| EPRL model for arbit |
|----------------------|
|                      |

xes Knots and Deformations o

Summary and Discussion

# Graph knottings in the EPRL model

Benjamin Bahr

Albert Einstein Institute Am Mühlenberg 1 14476 Golm

28th February 2010

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Benjamin Bahr

| EPRL model for arbitrary two-complexes | Knots and Deformations of spin foam |
|----------------------------------------|-------------------------------------|
|                                        | 0000<br>000000                      |
|                                        |                                     |

# Outline:

- Motivation
- EPRL model for two-complexes
- Graph knottings and deformations of spin foams
- Summary

(4日) (個) (主) (主) (三) のへの

Benjamin Bahr

| Motivation | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |
|------------|----------------------------------------|--------------------------------------|
| 0000       |                                        | 0000                                 |
|            |                                        |                                      |

#### Spin Foams as histories of Spin Networks

In its original formulation Rovelli, Reisenberger, Baez '99, Spin foams were perceived as a possibility to describe *histories of spin networks* 



Such a spin foam can (after taking into account the various labels, e.g. spins and intertwiners) be assigned its *spin foam amplitude* 



| Motivation   | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |  |
|--------------|----------------------------------------|--------------------------------------|--|
| 0000         |                                        | 0000<br>000000                       |  |
| Introduction |                                        |                                      |  |

### The physical inner product

The spin foam  $\kappa$  mediates between an initial state  $\psi_i$  and a final state  $\psi_f$ . Write

$$\psi_i \xrightarrow{\kappa} \psi_f$$

The spin foam amplitudes should then be used to define the physical inner product between boundary states  $\psi_1$ ,  $\psi_f$  via

$$\langle \psi_f | \psi_i \rangle_{\text{phys}} = \sum_{\kappa : \psi_i \xrightarrow{\kappa} \psi_f} Z[\kappa]$$
  
" =  $\int \mathcal{D}\omega \mathcal{D}E \ e^{iS_{\text{Pl}}(\omega, E)}$ ,

The sum is of course vastly infinite, ill-defined,... (see GFT approach, though)!

| Motivation | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |
|------------|----------------------------------------|--------------------------------------|
| 0000       |                                        | 0000<br>000000                       |
|            |                                        |                                      |

#### Introduction

# The projector on the physical Hilbert space

Two kinematical states  $\psi_1$ ,  $\psi_2$  are projected onto the same physical state, if one has

$$\langle \phi | \psi_1 \rangle_{\text{phys}} = \langle \phi | \psi_2 \rangle_{\text{phys}}$$
 for all  $\phi$ 

Example:  $\psi_1$ ,  $\psi_2$  are diffeomorphic to each other.

Benjamin Bahr

| Motivation<br>○○○● | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |  |
|--------------------|----------------------------------------|--------------------------------------|--|
| Introduction       |                                        |                                      |  |
|                    |                                        |                                      |  |

### Aim of this talk:

Although no explicit way of summing over  $\kappa$  is known, we will argue (by explicitly computing some SF amplitudes) that, if the  $\sum_{\kappa}$  behaves 'reasonable', then the physical inner product (obtained by using the EPRL spin foam model) will not know about knottings of graphs anymore. I.e.

$$\left\langle \phi \mid \bigcup_{\text{phys}} \right\rangle_{\text{phys}} = \left\langle \phi \mid \bigcup_{\text{phys}} \right\rangle_{\text{phys}}$$

for all  $\phi$ . Therefore the physical states will not contain any knotting information.

| Motivation      | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams | Summary and Discussion |
|-----------------|----------------------------------------|--------------------------------------|------------------------|
|                 | 00000                                  | 0000<br>000000                       |                        |
| Recan of the EP | RI model                               |                                      |                        |

### EPRL à la KKL

We use the EPRL spin foam amplitude Engle, Pereira, Rovelli, Livine '07 as defined for arbitrary two-complexes Kamiński, Kisielowski, Lewandowski. In this model of Euclidean quantum gravity one assigns Spin(4) representations  $(j_f^+, j_f^-)$  to faces f, and intertwiners  $\iota_e$  to the edges e.



$$\iota_{e} : V_{j_{f_{1}}^{+}, j_{f_{1}}^{-}} \otimes V_{j_{f_{3}}^{+}, j_{f_{3}}^{-}} \longrightarrow V_{j_{f_{2}}^{+}, j_{f_{2}}^{-}}$$

under the conditions that for each face  $j_f^{\pm} = |1 \pm \gamma| k_f$  for some spin  $k_f$ . Furthermore the  $\iota_e$  need to be of the form  $\iota_e = \Phi(\hat{\iota}_e)$ , where

イロト 不得下 不良下 不良下 一度

$$\Phi: \ \mathrm{Inv}\left(V_{k_{f_1}} \otimes V_{k_{f_3}} \ \otimes \ V_{k_{f_2}}^*\right) \ \longrightarrow \ \mathrm{Inv}\left(V_{j_{f_1}^+, j_{f_1}^-} \otimes V_{j_{f_3}^+, j_{f_3}^-} \ \otimes \ V_{j_{f_2}^+, j_{f_2}^-}^*\right)$$

is given in terms of fusion coefficients.

