Group field theory with non-commutative metric variables

Aristide Baratin joint work with D. Oriti

Max Planck Institute for Gravitational Physics (Albert-Einstein-Institute)

Zakopane 2010

arXiv:1002.4723

1. Exact duality spin foam models/simplicial gravity path integrals

1. Exact duality spin foam models/simplicial gravity path integrals

Tracking simplicial data is critical

- to impose simplicity constraints in a geometrically consistent way
- to understand relation with simplicial geometry, tackle issue of semi-classical limit

1. Exact duality spin foam models/simplicial gravity path integrals

Tracking simplicial data is critical

- to impose simplicity constraints in a geometrically consistent way
- to understand relation with simplicial geometry, tackle issue of semi-classical limit

Can one exhibit such a duality at the level of group field theory?

1. Exact duality spin foam models/simplicial gravity path integrals

Tracking simplicial data is critical

- to impose simplicity constraints in a geometrically consistent way
- to understand relation with simplicial geometry, tackle issue of semi-classical limit

Can one exhibit such a duality at the level of group field theory?

 Similar question in LQG: Relation LQG/simplicial geometry Dittrich-Ryan, Dittrich-Speziale.

- 1. Exact duality spin foam models/simplicial gravity path integrals
- 2. Indications of a role played by non-commutative geometry in spin foams and GFTs:

- 1. Exact duality spin foam models/simplicial gravity path integrals
- 2. Indications of a role played by non-commutative geometry in spin foams and GFTs:
 - Emergence of effective non-commutative space-time in 3d gravity
 Freidel, Livine '05.
 - Matter dynamics as a phase of GFT: effective theories with deformed Poincaré symmetry Fairbairn, Girelli, Livine, Oriti.

Introduction

Why metric variables for GFT's?

- 1. Exact duality spin foam models/simplicial gravity path integrals
- 2. Indications of a role played by non-commutative geometry in spin foams and GFTs:
 - Emergence of effective non-commutative space-time in 3d gravity
 Freidel, Livine '05.
 - Matter dynamics as a phase of GFT: effective theories with deformed Poincaré symmetry Fairbairn, Girelli, Livine, Oriti.

Suggests non commutative geometry lie hidden in GFT formalism

Introduction

Why metric variables for GFT's?

- 1. Exact duality spin foam models/simplicial gravity path integrals
- 2. Indications of a role played by non-commutative geometry in spin foams and GFTs:
 - Emergence of effective non-commutative space-time in 3d gravity
 Freidel, Livine '05.
 - Matter dynamics as a phase of GFT: effective theories with deformed Poincaré symmetry Fairbairn, Girelli, Livine, Oriti.

Suggests non commutative geometry lie hidden in GFT formalism

 Similar hint in LQG: metric data encoded in electric flux variables which do not commute.

Idea: view group formulation of GFT as 'momentum' representation dual to a 'metric' representation

Idea: view group formulation of GFT as 'momentum' representation dual

to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) \to \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05,

Majid-Freidel '06, Joung-Mourad-Noui '08...

Idea: view group formulation of GFT as 'momentum' representation dual

to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) \to \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05,

Majid-Freidel '06, Joung-Mourad-Noui '08...

Idea: view group formulation of GFT as 'momentum' representation dual to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) \to \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05,

Majid-Freidel '06, Joung-Mourad-Noui '08...

Formulation of GFTs in terms of fields on Lie algebras A.B, D.Oriti:

1. The dual variables x_j have a very natural geometric interpretation as discrete B fields

Idea: view group formulation of GFT as 'momentum' representation dual to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) o \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05,

Majid-Freidel '06, Joung-Mourad-Noui '08...

- 1. The dual variables x_j have a very natural geometric interpretation as discrete B fields
- 2. Dual fields inherit by duality a non-commutative algebra structure

Idea: view group formulation of GFT as 'momentum' representation dual to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) \to \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05,

Majid-Freidel '06, Joung-Mourad-Noui '08...

- 1. The dual variables x_j have a very natural geometric interpretation as discrete B fields
- 2. Dual fields inherit by duality a non-commutative algebra structure
- 3. Feynman amplitudes are simplicial path integrals

Idea: view group formulation of GFT as 'momentum' representation dual to a 'metric' representation

Tool: group Fourier transform $\mathcal{F}(G^n) \to \mathcal{F}(\mathfrak{g}^n)$ Freidel-Livine '05, Majid-Freidel '06, Joung-Mourad-Noui '08...

