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Questions

»|s there a notion of diffeomorphism symmetry in discrete models!?

»Can it help us to adress:
»ambiguities and anomalies, lattice effects
»path integral measure (for labels and triangulations)

»sum over triangulations vs. continuum limit?

>Re|a1;ion to triangulation independence! [preifer 041 How much do we have to sum
over?

»|s the Regge action special?




Two Remarks

»We will qpply\z}\):recise dynamical criterium for the existence/non-existence of
e

symmetries. give reasons to identify the }broken) symmetries we find in
this way as discrete incarnations of (active) diffeomorphism symmetry.

You might disagree and call these symmetries by some other name and then
explainrelationship to diffeomorphism symmetry in continuum limit.

» Although we explicitly work in a discrete setting, these considerations might be
also useful for continuum theories where discrete features appear in the
regularlzatlon of OperatOrS. [Perez & Pranzetti |10, Giesel & Thiemann AQG framework]




Overview

. Criterium for gauge symmetries
. Do we have gauge symmetries in discrete gravity!?
. Why do we care!
. Improving the dynamics with renormalization
Perturbative Expansion
Repercussions for canonical formalism

. Conclusions




Set up: Regge calculus

(classical theory corresponding to spin foam models, lattice loop quantum gravity)

eapproximate space time by

piecewise flat triangulation
*length variables on edges fix geometry
ediscrete action defines dynamics
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A. and B.

Is there a notion of diffeomorphism symmetry in
discretized actions!




A. Criterium for gauge symmetries

ecriterium: non-uniqueness of solutions for fixed boundary conditions

=0

(52537)
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*existence of symmetries depends on dynamics (that is action)!
edifferent solutions might have gauge orbits of different size
e*invariance of action not sufficient for gauge symmetry

ecriterium relevant for
»canonical analysis
»perturbative expansion
»counting of physical degrees of freedom




B. Gauge symmetries in Regge calculus!?

*for boundary conditions leading to flat solutions: non-uniqueness of solutions!
=there are gauge symmetries!

*3d (vanishing cosmological constant): all boundary conditions lead to flat solutions
=gauge symmetries for all configurations

*4d (vanishing cosmological constant): some boundary conditions lead to flat solutions
=gauge symmetries for these configurations

egauge modes correspond to changing position of vertices on flat background
=matched to continuum diffeomorphism symmetry in lineariziation [Rocek and Williams 81]

vertex translation acting on Hessian of action evaluated on
flat solution flat solutions has null modes




B. Gauge symmetries in Regge calculus!?

For (a) curved solution: symmetries are broken.

[Bahr, BD 09]

lowest eigenvalues of Hessians as function of deviation
parameter from 4d flat solution (curvature)

Symmetry is broken, effect quadratic in curvature.



Is there a notion of diffeomorphism symmetry in
discretized actions!

Yes.

|) flat vertices allow for gauge modes corresponding to translations

2) invariance (slightly) broken at non-flat vertices for the Regge action;
effect is quadratic in curvature




C. Why do we care!

eexact symmetries = exact (first class) constraints

[Gambini & Pullin et al 03-05, et al, Bahr & BD 09, BD & Hoehn 09 ]

eanomalies in quantization (by regularization) vs fixing of ambiguities

[for instance Perez & Pranzetti 10 in 3d with cosm. const.]

eperturbative expansion around flat geometries is very subtle if symmetries are broken
[related: Horava-Lifshitz gravity]

epath integral computation: no propagator for pseudo gauge modes

estrong condition on measure in path integral

eaction with exact diffeomorphism symmetry hopefully related to triangulation independent
Hamilton-Jacobi functional: control sum over triangulation!




D. Is there a discretization with exact symmetry!?

Gauge symmetries are properties of the (discrete) action.
=Improve the action.




Construct better actions

eremember: (broken) symmetries are properties of action

eidea: construct actions that capture better continuum dynamics

[Improved and Perfect actions: ..., Symanzik, Wilson, Hasenfratz et al in QCD: avoid Lorentz symmetry breaking!]

*by renormalization group transformation:
fine grain and integrate out fine grained degrees of freedom
eobtain effective action on coarse grained lattice, capturing dynamics of
fine grained lattice

Question: Do we regain local gauge symmetries from continuum?




ld discretized
systems,
perturbatively
and non-
perturbatively

[quantum: Bahr,
Steinhaus & BD wip]

It works!

Examples

3d Regge
calculus with
cosmological

constant

[Bahr & BD 09]

It works!

