
From quantum gravity
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Much has happened in the last few years in QG. Using several of these developments
(new vertex, coherent states, asymptotic analysis, 2-point function calculation, holomorphic representa-

tion, KKL extension, loop quantum cosmology, ACH construction ...), it is possible to outline a
general QG theory. Here:

• 1. The theory without “derivations from classical GR”.
→ Extremely natural definition; SU(2) ⊂ SL(2, C)→ Einstein equations?

• 2. → A transition amplitude computation in cosmology. (“Spinfoam Cosmology”)
LQG → Friedmann equation! (Bianchi, CR, Vidotto).
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This presentation is strongly influenced by discussions with, and lectures by, Eugenio Bianchi.



Hilbert space

H̃ =
M
Γ

HΓ.

A graph Γ is a set of L links l and N nodes n, together with two relations s (source) and t (target)

assigning a source node s(l) and a target node t(l) to every link l. (crf. Bahr)

Graph Hilbert space: HΓ = L2[SU(2)L/SU(2)N ] where: ψ(Ul) → ψ(Vs(l)UlV
−1
t(l)).

Peter Weyl: L2[SU(2)L] =
L
jl

N
l(H̃
∗
jl
⊗ H̃jl ).

The two factors above are associated to the two nodes s(l) and t(l). Hence H̃Γ =
L
jl

N
n H̃n

Node Hilbert space : H̃n =
N
l∈nHl.

Intertwiner space: Hn = InvSU(2)[H̃n].

Then
|Γ, jl, vn〉 ∈ H̃ =

M
Γ

M
jl

O
n

Hn.

This is the Hilbert space on which loop quantum gravity is defined.

Divide H̃ by appropriate identifications: H̃/ ∼. (i): if Γ is a subgraph of Γ′ then we must identify HΓ

with a subspace of HΓ′ . (ii) divide HΓ by the action of the discrete group of the automorphisms of Γ.



Operators

Lil : flux of Ashtekar’s electric field, or the flux of the inverse triad, across “an ele-
mentary surface cut by” the link l.

Area operator

AΣ = 8πγ~G
X
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Physical picture

|Γ, jl, vn〉

“Granular” space. A node n determines a “grain” or “chunk” of space.

The volume of each grain n is vn. Two grains n and n′ are adjacent if there is a link
l connecting the two. In this case the area of the elementary surface separating the
two grains is 8πγ~G

p
jl(jl + 1).

Variants. Γ is the two-skeleton dual to a triangulation of a 3d space → flat tetrahedra. In some cases to

3d Regge geometry. “Twisted geometries”.

Important: Fixed time states → Boundary states.



Coherent states

Partially coherent: LS-states (Livine-Speziale);
Fully coherent: FS-states (Freidel-Speziale) or holomorphic states (Thiemann-Bianchi-

Magliaro-Perini).

L3 eigenstates: L3|j,m〉 = m|j,m〉, m = −j,−j + 1..., j − 1, j.

Coherent states: |j, ~n〉 = Dj(R~n)|j, j〉.

LS-states: |jl, i~nl 〉 =
R
SU(2)dg

N
l∈nD

jl (g)|jl, ~nl〉 ∈ Hn.

Heat kernel on SU(2): Kt(g) =
P
j(2j + 1)e−j(j+1)tχ(g)

Holomorphic-states: ψHl (Ul) =
R
SU(2)N dgn

N
l∈ΓKt(gs(l)Hlg

−1
t(l)

U−1
l ).

cfr: Theimann’s et al complexifier’s states. Ashtekar’s et al holomorphic representation.



Relation:
H = D

1
2 (R~n) e−i(ξ+iη)σ3/2 D

1
2 (R−1

~n′ )

such that one finds for large ηl

〈jl, in~nl |ψHl(~nl,~n′l,ηl,ξl)〉 ∼
Y
l

e
−

(jl−j
0
l )2

2σl eiξljl

identifying ~n and ~̃n with the ~n in s(l) and t(l) respectively and with 2j0l + 1 = ηl/tl
and σl = 1/(2tl).