- 1. The dual variables x_j have a very natural geometric interpretation as discrete B fields
- 2. Dual fields inherit by duality a non-commutative algebra structure
- 3. Feynman amplitudes are simplicial path integrals
 - ▶ Dual description of LQG kin. Hilbert space in terms of cylindrical functions on Lie algebras A.B, B. Dittrich, D. Oriti J. Tambornino Dual variables x_j interpreted as elementary flux variables (see Johannes' talk)

Outline

Introduction

Group field theory in a nutshell

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

Outline

Introduction

Group field theory in a nutshell

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

• GFT's are combinatorially non-local field theories on group manifolds $\phi(g_1, \dots g_D)$

- GFT's are combinatorially non-local field theories on group manifolds $\phi(g_1, \cdots g_D)$
- Higher D. generalization of matrix models, so successful for 2d gravity

- GFT's are combinatorially non-local field theories on group manifolds $\phi(g_1,\cdots g_D)$
- Higher D. generalization of matrix models, so successful for 2d gravity
- Feynman diagrams are D-stranded graphs dual to simplicial complexes, Feynman amplitudes are spin foam models

- GFT's are combinatorially non-local field theories on group manifolds $\phi(g_1,\cdots g_D)$
- Higher D. generalization of matrix models, so successful for 2d gravity
- Feynman diagrams are D-stranded graphs dual to simplicial complexes, Feynman amplitudes are spin foam models
 - ▶ GFT for 3D gravity Boulatov '92
 - Generalized to 4D lattice BF theories Ooguri '92.
 - GFT for the Barrett-Crane spin foam model: De Pietri, Freidel, Krasnov, Rovelli '00.

Universal structure behind spin foam framework:

Any local spin foam model can be viewed as Feynman graph of a $\ensuremath{\mathsf{GFT}}$

Rovelli and Reisenberger '00

- Universal structure behind spin foam framework:
 Any local spin foam model can be viewed as Feynman graph of a GFT Rovelli and Reisenberger '00
- For the spin foam perspective, GFTs tackle issue of triangulation dependence

Universal structure behind spin foam framework:
 Any local spin foam model can be viewed as Feynman graph of a GFT Rovelli and Reisenberger '00

 For the spin foam perspective, GFTs tackle issue of triangulation dependence

- But they do much more:
 - Provides a framework to compute quantum gravity amplitudes including the sum over all topologies.
 - This is a field theory: lots of tools at our disposal! Symmetry, renormalization...

Group field theory in a nutshell Building up space-time

GFT for 3d Riemannian gravity: D = 3, G = SO(3).

• Field $\varphi_{123} := \varphi(g_1, g_2, g_3)$, with invariance $\varphi(hg_i) = \varphi(g_i) \ \forall h \in G$.

Group field theory in a nutshell Building up space-time

GFT for 3d Riemannian gravity: D = 3, G = SO(3).

- Field $\varphi_{123} := \varphi(g_1, g_2, g_3)$, with invariance $\varphi(hg_i) = \varphi(g_i) \ \forall h \in G$.
- Dynamics governed by the action: :

$$S = \frac{1}{2} \int [dg]^3 \varphi_{123} \varphi_{123} - \frac{\lambda}{4!} \int [dg]^6 \varphi_{123} \varphi_{345} \varphi_{526} \varphi_{641}$$

Group field theory in a nutshell Building up space-time

Feynman diagrams as 2-complexes dual to simplicial complexes (triangulated spaces)

Group field theory in a nutshell GFT and lattice gauge theory

- ullet bulk variables $ullet_{t au}$: holonomy from the triangle t to the tetrahedron au
- boundary variables g_{et} : holonomy from the edge e to the triangle t.

GFT Propagator and vertex:

$$\int dh_t \prod_{e \subset t} \delta(g_{et} h_t \tilde{g}_{et}^{-1}), \quad \int \prod_t dh_{t\tau} \prod_{\langle et \rangle} \delta(g_{et} h_{tt'} g_{et'}^{-1})$$

Group field theory in a nutshell GFT and lattice gauge theory

Feynman amplitude: integral over discrete flat connections

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} \delta(\prod_{t \supset e} h_{t})$$

Group field theory in a nutshell From GFT to spin foam models

 Spin representation of GFT using harmonic analysis on the gauge group

$$\varphi_{123} = \sum_{j_1, j_2, j_3} \phi_{m_1, m_2, m_3}^{j_1, j_2, j_3} D_{m_1 n_1}^{j_1}(g_1) D_{m_2 n_2}^{j_2}(g_2) D_{m_3 n_3}^{j_3}(g_3) C_{n_1, n_2, n_3}^{j_1, j_2, j_3}$$

Group field theory in a nutshell From GFT to spin foam models

 Spin representation of GFT using harmonic analysis on the gauge group

$$\varphi_{123} = \sum_{j_1, j_2, j_3} \phi_{m_1, m_2, m_3}^{j_1, j_2, j_3} D_{m_1 n_1}^{j_1}(g_1) D_{m_2 n_2}^{j_2}(g_2) D_{m_3 n_3}^{j_3}(g_3) C_{n_1, n_2, n_3}^{j_1, j_2, j_3}$$

 Field pictured as a 3-valent spin network vertex, interpreted as a quantized triangle.

