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Kohn – Sham realization  

of the Density Functional Theory –  

key to  

     computational materials science 

     modeling of complex nanostructures  
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Materials Science – Basic Problem: 

N electrons in an external potential  

Materials are composed of nuclei                    and electrons  

            the interactions are known 
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    Density Functional Theory (DFT)   

One particle density determines the ground state energy  

of the system for arbitrary external potential 

extE [ ρ] d r ρ( r )υ ( r ) F [ ρ] 
3

E [ ρ ] E0 0

ground state density 

ground state energy 

ext S x c
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ] E [ ρ]    

unknown!!! 

Total energy 

functional 

External  

energy 

Kinetic   

energy 

Classic Coulomb   

energy 

Exchange   

energy 

Correlation   

energy 

Interacting particles Independent particles 

231 2 10
Ψ( x , x , , x ) 231 2 10

θ( x )θ( x ) θ( x )

Idea: consider electrons  

as independent particles  

moving in an effective  

potential  

Density Functional Theory (DFT)  

in Kohn-Sham realization  

This reduction is rigorously possible ! 

DFT- The Kohn- Sham Method    

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 

System of interacting  

electrons with density ( )r
System of non-interacting electrons  

with the same density ( )r

“Real” system “Fictitious” or Kohn-Sham reference  

                                                 system  
ρ( r ) T [ ρ] S

T [ ρ]
S

ρ ( r ) ρ( r )

ext S x c
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ] E [ ρ]    

N

i i

i 1

ρ( r ) θ* ( r )θ ( r )



2 N

* 2

s i i

i 1

T [ ρ] drθ ( r ) θ ( r )
2m 

  

unknown!!! 

*

j j*

x i i

i j

θ ( r )θ ( r ')1
E [ ρ] drdr ' θ ( r ) θ ( r ')

2 | r r ' |

 
   

  
 

ext S x c
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ] E [ ρ]    

unknown!!! 
Local Density Approximation (LDA) 

LDA
xc xcE dr r r 

hom
[ ] ( ) ( ( ))   

Generalized Gradient Approximation (GGA) 

[ ] ( ( ), ( ))
GGA
xc xcE dr f r r   

    Density Functional Theory (DFT)   

Approximations to the exchange & correlation 
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    The Kohn-Sham Method   

N

i i

i 1

ρ( r ) θ* ( r )θ ( r )

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x
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Kohn-Sham equations with local potential 

These equation are nonlinear and must be solved  

iteratively (self-consistently)  

    The Kohn- Sham Method –   

    ‚Aufbau„ principle   

HOMO 

LUMO 

ε1

ε2

Nε
Nε 1

unoccupied 

occupied 

How to calculate one particle density? 

    Solution of the Kohn-Sham Equations - Methods   

Expansion of the Kohn-Sham orbitals in a basis { ( )}
k

r



( ) ( , ) ( )
nk k

r c n k r 


  

Plane waves and pseudopotential      

Linearized Muffin Tin Orbital (LMTO) Method      

Linearized Augnented Plane Wave (LAPW) Method      

Projector Augnented Waves (PAW) Method      

takes into account core electrons and keeps 

simultaneously valence functions smooth 

state-of-the-art in the pseudopotential based methods 

    The Kohn-Sham Method –Total Energy & Forces   

2 N
* 2

i i x c ext

i 1

E[ ρ] drθ ( r ) θ ( r ) U [ ρ] E [ ρ] E [ ρ] drυ ( r )ρ( r )
2m 

       
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Solution of the Kohn-Sham Equations      

Direct methods on a mesh in r-space 

Expansion of the Kohn-Sham orbitals in a basis 

Eigenvalueproblem 

Bandstructure 

{ ( )}
k

r



( ) ( , ) ( )
nk k

r c n k r 

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' ' '[ ( ) ( ) ( )] ( , ) 0nH k k S k c n k   

' 'det[ ( ) ( ) ( )] 0nH k k S k  

( )n k

Hamiltonian  

matrix elements 
Overlap integrals 

M. T. Yin & M. L. Cohen,  

Phys. Rev. B 26, 5668 (1982) 
Silicon 

DIAMOND 

Tin 

SC 

0.6       0.7         0.8        0.9        1.0        1.1 

Volume 

Hexagonal 

Diamond 

-7.84 

-7.86 

-7.88 

-7.90 

-7.92 

fcc 
hcp 

bcc 

E
n

e
rg

y
s
tr

u
c
tu

re
 [

R
y
/a

to
m

] 

First (convincing) LDA Calculations: Stability of crystals  

and pressure induced phase transitions  

(1) (1) (2) (2)

(2) (1)

( ) ( )tot t tot t
transition

t t

E V E V
P

V V






Interesting prediction:  
Under high hydrostatic pressure  

and in low temperature silicon  

becomes superconducting !  