The holomorphic states are superpositions of LS states forming wave packets on the
spins!

“Geometrical” interpretation for the (~n, ~n′, ξ, η) labels: ξ is the angle between the
normals of the tetrahedra. (Freidel-Speziale).

HΓ contains an (over-complete) basis of “wave packets” ψHl = ψ~nl,~n′l,ξl,ηl
, with a

nice interpretation as discrete classical geometries with intrinsic and extrinsic curva-
ture.



Derivations

1.

Phase space of GR in the Ashtekar formulation → Poisson algebra of observables →
represent in terms of operators on a Hilbert space → factor away the relevant gauge
invariances. 3d diffeomorphism “washes away” the location of the graph Γ in Σ.

2.

Discretize GR on a 4d lattice with a boundary, and study the resulting boundary
Hilbert space of the lattice theory. Then

HSL(2C)
Γ = L2[SL(2, C)L/SL(2, C)N ].

States: ψ(Hl), Hl ∈ SL(2C), where Hl ∼ P exp
R
l A.

Generators J of the Lorentz group are ∼ B = e ∧ e. More precisely, since

S =

Z
(B +

1

γ
B∗) ∧ F [A]

J = (B +
1

γ
B∗).



Relation with SL(2C): the map f

What is the relation between the QG Hilbert spaceHSU(2)
Γ and the Lorentzian Hilbert

space HSL(2C)
Γ ?

Peter-Weyl again

HSL(2C)
Γ =

X
(pl,kl)

O
l

(H∗(pl,kl)
⊗H(pl,kl)

).

(p ∈ R, k ∈ Z+/2) labels of SL(2C) unitary irreducible representations. Decompose each Lorentz
irreducible into a sum of SU(2) irreducibles.

H(p,k) =
∞M
j′=k

H
j′

The first term of this sum H
j′=k ⊂ H(p,k), namely the lowest spin irrep, is important.

Let
f : HSU(2)

Γ →HSL(2C)
Γ

f : Hj 7−→ Hj ⊂ H(p=γj,k=j).



Image of f is the subspace of HSL(2C)
Γ where

pl = γjl, kl = jl,

and j′l = kl = jl.

~L and ~K: generators of the rotations and the boosts in SL(2C) then:

〈ψ| ~K − γ~L|φ〉 = 0.

Thus, the image of f is a subspace of L2[SL(2, C)L/SL(2, C)N ] where the constraints

~K = γ~L

are implemented weakly (You Ding, CR).

These implies B = e ∧ e.

Thus: the image of the natural map f : HSU(2)
Γ → HSL(2C)

Γ is the subspace where
the boundary states of a covariant quantum GR live.



Transition amplitudes

Dynamics is given by a linear functional W on H.

P (ψ) = |〈W |ψ〉|2

is the probability associated to the process described by the boundary state ψ.

Guidelines for constructing W (Eugenio Bianchi):

1. Locality. Elementary amplitude Wv ↔ elementary process (QFT).

2. H is a density. Acts on nodes. This is the key results that started LQG at the
end of the 80’. Wv(jl, vn) = 〈Wv |jl, vn〉.

3. Lorentz invariance. There should be a map from SU(2) spin networks to a
Lorentz covariant language that characterizes the vertex.

I am now ready to define the vertex. The vertex amplitude of LQG is : ....



.

.

〈Wv |ψ〉 = (fψ)(11)

0-10

(EPRL-FK-LS-KKL)



〈Wv |ψ〉 = (fψ)(11)

Astonishingly, this appears to give the Einstein equations in the large distance clas-
sical limit.

Cfr. QED: 〈W |ψAe1 ⊗ ψBe2 ⊗ ψ
γ
µ〉 = e γABµ δ(pe1+pe2+pγ)

The amplitude takes a very manageable form when written in terms of coherent states

Wv(jl, ~nl, ~n
′
l) =

Z
dgn

O
l

〈~nl|gs(l)g
−1
t(l)|~n

′
l〉(γj,j)

Even more in the Euclidean theory:

j
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The full amplitude: spinfoams

A two-complex is a set of faces f meeting at edges e, in turn meeting at vertices v.