Group field theory in a nutshell From GFT to spin foam models

 Spin representation of GFT using harmonic analysis on the gauge group

$$\varphi_{123} = \sum_{j_1, j_2, j_3} \phi_{m_1, m_2, m_3}^{j_1, j_2, j_3} D_{m_1 n_1}^{j_1}(g_1) D_{m_2 n_2}^{j_2}(g_2) D_{m_3 n_3}^{j_3}(g_3) C_{n_1, n_2, n_3}^{j_1, j_2, j_3}$$

- Field pictured as a 3-valent spin network vertex, interpreted as a quantized triangle.
- Vertex term written in terms of SO(3) 6j symbols

Group field theory in a nutshell From GFT to spin foam models

 Spin representation of GFT using harmonic analysis on the gauge group

$$\varphi_{123} = \sum_{j_1, j_2, j_3} \phi_{m_1, m_2, m_3}^{j_1, j_2, j_3} D_{m_1 n_1}^{j_1}(g_1) D_{m_2 n_2}^{j_2}(g_2) D_{m_3 n_3}^{j_3}(g_3) C_{n_1, n_2, n_3}^{j_1, j_2, j_3}$$

- Field pictured as a 3-valent spin network vertex, interpreted as a quantized triangle.
- Vertex term written in terms of SO(3) 6j symbols
- Feynman amplitudes

$$I(\Gamma) = \sum_{\{j_t\}} \prod_t (2j_t + 1) \prod_{\tau} \left\{ \begin{array}{ccc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Group field theory in a nutshell From GFT to spin foam models

 Spin representation of GFT using harmonic analysis on the gauge group

$$\varphi_{123} = \sum_{j_1, j_2, j_3} \phi_{m_1, m_2, m_3}^{j_1, j_2, j_3} D_{m_1 n_1}^{j_1}(g_1) D_{m_2 n_2}^{j_2}(g_2) D_{m_3 n_3}^{j_3}(g_3) C_{n_1, n_2, n_3}^{j_1, j_2, j_3}$$

- Field pictured as a 3-valent spin network vertex, interpreted as a quantized triangle.
- Vertex term written in terms of SO(3) 6j symbols
- Feynman amplitudes

$$I(\Gamma) = \sum_{\{j_t\}} \prod_t (2j_t + 1) \prod_{\tau} \left\{ \begin{array}{ccc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Boundary observables described in terms of spin networks

Group field theory in a nutshell From GFT to simplicial path integrals?

Lattice gauge theory picture:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} \delta(\prod_{t \supset e} h_{t})$$

Spin foam picture:

$$I(\Gamma) = \sum_{\{j_t\}} \prod_t (2j_t + 1) \prod_{\tau} \left\{ \begin{array}{ccc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Group field theory in a nutshell From GFT to simplicial path integrals?

Lattice gauge theory picture:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} \delta(\prod_{t \supset e} h_{t})$$

Spin foam picture:

$$I(\Gamma) = \sum_{\{j_t\}} \prod_t (2j_t + 1) \prod_{\tau} \left\{ \begin{array}{ccc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Simplicial path integral picture :

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} dX_{e} \prod_{e} e^{i \operatorname{Tr} X_{e} H_{e}(h)}, \quad H(e) = \delta(\prod_{t \supset e} h_{t})$$

Group field theory in a nutshell From GFT to simplicial path integrals?

Lattice gauge theory picture:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} \delta(\prod_{t \supset e} h_{t})$$

Spin foam picture:

$$I(\Gamma) = \sum_{\{j_t\}} \prod_t (2j_t + 1) \prod_{\tau} \left\{ \begin{array}{ccc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array} \right\}$$

Simplicial path integral picture :

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} dX_{e} \prod_{e} e^{i \operatorname{Tr} X_{e} H_{e}(h)}, \quad H(e) = \delta(\prod_{t \supset e} h_{t})$$

Simplicial representation of GFT?

Outline

Introduction

Group field theory in a nutshell

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

• Define plane waves $\mathbf{e}_g(x) = e^{i \vec{p}_g \cdot \vec{x}}$ as functions on $\mathfrak{g} \sim \mathbb{R}^n$ \vec{p}_g coordinates on the group manifold

- Define plane waves $\mathbf{e}_g(x) = e^{i \vec{p}_g \cdot \vec{x}}$ as functions on $\mathfrak{g} \sim \mathbb{R}^n$ \vec{p}_g coordinates on the group manifold
- Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathsf{e}_g(x)$

- Define plane waves $\mathbf{e}_g(x) = e^{i \vec{p}_g \cdot \vec{x}}$ as functions on $\mathfrak{g} \sim \mathbb{R}^n$ \vec{p}_g coordinates on the group manifold
- Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathrm{e}_g(x)$
- Algebra structure on Im $\hat{}$: $e_{g_1} \star e_{g_2} = e_{g_1g_2}$ inherited from the convolution product on the group

Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathsf{e}_g(x)$

Simplicial representation of 3d GFT

Going to metric variables: Fourier transform

- Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathrm{e}_g(x)$
- \bullet For $G=\mathrm{SU}(2)$, we choose $\vec{p}_g=\mathrm{Tr}|g|\vec{ au}$, $\qquad |g|\!:=\!\mathrm{sign}(\mathrm{Tr}g)g$

$$e_g(x) = e^{i \text{Tr} x|g|} \qquad x = \vec{x} \cdot \vec{\tau}$$

- Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathrm{e}_g(x)$
- ullet For $G=\mathrm{SU}(2)$, we choose $ec{p_g}=\mathrm{Tr}|g|ec{ au}$, $|g|\!:=\!\mathrm{sign}(\mathrm{Tr}g)g$

$$e_g(x) = e^{i \text{Tr} x |g|}$$
 $x = \vec{x} \cdot \vec{\tau}$

• Fourier transform invertible on functions f(g)=f(-g) of $SO(3) \sim SU(2)/\mathbb{Z}_2$:

$$f(g) = \int d^3x \, (\widehat{f} \star e_{g^{-1}})(x)$$

- Define Fourier transform $\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathrm{e}_g(x)$
- For $G=\mathrm{SU}(2)$, we choose $ec{p}_g=\mathrm{Tr}|g|ec{ au}$, $|g|\!:=\!\mathrm{sign}(\mathrm{Tr} g)g$

$$e_g(x) = e^{i \text{Tr} x |g|}$$
 $x = \vec{x} \cdot \vec{\tau}$

• Fourier transform invertible on functions f(g)=f(-g) of $SO(3) \sim SU(2)/\mathbb{Z}_2$:

$$f(g) = \int d^3x \, (\widehat{f} \star e_{g^{-1}})(x)$$

• With more work full Fourier transform on SU(2) [Freidel Majid 05; Joung, Mourad, Noui 08]

$$\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathsf{e}_g(x)$$

What functions of \mathbb{R}^3 does the Fourier transform hit?

$$\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathsf{e}_g(x)$$

What functions of \mathbb{R}^3 does the Fourier transform hit?

• Functions with bounded (usual) Fourier modes $|\vec{p}_g| \leq 1$ $\vec{p}_g = \mathrm{Tr} g \vec{\tau}$ \star -product \leftrightarrow deformed addition of momenta preserving the bound.

$$\widehat{f}(x) = \int \mathrm{d}g f(g) \, \mathsf{e}_g(x)$$

What functions of \mathbb{R}^3 does the Fourier transform hit?

- Functions with bounded (usual) Fourier modes $|\vec{p}_g| \leq 1$ $\vec{p}_g = \mathrm{Tr} g \vec{\tau}$ \star -product \leftrightarrow deformed addition of momenta preserving the bound.
- \mathbb{R}^3 seen with a finite resolution: Functions that can be sampled by discrete values f_{mn}^j without loss of information:

$$\widehat{f}(x) = \sum_{j,m,n} f_{mn}^j \widehat{D}_{mn}^j(x)$$

• Fourier transform of the Boulatov field φ_{123} :

$$\widehat{\varphi}_{123} := \widehat{\varphi}(x_1, x_2, x_3) = \int [\mathrm{d}g]^3 \, \varphi_{123} \, \mathsf{e}_{g_1}(x_1) \mathsf{e}_{g_2}(x_2) \mathsf{e}_{g_3}(x_3)$$

• Fourier transform of the Boulatov field φ_{123} :

$$\widehat{\varphi}_{123} := \widehat{\varphi}(x_1, x_2, x_3) = \int [\mathrm{d}g]^3 \, \varphi_{123} \, \mathsf{e}_{g_1}(x_1) \mathsf{e}_{g_2}(x_2) \mathsf{e}_{g_3}(x_3)$$

Gauge invariance dual to a closure constraint:

$$\widehat{P}\varphi = \widehat{C} \star \widehat{\varphi}, \quad \widehat{C}(x_1, x_2, x_3) = \delta_0(x_1 + x_2 + x_3)$$

where $\delta_0(x) := \int dg e_g(x)$ plays the role of a Dirac distribution:

$$\int d^3x \, (\delta_0 \star f)(x) = f(0)$$

• Fourier transform of the Boulatov field φ_{123} :

$$\widehat{\varphi}_{123} := \widehat{\varphi}(x_1, x_2, x_3) = \int [\mathrm{d}g]^3 \, \varphi_{123} \, \mathsf{e}_{g_1}(x_1) \mathsf{e}_{g_2}(x_2) \mathsf{e}_{g_3}(x_3)$$

Gauge invariance dual to a closure constraint:

$$\widehat{P}\varphi = \widehat{C} \star \widehat{\varphi}, \quad \widehat{C}(x_1, x_2, x_3) = \delta_0(x_1 + x_2 + x_3)$$

where $\delta_0(x) := \int dg e_g(x)$ plays the role of a Dirac distribution:

$$\int d^3x \, (\delta_0 \star f)(x) = f(0)$$

▶ Dual field as a (non-commutative) triangle

• Fourier transform of the Boulatov field φ_{123} :

$$\widehat{\varphi}_{123} := \widehat{\varphi}(x_1, x_2, x_3) = \int [\mathrm{d}g]^3 \, \varphi_{123} \, \mathsf{e}_{g_1}(x_1) \mathsf{e}_{g_2}(x_2) \mathsf{e}_{g_3}(x_3)$$

