Elastic constants
Third order
Elastic constants

LDA calculations in semiconductors

Valence bands for GaAs as determined from angle-resolved photoemission experiments and pseudopotential theory

 LDA gives very good description of the occupied s-p valence bands (4s & 4p) in semiconductors

 Various methods of solving Kohn-Sham equations give very similar results

Fundamental band gaps in semiconductors: Local Density Approximation & Exact Exchange

EXX Method leads to Kohn-Sham gaps that agree very well with experiment

Large part of the error in the fundamental gaps is connected to the approximated functionals (LDA, GGA)

LDA calculations in semiconductors – Energy gap

• For all semiconductors and insulators, LDA (GGA) give energy gaps that are 40%-70% of experimental gaps

- Relation of the Kohn-Sham gap to the *quasi-particle energy* (change of system energy caused by adding a particle) ?
- Is the Kohn-Sham gap generally wrong, for description of one particle excitations ?
- Does the error is caused by the approximation of the functionals ?

"The band gap problem"

DFT - further developements required

Density functional theory has revolutionized the way scientists approach the electronic structure of atoms, molecules, and solid materials in physics, chemistry, and materials science

We are not at the end of this way!

Coarse-graining & effective approaches

Large scale modeling - Coarse-Graining

- For large scale modeling, one may introduce alternative approaches using simplified *coarse-grained models* (lattice gas models)
- These models can be treated with the methods used commonly in statistical mechanics such as
 - mean-field theory,
 - the cluster variation method (CVM),
 - Monte Carlo methods.
- Question: how to provide a link between atomistic calculations (*ab initio*, classical potentials) and the potential parameters suitable for coarse-grained models.

What to do with large systems?

Coarse-grained model for ions around DNA

Lecture 3

Lipid bilayer in water

Picture contains 50000 atoms Minimal, reasonable piece of bilayer for atomistic calculations 72 lipids + at least 20 H₂O per lipid = 13000 atoms

Another example: Coarse-grained lipid model

All-atom model 118 atoms

Coarse-grained model 10 sites

Tight-binding method

Modelowanie Nanostruktur

The Kohn- Sham Method – The Kohn-Sham Equations

Schrödinger-like equations with local potential

 These equation are nonlinear and must be solved iteratively (self-consistently)

Tight-Binding Formalism

LCAO (Linear Combination of Atomic Orbitals)

- Minimal Basis, i.e., one orbital per electron, is not sufficient
- Results depend on the chosen basis

LCAO - Semiempirical Tight-Binding Method

- Hamiltonian matrix elements $\langle \phi_{\alpha} | \hat{H} | \phi_{\alpha'} \rangle \equiv H_{\alpha \alpha'}$ and overlap integrals $\langle \phi_{\alpha} | \phi_{\alpha'} \rangle \equiv S_{\alpha \alpha'}$ are treated as empirical parameters
- Mostly, orthonormality of orbitals is assumed, $S_{\alpha\alpha'} = \delta_{\alpha\alpha'}$
- Huge spectrum of applications
- Qualitative insight into physics
 and semi-quantitative results

W. A. Harrison, "Electronic Structure and the Properties of Solids The Physics of the Chemical Bond", Freeman & Comp. (1980)

Tight-Binding Hamiltonian

$$H = \sum_{\alpha i} \varepsilon_{i\alpha} c^{\dagger}_{i\alpha} c_{i\alpha} + \sum_{\alpha i, \beta j} t_{i\alpha, j\beta} c^{\dagger}_{i\alpha} c_{j\beta}$$

creation & anihilation operators

- On-site energies are not atomic eigenenergies
 They include on average the effects
 of neighbors
- >>> Problem: Transferability
 - *E.g.,* Si in diamond lattice (4 nearest neighbors) & in fcc lattice (12 nearest neighbors)
- Dependence of *the hopping energies* on the distance between atoms

Tight-Binding Formalism – Parameters

- The TB parameters:
 - on-site,
 - hopping

• (overlap integrals) are usually determined empirically by fitting TB energies (eigenvalues) to the *ab initio* (experimantal) ones.