A spinfoam σ: is a two-complex colored with jf and ie.

If we “cut a spinfoam with a 2d-surface”, we obtain a spin network:
edges e → nodes n ; faces f → links l.
In particular, an S3 surface surrounding a vertex v of σ defines a spin network ψv .

The vertex amplitude of the vertex v of σ is defined to be

Wv(σ) := 〈Wv |ψv〉.

The amplitude of a spinfoam

〈Wv |ψ〉 =
X
σ

Y
f

d(jf )
Y
v

Wv(σ). (1)

d(jf ) = (2jf + 1)

The expression (??) fully defines a quantum theory of gravity. All that remains is to
extract physics from this theory, and show that it gives GR in some limit.
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The expression (??) fully defines a quantum theory of gravity. All that remains is to
extract physics from this theory, and show that it gives GR in some limit.

(The last sentence is a provocative over-statment.)



Physical transition amplitudes

R: ball in spacetime; Σ its boundary. For any state ψ on Σ, interpret

P (ψ) = |〈W |ψHl 〉|2

as a probability associated to the process defined by the boundary state ψ.

In particular: if R is a ball in Einstein spacetime; Σ its boundary. Σ has intrinsic
and and extrinsic geometry (g, k). Choose holomorphic-state ψHl peaked on (g, k).
Then I expect

P (ψHl ) = |〈W |ψHl 〉|2 ∼ 1.

And
WHl (E1, ..., En) = 〈W |E1...En|ψHl 〉 :

scattering amplitude between the n “particles” (quanta).

But: there is no physics without approximation!



Approximations:

1. Graph expansion Γ with a small number L of links. ∼ multipole expansion.

2. Large-distance expansion R large. Boundary state peaked on boundary ge-
ometry large compared with the Planck length. Holomorphic boundary states
ψHl where ηl >> 1 in each Hl.

Vertex in this limit (Barrett, Dowdall, Fairbairn, Hellmann, Pereira):

Wv ∼ eiSRegge + e−iSRegge +K

where SRegge is the functional of the boundary variables, under the identifi-
cations of these with variables describing a Regge geometry.

Using the holomorphic representation:

Wv ∼ eiSRegge

The sum disappears in the holomorphic representation! (Bianchi Magliaro Perini)
→ strong hint that the theory can yield GR.

3. Vertex expansion In the number N of vertices of σ. In which regime is this ex-
pansion valid? Hint: Regge interpretation of the vertex amplitude → flatness!



.

Can we extract physics?



(N=1, L=10, EEEE=gabgcd) → The graviton propagator

Choose N = 1, L = 10 and first order in 1/ηl. Γ = Γ5. ψL given by the (intrinsic
and extrinsic) geometry of the boundary of a regular 4-simplex of size L.

Wabcd
mn = 〈W |~Lna · ~Lnb ~Lmc · ~Lmd|ψL〉 (2)

−〈W |~Lna · ~Lnb|ψL〉〈W~Lmc · ~Ljmd|ψL〉.
m, n, a, b... = 1, ..., 5: nodes of Γ5.

Compare with

Wabcd(xm, xn) = 〈0|gab(xn)gcd(xm)|0〉
− 〈0|gab(xn)|0〉 〈0|gcd(xm)|0〉.

in conventional QFT, where gab(x) is the gravitational field operator.

(??) has been computed recently in the Euclidean theory and shown to converge to
the free progatator of GR in the large L limit (Bianchi, Magliaro, Perini).

It is clear that n point functions in gravity can be computed order by order.



(N=1, L=8, no EE) → Spinfoam Cosmology

Choose N = 1, L = 8 where Γ =����r r ����r rand first order in 1/ηl.

(c′, p′)r r

(c, p)r r
u

Choose coherent states |Hl〉 describing a homogeneous and
isotropic geometry. This geometry is determined by (c, p) in
the past and two (c′, p′) in the future. Let z = c+ ip.