Gauge invariance dual to a closure constraint:

$$\widehat{P}\varphi = \widehat{C} \star \widehat{\varphi}, \quad \widehat{C}(x_1, x_2, x_3) = \delta_0(x_1 + x_2 + x_3)$$

where $\delta_0(x) := \int dg e_g(x)$ plays the role of a Dirac distribution:

$$\int d^3x \, (\delta_0 \star f)(x) = f(0)$$

- ► Dual field as a (non-commutative) triangle
- ▶ Field variables as metric variables associated to the edges.

Action

$$S = \frac{1}{2} \int [\mathrm{d}x]^3 \,\widehat{\varphi}_{123} \star \widehat{\varphi}_{321} - \frac{\lambda}{4!} \int [\mathrm{d}x]^6 \,\widehat{\varphi}_{123} \star \widehat{\varphi}_{345} \star \widehat{\varphi}_{526} \star \widehat{\varphi}_{641}$$

$$\int dh_t \prod_{i=1}^{3} (\delta_{-x_i} \star e_{h_t})(y_i), \quad \int \prod_t dh_{t\tau} \prod_{i=1}^{6} (\delta_{-x_i} \star e_{h_{tt'}})(y_i)$$

- h_t : parallel transport through the triangle t.
- $h_{t au}$: parallel transport from the tetrahedron au to triangle t.
- $h_{tt'} := h_{t\tau}h_{\tau t'}$

- Join strands using the *-product, keeping track of ordering.
- Each loop of strands bound a face of the 2-complex, dual to an edge of the triangulation.
- Under integration over holonomies h, product of face amplitudes $A_f[h]$.

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

 $A_f[h]$ is the cyclic *-product:

$$A_f[h] = \int \prod_{i=0}^{N} dx_j \, \vec{\star}_{j=0}^{N+1} \, (\delta_{x_j} \star e_{h_{jj+1}})(x_{j+1})$$

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

 $A_f[h]$ is the cyclic *-product:

$$A_f[h] = \int \prod_{j=0}^{N} dx_j \vec{\star}_{j=0}^{N+1} (\delta_{x_j} \star e_{h_{jj+1}})(x_{j+1})$$

• identifies edge metrics x_j seen from the different tetrahedra j up to holonomies

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

 $A_f[h]$ is the cyclic *-product:

$$A_f[h] = \int \prod_{j=0}^{N} dx_j \, \vec{\bigstar}_{j=0}^{N+1} \, (\delta_{x_j} \star e_{h_{jj+1}})(x_{j+1})$$

- ullet identifies edge metrics x_j seen from the different tetrahedra j up to holonomies
- After integration over x_j , $j \neq 0$:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} dx_{e} e^{i \sum_{e} \operatorname{Tr} x_{e} H_{e}}$$

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

 $A_f[h]$ is the cyclic *-product:

$$A_f[h] = \int \prod_{j=0}^{N} dx_j \vec{\star}_{j=0}^{N+1} (\delta_{x_j} \star e_{h_{jj+1}})(x_{j+1})$$

- identifies edge metrics x_j seen from the different tetrahedra j up to holonomies
- After integration over x_j , $j \neq 0$:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} dx_{e} e^{i \sum_{e} \operatorname{Tr} x_{e} H_{e}}$$

 $lackbox{ } x_e$ metric associated to e in the frame of a reference tetrahedron around e

• Let $\{\tau_j\}_{0\leq N}$ ordered sequence of tetrahedra around the edge.

 $A_f[h]$ is the cyclic *-product:

$$A_f[h] = \int \prod_{j=0}^{N} dx_j \vec{\star}_{j=0}^{N+1} (\delta_{x_j} \star e_{h_{jj+1}})(x_{j+1})$$

- ullet identifies edge metrics x_j seen from the different tetrahedra j up to holonomies
- After integration over x_j , $j \neq 0$:

$$I(\Gamma) = \int \prod_{t} dh_{t} \prod_{e} dx_{e} e^{i \sum_{e} \operatorname{Tr} x_{e} H_{e}}$$

- $lackbox{} x_e$ metric associated to e in the frame of a reference tetrahedron around e
- lacktriangledown H_e holonomy of e starting from the reference frame.

Boundary observables inserted using *-product

- Boundary observables inserted using *-product
- One-vertex contribution to the 4-point function:

$$\int \prod_{t} \mathrm{d}h_{t\tau} \prod_{i=1}^{6} (\delta_{-x_i} \star \mathsf{e}_{h_{tt'}})(y_i)$$

Boundary observables inserted using *-product

Boundary observables inserted using *-product

• Boundary dual spin-network: $\langle \otimes_t C^{j_i} | \otimes_{i=1}^6 (\widehat{D}^{j_i} \star \delta_{x_i}(x_i')
angle$

Simplicial representation of 3d GFT Feynman amplitudes

Boundary observables inserted using *-product

- Boundary dual spin-network: $\langle \otimes_t C^{j_i} | \otimes_{i=1}^6 (\widehat{D}^{j_i} \star \delta_{x_i}(x_i')
 angle$
 - encodes combinatorics of the tetrahedron and peaks on |x| = 2j + 1 for the triangle lengths.

