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Why metric variables for GFT's?

1. Exact duality spin foam models/simplicial gravity path integrals
Tracking simplicial data is critical

> to impose simplicity constraints in a geometrically consistent way
» to understand relation with simplicial geometry, tackle issue of
semi-classical limit

Can one exhibit such a duality at the level of group field theory?

> Similar question in LQG: Relation LQG/simplicial geometry
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Introduction
Why metric variables for GFT's?

1. Exact duality spin foam models/simplicial gravity path integrals

2. Indications of a role played by non-commutative geometry in spin
foams and GFTs:

e Emergence of effective non-commutative space-time in 3d gravity

e Matter dynamics as a phase of GFT: effective theories with deformed
Poincaré symmetry

Suggests non commutative geometry lie hidden in GFT formalism

» Similar hint in LQG: metric data encoded in electric flux variables
which do not commute.
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Introduction
Overview

Idea: view group formulation of GFT as ‘momentum’ representation dual
to a ‘metric’ representation
Tool: group Fourier transform F(G™) — F(g")

Formulation of GFTs in terms of fields on Lie algebras
1. The dual variables x; have a very natural geometric interpretation as
discrete B fields
2. Dual fields inherit by duality a non-commutative algebra structure

3. Feynman amplitudes are simplicial path integrals

» Dual description of LQG kin. Hilbert space in terms of cylindrical
functions on Lie algebras
Dual variables x; interpreted as elementary flux variables
(see Johannes' talk)

A. Baratin — GFT with metric variables Introduction 4/34



Outline

Introduction

Group field theory in a nutshell

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

A. Baratin — GFT with metric variables Introduction 5/34



Outline

Group field theory in a nutshell

A. Baratin — GFT with metric variables Group field theory in a nutshell 6/34



A. Baratin — GFT with metric variables Group field theory in a nutshell 7/34



Inatoria Yy non- theories on group maniroldas
#(g1,---9p)
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Group field theory in a nutshell

e GFT's are combinatorially non-local field theories on group manifolds
¢(91," -+ 9D)
o Higher D. generalization of matrix models, so successful for 2d gravity
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Group field theory in a nutshell

e GFT's are combinatorially non-local field theories on group manifolds
¢(91,- - 9p)
e Higher D. generalization of matrix models, so successful for 2d gravity

e Feynman diagrams are D-stranded graphs dual to simplicial
complexes, Feynman amplitudes are spin foam models

» GFT for 3D gravity
» Generalized to 4D lattice BF theories
» GFT for the Barrett-Crane spin foam model:
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Group field theory in a nutshell

e Universal structure behind spin foam framework:

Any local spin foam model can be viewed as Feynman graph of a GFT
Rovelli and Reisenberger '00
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Group field theory in a nutshell

e Universal structure behind spin foam framework:

Any local spin foam model can be viewed as Feynman graph of a GFT

o For the spin foam perspective, GFTs tackle issue of triangulation
dependence
e But they do much more:
» Provides a framework to compute quantum gravity amplitudes
including the sum over all topologies.
» This is a field theory: lots of tools at our disposal!
Symmetry, renormalization...
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Group field theory in a nutshell
Building up space-time

GFT for 3d Riemannian gravity: D = 3, G = SO(3).
o Field v123:=¢(91, g2, g3), with invariance ¢(hg;) = ¢(gi) Vh € G.
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Group field theory in a nutshell
Building up space-time

GFT for 3d Riemannian gravity: D = 3, G = SO(3).

o Field v123:=¢(91, g2, g3), with invariance ¢(hg;) = ¢(gi) Vh € G.
e Dynamics governed by the action: :

1 . A -
S =5 /[dg]‘j P1a3P123 — [dg]® 1230315 P5260641

__
e
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Group field theory in a nutshell
Building up space-time

L

Feynman diagrams as 2-complexes dual to simplicial complexes
(triangulated spaces)
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Group field theory in a nutshell
GFT and lattice gauge theory

e bulk variables h;.: holonomy from the triangle ¢ to the tetrahedron 7
e boundary variables g.;: holonomy from the edge e to the triangle ¢.

