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Introduction
Why metric variables for GFT’s?

1. Exact duality spin foam models/simplicial gravity path integrals

Tracking simplicial data is critical

I to impose simplicity constraints in a geometrically consistent way
I to understand relation with simplicial geometry, tackle issue of

semi-classical limit

Can one exhibit such a duality at the level of group field theory?

I Similar question in LQG: Relation LQG/simplicial geometry
Dittrich-Ryan, Dittrich-Speziale.
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Introduction
Why metric variables for GFT’s?

1. Exact duality spin foam models/simplicial gravity path integrals

2. Indications of a role played by non-commutative geometry in spin
foams and GFTs:

• Emergence of effective non-commutative space-time in 3d gravity
Freidel, Livine ’05.

• Matter dynamics as a phase of GFT: effective theories with deformed
Poincaré symmetry Fairbairn, Girelli, Livine, Oriti.

Suggests non commutative geometry lie hidden in GFT formalism

I Similar hint in LQG: metric data encoded in electric flux variables
which do not commute.
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Introduction
Overview

Idea: view group formulation of GFT as ‘momentum’ representation dual
to a ‘metric’ representation
Tool: group Fourier transform F(Gn)→ F(gn) Freidel-Livine ’05,

Majid-Freidel ’06, Joung-Mourad-Noui ’08...

Formulation of GFTs in terms of fields on Lie algebras A.B, D.Oriti:

1. The dual variables xj have a very natural geometric interpretation as
discrete B fields

2. Dual fields inherit by duality a non-commutative algebra structure

3. Feynman amplitudes are simplicial path integrals

I Dual description of LQG kin. Hilbert space in terms of cylindrical
functions on Lie algebras A.B, B. Dittrich, D. Oriti J. Tambornino

Dual variables xj interpreted as elementary flux variables
(see Johannes’ talk)
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Group field theory in a nutshell

• GFT’s are combinatorially non-local field theories on group manifolds
φ(g1, · · · gD)

• Higher D. generalization of matrix models, so successful for 2d gravity

• Feynman diagrams are D-stranded graphs dual to simplicial
complexes, Feynman amplitudes are spin foam models

I GFT for 3D gravity Boulatov ’92
I Generalized to 4D lattice BF theories Ooguri ’92.
I GFT for the Barrett-Crane spin foam model: De Pietri, Freidel, Krasnov,

Rovelli ’00.
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Group field theory in a nutshell

• Universal structure behind spin foam framework:

Any local spin foam model can be viewed as Feynman graph of a GFT
Rovelli and Reisenberger ’00

• For the spin foam perspective, GFTs tackle issue of triangulation
dependence

• But they do much more:
I Provides a framework to compute quantum gravity amplitudes

including the sum over all topologies.
I This is a field theory: lots of tools at our disposal!

Symmetry, renormalization...
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Group field theory in a nutshell
Building up space-time

GFT for 3d Riemannian gravity: D = 3, G = SO(3).

• Field ϕ123 :=ϕ(g1, g2, g3), with invariance ϕ(hgi) = ϕ(gi) ∀h ∈ G.

• Dynamics governed by the action: :

S =
1
2

∫
[dg]3 ϕ123ϕ123 −

λ

4!

∫
[dg]6 ϕ123ϕ345ϕ526ϕ641
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Group field theory in a nutshell
Building up space-time

Feynman diagrams as 2-complexes dual to simplicial complexes
(triangulated spaces)
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Group field theory in a nutshell
GFT and lattice gauge theory

• bulk variables htτ : holonomy from the triangle t to the tetrahedron τ

• boundary variables get: holonomy from the edge e to the triangle t.