Then 〈W |ψHl(z,z′) 〉 = W (z, z′).

This can be computed explicitly! (Bianchi, Vidotto, CR)

W (z, z′) = C zz′e−
z2+(z′)2

~



This resulting amplitude happens to satisfy an equation

Ĥ(z,
d

dz
)W (z′, z) = −

„
−~2 d2

dz2
+ z2 +

3

2
~
«2

W (z′, z) = 0.

Take the classical limit of this operator (that is: ~ d
dz
→ z̄, ~→ 0). This gives

H → −(−z̄2 + z2)2 = p2c2 = (V ol)
√
pc2 = (V ol)ȧ2a

This is precisely the hamiltonian constraint of a homogeneous and isotropic
cosmology.

→ LQG yields the Friedmann equation.



Homeworks

1. Find other computable amplitudes.

2. Compute the propagator (??) in the Lorentzian theory (easier in the holomor-
phic basis?).

3. Compute the three point function and compare it with the vertex amplitude
of conventional perturbative quantum gravity on Minkowski space.

4. Compute the next order of the two-point function, for N = 2.

5. Compute the next order of the two-point function, for L > 10.

6. Understand the normalization factors in these terms, and their relative weight.
Find out under which conditions the expansion is viable.

7. Study the possible (infrared) divergences in (??). The sum can be split into a
sum over two-complexes and a sum over labelings (spin and intertwiners) for
a given two complex. The potential divergences of the second are associated
to “bubbles” (nontrivial elements of the second homotopy class) in the two
complex. Classify them and study how do deal with these.

8. Do the infrared radiative corrections renormalize the vertex amplitude?

9. Do radiative corrections generate new vertices? Or is the vertex protected by
the Lorentz symmetry?

10. Use the analysis of the these divergences to study the scaling of the theory.



11. Does G scale?

12. Study the quantum corrections that this theory adds to the tree-level n-point
functions of classical general relativity. Can any of these be connected to
potentially observable phenomena?

13. Is there any reason for a breaking of local Lorentz invariance, that could lead
to observable phenomena such as γ ray bursts energy-dependent time of arrival
delays, in this theory?

14. Find a simple group field theory whose expansion gives (??).

15. Compute more in spinfoam cosmology, and compare with standard LQC.

16. Compare with the Ashtekar-Campiglia-Henderson way of building spinfoams
from canonical LQC.

17. Find the relation between this formalism and the way dynamics can be treated
in the canonical theory. Formally, if H is the Hamiltonian constraint, we expect
something like the main equation

HP = 0

where the operator P satisfy 〈W |ψ ⊗ φ〉 = 〈ψ|P |φ〉, since P is formally a
projector on the solutions of the Wheeler de Witt equation

Hψ = 0.

Can we construct the Hamiltonian operator in canonical LQG such that this
is realized?



18. What fixes the correct face amplitude?

19. How to couple fermions and YM fields to this formulation?

20. To couple matter, can we use the super-simple group theoretical argument that
selects the gravitational vertex?

21. Where is the cosmological constant in the theory?

22. ...

23. Prove that this theory is well-defined, free of uncontrollable divergences, gives
GR in the low energy limit, and compute a predictions that will be later
confirmed by experiments.

24. Or alternatively: show that this theory is wrong and therefore:

25. correct it.

There is much to do !



Summary (incomplete)

1. I have sketched a tentative general framework for defining a full quantum the-
ory of gravity and computing transitions out of it.

2. There is a specific theory defined by a simple and rather natural vertex.

3. To first order, this theory leads to the correct form of the 2-point function.

4. To first order, it leads to the Friedmann equation.
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1. I have sketched a tentative general framework for defining a full quantum the-
ory of gravity and computing transitions from of it.

2. There is a specific theory defined by a simple and rather natural vertex.

3. To first order, this theory leads to the correct form of the 2-point function.

4. To first order, it leads to the Friedmann equation.

5. Many aspects of this theory are not fixed.

6. We do not know if the theory is consistent.


