
Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

Coupling Matter to Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

The Niels Bohr Institute, Copenhagen, Denmark

Collaboration with Johannes Aastrup,
Ryszard Nest and Mario Paschke

Zakopane, Poland, 02.03.2010



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

Outline of talk

Motivation

• Noncommutative geometry - Connes’ work on the standard
model of particle physics.

• Canonical quantum gravity / Loop quantum gravity.

Aim

• Intersection of noncommutative geometry and quantum
gravity.

The Construction

• A spectral triple over a configuration space of connections.

Physical Interpretation

• Spaces of connections.

• The Poisson bracket of General Relativity.

• Semi-classical analysis: emergence of matter and the Dirac
Hamiltonian.
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Noncommutative Geometry

I A generalization of Riemannian geometry, based on a dual
formulation using algebras and Dirac operators. A central object
is the spectral triple:

I A Spectral Triple is a collection (B,H,D):
a ∗-algebra B represented as operators in the Hilbert space H; a
self-adjoint, unbounded operator D, acting in H such that:

1. The resolvent of D, (1 + D2)−1, is compact.
(manageable spectrum)

2. The commutator [D, a] is bounded ∀a ∈ B.
(first-order operator)

I First example: Riemannian geometry

(B = C∞(M),H = L2(M,S),D =6D)

7 ”axioms”, Connes 2008: reconstruction theorem, complete
equivalence.
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I Key observation: This ”machinery” does not require the algebra
B to be commutative. This opens the door to noncommutative
geometry.

I A noncommutative example from physics: the standard model
coupled to gravity [Dubois-Violette, Connes, Lott, Chamseddine, Marcolli, ...]

I B = C∞(M)⊗ BF , BF = C⊕H⊕M3(C)

”almost commutative algebra”

I The classical action of the standard model coupled to gravity
emerges from a heat kernel expansion of the corresponding
Dirac operator.

I The fact that the Standard Model coupled to gravity fits into the
framework of NCG is a non-trivial result.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

I Key observation: This ”machinery” does not require the algebra
B to be commutative. This opens the door to noncommutative
geometry.

I A noncommutative example from physics: the standard model
coupled to gravity [Dubois-Violette, Connes, Lott, Chamseddine, Marcolli, ...]

I B = C∞(M)⊗ BF , BF = C⊕H⊕M3(C)

”almost commutative algebra”

I The classical action of the standard model coupled to gravity
emerges from a heat kernel expansion of the corresponding
Dirac operator.

I The fact that the Standard Model coupled to gravity fits into the
framework of NCG is a non-trivial result.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

I Key observation: This ”machinery” does not require the algebra
B to be commutative. This opens the door to noncommutative
geometry.

I A noncommutative example from physics: the standard model
coupled to gravity [Dubois-Violette, Connes, Lott, Chamseddine, Marcolli, ...]

I B = C∞(M)⊗ BF , BF = C⊕H⊕M3(C)

”almost commutative algebra”

I The classical action of the standard model coupled to gravity
emerges from a heat kernel expansion of the corresponding
Dirac operator.

I The fact that the Standard Model coupled to gravity fits into the
framework of NCG is a non-trivial result.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

Central point
Formulation of the classical standard model coupled to general
relativity as a single gravitational theory. The standard model
emerges from a modification of space-time geometry:

C∞(M)→ C∞(M)⊗ BF

Questions
Does quantum field theory translate into this language of
noncommutative geometry?
- this would presumably involve quantum gravity.
How to explain the finite algebra BF ?

Our goal
To construct a framework which combines noncommutative
geometry with elements of quantum gravity/quantum field theory.
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Our Project

I Inspiration: Loop Quantum Gravity
I Connection and loop variables.
I Projective systems of graphs.

I Initial Aim: to construct a spectral triple over an algebra of
holonomy loops, i.e. functions on the configuration space of
smooth connections A:

L : ∇ → Hol(∇, L) ∈ Mn(C)

I Key point: the algebra of holonomy loops is naturally
noncommutative.
→ noncommutative geometry;
→ LQG as a ”top-down” program of unification.