- One could also try to calculate them directly by performing the same calculation for a localized basis set exactly e.g., F. Liu, Phys. Rev. B 52, 10677 (1995)
- Simple version of the TB method universal parameters W. Harrison, *Electronic structure and the properties of solids* (Dover, New York, 1980)
 - not very transferable and not accurate enough
 - allow to extract qualitative physics

Tight-Binding Formalism – Overlap Integrals

• In the general case orbitals will not be an orthonormal set and we define the *overlap integrals* as

$$S_{i\alpha j\beta} = \langle i\alpha | j\beta \rangle = \int \phi_{i\alpha}^* \phi_{j\beta} \, d\mathbf{r}$$

• In orthogonal-TB schemes S reduces to the unit matrix.

One needs to solve
$$\sum_{j\beta} (H_{i\alpha j\beta} - \epsilon S_{i\alpha j\beta}) c_{j\beta} = 0$$

Parameters to be determined

Semiempirical Tight-Binding Method

Tight-Binding Formalism – Parameters

Fitting the ab initio band structure LDA (•) and tight-binding (------) band structures Energy (eV) for GaAs -2 in the zinc-blende -4 structure -6 -8 -10 -12 Δ Χ Ψ U L Λ Γ Σ к Г Wave vector

Lecture 3

Tight-Binding Formalism – Physical meaning of the on-site energies

$$H = \sum_{\alpha i} \varepsilon_{i\alpha} c^{\dagger}_{i\alpha} c_{i\alpha} + \sum_{\alpha i,\beta j} t_{i\alpha,j\beta} c^{\dagger}_{i\alpha} c_{j\beta}$$

 Anderson has shown that there exists a pseudoatomic Hamiltonian that has as its eigenstates the basis states /*iα* >, but this Hamiltonian is not an atomic one and depends yet again on neighboring atoms.

$$H_i / i\alpha >= (T + V_i + \sum_{j \neq i, \beta} V_j - |j\beta \rangle \langle j\beta | V_j \rangle) |i\alpha \rangle = \varepsilon_{i\alpha} |i\alpha \rangle$$

• Similar procedure to the construction of the pseudopotential

Tight-Binding Formalism – Physical meaning of the on-site energies

• The expression for the pseudo-Hamiltonian of atom $m{i}$

$$H_i / i\alpha >= (T + V_i + \sum_{j \neq i, \beta} V_j - |j\beta \rangle \langle j\beta | V_j \rangle |i\alpha \rangle = \varepsilon_{i\alpha} |i\alpha \rangle$$

- In the pseudopotential one projects out core states
- Here one projects out the states of the neighboring atoms which overlap with the atomic basis function.
- This is where the dependence on the environment comes from in this atomic pseudo-Hamiltonian

Tight-Binding Formalism – Dependence of the hopping integrals on atomic distance

Calculations for systems with distorted lattice

The dependence of the hopping integrals on the inter-atomic distance

- Harrison's ~d⁻² dependence
- Exponential dependence $t = t_0 exp(-\beta r)$

•
$$t_{\alpha\beta}(R_{ij}) = t_{\alpha\beta}(r_0) f(R_{ij})$$

 $f(r) = \begin{cases} \left(\frac{r_0}{r}\right)^n exp\left\{n\left[-\left(\frac{r}{r_c}\right)^{n_c} + \left(\frac{r_0}{r_c}\right)^{n_c}\right]\right\} & r < r_1 \\ c_0 + c_1(r-r_1) + c_2(r-r_2)^2 + c_3(r-r_2)^3 & r \ge r_1 \end{cases}$

C. Xu et al., J. Phys. Condens. Matter 4, 6047 (1992)

Tight-Binding Formalism – Dependence of the hopping integrals on atomic distance

LDA (•) and tight-binding (-----) band structures for GaAs in the zinc-blende structure for two different bond lengths (b) 2.9 Å, and (c) 3.3 Å

P. W. Anderson, Phys. Rev. Lett. **21**, 13 (1968) Phys. Rev. **181**, 25 (1969)

Tight-Binding Formalism – Dependence of the hopping integrals on atomic distance

Minimal sp basis used

Tight-binding hopping integrals with the functional dependence

$$t = t_0 exp(-\beta r)$$

(lines) as functions of the interatomic distance for GaAs in the zinc-blende structure. Optimum fits of the LDA band structure at selected nearest-neighbour distances are given by the data points.