#### Benjamin Bahr

|                  | EPRL model for arbitrary two-complexes<br>○●○○○ | Knots and Deformations of spin foams |  |
|------------------|-------------------------------------------------|--------------------------------------|--|
| Recap of the EPR | L model                                         |                                      |  |
|                  |                                                 |                                      |  |

# EPRL `a la KKL

For a vertex v in the interior of  $\kappa$ , the vertex-amplitude  $A_v$  is given by contracting the intertwiners  $\iota_e$  for all edges e that meet in v. Two indices of two intertwiners are contracted iff there is an face between the two according edges.

$$\mathcal{A}_{\nu} = \sum_{n,m} \left( \prod_{f \supset \nu} \delta_{m_{e_f}}^{n_{e_f}} \right) \left( \prod_{e \supset \nu} (\iota_e)_{n_{e_1} \dots, n_{e_{N_e}}}^{m_{e_1} \dots, m_{e_{M_e}}} \right)$$

- ▲ ロ ト ▲ 国 ト ▲ 国 ト ー 国 - - - の ۹ ()

Benjamin Bahr

|                     | EPRL model for arbitrary two-complexes<br>○○●○○ | Knots and Deformations of spin foams | Summary and Discussion |
|---------------------|-------------------------------------------------|--------------------------------------|------------------------|
| Recap of the EPRL n | nodel                                           |                                      |                        |

### Boundary Hilbert space: Spin networks

The two-complex  $\kappa$  induces two spin network states  $\psi_i$ ,  $\psi_2$ , living in the initial and the final hypersurface  $\Sigma_i$ ,  $\Sigma_f$ 



The labels of the graphs are induced by  $j_f^{\pm} = |1 \pm \gamma| k_f$  and  $\iota_e = \Phi(\hat{\iota}_e)$ . We write

$$\psi_i \xrightarrow{\kappa} \psi_f$$

- **イロト イヨト イヨト** - ヨー - のへで

Benjamin Bahr

| EPRL model for arbitrary two-complexes |  |
|----------------------------------------|--|
| 00000                                  |  |
|                                        |  |

Summary and Discussion

#### Recap of the EPRL model

#### Observations about the EPRL amplitude:

Demanding invariance of  $Z[\kappa]$  under trivial subdivisions fixes the edge- and face amplitudes in terms of the vertex amplitude:



- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → ○ ○ ○

#### Benjamin Bahr

| EPRL model for arbitrary two-comp |
|-----------------------------------|
| 00000                             |
|                                   |

Summary and Discussion

Recap of the EPRL model

### Observations about the EPRL amplitude:

Demanding the trivial amplitude to evaluate to 1 fixes the boundary amplitudes:

lexes



Benjamin Bahr

|                       | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams<br>●○○○<br>○○○○○○ |  |
|-----------------------|----------------------------------------|--------------------------------------------------------|--|
| The unknotting spin f | oam κ <sub>0</sub>                     |                                                        |  |

# Unknotting knots

We consider two spin network states  $\psi_i$  and  $\psi_f$  (embedded in  $\sigma_i$  and  $\Sigma_f$ ), which are the same combinatorially, but have a different knotting class.



Consider the transition  $\psi_i \stackrel{\kappa_0}{\to} \psi_f$  between the two states, where the two edges slide across each other. To make life easier, introduce a trivial vertex in the two edges, at the point where they will meet.

・ロト ・個ト ・モト ・モト

э

| EPRL model for arbitrary two-c |
|--------------------------------|
|                                |

Summary and Discussion

(日) (個) (目) (目) (目) 目

#### The unknotting spin foam $\kappa_0$



The computation of the amplitude gives

$$\begin{split} Z[\kappa_0] &= \quad \mathcal{A}_{f_1}^2 \mathcal{A}_{f_2}^2 \mathcal{A}_e^4 \mathcal{A}_v \, \mathcal{B}_{v_1}^2 \mathcal{B}_{v_2}^2 \mathcal{B}_{e_1}^4 \mathcal{B}_{e_2}^2 \\ &= \quad \mathcal{A}_e^2 \mathcal{A}_v \ = \ 1 \end{split}$$

Beniamin Bahr

| EPRL model for arbitrary two-complexes |
|----------------------------------------|
|                                        |
|                                        |

Summary and Discussion

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

The unknotting spin foam  $\kappa_0$ 

Interlude: How to compute the vertex amplitude of  $\kappa_0$ :

