Asymptotics of Spin Foams: What we learned

Frank Hellmann

University of Nottingham

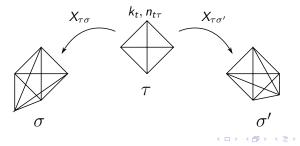
March 3, 2010

< 注入 < 注入 →

The Statesum

The statesum of EPRL, FK is given in terms of a triangulation of a manifold and can be written in terms of variables living on triangles t, tetrahedra τ and 4-simplices σ :

 $k_t \in \mathbb{N}/2 = Irrep(\mathrm{SU}(2))$ $n_{t\tau} \in S^2$ $X_{\tau\sigma} \in \mathrm{SL}(2, \mathbb{C}) \text{ or } \mathrm{Spin}(4)$



The Statesum

The statesum of EPRL, FK is given in terms of a triangulation \mathcal{T} of a manifold and can be written in terms of variables living on triangles t, tetrahedra τ and 4-simplices σ :

 $k_t \in \mathbb{N}/2 = Irrep(\mathrm{SU}(2))$ $n_{t\tau} \in S^2$ $X_{\tau\sigma} \in \mathrm{SL}(2,\mathbb{C}) \text{ or } \mathrm{Spin}(4)$

It is then given by:

$$Z(\mathcal{T}) = \sum_{k_t} \int_{n_{t\tau}} \int_{X_{\tau\sigma}} \prod_t f_2(k_t, n_{t\tau}) \prod_{\tau} f_3(k_t, n_{t\tau}) \prod_{\sigma} f_4(k_t, n_{t\tau}, X_{\tau\sigma})$$

(B)

The Statesum

The statesum of EPRL, FK is given in terms of a triangulation \mathcal{T} of a manifold and can be written in terms of variables living on triangles t, tetrahedra τ and 4-simplices σ :

 $k_t \in \mathbb{N}/2 = Irrep(\mathrm{SU}(2))$ $n_{t\tau} \in S^2$ $X_{\tau\sigma} \in \mathrm{SL}(2, \mathbb{C}) \text{ or } \mathrm{Spin}(4)$

It is then given by:

$$Z(\mathcal{T}) = \sum_{k_t} \int_{n_{t\tau}} \prod_t f_2(k_t, n_{t\tau}) \prod_{\tau} f_3(k_t, n_{t\tau}) \prod_{\sigma} \int_{X_{\tau\sigma}} f_4(k_t, n_{t\tau}, X_{\tau\sigma})$$

(B)

Heuristics

 $X_{\tau\sigma}$ integration is local per 4-simplex. Heuristically: most spins in the sum are large, so approximately evaluate this integral using stationary phase ($S_4 = \ln f_4$ is linear in k):

$$\int_{X_{\tau\sigma}} f_4(\lambda k_t, n_{t\tau}, X_{\tau\sigma}) \sim \sum_{\delta S_4 = 0, \operatorname{Re}(S_4) = 0} \frac{e^{S_4(\lambda k_t, n_{t\tau}, X_{\tau\sigma})}}{\sqrt{detH}}$$

(same spirit as in Conrady, Freidel '08, works very well in the PR model as seen in Dowdall, Gomes, FH '09)

• • = • • = •

Geometry

 $\delta S_4 = 0$ and $\operatorname{Re}(S_4) = 0$ (and $n_{t\tau}$ 3d non-degeneracy) imply:

- ► $b_{t\tau}$ from $(0, b_{t\tau}) = k_t X_{\tau\sigma}(0, n_{t\tau})$ is a constant $\mathfrak{su}(2)$ valued 2-form on σ (aka vector geometries), or
- B_{tτ}(σ_g) = μ_σ ★ k_tX_{τσ}(1, 0, 0, 0) ∧ (0, n_{tτ}) are the bivectors of a geometric 4-simplex (σ_g),

 $S^4 = \mu_{\sigma} S_{Regge}(\sigma_g).$

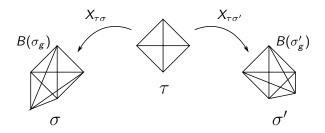
The $\mathfrak{su}(2)$ sector is much larger than the geometric sector (dominant scaling contribution in BC (Barrett, Steele 02)).