Y. P. Feng, C. K. Ong, H. C. Poon and D. Tomanek, J. Phys.: Condens. Matter 9, 4345 (1997).

Tight-Binding Formalism – Dependence of the hopping integrals on atomic distance

Highly optimized tight-binding model of silicon

Tight-Binding Formalism – Band Energy

$$U_{\rm band} = 2\sum_{\rm occ} \epsilon_s = 2\sum_s n_s \epsilon_s$$

- This energy term is called the *band energy*, and is usually attractive and responsible for the cohesion.
- In fact, if atoms get closer their overlap increases, the range of the eigenvalues increases and, since only the lowest energy states are occupied, the energy decreases (bonding increases).
- "Real" description of solids requires repulsive term (to prevent colaps)

Tight-Binding Formalism – The Total Energy

- However, the TB formalism shown above describes only bonding due to the outer electrons.
- If one brings two atoms close together, inner shells will start to overlap and bring additional energy (in the form of a strong repulsion) that is not included in the band energy term.
- The total energy will therefore be given as

$$E = U_{\rm rep} + U_{\rm band}$$
 an empirical repulsive energy term

Tight-Binding Formalism – The Repulsive Energy

In most cases this is modeled simply as a sum of *two-body repulsive potentials* between atoms

$$U_{\rm rep} = \frac{1}{2} \sum_{ij} v_R(r_{ij})$$

but many-body expressions such as

$$U_{\rm rep} = \sum_{i} g \left[\sum_{j} \Phi(r_{ij}) \right]$$

(where g is a non-linear embedding function, which can be fitted by a polynomial) have also been proposed.

 $\boldsymbol{\Phi}$ has similar dependence on the R_{ii} as hopping integrals

Tight-Binding Formalism – Parametrization of the repulsive term

- Using the interpolated hopping integrals, the tightbinding band-structure energy can be obtained for any geometry and inter-atomic distance.
- We then *define* the repulsive energy as the difference between the 'exact' binding energy, obtained using *ab initio* calculations, and the tight-binding band-structure energy
- Several crystallographic phases of a material are usually used
 - Structure independent parametrization of the repulsive terms

Tight-Binding Formalism – The Total Energy

$$E = \sum_{k,n} \epsilon_n(k) + \sum_{l=2}^{N} \sum_{l'=1}^{l-1} E_{rep}(|\mathbf{R}_l - \mathbf{R}_{l'}|) + U \sum_{l=1}^{N} (q_l - q_l^0)^2$$

Band structure Repulsive Charge transfer energy energy

- The total repulsive energy contains ion-ion repulsion, exchange-correlation energy, and accounts for the double counting of electron-electron interactions in the bandstructure energy term.
- The last term imposes an energy penalty on large inter-atomic charge transfers → Charge transfer energy

Typical
$$U \sim 1 eV$$

Tight-Binding Formalism – The Total Energy

Tight-binding method Application: graphene

Graphene: a sheet of carbon atoms

What is graphene?

Bottom-up	&	Top-down nanosystems
fullerene		\leftrightarrow (dots - 0D)
Carbon nanotubes		\leftrightarrow (q. wires – 1D)
Graphene		←→ (2D systems)

Does graphene exist?

- In the 1930s, Landau and Peierls (later Mermin) showed that thermodynamics prevents the existence of 2-d crystals in free state.
- Melting temperature of thin films decreases rapidly with temperature -> monolayers generally unstable
- In 2004, experimental discovery of graphene high quality 2-d crystal !!!

Andrey Geim (Manchester)

Samples of graphene

microscopy image

Scanning electron microscope image

Nobel Prize in Physics 2010

Konstantin Novoselov

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the twodimensional material graphene"

What stabilizes graphene?