GFT Propagator and vertex:

/ dhy H 6(getht§_et1)’ / H dhir H 6(gethtt’g;%’)
¢ (et)

eCt
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Group field theory in a nutshell
GFT and lattice gauge theory

e Feynman amplitude: integral over discrete flat connections

1v) = [ TLan T[T v

e tDe
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Group field theory in a nutshell
From GFT to spin foam models

o Spin representation of GFT using harmonic analysis on the gauge

group

_ E J1,J2,J3 J1 J2 J3 71,5273
Y123 = ml,mg,mp,Dmlnl (gl)Dm2n2 (gZ)Dm3n3 (93)Cn1,n2,n3
J1,J2,J3
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group
_ J1,J2,J3 J1 J2 J3 J1,J2,J3
¢123 — Z ml,mg,ngmlnl (gl)‘DmQTLQ (gz)Dmgn;; (93)Cn1,n2,n3
J1,92,33

e Field pictured as a 3-valent spin network vertex, interpreted as a
quantized triangle.
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Group field theory in a nutshell
From GFT to spin foam models

o Spin representation of GFT using harmonic analysis on the gauge
group

_ E J1,J2,73 J1 J2 J3 71,5273
¢123 — ml,mg,ngmlnl (gl)‘DmQTLQ (gZ)Dm3n3 (93)Cn1,n2,n3
J1,J2,33
e Field pictured as a 3-valent spin network vertex, interpreted as a
quantized triangle.

o Vertex term written in terms of SO(3) 6 symbols
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Group field theory in a nutshell
From GFT to spin foam models

o Spin representation of GFT using harmonic analysis on the gauge
group
pro3= Y GBI DI (91)DR, 0, (92) DR (93)Cobizs
J1,J2,33
Field pictured as a 3-valent spin network vertex, interpreted as a

quantized triangle.
Vertex term written in terms of SO(3) 6 symbols

Feynman amplitudes

=Rl TS 5 5 )

{iey ¢
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Group field theory in a nutshell
From GFT to spin foam models

o Spin representation of GFT using harmonic analysis on the gauge
group
pro3= Y GBI DI (91)DR, 0, (92) DR (93)Cobizs
J1,J2,33
Field pictured as a 3-valent spin network vertex, interpreted as a

quantized triangle.
Vertex term written in terms of SO(3) 6 symbols

Feynman amplitudes

- Tewn {3 5 % )

{oe} 1 T

Boundary observables described in terms of spin networks
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Group field theory in a nutshell
From GFT to simplicial path integrals?

o Lattice gauge theory picture:
/ H dh [T o(] ] o)
e tDe
e Spin foam picture:

1) = [T@i+ T { B

{oe} ¢ T

J3
J6

|
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Group field theory in a nutshell
From GFT to simplicial path integrals?

Lattice gauge theory picture:

/ Hdhtné [JED)
e tDe
Spin foam picture:
I(T) = 2j:+1) {?1 72
% 1:[ ! 1:[ Ja s

Simplicial path integral picture :

— [ TLam [T ax. [T,
t e e

J3
J6

|

e) =6(] ] he)
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Group field theory in a nutshell
From GFT to simplicial path integrals?

o Lattice gauge theory picture:

/Hdhtﬂé [JED)

e tDe

e Spin foam picture:

1) = [T@i+ T { B

{oe} ¢ T

o Simplicial path integral picture :
- / [T ahe [ dxX. T e™Xete®),
t e e

Simplicial representation of GFT?