Work in  $\mathbb{R}^4,$  an parametrise the faces of the two surface with

$$\begin{array}{lll} f_1(\sigma,\tau) & = & \left(\tau,\sigma,0,0\right) \\ f_2(\sigma,\tau) & = & \left(\tau,0,\sigma,\tau\right) \end{array}$$

with  $-1 \le \tau, \sigma \le 1$  The two faces meet for  $\sigma = \tau = 0$  only. If one cuts a  $S^3$  with radius  $\epsilon$  with the two-complex, one gets:

$$f_1 \cap \epsilon S^3 = \{(\tau, \sigma, 0, 0) \mid \tau^2 + \sigma^2 = \epsilon^2\}$$
$$f_2 \cap \epsilon S^3 = \{(\tau, 0, \sigma, \tau) \mid 2\tau^2 + \sigma^2 = \epsilon^2\}$$

These are two (knotted) circles embedded in  $\epsilon S^3$ :

Benjamin Bahr

| EPRL model for arbitrary two-complexes | <b>K</b> i<br>0 |
|----------------------------------------|-----------------|
|                                        |                 |

Summary and Discussion

э

イロン 不得と 不良と 不良とう

The unknotting spin foam  $\kappa_0$ 

## Interlude: How to compute the vertex amplitude of $\kappa_0$



One can now easily compute the vertex amplitude to be

$$\mathcal{A}_{v} = (2j_{1}^{+}+1)(2j_{1}^{-}+1)(2j_{2}^{+}+1)(2j_{2}^{-}+1)$$

And hence:

$$Z[\kappa_0] = \mathcal{A}_e^2 \mathcal{A}_v = 1$$

Benjamin Bahr

| EPRL model for arbitrary two-complexes |
|----------------------------------------|
|                                        |
|                                        |

Consistent deformations

Consistent deformations of spin foams

We will consider *consistent deformations* of a spin foam  $\kappa$ , and show that the amplitude  $Z[\kappa]$  is invariant under them.

A consistent deformation of a spin foam  $\kappa = (c, \rho, \iota)$  is a homotopy of the underlying two complex c, such that the faces, edges, etc. are allowed to intersect each other:



To ensure that the new object is in fact a two-complex, introduce new faces, edges, vertices by trivial subdivision (under which  $Z[\kappa]$  is invariant).

| EPRL model for arbitrary two-complexes |
|----------------------------------------|
|                                        |

Knots and Deformations of spin foams ○○○○ ○●○○○○ Summary and Discussion

メロト メポト メヨト メヨト 二日

Consistent deformations of spin foams

### Consistent deformations

#### Example:



For the intertwiner  $\iota_e$  at the "new" edges

$$\iota_{e} \; : \; V_{j_{1}^{+}, j_{1}^{-}} \otimes V_{j_{2}^{+}, j_{2}^{-}} \; \longrightarrow \; V_{j_{1}^{+}, j_{1}^{-}} \otimes V_{j_{2}^{+}, j_{2}^{-}}$$

one chooses the identity intertwiner  $\iota_e={\rm id}_{V_{j_1^+,j_1^-}}\otimes {\rm id}_{V_{j_2^+,j_2^-}}.$ 

Benjamin Bahr

Consistent deformations of spin foams

# Consistent deformations

One can show: If  $\kappa_1$  and  $\kappa_2$  are consistent deformations of each other (write  $\kappa_1 \sim \kappa_2$ ), then

$$Z[\kappa_1] = Z[\kappa_2]$$

So in fact one can restrict the sum in the physical inner product over equivalence classes  $[\kappa]$  instead of  $\kappa$ . We assume:

$$\langle \psi_f | \psi_i \rangle_{\text{phys}} = \sum_{[\kappa]: \psi_i \xrightarrow{\kappa} \psi_f} Z[\kappa]$$

Benjamin Bahr

| Motivation                            | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams | Summary and Discussion |  |
|---------------------------------------|----------------------------------------|--------------------------------------|------------------------|--|
|                                       |                                        |                                      |                        |  |
|                                       |                                        | 000000                               |                        |  |
| Consistent deformations of spin foams |                                        |                                      |                        |  |
|                                       |                                        |                                      |                        |  |

# On $\kappa_0$ :

Consider the two states  $\psi_1$  and  $\psi_2$  with a different knotting class, and the two-complex  $\kappa_0$  inbetween them. We have shown already that  $Z[\kappa_0] = 1$ 