I Hope/Idea: to look for a (semi-) classical limit where the
algebra of loops descent to an almost commutative algebra
(i.e. that some of the noncommutativity remains).
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I Strategy: Exploit the pro-manifold structure of A (graphs).

I Key step: Consider a countable system of graphs
(∼ separable Hilbert space).

I In [hep-th/0802.1783] , [hep-th/0802.1784] we worked with
a triangulation and its barycentric subdivisions.

....

I In [hep-th/0807.3664] we worked with cubic lattices.

....

I Both these systems of graphs (and many more) permit
spectral triple constructions.

I Semi-classical analysis indicate that cubic lattices are natural
(end of talk).
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The construction

A single cubic lattice

I Let Γ be a finite 3-dim finite cubic
lattice with edges {εi} and vertices
{vi}

εj : {0, 1} → {vi}

I Assign to each edge εi a group
element gi ∈ G

∇ : εi → gi

G is a compact Lie-group. The space of such maps is
denoted AΓ. Notice:

AΓ ' G n

I The space AΓ is a coarse-grained approximation of a
configuration space of smooth connections, denoted by A.
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I Algebra: A loop L is a finite sequence
of edges L = {εi1 , εi2 , . . . , εin} running
in Γ (choose basepoint v0). Discard
trivial backtracking.

v0

I Noncommutative product
by gluing at basepoint

L1 ◦ L2 6= L2 ◦ L1

I Involution: L∗ = {ε∗in , . . . , ε
∗
ij
, . . . , ε∗i1}

with ε∗j (τ) = εj(1− τ) , τ ∈ {0, 1}

I The algebra generated by based loops is a ?-algebra which
we denote BΓ.
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of edges L = {εi1 , εi2 , . . . , εin} running
in Γ (choose basepoint v0). Discard
trivial backtracking.

v0

I Noncommutative product
by gluing at basepoint

L1 ◦ L2 6= L2 ◦ L1

I Involution: L∗ = {ε∗in , . . . , ε
∗
ij
, . . . , ε∗i1}

with ε∗j (τ) = εj(1− τ) , τ ∈ {0, 1}

I The algebra generated by based loops is a ?-algebra which
we denote BΓ.
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I Hilbert space: There is a ’natural’ Hilbert space

HΓ = L2(G n,Cl(T ∗G n)⊗Ml(C))

involving the Clifford bundle over G n (l size of rep. of G ).
L2 is with respect to the Haar measure on G n.

I Clifford bundle and matrix factor needed to accommodate a
Dirac type operator and a representation of the algebra.

I The loop algebra BΓ is represented on HΓ by

fL · ψ(∇) = (1⊗∇(L)) · ψ(∇) , ψ ∈ HΓ

where the first factor acts on the Clifford-part of the Hilbert
space and the second factor acts by matrix multiplication on
the matrix part of the Hilbert space.
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A family of lattices

I Consider an infinite system of nested, 3-dimensional lattices

Γ0 → Γ1 → Γ2 → . . .

with Γi a subdivision of Γi−1

...

On the level of the associated manifolds AΓi this gives rise to
projections

AΓ0

P10←− AΓ1

P21←− AΓ2

P32←− AΓ3

P43←− . . .
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I Consider next a corresponding system of spectral triples

(B,H,D)Γ0 ↔ (B,H,D)Γ1 ↔ (B,H,D)Γ2 ↔ . . .

with the requirement of compatible with the maps between
graphs.

I This requirement restricts the choice of Dirac type operator.

I At the level of a graph, a compatible operator has the form

D =
∑

k

akDk

where the sum runs over different copies of G and where

Dk(ξ) =
∑

i

ei · dei (ξ) ξ ∈ L2(G ,Cl(TG ))

where ei are left-translated vectorfields. The ak ’s are free
parameters. The sum over copies of G is w.r.t. a change of
variables.
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The limit

I In the limit of repeated subdivisions, this gives us a
candidate for a spectral triple

(B,H,D)Γi −→ (B,H,D)A

I Result: For a compact Lie-group G the triple (B,H,D)A is a
semi-finite? spectral triple:

. D’s resolvent (1 + D2)−1 is compact (wrt. trace) and

. the commutator [D, b] is bounded

provided the sequence {ai} approaches ∞.