3d Regge
calculus with
matter

[Banisch & BD wip]

4d Regge
calculus,
perturbative
expansion

[BD & Hoehn 09]
[Bahr & BD &He wip]




3d Regge calculus

without cosmological constant with cosmological constant

® any triangulation of flat space is a ® unique solutions to equations of
solution motion

at every vertex 3dim translation there is no translation symmetry
symmetry acting

triangulation independent not triangulation independent

zero physical degrees of freedom all degrees of freedom physical

exact diffeo symmetry approximate diffeo symmetry




>

integrate out small edge lengths

3d Regge with 3d Regge with curved

cosmological constant simplices
[B.Bahr, BD 09]
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action for simplices with curvature

kK=A\

action for flat simplices

approximate exact
symmetries, symmetries,
triang. dependent triang. independent




|d reparametrization invariant systems

continuum:

take ¢ and t as variables

use auxilary parameter evolution
parameter s

solutions t(s), ¢(s) invariant
under reparametrizations in s

discretization

m (Qn—l—l _ Qn)2 (1 1

V_Qn_l__

2 (tpi1 — tn)? 2 2

e vertex translations symmetry for V =0
e symmetry broken for V' # (0  [Gamini Pullin 03, Marsden West 01]




Examples

evanishing potential

eposition of vertices arbitrary
*one gauge mode
*refinement independent

Remark: piecewise linear
approximation added by hand!

equadratic potential
eposition of vertices fixed
*one pseudo gauge mode
*refinement dependent

elinearization around solution:
kinetic term of pseudo gauge
mode vanishing

egauge breaking in potential!




|d reparametrization invariant discrete systems

There is always a discrete action with exact symmetries!
trick: use the Hamilton-Jacobi functional of continuum theory as discrete action

=>discrete theory captures exactly continuums dynamic

can be obtained by integrating out almost all variables ——m .reﬁnement
(“renormalization group flow”) independent
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continuums solution

Remark: piecewise linear
approximation introduces errors




Existence of symmetries depends on the dynamics.

This dynamics can be improved by constructing actions that approximate
continuum dynamics very well/perfectly.

Interpretation of discrete building blocks depends on dynamics.

Do not see them literally as (flat) blocks but as representing coarse
grained quantities.




4d!?

eaction will be non-local, but might be triangulation independent [Bahr, BD, He wip]

eimpossible to solve equation of motion non-perturbatively:
=expansion around flat space

* What are the properties of this expansion?
To which order are the gauge symmetries/ triangulation independence realized?

Regge calculus Parametrized (an-)harmonic oscillator

e gauge symmetries for flat solutions e gauge symmetries for g, =0, t, arbitrary

e background gauge parameters e background gauge parameters
position of vertices in flat background tn

e symmetries broken for curved solutions e symmetries broken for ¢, # 0




E. Perturbative expansion

[BD, Hohn 09]

=z +ext +efab+ ...

1. o 1
S = 52552'3'%7156{ -+ 6352'3'567’2%{ + 3

i .0 .k
§Sijk:v1x1x1 + ...

| |

solutions not unique solutions unique

We will see:
*Typically: consistent expansion only possibly for specific choices of background gauge.
*For other choices: x1 ~ ¢
*Precise relation with invariance properties of (truncated) Hamilton-Jacobi functional.




E. Perturbative expansion

[BD, Hohn 09]

1 o o 1 o
2
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linear order:

Sii(xo) yg(xo) =0, yg(xo) null vectors with index g

xz) = a%yg -+ a:%y; coordinate transformation to gauge and physical modes

—_— xg and x% remain free

—> 2! determined

first non-linear order:

—_ aﬁ and a:g remain free

—> 2! determined

But there are still the EOM for the gauge modes!




E. Perturbative expansion

[BD, Hohn 09]

Theorem: After solving for the physical modes we have

(e - 1
i 9 ’second order Jg Oxy " ‘second order
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EOM in non-linear theory computed in linearized theory!

in particular:
e first order and second order gauge variables do not appear in EOM

e if EOM is not automatically zero: have to use it as a consistency condition for background
gauge parameters

e EOM is automatically zero if Hamilton Jacobi functional of linearized theory does not
depend on background gauge parameters

Interpretation: background parameters get fixed such that dependence of Hamilton-Jacobi functional
on these parameters is minimal.




Hamilton-Jacobi functional for linearized Regge

Does the Hamilton-Jacobi functional of linearized Regge calculus depend on background
gauge!

Yes! (for a specific example) [BD, Hoehn 09]

-also the case for the parametrized (an-)harmonic oscillator

Consistent perturbative expansion only possible around certain choices for
positions of vertices.




Although linearized Regge has exact symmetries,
it is not triangulation independent.

Need to improve even the quadratic part of the Regge action.
[Bahr, BD, He wip]




Improving the action order by order

51
ZSZ]xlxl + 53523332:131 + €

l improve

now background gauge arbitrary
to non-linear order improve

1 IMP IMP 1 IMP
5_5255 via) +e* S x1+e33'sjk it

It works not only for the harmonic oscillator but also for the anharmonic one!