 

Later on confirmed experimentally  

E
P

V


 



Cohesive energies in semiconductors 

Comparison of LDA, EXX, and HF Methods 

Experimental energy [eV] 
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Cohesive energy =  

Energy of free (separated) atoms – 

Energy of solid 

Cohesive energy = -- Binding energy 

LDA – overestimates (LDA world is 

           smaller than the real one) 

HF   -- underestimates,  

EXX – gives excellent cohesive 

            energies in semiconductors  

DFT – Calculation of the equation of state  

and elastic constants 

Equation of state -  totE (V )

V0 B0 B '0

or P(V )

Elastic constants 

Energy of the strained system 

0

1 6 1 6

1 1

2 3
ij i j ijk i j j

i , j , i , j ,k ,

ρ E(η ) c η η c η η η
! ! 

   

Second order  

Elastic constants 

Third order  

Elastic constants 
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LDA calculations in semiconductors  
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Valence bands for GaAs as determined  

from angle-resolved photoemission  

experiments and pseudopotential theory 

LDA gives very good  

description of the occupied  

s-p valence bands (4s & 4p)  

in semiconductors  

Various methods of solving  

Kohn-Sham equations give  

very similar results 

EGAP = ELUMO - EHOMO 

Too small by factor of 2 

Si 

Band structure  

of diamond silicon 

E
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Wave vector 

EGAP 

LDA calculations in semiconductors – Energy gap 

KS
GapE KS KS

cbb vbt  

KS
GapE 1( ) ( )

KS KS
N NN N  

Kohn-Sham gap 

For all semiconductors and insulators,  

LDA (GGA) give energy gaps that are  

40%-70% of experimental gaps  

Is the Kohn-Sham gap generally  

wrong, for  description of  

one particle excitations  ? 

Does the error is caused by the  

approximation of the functionals ?    

“The band gap problem” 

Relation of the Kohn-Sham gap  

to the quasi-particle energy  

(change of system energy  

caused by adding a particle) ? 
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Fundamental band gaps in semiconductors:  

Local Density Approximation & Exact Exchange  

EXX Method leads to  

Kohn-Sham gaps that agree  

very well with experiment 

Large part of the error in  

the fundamental gaps  

is connected to the  

approximated functionals  

(LDA, GGA)     

Density functional theory has revolutionized the way  

scientists approach the electronic structure of atoms,  

molecules,and solid materials in physics, chemistry,  

and materials science 

We are not at the end of this way!  

   DFT - further developements required   
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 Coarse-graining  &  

effective approaches  

What to do with large systems?   

Polyelectrolyte problem: ions around DNA 

Atomistic DFT calculations 

not really possible to  

sample distances  

30 – 40 A from DNA  

Na+ 

Water molecule 

Large scale modeling - Coarse-Graining 

For large scale modeling, one may introduce alternative  

approaches using simplified coarse-grained models  

(lattice gas models) 

These models can be treated with the methods used  

commonly in statistical mechanics such as  

         mean-field theory, 

         the cluster variation method (CVM), 

         Monte Carlo methods. 

          
Question: how to provide a link between atomistic  

calculations (ab initio, classical potentials) and the  

potential parameters suitable for coarse-grained  

models. 

Na+ 

All-atom model  Coarse-grained model  

Coarse-grained model for ions around DNA  
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Coarse-grained model for ions around DNA  

Ions interacting with DNA  

by effective solvent-mediated  

potentials  

Different potentials for  

various parts of DNA 

No explicit water 

Na+ 

density profile and integral  

charge 
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Another example: Coarse-grained lipid model  

All-atom model 

118 atoms 

Coarse-grained model 

10 sites 

Lipid bilayer in water 

Picture contains 50000 atoms 

Minimal, reasonable piece of bilayer for atomistic calculations 

72 lipids + at least 20 H2O per lipid = 13000 atoms 

 Tight-binding method   
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υ ( r ) υ ( r ) υ ( r ) υ ( r ) θ ( r ) ε θ ( r )