Simplicial representation of 3d GFT Feynman amplitudes

Boundary observables inserted using *-product

- Boundary dual spin-network: $\langle \otimes_t C^{j_i} | \otimes_{i=1}^6 (\widehat{D}^{j_i} \star \delta_{x_i}(x_i')
 angle$
 - encodes combinatorics of the tetrahedron and peaks on |x| = 2j + 1 for the triangle lengths.
 - ▶ Intertwiner C^{j_i} implement closure of each triangle.

Outline

Introduction

Group field theory in a nutshel

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

Going up dimensions: Ooguri model

Towards 4d gravity models Going up dimensions: Ooguri model

• Fourier transform extend to fields on $SO(4) \sim SU(2) \times SU(2)/\mathbb{Z}_2$

Towards 4d gravity models Going up dimensions: Ooguri model

- Fourier transform extend to fields on $\mathrm{SO}(4) \sim \mathrm{SU}(2) \times \mathrm{SU}(2)/\mathbb{Z}_2$
 - lacktriangle invertible for even field g
 ightarrow -g

Going up dimensions: Ooguri model

- Fourier transform extend to fields on $SO(4) \sim SU(2) \times SU(2)/\mathbb{Z}_2$
 - ▶ invertible for even field $g \rightarrow -g$
- Ooguri model for BF theory:

$$S = \frac{1}{2} \int \varphi_{1234}^2 - \frac{\lambda}{5!} \int \varphi_{1234} \, \varphi_{4567} \, \varphi_{7389} \, \varphi_{96210} \, \varphi_{10851}.$$

Going up dimensions: Ooguri model

- Fourier transform extend to fields on $SO(4) \sim SU(2) \times SU(2)/\mathbb{Z}_2$
 - ▶ invertible for even field $g \rightarrow -g$
- Ooguri model for BF theory:

$$S = \frac{1}{2} \int \varphi_{1234}^2 - \frac{\lambda}{5!} \int \varphi_{1234} \, \varphi_{4567} \, \varphi_{7389} \, \varphi_{96210} \, \varphi_{10851}.$$

• Dual field $\widehat{\varphi}_{12334} := \widehat{\varphi}(x_1, x_2, x_3, x_4)$ on 4 copies of $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \times \mathfrak{su}(2)$.

Towards 4d gravity models Going up dimensions: Ooguri model

- Fourier transform extend to fields on $SO(4) \sim SU(2) \times SU(2)/\mathbb{Z}_2$
 - ▶ invertible for even field $g \rightarrow -g$
- Ooguri model for BF theory:

$$S = \frac{1}{2} \int \varphi_{1234}^2 - \frac{\lambda}{5!} \int \varphi_{1234} \, \varphi_{4567} \, \varphi_{7389} \, \varphi_{96210} \, \varphi_{10851}.$$

- Dual field $\widehat{\varphi}_{12334} := \widehat{\varphi}(x_1, x_2, x_3, x_4)$ on 4 copies of $\mathfrak{so}(4) \simeq \mathfrak{su}(2) \times \mathfrak{su}(2)$.
- Similar results as in 3d.

- Sgrav $[e,A] = \int \operatorname{tr} B \wedge F(A), \qquad B = \star e \wedge e$
- Dual field $\widehat{\varphi}(x_j)$, $x_j \in \mathfrak{so}(4) \leftrightarrow \text{discrete } B$ field

- Sgrav $[e,A] = \int \operatorname{tr} B \wedge F(A), \qquad B = \star e \wedge e$
- Dual field $\widehat{\varphi}(x_j)$, $x_j \in \mathfrak{so}(4) \leftrightarrow \text{discrete } B$ field
- To define a metric tetrahedron:

- Sgrav $[e,A] = \int \operatorname{tr} B \wedge F(A), \qquad B = \star e \wedge e$
- Dual field $\widehat{\varphi}(x_j)$, $x_j \in \mathfrak{so}(4) \leftrightarrow \text{discrete } B$ field
- To define a metric tetrahedron:
 - 1. Closure constraint: imposed by gauge invariance

- Sgrav $[e,A] = \int \operatorname{tr} B \wedge F(A), \qquad B = \star e \wedge e$
- Dual field $\widehat{\varphi}(x_j)$, $x_j \in \mathfrak{so}(4) \leftrightarrow \text{discrete } B$ field
- To define a metric tetrahedron:
 - 1. Closure constraint: imposed by gauge invariance
 - 2. Simplicity constraint: define $S_k \star \widehat{\varphi}$, with

$$\widehat{S}_k(x_j^-, x_j^+) = \prod_{j=1}^4 \delta_{-kx_j^-k^{-1}}(x_j^+), \qquad k \in \mathcal{S}^3 \sim \text{SU}(2)$$

