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Motivation

Classical interpretation of states in LQG

In LQG, basis of Hy;, given by spin networks T'yf"

i

J2 L3

L5

\4

T 5iA) = <H(Lv ?nll’;::.’,"rnv> (H \/2je+17rje(he(A))Z§>
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Classical interpretation of states in LQG

The wai have geometric interpretation (eigenstates of area- and volume operator).

But: not close to 'classical geometry’ (e.g. half-integer holonomy operators have zero
expectation values).

Y .
J

Q (T [ty ()] T ) = 0

One needs to construct states which contain information about both canonical
variables (fluxes and holonomies) = semiclassical states, in order to:

> Interpret states as ‘“close to classical geometry” (centered around phase space
points, small fluctuations)

» Check semiclassical limit of operators
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Strategy:

Construct coherent states on H by taking Hall's complexifier coherent states on the
gauge-variant Hilbert space, and project them to the gauge-invariant subspace:

LIPS L2(SU(2)E, dun) C  L2(A dpar)
4 4 )
w[tgh---,gzs] € Lz(SU(2)E/5U(2)V7dN) =Hy C Lz(A—/@ dpaL)
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Complexifier coherent states

Phase-space of GR

>
>
‘ :> ‘ o

Quantum Theory in LQG constructed in two steps:

1. Replace fields (AL, E7) by holonomies and fluxes he € SU(2), Ef € su(2).
(smooth fields smeared over 1— and 2— dim. submanifolds)

2. Build a quantum theory out of holonomy-flux algebra

= Choice of coordinates on phase-space: he, Ef.
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Complexifier coherent states

Phase-space of one graph
Thiemann '00
Choose graph v = {e1,...,ec} and dual graph v* = {S1,...,Se}
S

V2

vi
Variables are the he, E. (one canonical pair per edge)

he = holonomy along edge e

E. = Flux integrated over S (parallelly transported to v;)

This defines a 6E-dim sub-phase-space of the whole phase-space of GR
(= (T*SU(2)F).
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Complexifier coherent states

Hall's complexifier coherent states

Hall '97, Sahlmann, Thiemann, Winkler '00
Hall introduced generalizations of Gaussian wave packets on LZ(G, d,uH) for comapct,
s.-s. Lie groups G, spheres,...

t /
’(l)ée(he) = exp (AE)J(he’ h")

h' —ge

= Z(Zje + 1) exp (—je(is + 1)%) Xj. (he 'ge)

Je
Xj. = character or rep'n je, he holonomy along edge e, ge € SL(2,C), t >0

2
_ %
= =

where a is a characteristic length scale. Semiclassical limit: t — 0
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Complexifier coherent states
Gauge-variant phase space

polar decomposition:

(oo} .
8e Z
n=0

Complexifier procedure delivers correspondence between T*SU(2) and SL(2,C) via

;—:{C,{C,...,{C, he}...}}

etEe h

V2
€

Vi

talks by Rovelli and Perini) Then one has

etE(V1)
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Note: In SF context more convenient to parallelly transport E to p instead of vi. (see

te(P) h




Properties of complexifier coherent states

Thiemann, Winkler '00

» Minimal uncertainty states, Gaussian peaked, Eigenstates of 'ladder operator’

> Approximate observables: Let f be a polynomial phase-space function (i.e. a
polynomial function on holonomies and fluxes he, Ee ), then

<w£1,...;g5|f(i7e’ Ee)|w£1,.-.,g5>

where ge =

<¢§11-'-7gE|¢§17'-'1gE>
exp(tEe)he.

= f(he,Ee) + O(t)
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Properties of complexifier coherent states

> Resolution of identity:

/SL(2 o W W, e) V.l = Li2sue)

¢(g17

where v is some measure on SL(2,C)E related to the heat kernel.
is complex analytic in the ge.

> Bargman-Segal representation: For a state ¢, the function

1&n) = (DY )
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Gauge-invariant coherent states

Gauge-invariant coherent states:

Thiemann, Winkler '00
Projection of complexifier coherent states:

nesee s L2(SUR)E) = L2(SU(R)E/SUR)Y) = H,

gauge |t
M,

= > [ e deliet+1) t/2Tq]L({ge })]

it

t
w[gh---,gn]

nyL

with g* 1= ege 1.