The geometric sector can be distinguished in various ways: 4d non-degeneracy (Conrady, Freidel) gluing contraints (Dittrich, Ryan, Speziale), Regge likeness (Barrett, Dowdall, Fairbairn, Gomes, FH, Pereira)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Geometry gluing

The geometry of the 4-simplex σ_g agrees with the boundary geometry induced on the tetrahedra τ by $k_t n_{t\tau}$. Thus we get a consistent geometry throughout the manifold. X provide the connection between the frames in different 4-simplices.



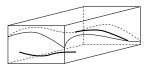
Two questions:

- ▶ Do the su(2) solutions spoil the geometric sector?
- What is the meaning of µ?

(B)

su(2) where are you?

The remaining k,n integrations should peak us on solutions to the variation of the action S_4 with respect to the solution space.



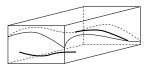
Do the $\mathfrak{su}(2)$ solutions induce spurious equation of motion? That is, is the geometric space a subspace of the $\mathfrak{su}(2)$ space?

Euclidean:

 $(1 \pm \star)B_{t\tau}(\sigma_g)$ are constant $\mathfrak{su}(2)$ valued 2-form on σ . If we add an arbitrary constant $\mathfrak{su}(2)$ solution $b_{t\tau}$ to it we obtain good boundary data k,n but are out of the geometric sector (15 possible perturbations out of which only 10 are geometric) \Rightarrow possibly spurious equations of motion for the geometric sector.

su(2) where are you?

The remaining k,n integrations should peak us on solutions to the variation of the action S_4 with respect to the solution space.



Do the $\mathfrak{su}(2)$ solutions induce spurious equation of motion? That is, is the geometric space a subspace of the $\mathfrak{su}(2)$ space?

Lorentzian:

The solutions require hyperbolic space to glue up, no way to perturb them into the $\mathfrak{su}(2)$ solutions. \Rightarrow Regge equations of motion.

The meaning of μ

Bivectors reconstruct geometry and orientation. This orientation does not need to be constant throughout the manifold μ measures the orientation relative to a fiducial reference one, e.g. standard orientation in \mathbb{R}^4 . Using $N_{\tau} = X_{\tau\sigma}(1, 0, 0, 0)$.

$$B_{t\tau}(\sigma_g) = \star k_t \frac{N_{\tau} \wedge N_{\tau'}}{|N_{\tau} \wedge N_{\tau'}|} = \mu_{\sigma} \star k_t X_{\tau\sigma}(1,0,0,0) \wedge (0,n_{t\tau})$$

Then:

$$\frac{N_{\tau} \wedge N_{\tau'}}{|N_{\tau} \wedge N_{\tau'}|} = \mu_{\sigma} N_{\tau} \wedge X_{\tau\sigma}(0, n_{t\tau})$$

and thus $\mu X_{\tau\sigma}(0, n_{t\tau}) \cdot N_{\tau'} > 0$ and $\mu X_{\tau\sigma}(0, n_{t\tau})$ are the outward pointing triangle normals.

The meaning of μ (2)

Bivectors reconstruct geometry and orientation. This orientation does not need to be constant throughout the manifold μ measures the orientation relative to a fiducial reference one, e.g. standard orientation in \mathbb{R}^4 . So what?

The action on the manifold is

$$\sum_{\sigma} \mu_{\sigma} S_{Regge}(\sigma_g).$$

These actions have very different solutions for different set of signs μ . In Ponzano Regge we get non-flat manifolds and divergences. We need to interpret these solutions (anti space?) or make them go away (modify boundary state space?).

Conclusions

Caveats

- $n_{t\tau}$ required to be 3d non-degenerate.
- Uncertain status of inserting the asymptotics into the full statesum.
- ► No knowledge of the phase of the Hessian.
- Unclear if Regge likeness propagates from the boundary (maybe unlikely).

but if

- Full geometric understanding of the non-metric solutions now available.
- Larger triangulations look vastly more feasible than in BC.
- Possibility of spurious EOMs in the Euclidean case, Lorentzian model looks better, maybe "good enough".
- Orientations problematic. Possibly indicates problem with the boundary state space (half the holomorphic states?).

(3)