Repercussions for canonical framework
and quantization!

typical problem of lattice approaches:
anomalous constraint algebra, inconsistent dynamics

a) Canonical formalism reproducing exactly solutions and
(broken) symmetries of discretized action?

b) Constraints? Constraint algebra! Anomalies?




Canonical Framework

continuous action q discrete action

discretization

Legendre Legendre

discrete

q discrete WOnica
continuous canonical form. A

canonical form.
discretization A

continuous time, discrete time,
discrete space, discrete space,
(anomalous) constraints (pseudo) constraints




Canonical Framework

[Bahr, BD '09; BD, Hohn 09]

eevolve spatial triangulation locally by tent moves  [sorkin 75, Barrett et al 97]
ofinite time steps
euse action as generating function for time evolution map

[consistent discretizations, Gambini & Pullin et al 03-05]

°reproduces (broken) symmetries exactly [gan, g0 09] :

symmetries exact = eom not independent =>constraints (first class)

broken= eom almost not independ. =pseudo-constraints

Obtaining anomaly free constraints is equivalent to constructing an
action with exact symmetries.




Evolving spatial triangulations with tent moves

[ Sorkin 75, Barrett et al 97]

time evolution moves:
do not change spatial triangulation/ number of variables
act local, involving only star of a vertex

can obtain local (pseudo-) constraints based at vertices

add tent pole on
vertex connect vertices, obtain tent

/

£7

vertex with star in bigger
triangulation




Canonical Framework

equations of motion:

95,
o,
95, 1 0S,
ole e
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canonical (tent move)
transformation:

use S, as generating
function for canonical
transformation




4-valent vertex: flat dynamics

equation for the tent pole

solution

B Z aAA¢ . 8AA
N ole A ale

ADe ADe

momenta associated to edges

3A
constraints = pe + Z =(In) va (&)

ADe

Momenta do not depend on variables at next time step = constraints.

For higher valent vertices ¢a # 0 , momenta depend (weakly) on variables at next time step

= pseudo constraints.




‘D)’namiCS’ fOI" d 4-SimPIEX [BD, Ryan 08, BD, Hoehn 09]

*3d surface of a 4-simplex: five 4-valent vertices
eapply constraints to every vertex

dihedral angles
Ce = + 047
€ - pe ale

ADe

YA (l)

geometric meaning?

esymplectic coordinate transformation:

ol°

Ax = AA(l), pa = 8Aﬁpe




‘D)’namiCS’ fOI" d 4-SimPIEX [BD, Ryan 08, BD, Hoehn 09]

Ca = pa+Ya(l)

econstraints fix the momenta to agree with the dihedral angles as defined by lengths

eare first class! (despite very complicated form of dihedral angles)

egenerate deformation of hypersurface (via vertex translations): Hamiltonian and diffeomorphism
constraints

*3d surface of a 4-simplex: zero physical degrees of freedom: no 4d curvature




Higher-valent vertex: (linearized) dynamics o roem o

For higher valent vertices ea # 0 , momenta depend (weakly) on variables at next time step

= pseudo constraints.

But for the linearized dynamics = constraints.

oS

e

gleare ?

[="l+y, p="p+m, S =y

Hessian on flat space has
null eigenvectors Y7 .
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Higher-valent vertex: (linearized) dynamics o roem o

0~ 04Aa, ]
ole £~ ple T4 In

L " ADe d11=01

O] — Ylelﬂ'? -+ Ylel

econstraints give relation between intrinsic and extrinsic geometry

eare first class! (despite very complicated form of dihedral angles)

egenerate linearized deformation of hypersurface (via vertex translations): Hamiltonian and
diffeomorphism constraints

epreserved by linearized tent move dynamics (analogous to quadratic Hamiltonian)

esplit into gauge and physical variables (relation to linearized curvature on inner triangles)







Repercussions:

|) action with exact symmetries:

-proper first class constraints, gauge freedom

2) action with broken symmetries:

-pseudo constraints with weak dependence on lapse/shift

3) linearized theory inherits symmetries of solution
-exact constraints in linearized theory

-background gauge gets fixed at lowest non-linear order



Conclusions

discrete actions generally break diffeomorphism symmetries
regaining symmetries by coarse graining, renormalization

canonical framework exactly mimics covariant symmetries:
constraints and pseudo-constraints

perturbative expansion subtle: background gauge fixed if
symmetries are broken




Prospects

understand triangulation (in-)dependence and investigate
non-locality properties of improved actions

generalize curved simplices: improved action adapted to
background solution (application to cosmology)

improved quantum action/ renormalization in spin foams

canonical quantization: improve constraints

Explore general mechanisms and conditions for
regaining gauge symmetries.