?semi-finite: everything works up to a symmetry group with
a trace (CAR algebra) [Carey, Phillips, Sukochev].
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What physical interpretation does this
spectral triple construction have?
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Spaces of connections

I Denote
A�

:= lim
Γ←−
AΓ

I Take a cubulation of a 3-manifold Σ by the graphs {Γi}i∈N+

I Denote by A the space of smooth G -connections. There is a
natural map

χ : A → A�

, χ(∇)(εi ) = Hol(∇, εi )

where Hol(∇, εi ) is the holonomy of ∇ along εi (now in Σ).

I Result: χ is a dense embedding A ↪→ A�

I This result mirrors results in LQG based on piece-wise
analytic graphs. It is possible to capture information of A
with a countable system of graphs.

I This result holds for many different systems of ordered
graphs. Fx triangulations w. barycentric subdivisions.
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D interacting with the algebra

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

I The interaction between D and the algebra of loops
reproduces the structure of this bracket.

I The left-invariant vector fields in D corresponds to
infinitesimal flux-operators sitting at the vertices in the cubic
graphs.

I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.
I the flux operators are stored in the Dirac type operator.
I The classical loop- and flux-variables on a projective system

of cubic lattices separates the Ashtekar variables.

I Point: the spectral triple construction captures information
about the kinematical part of GR.
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D interacting with the algebra

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

I The interaction between D and the algebra of loops
reproduces the structure of this bracket.

I The left-invariant vector fields in D corresponds to
infinitesimal flux-operators sitting at the vertices in the cubic
graphs.

I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.

I the flux operators are stored in the Dirac type operator.
I The classical loop- and flux-variables on a projective system

of cubic lattices separates the Ashtekar variables.

I Point: the spectral triple construction captures information
about the kinematical part of GR.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

D interacting with the algebra

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

I The interaction between D and the algebra of loops
reproduces the structure of this bracket.

I The left-invariant vector fields in D corresponds to
infinitesimal flux-operators sitting at the vertices in the cubic
graphs.

I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.
I the flux operators are stored in the Dirac type operator.

I The classical loop- and flux-variables on a projective system
of cubic lattices separates the Ashtekar variables.

I Point: the spectral triple construction captures information
about the kinematical part of GR.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

D interacting with the algebra

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

I The interaction between D and the algebra of loops
reproduces the structure of this bracket.

I The left-invariant vector fields in D corresponds to
infinitesimal flux-operators sitting at the vertices in the cubic
graphs.

I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.
I the flux operators are stored in the Dirac type operator.
I The classical loop- and flux-variables on a projective system

of cubic lattices separates the Ashtekar variables.

I Point: the spectral triple construction captures information
about the kinematical part of GR.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

D interacting with the algebra

I Recall the Poisson bracket between
loop and flux variables in LQG:

{F a
S (E ), hC (A)} = ±hC1 (A)τ ahC2 (A)

C2

S

C1

I The interaction between D and the algebra of loops
reproduces the structure of this bracket.

I The left-invariant vector fields in D corresponds to
infinitesimal flux-operators sitting at the vertices in the cubic
graphs.

I In the continuum limit of repeated subdivisions the spectral
triple contains information equivalent to a representation of
the Poisson brackets of General Relativity:

I the holonomy loops build the algebra.
I the flux operators are stored in the Dirac type operator.
I The classical loop- and flux-variables on a projective system

of cubic lattices separates the Ashtekar variables.

I Point: the spectral triple construction captures information
about the kinematical part of GR.



Coupling Matter to
Loop Quantum Gravity
via the Spectral Triple

Jesper Møller Grimstrup

Outline of talk

Noncommutative
Geometry

The Project

The construction

Spaces of Connections

The Poisson structure of
General Relativity

Eliminating the choice
of basepoint

The Dirac Hamiltonian

Symmetries

A candidate for a
partition function

The Constraints?

Connes Distance
Formula

Discussion

Eliminating the choice of basepoint

I Notice: The choice of basepoint matters when one works
with the noncommutative algebra of holonomy loops - in
contrast to traced loops (LQG).