So  $\psi_1 \xrightarrow{\kappa_0} \psi_2$ , hence  $\psi_1 \xrightarrow{\kappa_0 \kappa_0^{-1}} \psi_1$ , where  $\kappa_0 \kappa_0^{-1}$  is the concatenation of the two spin foams  $\kappa_0$  and  $\kappa_0^{-1}$ . One can show that:

$$\kappa_0 \kappa_0^{-1} \sim \mathrm{id}_{\psi_1}$$

・ ロト ・ 回 ト ・ ヨト ・ ヨ ・ つへで

| EPRL model for arbitrary two-complexes |
|----------------------------------------|
|                                        |
|                                        |

Summary and Discussion

Consistent deformations of spin foams

# On the spin foam sum

It follows: Let  $\phi$  be any spin network state. Then, there is a one-to-one correspondence between (equivalence classes of) spin foams [ $\kappa_1$ ] and [ $\kappa_2$ ], where

$$[\kappa_1] : \phi \xrightarrow{\kappa_1} \psi_1 \qquad [\kappa_2] : \phi \xrightarrow{\kappa_2} \psi_2$$

Define this by

$$[\kappa_2] := [\kappa_1 \kappa_0]$$

because of  $\kappa_0 \kappa_0^{-1} \sim id_{\psi_1}$  this is actually a bijection between (equivalence classes of) spin foams!

|                  | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |
|------------------|----------------------------------------|--------------------------------------|
|                  |                                        | 0000<br>00000                        |
| Consistent defor | nations of spin foams                  |                                      |

We have already shown that

$$Z[\kappa_2] = Z[\kappa_1 \kappa_0] = Z[\kappa_1] \underbrace{Z[\kappa_0]}_{=1} = Z[\kappa_1]$$

Hence:

$$\langle \phi | \psi_1 \rangle_{\text{phys}} = \sum_{[\kappa_1]: \phi \xrightarrow{\kappa_1} \psi_1} Z[\kappa_1] = \sum_{[\kappa_1]: \phi \xrightarrow{\kappa_1} \psi_1} Z[\kappa_1 \kappa_0]$$
$$= \sum_{[\kappa_2]: \phi \xrightarrow{\kappa_2} \psi_2} Z[\kappa_2] = \langle \phi | \psi_2 \rangle_{\text{phys}}$$

- \* ロ > \* 個 > \* 注 > \* 注 > - 注 - のへで

Benjamin Bahr

|         | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams | Summary and Discussion<br>●○○ |
|---------|----------------------------------------|--------------------------------------|-------------------------------|
| Summary |                                        |                                      |                               |
| 6       |                                        |                                      |                               |

Summary

 Using the generalization of the EPRL vertex amplitudes to arbitrary two-complexes, we have considered the (ill-defined) state sum for the physical inner product

$$\langle \psi_f | \psi_i \rangle_{\text{phys}} = \sum_{[\kappa] : \psi_f \xrightarrow{\kappa} \psi_i} Z[\kappa]$$

and shown that

$$\left\langle \phi \mid \bigcup_{\text{phys}} \right\rangle_{\text{phys}} = \left\langle \phi \mid \bigcup_{\text{phys}} \right\rangle_{\text{phys}}$$

for all  $\phi$ . Therefore the physical states will not contain any knotting information.

|         | EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |
|---------|----------------------------------------|--------------------------------------|
|         |                                        |                                      |
|         |                                        | 000000                               |
| Summary |                                        |                                      |

イロト 不得下 不良下 不良下 一度

### What we have assumed and what we have shown

- We have chosen a normalization of the  $A_e$ ,  $A_f$  such that  $Z[\kappa_1\kappa_2] = Z[\kappa_1]Z[\kappa_2]$ , and that  $Z[\kappa]$  is invariant under trivial subdivisions ( $A_e$ ,  $A_f$  and the boundary amplitudes are fixed in terms of the vertex amplitude by this condition).
- We showed that the spin foam amplitude for an 'unknotting'  $\psi_1 \stackrel{\kappa_0}{\to} \psi_2$  has  $Z[\kappa_0] = 1$ .
- We have shown that the spin foam amplitude  $Z[\kappa]$  is unchanged under a consistent deformation of  $\kappa$ .
- We have assumed that by dividing out the action of the consistent deformations, no non-trivial measure factor arise:

$$\langle \psi_f | \psi_i \rangle_{\text{phys}} = \sum_{[\kappa]: \psi_i \xrightarrow{\kappa} \psi_f} Z[\kappa]$$

| EPRL model for arbitrary two-complexes | Knots and Deformations of spin foams |
|----------------------------------------|--------------------------------------|
|                                        | 0000<br>000000                       |
|                                        |                                      |

#### Summary

#### What to change, in order to keep knotting classes of graphs:

The key point in the analysis is that for the 'unknotting' spin foam  $\kappa_0$ , one has  $Z[\kappa_0] = 1$ . This rests on the generalisation of the EPRL amplitude to more complicated vertices (in particular to ones with knotted neighbourhood SNF):



Benjamin Bahr