J3
J6

|

e) =6(] ] he)
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Simplicial representation of 3d GFT
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

o Define plane waves ey(z) = €Ps'¥  as functions on g ~ R"
Py coordinates on the group manifold
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

o Define plane waves ey(z) = €Ps'¥  as functions on g ~ R"
Py coordinates on the group manifold
e Define Fourier transform f(a:) = [dgf(g)ey(z)

o Algebra structure on Im™: ey, xeg, = €44,
inherited from the convolution product on the group

A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 16/34



A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

o Define Fourier transform  f(z) = [dgf(g)eq(z)
o For G = SU(2), we choose ﬁg = Tr|g|T, |g|:=sign(Trg)g

eq(z) = eTrld| r=x-T
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o Define Fourier transform  f(z) = [dgf(g)eq(z)
o For G = SU(2), we choose ﬁg = Tr|g|T, |g|:=sign(Trg)g

eq(z) = eTrld| r=x-T

o Fourier transform invertible on functions f(g)=f(-g) of
SO(3) ~SU(2)/Zo:
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A. Baratin — GFT with metric variables Simplicial representation of 3d GFT 17/34



Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

o Define Fourier transform  f(z) = [dgf(g)eq(z)
o For G = SU(2), we choose ﬁg = Tr|g|T, |g|:=sign(Trg)g
6iTrac|g|

eq(z) = r=x-T

o Fourier transform invertible on functions f(g)=f(-g) of
SO(3) ~SU(2)/Zo:

f(g) = / Bz (Fxeg1) ()

e With more work full Fourier transform on SU(2)
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

flz) = / dgf(g) ey (2)

What functions of R3 does the Fourier transform hit?
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Simplicial representation of 3d GFT
Going to metric variables: Fourier transform

Flo) = [ daf(g)esfa)
What functions of R3 does the Fourier transform hit?

e Functions with bounded (usual) Fourier modes |py| <1 py = Trg7
*-product < deformed addition of momenta preserving the bound.
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Simplicial representation of 3d GFT

Going to metric variables: Fourier transform

Flo) = [ daf(g)esfa)
What functions of R3 does the Fourier transform hit?

e Functions with bounded (usual) Fourier modes |py| <1 py = Trg7
*-product < deformed addition of momenta preserving the bound.

o R? seen with a finite resolution: Functions that can be sampled by
discrete values fi, without loss of information:

Zmnmn)

7,m,n
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

e Fourier transform of the Boulatov field p123:

D123 = @(21,%2,73) = /[dg]3 P123 €9 (T1)eg, (T2)egs (23)
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

e Fourier transform of the Boulatov field p123:

D123 = @(21,%2,73) = /[d9]3 P123 €9 (T1)eg, (T2)egs (23)

o Gauge invariance dual to a closure constraint:

Po=Cxp, C(x1,3,23) = do(x1+22+73)

where &o(z):= dge,y(x) plays the role of a Dirac distribution:

/ a3z (60 % [)(z) = £(0)
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

e Fourier transform of the Boulatov field p123:

D123 = @(21,%2,73) = /[dQ]S P123 €9 (T1)eg, (T2)egs (23)

o Gauge invariance dual to a closure constraint:

~

Po=Cxp, C(x1,3,23) = do(x1+22+73)

where &o(z):= dge,y(x) plays the role of a Dirac distribution:
[ 2 @x 1)) = 7(0)

» Dual field as a (non-commutative) triangle
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

e Fourier transform of the Boulatov field p123:

D123 = @(21,%2,73) = /[dQ]S P123 €9 (T1)eg, (T2)egs (23)

o Gauge invariance dual to a closure constraint:

Po=Cxp, C(x1,3,23) = do(x1+22+73)

where &o(z):= dge,y(x) plays the role of a Dirac distribution:
[ 2 @x 1)) = 7(0)

» Dual field as a (non-commutative) triangle
> Field variables as metric variables associated to the edges.
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

Action

1 R - A . . - ~
S = 5 /[dl‘]g Pro3 * P321 — — [ [d]° G123 * Paas * P26 * Poar

L
A
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Simplicial representation of 3d GFT
Dual field, action, Feynman rules

tq
Y1y2y3 Y1Y4Ye6
T Z6
’ t ‘ to @2 ———— T ot
3 Y5
T122T3 Y3r4Ts

ty

/dht H 6—90 * eht yz /HdhtT H 5—:01' * ehtt/)(yi)
=1 i=1
o hy: parallel transport through the triangle ¢.

o hy-: parallel transport from the tetrahedron 7 to triangle .
o hy = hyrhry
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Simplicial representation of 3d GFT
Feynman amplitudes
e Join strands using the x-product, keeping track of ordering.

e Each loop of strands bound a face of the 2-complex, dual to an edge
of the triangulation.

o Under integration over holonomies h, product of face amplitudes
A¢[h].
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Simplicial representation of 3d GFT
Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.
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Simplicial representation of 3d GFT
Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.