GFT Propagator and vertex:∫
dht

∏
e⊂t

δ(gethtg̃-1
et ),

∫ ∏
t

dhtτ
∏
〈et〉

δ(gethtt′g-1
et′)
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Group field theory in a nutshell
GFT and lattice gauge theory

• Feynman amplitude: integral over discrete flat connections

I(Γ) =
∫ ∏

t

dht
∏
e

δ(
∏
t⊃e

ht)
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Group field theory in a nutshell
From GFT to spin foam models

• Spin representation of GFT using harmonic analysis on the gauge
group

ϕ123 =
∑

j1,j2,j3

φj1,j2,j3m1,m2,m3
Dj1
m1n1

(g1)Dj2
m2n2

(g2)Dj3
m3n3

(g3)Cj1,j2,j3n1,n2,n3

• Field pictured as a 3-valent spin network vertex, interpreted as a
quantized triangle.

• Vertex term written in terms of SO(3) 6j symbols

• Feynman amplitudes

I(Γ) =
∑
{jt}

∏
t

(2jt+1)
∏
τ

{
j1 j2 j3
j4 j5 j6

}

• Boundary observables described in terms of spin networks
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Group field theory in a nutshell
From GFT to simplicial path integrals?

• Lattice gauge theory picture:

I(Γ) =
∫ ∏

t

dht
∏
e

δ(
∏
t⊃e

ht)

• Spin foam picture:

I(Γ) =
∑
{jt}

∏
t

(2jt+1)
∏
τ

{
j1 j2 j3
j4 j5 j6

}

• Simplicial path integral picture :

I(Γ) =
∫ ∏

t

dht
∏
e

dXe

∏
e

eiTrXeHe(h), H(e) = δ(
∏
t⊃e

ht)

Simplicial representation of GFT?
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

• Define plane waves eg(x) = ei~pg ·~x as functions on g ∼ Rn

~pg coordinates on the group manifold

• Define Fourier transform f̂(x) =
∫

dgf(g) eg(x)

• Algebra structure on Im̂ : eg1 ? eg2 = eg1g2
inherited from the convolution product on the group
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

• Define Fourier transform f̂(x) =
∫

dgf(g) eg(x)

• For G = SU(2), we choose ~pg = Tr|g|~τ , |g| :=sign(Trg)g

eg(x) = eiTrx|g| x=~x · ~τ

• Fourier transform invertible on functions f(g)=f(-g) of
SO(3)∼SU(2)/Z2:

f(g) =
∫

d3x (f̂ ? eg-1)(x)

• With more work full Fourier transform on SU(2)
[Freidel Majid 05; Joung, Mourad, Noui 08]

A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

• Define Fourier transform f̂(x) =
∫

dgf(g) eg(x)

• For G = SU(2), we choose ~pg = Tr|g|~τ , |g| :=sign(Trg)g

eg(x) = eiTrx|g| x=~x · ~τ

• Fourier transform invertible on functions f(g)=f(-g) of
SO(3)∼SU(2)/Z2:

f(g) =
∫

d3x (f̂ ? eg-1)(x)

• With more work full Fourier transform on SU(2)
[Freidel Majid 05; Joung, Mourad, Noui 08]

A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

• Define Fourier transform f̂(x) =
∫

dgf(g) eg(x)

• For G = SU(2), we choose ~pg = Tr|g|~τ , |g| :=sign(Trg)g

eg(x) = eiTrx|g| x=~x · ~τ

• Fourier transform invertible on functions f(g)=f(-g) of
SO(3)∼SU(2)/Z2:

f(g) =
∫

d3x (f̂ ? eg-1)(x)

• With more work full Fourier transform on SU(2)
[Freidel Majid 05; Joung, Mourad, Noui 08]

A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

• Define Fourier transform f̂(x) =
∫

dgf(g) eg(x)

• For G = SU(2), we choose ~pg = Tr|g|~τ , |g| :=sign(Trg)g

eg(x) = eiTrx|g| x=~x · ~τ

• Fourier transform invertible on functions f(g)=f(-g) of
SO(3)∼SU(2)/Z2:

f(g) =
∫

d3x (f̂ ? eg-1)(x)

• With more work full Fourier transform on SU(2)
[Freidel Majid 05; Joung, Mourad, Noui 08]

A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

f̂(x) =
∫

dgf(g) eg(x)

What functions of R3 does the Fourier transform hit?