2m
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 

    The Kohn- Sham Method –   

    The Kohn-Sham Equations   

N

i i

i 1

ρ( r ) θ* ( r )θ ( r )




x
δE [ ρ]

δρ

c
δE [ ρ]

δρ
H

δU ρ( r ')
υ ( r ) dr '

δρ | r r ' |
 



2 s

ext

s ,n s n

Z
υ ( r ) e

| r η R |
 

 


Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  

iteratively (self-consistently)  

LCAO (Linear Combination of Atomic Orbitals) 

at
n nr c r X ( ) ( )  



 

( ) ( , ) ( )
nk k

r c n k r 


  

( )( ) ( )l

l

ik R at
l sk

R

r e r R 
  

  

2ˆ
[ ]
2

at at at at
KS

p

m
      

( ) ( )nik R
nk k

r R e r
 
 

 

Problems 

Kohn-Sham orbitals in periodic systems 

{ }s Basis atoms 

at
 - „Atomic‟ Kohn-Sham orbitals:  

{ }
k

 - fulfill Bloch‟s theorem 

Minimal Basis, i.e., one orbital per electron, is not sufficient 

Results depend on the chosen basis 

Primitive translations { }lR

All atoms in the system 

    Tight-Binding Formalism   

i
n n i

i

r c r
,

( ) ( )





 

index of orbital index of atom 

iα iα , jβ

αi αi ,βj

H ε | iα iα | t | iα jβ |    

αi{ χ }orthogonal set  

of functions 

αi βj
n n n n n

iα jβ

ε θ | H | θ ( c )*c iα | H | jβ   

Tight –binding Hamiltonian 

on-site hoping TB-parameters 

NOT ATOMIC  

ORBITALS ! 

LCAO - Semiempirical Tight-Binding Method 

Hamiltonian matrix elements                                     

and overlap integrals                             

are treated as empirical parameters 

' '
ˆ| |H H    

' '| S    

' 'S Mostly, orthonormality of orbitals is assumed,  

Qualitative insight into physics  

                                          and semi-quantitative results  

W. A. Harrison, “Electronic Structure and the Properties of Solids The Physics  

                          of the Chemical Bond”, Freeman & Comp. (1980)    

Huge spectrum of applications 
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    Tight-Binding Hamiltonian   

† †
iα iα iα iα , jβ iα jβ

αi αi ,βj

H ε c c t c c  

creation & anihilation operators 

On-site energies are not atomic eigenenergies 

They include on average the effects  

of neighbors 

Problem: Transferability 

E.g., Si in diamond lattice (4 nearest neighbors)  

             & in fcc lattice (12 nearest neighbors) 

Dependence of the hopping energies on the distance  

                                                                 between atoms 

    Tight-Binding Formalism – Overlap Integrals   

In the general case orbitals will not be an orthonormal set  

and we define the overlap integrals as 

In orthogonal-TB schemes S reduces to the unit matrix. 

One needs to solve 

Parameters to be determined 

Semiempirical Tight-Binding Method 

Tight-Binding Formalism – Parameters   

The TB parameters:  

                                  on-site,  

                                  hopping 

                                  (overlap integrals)  

are usually determined empirically by fitting TB energies  

(eigenvalues) to the ab initio (experimantal) ones.  

One could also try to calculate them directly by performing  

the same calculation for a localized basis set exactly  
e.g., F. Liu, Phys. Rev. B 52, 10677 (1995) 

Simple version of the TB method – universal parameters 

not very transferable and not accurate enough 

allow to extract qualitative physics 

W. Harrison, Electronic structure and the properties of solids  

                     (Dover, New York, 1980) 

Tight-Binding Formalism – Parameters   

Fitting the ab initio band structure 

Wave vector 

LDA (  ) and  

tight-binding (          )  

band structures  

for GaAs  

in the zinc-blende 

structure 
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Tight-Binding Formalism – Physical meaning  

of the on-site energies   

† †
iα iα iα iα , jβ iα jβ

αi αi ,βj

H ε c c t c c  

Anderson has shown that there exists a pseudoatomic  

Hamiltonian that has as its eigenstates the basis states         , 

but this Hamiltonian is not an atomic one and depends  

yet again on neighboring atoms. 

| iα 

i i j j iα

j i ,β

H | iα (T V V | jβ jβ |V ) | iα ε | iα


      

Similar procedure to the construction of the pseudopotential  

P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968) 

                           Phys. Rev. 181, 25 (1969) 

Tight-Binding Formalism – Physical meaning  

of the on-site energies   

i i j j iα

j i ,β

H | iα (T V V | jβ jβ |V ) | iα ε | iα


      

The expression for the pseudo-Hamiltonian of atom i  

In the pseudopotential one projects out core states 

Here one projects out the states of the neighboring atoms  

which overlap with the atomic basis function. 