=] 5
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Gauge-invariant coherent states

Labels of gauge-invariant coherent states

BB, Thiemann '06-'08

Since for a gauge action oy, ...k, With k, € SU(2) one has

v

t t
Oky,okyer,ge = ¥ 1 1
818 ks(er)81ky(e )+ Ks(ep) BE Ky(ep)

one might think that \II[

tgl . gg] 2re labelled by le1,---,ge] € SL(2,C)E/SU(2)Y, but

this is not the case:

(klv-”ka) — ngaugeakvqﬁélwng (1)

can be extended analytically to all of SL(2,C)Y. But then (1) is a complex analytic
function which is constant on the 'real line’ SU(2)V, so it has to be constant on all of
SL(2,C)V.

Orbit of SL(2,C)Y SL(2,C)E

SL(2,0)F .
lg1,---,8n] € SL((2,C))V = orbit

of (g1, -,8n) under complexified
gauge transformation.

Benjamin Bahr

Coherent States in LQG



Gauge-invariant coherent states

Geometry of gauge-invariant phase space
The set of orbits [g1, ..., ge] is not a manifold, but contains singular points:

vy 8 82

(g1, &) ~ (kgik™!, kg2k~t) ke SL(2,C)

gr=g==1 = dim Orbit(g1, &2) 0

P = dim Orbit(g1,g2) = 4

g xtom £ 1 = dim Orbit(g1, g2) 6

For generic points, the dimension of gauge-invariant phase space SL(2, C)E/SL(2,C)Y
is

dim SL(2,C)E/SL(2,C)Y = 6(E — V) =6(L—1)

where L is the number of loops in the graph ~.
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Properties of the coherent states W :
le1,--&E]

BB, Thiemann '06-'08

» Approximation of gauge-invariant observables: Let f be a polynomial
lowest t-order) the classical expression:

<wé1,...;g5|f(i7e’ Ee)|wé1,.-.,g5>

L . o2 .
gauge-invariant phase space functions (e.g. Arg, trj(he)), then one recovers (in

<¢éla-'-ng|¢élv'-'agE>
where ge = exp(tEe)he.

= f(he, Ec) + O(t)

- 5 = " v
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Gauge-invariant coherent states

t

Properties of the coherent states lll[ghm’gE]:

> Resolution of the identity:

t t —
_/Sng,c)E dN Arp Vg . ge) Vg, gell = LizsuE/su@v)
sL(2,C)V

with the averaged measure
_ RV
N([gi1,---,8€e]) = / duy” (k) v(ag(er, - - -, g€))
SL(2,C)V

and a Fadeev-Popov-determinant App (see Bianchi, Magliaro, Perini '10)

» The states W}
le1,---.8€]

points where the gauge-invariant phase space has singular points (degenerate
gauge orbits).

are Gaussian peaked almost everywhere, apart from the
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Gauge-invariant coherent states

Peakedness properties of the coherent states \U[tg]:

Example:
v Assume g € SL(2,C)
€ I
Q g=¢€"",z¢€C
with 22 1= 22 + 22 4+ 22 # O:
Then
2j+1 _ ,—2j—1
t o= Yyt — —j(j+1)t/2Z z )
\ll[g] =V, = Ze JGU+1)t/ — T
and
[(WE |wi))? sinh %2 sinh 2%
plw) = = (1+0(t™))
IWe, 12 (lwi])? sinh % sinh Izltz
is the phase-space density of the state WE.
o 5 = =
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Peakedness properties of the coherent states \U[tg]:

Phase-space density p(w) of the state W with z = 1.
= Gaussian peaked around w = z = 1.

o &5 = . .
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Gauge-invariant coherent states

Peakedness properties of the coherent states \U[tg]:

\ A
\\\~\~0'
Nss

degenerate gauge orbit.
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= Non-Gaussian peaked around w = z = 0 (rather exp(—|z|*/t) - profile).
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=

Phase-space density p(w) of the state W! with z = 0 (corresponds to g = 1, i.e.




Semiclassical Analysis

Semiclassical limit of Master constraint

The (non-graph changing) master constraint M as defined by Thiemann has the
correct semiclassical limit, in the following sense: (Giesel, Thiemann '06)
» Choose classical fields Ag, Ep in &

» Choose then a cubic graph v (and dual graph v*) such that the fields Ag, Ey do
not vary much inbetween lattice sites.