A¢[h] is the cyclic x-product:
N

Aglh] = / [T des R4 (6, eny ) (@511)

J=0
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Simplicial representation of 3d GFT
Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.

A¢[h] is the cyclic x-product:
/H de*NH (0z; * nj;0)(Tj41)

o identifies edge metrics x; seen from the different tetrahedra j up to
holonomies
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Simplicial representation of 3d GFT
Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.

A¢[h] is the cyclic x-product:
/H de*NH (0z; * nj;0)(Tj41)

o identifies edge metrics x; seen from the different tetrahedra j up to
holonomies
o After integration over xj, j # 0:

= /Hdht I dae e 22 Trete
t e
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Simplicial representation of 3d GFT

Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.

A¢[h] is the cyclic x-product:
/H de*NH (0z; * nj;0)(Tj41)

o identifies edge metrics x; seen from the different tetrahedra j up to
holonomies
o After integration over xj, j # 0:

= /Hdhtdee et L TrzeHe
t e

» 2. metric associated to e in the frame of a reference tetrahedron
around e
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Simplicial representation of 3d GFT

Feynman amplitudes

o Let {7;}o<n ordered sequence of tetrahedra around the edge.

A¢[h] is the cyclic x-product:
/H de*NH (0z; * nj;0)(Tj41)

o identifies edge metrics x; seen from the different tetrahedra j up to
holonomies
o After integration over xj, j # 0:

= /Hdhtdee et L TrzeHe
t e

» 2. metric associated to e in the frame of a reference tetrahedron

around e
» H,. holonomy of e starting from the reference frame.
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Simplicial representation of 3d GFT
Feynman amplitudes

o Boundary observables inserted using x-product

o One-vertex contribution to the 4-point function:

Y1Y4Ye

1 z6

2 Y2

x3 Ys
Y3T4Tp5
6

[ T dbir T[6n )02
t =1
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Simplicial representation of 3d GFT
Feynman amplitudes

e Boundary observables inserted using *-product

e Boundary dual spin-network: (®:C%| ®%_, (D% * b, («}))
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Simplicial representation of 3d GFT
Feynman amplitudes

o Boundary observables inserted using x-product

e Boundary dual spin-network: (®:C%| ®%_, (D% * b, («}))

> encodes combinatorics of the tetrahedron and peaks on |z| = 2j + 1
for the triangle lengths.
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Simplicial representation of 3d GFT
Feynman amplitudes

o Boundary observables inserted using x-product

e Boundary dual spin-network: (®:C%| ®%_, (D% * b, («}))

> encodes combinatorics of the tetrahedron and peaks on |z| = 2j + 1
for the triangle lengths.
> Intertwiner CY* implement closure of each triangle.
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Outline

Towards 4d gravity models
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Towards 4d gravity models
Going up dimensions: Ooguri model

o Fourier transform extend to fields on SO(4) ~ SU(2) x SU(2)/Zs
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Towards 4d gravity models
Going up dimensions: Ooguri model

o Fourier transform extend to fields on SO(4) ~ SU(2) x SU(2)/Zs
> invertible for even field g — —g

o Ooguri model for BF theory:

S = 5 ¥1234 — g 1234 L4567 L7389 P962 10 $10 851 -
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Towards 4d gravity models
Going up dimensions: Ooguri model

o Fourier transform extend to fields on SO(4) ~ SU(2) x SU(2)/Zs
> invertible for even field g — —g

o Ooguri model for BF theory:

S = 5 ¥1234 — 5 1234 L4567 L7389 P962 10 $10 851 -

e Dual field @1233 go(xl,xg,:z:g,m) on 4 copies of
s0(4) ~ su(2) x su(2).
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Towards 4d gravity models
Going up dimensions: Ooguri model

o Fourier transform extend to fields on SO(4) ~ SU(2) x SU(2)/Zs
> invertible for even field g — —g

o Ooguri model for BF theory:

S = 5 ¥1234 — 5 1234 L4567 L7389 P962 10 $10 851 -

e Dual field @12334 = {5(.%’1, .%'2,.1’3,.1‘4) on 4 copies of
s0(4) ~ su(2) x su(2).

e Similar results as in 3d.
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Towards 4d gravity models
Imposing simplicity: non-commutative tetrahedron
° Sgrav[e,A]:ftI’B/\F(A), B=xeAe
o Dual field §(z;), z; € s0(4) < discrete B field
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Towards 4d gravity models

Imposing simplicity: non-commutative tetrahedron
° Sgrav[e,A]:ftl’B/\F(A), B=%eAe
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Towards 4d gravity models

Imposing simplicity: non-commutative tetrahedron
Sgrav[e,A]:ftrB/\F(A), B=xeAe
Dual field @(z;), x; € so(4) < discrete B field
To define a metric tetrahedron:

1. Closure constraint: imposed by gauge invariance
2. Simplicity constraint: define Sy x @, with
4
Sk(xj,x5) = 1] 9. ke kel (), ke S®~SU(2)
g=1

§k dual to:

4

Ske(g;) H/O(3)dug p(kujkg;, ujg})

Projector onto fields on SO(4)/SO(3). k = 1: Barrett-Crane
projector
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Towards 4d gravity models
Imposing simplicity: the Barrett-Crane model

~
~

o Combining the simplicity projector S = §1 with closure: S % C * %
standard Barrett-Crane projected field.
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Towards 4d gravity models
Imposing simplicity: the Barrett-Crane model

o Combining the simplicity projector S = §1 with closure: S xC % 7]
standard Barrett-Crane projected field.

o Ambiguity in the definition of the model since S and C do not
commute: For h € SO(4), we have:

(e * Si) (@) = (Shok * 1) (2)

o Simplicial path integral formulation of the BC model (for e.g version

» insertion of a non-commutative observable in BF theory:

ZBC =] /HthU/Hd(Smt (Of*th)(J?t)
TO t

Oy = *;V:O g hyte hy, (h0+3_'1 o héj)

imposes simplicity of bivectors x; in each of the frames associated to
the simplices j around t.
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Towards 4d gravity models
Beyond Barrett-Crane

o Topological sector: we get simpicity j~ = j* but not EPR intertwiner
(except large j limit)
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Towards 4d gravity models
Beyond Barrett-Crane

o Topological sector: we get simpicity j~ = j* but not EPR intertwiner
(except large j limit)

e We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

e the right identification for the bivectors
e decoupling of the normals; problem traced back to:

o Simplicity not covariantly imposed
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Towards 4d gravity models
Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance:
promote normals k to field variables: ¢(g;; k) and define:
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Towards 4d gravity models
Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance:
promote normals k to field variables: ¢(g;; k) and define:

e Gauge invariant projector Pcp gis k fso dhp(hgi; h > k)
e Simplicity projector S¢(g;; k fso duzgo (kMuskg;, wig; k)

Then PS = SP is a projector. One may thus:

» unambiguously define a constrained GFT model, with simplicity
constraints imposed covariantly.

geometry nicely implemented

boundary states are projected spin-networks

path integral representation available

Study of the model in progress...
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Conclusion

Summary

New representation of GFT as non-local and non-commutative fields
on Lie algebras:

> Field variables corresponds to B variables in simplicial BF theory

» Feynman amplitudes as simplicial path integrals

Explicit GFT duality spin foams/ simplicial path integrals
Path integral representation of the BC model as a non-commutative
B observable in BF
New proposal for GFT model: study under way.
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Conclusion
Perspective

Offers new perspectives on GFT:
» Analysis of space-symmetries at the GFT level

> semi-classical regime as commutative limit: relation to abelianized GFT
where complete power counting theorems are proven in

> deepen links between GFT formalism and non-commutative geometry
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