 

This is where the dependence on the environment comes  

from in this atomic pseudo-Hamiltonian    

Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

Calculations for systems with distorted lattice  

The dependence of the hopping integrals on the  

inter-atomic distance  

Harrison‟s ~d-2 dependence 

t t exp( βr ) 0Exponential dependence 

αβ ij ijαβ
t ( R ) t ( r ) f ( R ) 0

                 

        

c c

c c

n nn
r rr

exp n r r
r r rf ( r )

c c ( r r ) c ( r r ) c ( r r ) r r

                  
          


       

0 0
1

2 3
0 1 1 2 2 3 2 1

C. Xu et al., J. Phys. Condens. Matter 4, 6047 (1992)  

Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

LDA (  ) and tight-binding (          ) band structures for GaAs  

in the zinc-blende structure for two different bond lengths 
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Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

Tight-binding hopping integrals  

with the functional dependence  

 

 

(lines) as functions of  

the interatomic distance for GaAs  

in the zinc-blende structure.  

Optimum fits of the LDA  

band structure at selected  

nearest-neighbour distances  

are given by the data points. 

t t exp( βr ) 0

Minimal sp basis used  

Y. P. Feng, C. K. Ong, H. C. Poon  

and D. Tomanek, J. Phys.:  

Condens. Matter 9, 4345 (1997).  

– 

Tight-Binding Formalism – Dependence of the 

hopping integrals on atomic distance   

The matrix elements are  

defined whenever r is greater 

than 1.5 Å.  

The distances corresponding  

to the first four neighbor 

shells  

in the diamond structure are  

marked by short vertical 

lines; each matrix element  

goes smoothly to zero  

between the third and fourth  

neighbor shells. 

Matrix elements 

Highly optimized tight-binding model of silicon 

T. J. Lenosky et al., 
Phys. Rev. B 55, 1528 (1996) 

   & ssζ spζ ppζ ppπh ( r ), h ( r ), h ( r ) h ( r )

1st 

2nd 3rd 4th 

neighbor 

Tight-Binding Formalism – Band Energy   

“Real” description of solids requires repulsive term 

This energy term is called the band energy, and is usually 

attractive and responsible for the cohesion.  

 

In fact, if atoms get closer their overlap increases, 

the range of the eigenvalues increases and,  

since only the lowest energy states are occupied, the 

energy decreases (bonding increases). 

(to prevent colaps) 

Tight-Binding Formalism – The Total Energy   

However, the TB formalism shown above describes only 

bonding due to the outer electrons.  

 

If one brings two atoms close together, inner shells will  

start to overlap and bring additional energy (in the form  

of a strong repulsion) that is not included in the band  

energy term. 

The total energy will therefore be given as 

an empirical repulsive energy term 
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Tight-Binding Formalism – The Repulsive Energy   

In most cases this is modeled simply as a sum of  

two-body repulsive potentials between atoms 

but many-body expressions such as 

(where g is a non-linear embedding function, which can be 

fitted by a polynomial) have also been proposed. 

Φ  has similar dependence on the Rij as hopping integrals 

Tight-Binding Formalism – The Total Energy   

Band structure 

energy 

Repulsive  

energy 

Charge transfer  

energy 

The total repulsive energy contains ion–ion repulsion, 

exchange–correlation energy, and accounts for the double 

counting of electron–electron interactions in the band-

structure energy term. 

The last term imposes an energy penalty on large  

inter-atomic charge transfers  Charge transfer energy  

U ~ eV1Typical 

Tight-Binding Formalism – Parametrization of  

                                               the repulsive term    

Using the interpolated hopping integrals, the tight-

binding band-structure energy can be obtained for any 

geometry and inter-atomic distance. 

We then define the repulsive energy as the difference 

between the „exact‟ binding energy, obtained using  

ab initio calculations, and the tight-binding band-structure 

energy 

Several crystallographic phases of a material are usually  

used 

Structure independent parametrization  

of the repulsive terms 

Tight-Binding Formalism – The Total Energy   

The binding energy (Ecoh), 

repulsive energy (Erep), and 

band-structure energy (Ebs ) 

for GaAs in the zinc-blende 

structure, as functions of the 

interatomic distance. 
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 Tight-binding method 

Application: graphene   

What is graphene? 