I Aim: to build invariance under
choice of basepoint into the
construction.

I Let Bv be the loop algebra based
at the vertex v . The relationship
between Bv0 and Bv1 is

Bv0 = Up(v0, v1)Bv1U∗p (v0, v1) v0

v1

where p = {εi1 , εi2 , . . . , εin} is a path from v0 to vi and Up

the corresponding parallel transport along p

Up(v0, v1) = gi1 · gi2 · . . . · gin
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I Introduce the operators

Ũp = Ũi1 Ũi2 · . . . · Ũin

with
Ũi = ea

i (1⊗ βa
i ) (gi ⊗ 1)

associated to the path p = {εi1 , εi2 , . . . , εin} . βa
i is an

arbitrary matrix associated to the i ’th edge and a⊗ b refer
to left and right actions.
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I These operators are mutually orthogonal

〈Ũp|Ũp′〉 =

{
1 if p = p′

0 if p 6= p′

due to the elements of the Clifford
algebra in Ũi .

v0

v1

v2p2

p1
L0

I Let L0 be a loop based at v0 and L1 and L2 the
corresponding loops based at v1 and v2:

L1 = U∗p1
(v0, v1)L0 Up1 (v0, v1) , L2 = U∗p2

(v0, v2)L0 Up2 (v0, v2)

Then

〈Ũp1ψ(v1) + Ũp2ψ(v2)|L0|Ũp1ψ(v1) + Ũp2ψ(v2)〉 =

〈ψ(v1)|L1|ψ(v1)〉+ 〈ψ(v2)|L2|ψ(v2)〉 ,

where ψ(vi ) is a matrix factor associated to vi (will become
a spinor field).
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I This shows that the sum

Ũp1ψ(v1) + Ũp2ψ(v2)

carries representations of both algebras Bv1 and Bv2 .

I It is natural to add up all these matrix factors

ξk(ψ) =
1

n(v)

∑
i

Ũpiψ(vi )

to obtain a construction which takes all possible basepoints
at the k’th level into account simultaneously.

I Important: in ξk(ψ) the sum runs over vertices in Γk\Γk−1.
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Special Semi-Classical States

I Pick a point (A,E ) in phase-space (Ashtekar variables).
Coherent states φt

k(E ,A) on AΓk
are given by (t ∼ l2

P)

Φt
k(E ,A) =

∏
i

φt
εi

where φt
εi are Hall’s coherent states on the i ’th copy of G .

I These states are well defined and normalizable also in the
limit k →∞. (separable Hilbert space)

I Let ψ be a spinor field. Consider now the state

Ψt
k(ψ,E ,A) = ξk(ψ)Φt

k(A,E )

I This is a ”natural” sequence of states {Ψt
k} assigned to each

level of subdivision of lattices.
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The Dirac Hamiltonian

I The expectation value of D on the states Ψt
k will only

involve terms of the form

〈Ũi1 Ũi2 . . . Ũinψ(vi )...|ea
i+1dea

i+1
|Ũi1 Ũi2 . . . Ũin+1ψ(vi+1)...〉

∼ points ”one step apart” are coupled.

I The expectation value of D on the states Ψt
k gives

lim
k→∞

lim
t→0
〈Ψ̄t

k |D|Ψt
k〉

=

∫
Σ

d3xψ̄(x)

(
1

2
(
√

gNγaem
a ∇m + N∇m

√
gγaem

a ) + γ0√gNm∂m

)
ψ(x)

+ zero order terms.

provided we set an = 23n and write βa
i = N(x)γa + Na(x)γ0.

Also, gi ' 1 + Ai ; ∇i = ∂i + Ai and Em
a =

√
gem

a .

I Here: ψ(x) ∈ M2(C)⊕M2(C) and γµ acts from the right
and Ai from the left.

I This looks like the Dirac Hamiltonian in 3+1 dimensions
(principal part).
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and Ai from the left.

I This looks like the Dirac Hamiltonian in 3+1 dimensions
(principal part).
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Comments

I This suggest that these semi-classical states should be
interpreted as one-fermion states in a given foliation and
given background gravitational fields.