> The classical fields Ag, Ep induce, by smearing along the edges and surfaces of
~,~v*, discrete coordinates he € SU(2), Ee € su(2).

» Consider the coherent state \Il[t with ge = exp(tEe)he.

£1,---,8E]
Then

|| w

<w[t 1 [t ]> E
81;---58E 81;---,8E M(A(), O) O(t) O(e)
(W [wi )
lg1:--,8e]" " lg1:--,8E]

where t is the semiclassicality parameter, and € measures the variation of the fields
Ao, Eog inbetween lattice sites.
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Semiclassical Analysis

Semiclassical limit of the (Ashtekar-Lewandowski-) volume operator
The (AL-) volume operator V has the correct semiclassical limit for 6-valent graphs
only in the following sense:

Vald g

» Choose flat background Ag, Eg in X in the manifold X.
» Embed a tetrahedron, cuboid or octahedron into X
» Construct appropriate coherent state (on a graph dual to polyhedron) W

Then

t
le1,----8E]

VW

( [t [t ]) E
81,---,8E 81,---,8E an( 0) O(t)
% (Wi )
lg1,---.ge]' " le1,-- &€l

(n=4,6,8), and V(Ep) is the classical, flat volume of the embedded polyhedron. The
numbers K, are given by
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Semiclassical Analysis

How to deal with this result?

» Change the states \Il[fg1 ]

> Change of complexifier from C = A% so something else (e.g. C = V)? See Flori 08
> Something different than complexifier procedure?
> However: States work well on many, many other levels.

» Change the volume operator

» Adjust factors k,
> Different regularization procedure
> However: "Triad test”: Classical identity Giesel, Thiemann '06

E(S) = /Sdet E{A, V} A {A, V}

shall also hold on quantum level
» Work only on six-valent graphs

» Favoured by Grimstrup, Aastrup: Specrtal triple construction in LQG see talk by Jepser Mgller
»> However: Not a representation space of the holonomy-flux algebra.
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Summary

Summary:

» The complexifier coherent states 1/);1“ are good semiclassical states on

--8E
L2(SU(2)E) (approximate well fluxes and holonomies). t = semiclassicality
parameter, ge obtain geometric interpretation in terms of polar decomposition:

ge = exp (tEe) he
((g1,---,ge)=point in gauge-variant phase-space)
> Their gauge-invariant projections

__ [sauge,t
=n Dey.,...

t
W[gh...,gsl \8E

are good semiclassical states for gauge-invariant sector ([gi,...,gg] = point in
gauge-invariant phase-space).
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Summary

Summary:

» Gauge-invariant phase-space SL(2,C)E/SL(2,C)Y contains singular points
(degenerate gauge orbits). There e.g. smooth structure, complex structure, etc.
breaks down. Correspond to phase-space points with non-trivial symmetry (e.g.
all ge equal).

» On generic points however, the dimension of gauge-invariant phase-space is
6(L — 1), where L is the number of 'loops’ in the graph ~ (generators of first
fundamental group).
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Summary:

> The coherent states W
limit of operators:

[fgl gg] €N be used to investigate semiclassical (t — 0)

» It is possible to approximate a classical smooth field configuration (Ao, Eg) with a
coherent state W? situated on a very fine graph.

» AL-volume operator and Master constraint in LQG have the correct semiclassical
limit, if this graph is cubic.
Nontrivial, since Master constraint is no poynomial in the fields.

» States can be used to write down and investigate coherent propagator for LQG
Han, '09

> On non-cubic graphs (i.e. with valence different from n = 6), the (AL-) volume
operator has not the correct semiclassical limit: In the sum

~ 1 Apagn
Vi = ] > ele €, e”)eELELEL,

e,e’ e’

the coherent states seem to overcount triples of edges e, e’,e”.
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Summary

Outlook:

Recent development:
Works of Bianchi, Magliaro, Perini:
On gauge-invariant phase-space SL(2,C)E/SL(2,C)Y introduce coordinates given by

Speziale, Freidel. = For four-valent graphs, these have nice interpretation in terms of
twisted geometries of simplicial complexes (see Claudio’s talk)!

[m] = =
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