    2-dimensional 

hexagonal lattice  

    of carbon 

       sp2 hybridized 

      carbon atoms 

        Among strongest 

        bonds in nature 

        Basis for: C-60  
(bucky balls) nanotubes 

graphite 

Graphene: 
a sheet of carbon atoms  

 

  fullerene                        (dots - 0D)  

     

  Carbon nanotubes       (q. wires – 1D) 

 

  Graphene      (2D systems)  

 

Bottom-up       &   Top-down nanosystems  
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Does graphene exist? 

In the 1930s, Landau and Peierls (later Mermin) showed that 
thermodynamics prevents the existence of  2-d crystals in 
free state. 
Melting temperature of thin films decreases rapidly with 
temperature -> monolayers generally unstable 

In 2004, experimental discovery of graphene -   

high quality 2-d crystal !!!  

Andrey Geim (Manchester) 

Nobel Prize in Physics 2010  

Andre Geim Konstantin Novoselov 

The Nobel Prize in Physics 2010 was awarded jointly to 

Andre Geim and Konstantin Novoselov "for 

groundbreaking experiments regarding the two-

dimensional material graphene" 

Samples of graphene 

a)   Atomic force  
      microscopy 

 
b)  Transmission  
      electron  
      microscopy image 
 
c)   Scanning electron 

microscope image 

What stabilizes graphene? 

Possibly, 3-d rippling stabilizes crystal 

800 nm 

800 nm 

800 nm 

Crumpling  

of graphene sheet – 

the main source of disorder 

http://nobelprize.org/nobel_prizes/physics/laureates/2010/geim.html
http://nobelprize.org/nobel_prizes/physics/laureates/2010/novoselov.html
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Graphene – a single sheet of C atoms 

x 

y 
Two unit-cell vectors:  

Two non-equivalent  

atoms A and B in the unit cell  

(two sublattices) 

a a( , )1

3 1

2 2

a a( , ) 2

3 1

2 2

M. Machon, et al., Phys. Rev. B 66, 155410 (2002) 

The band structure  

was calculated with  

a first-principles  

method 

Electronic band structure of graphene 

Γ Q Q P 

Γ 

P 
Q 

xk

yk

Brillouin Zone 

Tight-binding description of graphene 

σ bonds – not considered  

                 in this model 

π bonds considered   

Only couplings between  

nearest neighbors taken into  

account  

One pz orbital pro atom 

Covalent bonds between carbons 

sp3  and sp2 hybrids 
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Tight-binding description of graphene 

       
p AB

*
AB p

ε ε( k ) H ( k )
ε( k )

H ( k ) ε ε( k )


 


0

AB n A A B B n

Rn

ˆH ( k ) exp( ik R ) θ ( η ) | H | θ ( η R )    

ABH ( k ) t [ exp( ik a ) exp( ik a )]    1 21

pε  0

 *
AB AB

/
ε( k ) t H ( k )H ( k ) 

1 2

(zero of energy) 

AA BB pH H ε 

Band structure of graphene – T-B metod (1) 

Band structure of graphene – T-B metod (2) 

ABH ( k )

Band structure of graphene – T-B metod (3) 
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Nearest-neighbors tight-binding  

electronic structure of graphene 

T-B 

Ab-initio 

Γ Q Q P 

Γ 

P 
Q 

xk

yk

Brillouin Zone 

t = -2.7 eV 

Hopping parameter 

Tight-binding band structure of graphene 

y yx

/
k a k ak a

ε( k ) t cos cos cos
      

          
      

2

1 2
3

1 4 4
2 2 2

Graphene is  

semi-metallic 

Energy gap is  

equal zero only  

in one k-point  

(P-point) 

Band structure of graphene - summary 

Fermi energy is zero, no closed Fermi surface, only 

isolated Fermi points 

Close to corner points, relativistic dispersion (light 

cone), up to eV energy scales 

Graphene is semi-metallic  

Relativistic behavior comes from interaction with lattice 

potential of graphene, not from carriers moving near speed 

of light. 

Behavior ONLY present in monolayer graphene;  

disappears with 2 or more layers. 

Massless 2D Dirac Fermions  

“light cone” 
Intriguing Physics of Graphene 