• Functions with bounded (usual) Fourier modes |~pg| ≤ 1 ~pg = Trg~τ
?-product ↔ deformed addition of momenta preserving the bound.

• R3 seen with a finite resolution: Functions that can be sampled by
discrete values f jmn without loss of information:

f̂(x) =
∑
j,m,n

f jmnD̂
j
mn(x)
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

• Fourier transform of the Boulatov field ϕ123:

ϕ̂123 := ϕ̂(x1, x2, x3) =
∫

[dg]3 ϕ123 eg1(x1)eg2(x2)eg3(x3)

• Gauge invariance dual to a closure constraint:

P̂ϕ = Ĉ ? ϕ̂, Ĉ(x1, x2, x3) = δ0(x1+x2+x3)

where δ0(x):=
∫

dgeg(x) plays the role of a Dirac distribution:∫
d3x (δ0 ? f)(x) = f(0)

I Dual field as a (non-commutative) triangle
I Field variables as metric variables associated to the edges.
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

Action

S =
1
2

∫
[dx]3 ϕ̂123 ? ϕ̂321 −

λ

4!

∫
[dx]6 ϕ̂123 ? ϕ̂345 ? ϕ̂526 ? ϕ̂641
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

t

x1x2x3

y3y2y1

τx1
x2
x3

y3x4x5

y5

y2

x6

y6y4y1

ta

tb

tc

td

∫
dht

3∏
i=1

(δ-xi ? eht)(yi),
∫ ∏

t

dhtτ
6∏
i=1

(δ-xi ? ehtt′ )(yi)

• ht: parallel transport through the triangle t.

• htτ : parallel transport from the tetrahedron τ to triangle t.

• htt′ := htτhτt′
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Simplicial representation of 3d GFT
Feynman amplitudes

• Join strands using the ?-product, keeping track of ordering.

• Each loop of strands bound a face of the 2-complex, dual to an edge
of the triangulation.

• Under integration over holonomies h, product of face amplitudes
Af [h].
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Simplicial representation of 3d GFT
Feynman amplitudes

• Let {τj}0≤N ordered sequence of tetrahedra around the edge.

Af [h] is the cyclic ?-product:

Af [h] =
∫ N∏

j=0

dxj ~FN+1
j=0 (δxj ? ehjj+1

)(xj+1)

• identifies edge metrics xj seen from the different tetrahedra j up to
holonomies

• After integration over xj , j 6= 0:

I(Γ) =
∫ ∏

t

dht
∏
e

dxe ei
P

e TrxeHe

I xe metric associated to e in the frame of a reference tetrahedron
around e

I He holonomy of e starting from the reference frame.
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Simplicial representation of 3d GFT
Feynman amplitudes

• Boundary observables inserted using ?-product

• One-vertex contribution to the 4-point function:

x1
x2
x3

y3x4x5

y5

y2

x6

y6y4y1

∫ ∏
t

dhtτ
6∏
i=1

(δ-xi ? ehtt′ )(yi)
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Simplicial representation of 3d GFT
Feynman amplitudes

• Boundary observables inserted using ?-product

• Boundary dual spin-network: 〈⊗tCji | ⊗6
i=1 (D̂ji ? δxi(x

′
i)〉

I encodes combinatorics of the tetrahedron and peaks on |x| = 2j + 1
for the triangle lengths.

I Intertwiner Cji implement closure of each triangle.
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Towards 4d gravity models
Going up dimensions: Ooguri model

• Fourier transform extend to fields on SO(4) ∼ SU(2)× SU(2)/Z2

I invertible for even field g → −g

• Ooguri model for BF theory:

S =
1
2

∫
ϕ2

1234 −
λ

5!

∫
ϕ1234 ϕ4567 ϕ7389 ϕ962 10 ϕ10 851.

• Dual field ϕ̂12334 := ϕ̂(x1, x2, x3, x4) on 4 copies of
so(4) ' su(2)× su(2).