• Crumpling of graphene sheet the main source of disorder

Tight-binding description of graphene

 σ bonds – not considered in this model

π bonds considered

- One p, orbital pro atom
- Only couplings between nearest neighbors taken into account

Electronic band structure of graphene

M. Machon, et al., Phys. Rev. B 66, 155410 (2002)

O

Covalent bonds between carbons

Tight-binding description of graphene

•
$$\begin{vmatrix} \varepsilon_p - \varepsilon(\vec{k}) & H_{AB}(\vec{k}) \\ H^*_{AB}(\vec{k}) & \varepsilon_p - \varepsilon(\vec{k}) \end{vmatrix} = 0 \implies \varepsilon(\vec{k})$$

- $H_{AA} = H_{BB} = \varepsilon_p$
- $H_{AB}(\vec{k}) = \sum_{\vec{R}_n} exp(i\vec{k} \cdot \vec{R}_n) < \varphi_A(\vec{\tau}_A) | \hat{H} | \varphi_B(\vec{\tau}_B + \vec{R}_n) >$

•
$$H_{AB}(\vec{k}) = t[1 + exp(i\vec{k}\cdot\vec{a}_1) + exp(i\vec{k}\cdot\vec{a}_2)]$$

- $\varepsilon_p = 0$ (zero of energy)
- $\varepsilon(\vec{k}) = \pm t \left(H_{AB}(\vec{k}) H_{AB}^*(\vec{k}) \right)^{1/2}$

Band structure of graphene – T-B metod (1)

Band structure of graphene – T-B metod (2)

Band structure of graphene – T-B metod (3)

$H_{AB}^{*}(\vec{u})H_{AB}(\vec{u}) = t^{2}(1+e^{i\vec{k}\cdot\vec{Q}_{1}}+e^{-i\vec{k}\cdot\vec{Q}_{1}})(1+e^{i\vec{k}\cdot\vec{Q}_{1}}+e^{i\vec{k}\cdot\vec{Q}_{2}})=$
$= t^{2} (3 + 2\cos k \vec{a_{1}} + 2\cos k \vec{a_{2}} + 2\cos k \vec{a_{2}} - \vec{a_{1}}))$
$\cos x + \cos \beta = 2\cos \frac{x+\beta}{2}\cos \frac{x-\beta}{2}$
$2\cos \overline{u}\overline{a}_{1} + 2\cos \overline{u}\overline{a}_{2} = 4\cos \frac{\overline{u}(\overline{a}_{1}+\overline{a}_{2})}{2}\cos \frac{\overline{u}(\overline{a}_{1}-\overline{a}_{2})}{2} =$
$= 4\cos\left(\frac{\sqrt{3a}}{2}k_{x}\right)\cos\left(\frac{\alpha}{2}k_{y}\right)$
$\vec{a}_{2} - \vec{a}_{1} = -\alpha \vec{e}_{y} \implies \vec{w} (\vec{a}_{1} - \vec{a}_{1}) = -\alpha k_{y}$
$3 + 2\cos ak_y = 3 + 2\cos \frac{2ak_y}{2} = 1 + 4\cos^2 \frac{a}{2}k_y$
$H_{AB}(\vec{u})H_{AB}(\vec{u}) = t^{2} \left(1 + 4\cos\left(\frac{\sqrt{3}a}{2}k_{x}\right)\cos\left(\frac{a}{2}k_{y}\right) + 4\cos\left(\frac{c}{2}k_{y}\right)\right)$

Band structure of graphene - summary

- Graphene is semi-metallic
- Fermi energy is zero, no closed Fermi surface, only n=0isolated Fermi points
- Close to corner points, *relativistic dispersion* (ligh cone), up to *eV* energy scales

$$E(\vec{q}) = v_F |\vec{q}|$$

$$\vec{q} = \vec{k} - \vec{K}, v_F = 8 \times 10^5 \, m \,/ \, \text{sec}$$

- Relativistic behavior comes from interaction with lattice potential of graphene, not from carriers moving near speed of light.
- Behavior ONLY present in monolayer graphene; disappears with 2 or more layers.

$$\varepsilon(\vec{k}) = \pm t \left\{ 1 + 4\cos^2\left(\frac{k_y a}{2}\right) + 4\cos\left(\frac{\sqrt{3}k_x a}{2}\right)\cos\left(\frac{k_y a}{2}\right) \right\}^{1/2}$$

Energy gap is equal zero only in one k-point (P-point)

Massless 2D Dirac Fermions

Intriguing Physics of Graphene