Imposing simplicity: non-commutative tetrahedron

- Sgrav $[e,A] = \int \operatorname{tr} B \wedge F(A), \qquad B = \star e \wedge e$
- Dual field $\widehat{\varphi}(x_j)$, $x_j \in \mathfrak{so}(4) \leftrightarrow \text{discrete } B$ field
- To define a metric tetrahedron:
 - 1. Closure constraint: imposed by gauge invariance
 - 2. Simplicity constraint: define $S_k \star \widehat{\varphi}$, with

$$\widehat{S}_k(x_j^-, x_j^+) = \prod_{j=1}^4 \delta_{-kx_j^-k^{-1}}(x_j^+), \qquad k \in \mathcal{S}^3 \sim \text{SU}(2)$$

• \widehat{S}_k dual to:

$$S_k \varphi(g_j) = \prod_{i=1}^4 \int_{\mathrm{SO}(3)} \mathrm{d}u_j \, \varphi(k^{\text{-}1} u_j k g_j^{\text{-}}, u_j g_j^{\text{+}})$$

Projector onto fields on $SO(4)/SO(3)_k$. k=1: Barrett-Crane projector

Imposing simplicity: the Barrett-Crane model

Imposing simplicity: the Barrett-Crane model

• Combining the simplicity projector $\widehat{S} := \widehat{S}_1$ with closure: $\widehat{S} \star \widehat{C} \star \widehat{\varphi}$ standard Barrett-Crane projected field.

Imposing simplicity: the Barrett-Crane model

- Combining the simplicity projector $\widehat{S}:=\widehat{S}_1$ with closure: $\widehat{S}\star\widehat{C}\star\widehat{\varphi}$ standard Barrett-Crane projected field.
- Ambiguity in the definition of the model since \widehat{S} and \widehat{C} do not commute: For $h \in SO(4)$, we have:

$$(e_h \star \widehat{S}_k)(x) = (\widehat{S}_{h \triangleright k} \star e_h)(x)$$

Imposing simplicity: the Barrett-Crane model

- Combining the simplicity projector $\widehat{S} := \widehat{S}_1$ with closure: $\widehat{S} \star \widehat{C} \star \widehat{\varphi}$ standard Barrett-Crane projected field.
- Ambiguity in the definition of the model since \widehat{S} and \widehat{C} do not commute: For $h \in SO(4)$, we have:

$$(e_h \star \widehat{S}_k)(x) = (\widehat{S}_{h \triangleright k} \star e_h)(x)$$

- Simplicial path integral formulation of the BC model (for e.g version Bonzom, Livine '08):
 - ▶ insertion of a non-commutative observable in BF theory:

$$Z_{\mathsf{BC}} = \int \prod_{\tau\sigma} \mathrm{d}h_{\tau\sigma} \int \prod_{t} \mathrm{d}^{6}x_{t} \left(\mathcal{O}_{f} \star e_{H_{t}} \right) (x_{t})$$
$$\mathcal{O}_{f} = \bigstar_{j=0}^{N} \delta_{-h_{0j}^{-1} \bullet^{-} h_{0j}^{-}} \left(h_{0j}^{+1} \bullet^{+} h_{0j}^{+} \right)$$

Imposing simplicity: the Barrett-Crane model

- Combining the simplicity projector $\widehat{S} := \widehat{S}_1$ with closure: $\widehat{S} \star \widehat{C} \star \widehat{\varphi}$ standard Barrett-Crane projected field.
- Ambiguity in the definition of the model since \widehat{S} and \widehat{C} do not commute: For $h \in \mathrm{SO}(4)$, we have:

$$(e_h \star \widehat{S}_k)(x) = (\widehat{S}_{h \triangleright k} \star e_h)(x)$$

- Simplicial path integral formulation of the BC model (for e.g version Bonzom, Livine '08):
 - ▶ insertion of a non-commutative observable in BF theory:

$$Z_{\mathsf{BC}} = \int \prod_{\tau\sigma} \mathrm{d}h_{\tau\sigma} \int \prod_{t} \mathrm{d}^{6}x_{t} \left(\mathcal{O}_{f} \star e_{H_{t}} \right) (x_{t})$$
$$\mathcal{O}_{f} = \bigstar_{j=0}^{N} \delta_{-h_{0j}^{-1} \bullet^{-} h_{0j}^{-}} (h_{0j}^{+1} \bullet^{+} h_{0j}^{+})$$

imposes simplicity of bivectors x_t in each of the frames associated to the simplices j around t.

• Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)

- Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)
- We can include Immirzi parameter

- Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)
- We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

- Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)
- We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

the right identification for the bivectors

- Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)
- We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

- the right identification for the bivectors
- decoupling of the normals; problem traced back to:

- Topological sector: we get simplicity $j^-=j^+$ but not EPR intertwiner (except large j limit)
- We can include Immirzi parameter

Geometrically, the Barrett-Crane model provides:

- the right identification for the bivectors
- decoupling of the normals; problem traced back to:
- Simplicity not covariantly imposed

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance:

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

• Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k) = \int_{\mathrm{SO}(3)} \mathrm{d}u_i \varphi(k^{\text{-}1}u_i k g_i^{\text{-}}, u_i g_i^{\text{+}}; k)$

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k) = \int_{SO(3)} du_i \varphi(k^{-1}u_i k g_i^-, u_i g_i^+; k)$

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k) = \int_{\mathrm{SO}(3)} \mathrm{d}u_i \varphi(k^{\text{-}1}u_i k g_i^{\text{-}}, u_i g_i^{\text{+}}; k)$

Then PS = SP is a projector. One may thus:

unambiguously define a constrained GFT model, with simplicity constraints imposed covariantly.

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k)=\int_{\mathrm{SO}(3)}\mathrm{d}u_i\varphi(k^{\text{-}1}u_ikg_i^{\text{-}},u_ig_i^{\text{+}};k)$

- unambiguously define a constrained GFT model, with simplicity constraints imposed covariantly.
- geometry nicely implemented

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k) = \int_{\mathrm{SO}(3)} \mathrm{d}u_i \varphi(k^{\text{-}1}u_i k g_i^{\text{-}}, u_i g_i^{\text{+}}; k)$

- unambiguously define a constrained GFT model, with simplicity constraints imposed covariantly.
- geometry nicely implemented
- boundary states are projected spin-networks

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k)=\int_{\mathrm{SO}(3)}\mathrm{d}u_i\varphi(k^{\text{-}1}u_ikg_i^{\text{-}},u_ig_i^{\text{+}};k)$

- unambiguously define a constrained GFT model, with simplicity constraints imposed covariantly.
- geometry nicely implemented
- boundary states are projected spin-networks
- path integral representation available

Beyond Barrett-Crane: imposing simplicity covariantly

Proposal to cure lack of covariance: promote normals k to field variables: $\varphi(g_i;k)$ and define:

- Gauge invariant projector $P\varphi(g_i;k) = \int_{SO(4)} dh \varphi(hg_i;h \triangleright k)$
- Simplicity projector $S\varphi(g_i;k) = \int_{\mathrm{SO}(3)} \mathrm{d}u_i \varphi(k^{\text{-}1}u_i k g_i^{\text{-}}, u_i g_i^{\text{+}}; k)$

- unambiguously define a constrained GFT model, with simplicity constraints imposed covariantly.
- geometry nicely implemented
- boundary states are projected spin-networks
- path integral representation available
- ▶ Study of the model in progress...

Outline

Introduction

Group field theory in a nutshel

Simplicial representation of 3d GFT

Towards 4d gravity models

Conclusion

 New representation of GFT as non-local and non-commutative fields on Lie algebras:

- New representation of GFT as non-local and non-commutative fields on Lie algebras:
 - ▶ Field variables corresponds to B variables in simplicial BF theory

- New representation of GFT as non-local and non-commutative fields on Lie algebras:
 - ► Field variables corresponds to B variables in simplicial BF theory
 - Feynman amplitudes as simplicial path integrals

Explicit GFT duality spin foams/ simplicial path integrals

- New representation of GFT as non-local and non-commutative fields on Lie algebras:
 - Field variables corresponds to B variables in simplicial BF theory
 - Feynman amplitudes as simplicial path integrals

Explicit GFT duality spin foams/ simplicial path integrals

• Path integral representation of the BC model as a non-commutative B observable in BF

- New representation of GFT as non-local and non-commutative fields on Lie algebras:
 - Field variables corresponds to B variables in simplicial BF theory
 - Feynman amplitudes as simplicial path integrals

Explicit GFT duality spin foams/ simplicial path integrals

- Path integral representation of the BC model as a non-commutative B observable in BF
- New proposal for GFT model: study under way.

• Offers new perspectives on GFT:

- Offers new perspectives on GFT:
 - ► Analysis of space-symmetries at the GFT level Girelli-Livine '10; AB, F.Girelli, D.Oriti in progress

- Offers new perspectives on GFT:
 - Analysis of space-symmetries at the GFT level Girelli-Livine '10; AB, F.Girelli, D.Oriti in progress
 - ▶ semi-classical regime as commutative limit: relation to abelianized GFT where complete power counting theorems are proven in Ben Geloun, Krajewski, Mgnen, Rivasseau '10

- Offers new perspectives on GFT:
 - Analysis of space-symmetries at the GFT level Girelli-Livine '10; AB, F.Girelli, D.Oriti in progress
 - semi-classical regime as commutative limit: relation to abelianized GFT where complete power counting theorems are proven in Ben Geloun, Kraiewski, Mgnen, Rivasseau '10
 - deepen links between GFT formalism and non-commutative geometry