• Similar results as in 3d.
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Towards 4d gravity models
Imposing simplicity: non-commutative tetrahedron

• Sgrav[e,A] =
∫

trB ∧ F (A), B = ?e ∧ e
• Dual field ϕ̂(xj), xj ∈ so(4)↔ discrete B field

• To define a metric tetrahedron:

1. Closure constraint: imposed by gauge invariance
2. Simplicity constraint: define Ŝk ? ϕ̂, with

Ŝk(x-
j , x

+
j ) =

4∏
j=1

δ-kx-
jk

-1(x+
j ), k ∈ S3 ∼ SU(2)

• Ŝk dual to:

Skϕ(gj) =
4∏
j=1

∫
SO(3)

duj ϕ(k-1ujkg
-
j , ujg

+

j )

Projector onto fields on SO(4)/SO(3)k. k = 1: Barrett-Crane
projector
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• Ŝk dual to:

Skϕ(gj) =
4∏
j=1

∫
SO(3)

duj ϕ(k-1ujkg
-
j , ujg

+

j )

Projector onto fields on SO(4)/SO(3)k. k = 1: Barrett-Crane
projector

A. Baratin — GFT with metric variables Towards 4d gravity models 28/34



Towards 4d gravity models
Imposing simplicity: non-commutative tetrahedron

• Sgrav[e,A] =
∫

trB ∧ F (A), B = ?e ∧ e
• Dual field ϕ̂(xj), xj ∈ so(4)↔ discrete B field

• To define a metric tetrahedron:

1. Closure constraint: imposed by gauge invariance

2. Simplicity constraint: define Ŝk ? ϕ̂, with
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Towards 4d gravity models
Imposing simplicity: the Barrett-Crane model

• Combining the simplicity projector Ŝ := Ŝ1 with closure: Ŝ ? Ĉ ? ϕ̂
standard Barrett-Crane projected field.

• Ambiguity in the definition of the model since Ŝ and Ĉ do not
commute: For h ∈ SO(4), we have:

(eh ? Ŝk)(x) = (ŜhBk ? eh)(x)

• Simplicial path integral formulation of the BC model (for e.g version
Bonzom, Livine ’08):

I insertion of a non-commutative observable in BF theory:

ZBC =
∫ ∏

τσ

dhτσ
∫ ∏

t

d6xt (Of ? eHt)(xt)

Of = FN
j=0 δ-h--1

0j •-h-
0j

(h+-1
0j •

+ h+
0j)

imposes simplicity of bivectors xt in each of the frames associated to
the simplices j around t.
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Towards 4d gravity models
Beyond Barrett-Crane

• Topological sector: we get simpicity j- = j+ but not EPR intertwiner
(except large j limit)

• We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

• the right identification for the bivectors

• decoupling of the normals; problem traced back to:

• Simplicity not covariantly imposed
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Towards 4d gravity models
Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance:

promote normals k to field variables: ϕ(gi; k) and define:

• Gauge invariant projector Pϕ(gi; k)=
∫
SO(4) dhϕ(hgi;hB k)

• Simplicity projector Sϕ(gi; k) =
∫
SO(3) duiϕ(k-1uikg

-
i , uig

+

i ; k)

Then PS = SP is a projector. One may thus:

I unambiguously define a constrained GFT model, with simplicity
constraints imposed covariantly.

I geometry nicely implemented
I boundary states are projected spin-networks
I path integral representation available
I Study of the model in progress...
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Conclusion
Summary

• New representation of GFT as non-local and non-commutative fields
on Lie algebras:

I Field variables corresponds to B variables in simplicial BF theory
I Feynman amplitudes as simplicial path integrals

Explicit GFT duality spin foams/ simplicial path integrals

• Path integral representation of the BC model as a non-commutative
B observable in BF

• New proposal for GFT model: study under way.
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Conclusion
Perspective

• Offers new perspectives on GFT:

I Analysis of space-symmetries at the GFT level
Girelli-Livine ’10; AB, F.Girelli, D.Oriti in progress

I semi-classical regime as commutative limit: relation to abelianized GFT
where complete power counting theorems are proven in Ben Geloun,

Krajewski, Mgnen, Rivasseau ’10
I deepen links between GFT formalism and non-commutative geometry
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