I The semi-classical analysis seems to single out cubic lattices
− the lattices play the role of a coordinate system.

I The semi-classical analysis determines the sequence {an} of
scaling parameters.

I The lattice ”disappear” in this limit and the symmetries are
restored. (return to ”connection picture”).

I The lapse and shift fields N and Na emerge naturally from
the state, due to the process of ”eliminating the basepoint”.
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Symmetries

I The semi-classical limit discards dependencies on everything
but:

lim
n→∞

Γn\Γn−1

I Philosophy: removal of any number of finite graphs does not
affect the result:

A ↪→ A�

(measure zero, classically).

I However, so far this limit is only well defined together with
the semi-classical limit t → 0.

I We would like to take this limit of the entire construction to
obtain an action of the diffeomorphism group.

I Thus, we should consider sequences of states {ψn(AΓn )}
with certain continuity conditions.
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A candidate for a partition function

I The trace of heat-kernel resembles a partition function

Tr exp(−s(D)2) ∼
∫
A

[d∇] exp
(
−s(D)2

)
where D2 plays the role of an action or an energy.

I This object is finite.

- this is a key consequence of having a spectral triple.

I Thus, a key motivation for a spectral triple construction is it
ensures a finite partition function.
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The constraints?

I We would like to find something which looks ”natural”
within the framework of the spectral triple.

I We hope to find the Hamiltonian through the square of D.

I It is possible to write down an expression which gives the
Hamiltonian in the classical limit. The operator

∑
v

23n

(
8

7

)2

Tr(M(v)σaσbdei
a
dej

b
Lk)εijk

where Li , i ∈ {1, 2, 3}, are loops in a plaquet and v is a
vertex in Γn\Γn−1, will descent to the Hamilton∫

NE i
aE j

bF c
ij ε

ab
c + NaEm

a E n
b F b

mn

in the semi-classical limit given by the states Φt
n, with

M(v) = N(v)1 + iNa(v)σa .
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Connes Distance Formula

I Given a spectral triple (B,H,D) over a manifold M the
distance formula reads

d(ξx , ξy ) = sup
b∈B

{
|ξx(b)− ξy (b)|

∣∣|[D, b]| ≤ 1
}

where ξx , ξy are homomorphisms B → C. This can be
generalized to noncommutative spaces/algebras.

I Question: What about Connes distance formula for the
spectral triple (B,H,D) based on the algebra of loops?

I Answer: A distance between field configurations.

I The spectral triple construction is a metric structure on a
configuration space of connections. This idea goes back to
Feynman, Singer, Atiyah ...
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Discussion

I We have found a semi-finite spectral triple (B,H,D) which
encodes the kinematical part of quantum gravity.

I By working with the noncommutative algebra of holonomy
loops we naturally encounter matter couplings - the Dirac
Hamiltonian is an output.

I The semi-classical limit involves a restoring of symmetries.

- do many-particle states exist in H?
- computation of quantum corrections possible.
- symmetries? Emergence and persistence (higher orders)?

I The lapse and shift fields emerge naturally from the states.

- does this point towards a natural formulation of a
Wheeler-deWitt equation?

I The algebra does, so far, not play a role in the semi-classical
analysis. Question: what algebra will emerge?

- commutative or noncommutative?
- what about the fluctuations of the Dirac operator?
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loops we naturally encounter matter couplings - the Dirac
Hamiltonian is an output.

I The semi-classical limit involves a restoring of symmetries.

- do many-particle states exist in H?
- computation of quantum corrections possible.
- symmetries? Emergence and persistence (higher orders)?

I The lapse and shift fields emerge naturally from the states.

- does this point towards a natural formulation of a
Wheeler-deWitt equation?

I The algebra does, so far, not play a role in the semi-classical
analysis. Question: what algebra will emerge?

- commutative or noncommutative?
- what about the fluctuations of the Dirac operator?
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“A striking aspect of this approach to geometry of Ā/G is that its
general spirit is the same as that of non-commutative geometry
and quantum groups: even though there is no underlying
differential manifold, geometrical notions can be developed by
exploiting the properties of the algebra of functions.”

- Ashtekar, Lewandowski, 1996
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