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Motivation

LQG:
holonomies h[A] — 'multiplication operators’
fluxes E¢, — 'derivative operators’

simplicial context:
interpretation: fluxes as elementary building blocks for 2d—surfaces

® Notion of simplicial geometry from a full LQG context?
® Spinfoam dynamics from LQG?

® LQG — non—Abelian flux algebra — non—commutative geometry?

A flux representation for LQG:
holonomies he[A]  — ‘derivative operators’
fluxes Ef, — 'multiplication operators’

Strategy: Start with LQG—Hilbert space H 47 — perform unitary transformation using ‘group
Fourier transform’ methods
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The LQG basis

[ _ Ashtekar Isham

'92; Baez ‘93, Ashtekar. Lewandowski '93; Marolf, Mourao '94;

rolf, Maurao, Thiemann
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regularization of classical phase space

The LQG basis
Basic variables
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The LQG basis
Basic variables

regularization of classical phase space [ hizversionso ]
fluxes
holonomies
he[A]
U1 e
e "
U2 va
JA
he[A] = Pes El = Tr {hu’i) > [ dz® Adab [hg g > (FE) o) (a:):|
e*

phase space structure:

h € SU(2) , E € su(2) = for each graph ~ and dual graph v*: ’ Py = Qe (T*SU2)) ‘

see also [ F'E"de'«lgpez"a'e] for a derivation of P~ from a simplicial point of view




The LQG basis
Quantization

example:
v
- . 94
space of cylindrical functions:
‘functions of a finite number of holonomies’ 73
Cyl"={C7": A—-C;A— C7(A)|C7(A)
i= c(hey (A), hey (A), ... he\’y\ (A)}
Cyl := @ Cyl” 92
¥ 9

(91,92, 93,94)

6
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The LQG basis
Quantization

example:
v
- . 94
space of cylindrical functions:
‘functions of a finite number of holonomies’ 73
Cyl"={C7": A—-C;A— C7(A)|C7(A)
i= c(hey (A), hey (A), ... he\,y\ (A)}
Cyl := @ Cyl” 92
¥ 9

by (91,92, 93, g4)
for each graph:

Hilbert space: H~ := La(SU(2)7, dug)

ol _
inner product: (¢ [ ¥)., := [ 1:[1 dgid(g1s- - 91y )Y(91, -5 9)])
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The LQG basis
Quantization

example:
v
- . 94
space of cylindrical functions:
‘functions of a finite number of holonomies’ 73
Cyl"={C7": A—-C;A— C7(A)|C7(A)
i= c(hey (A), hey (A), ... he\,y\ (A)}
Cyl := @ Cyl” 92
¥ 9

by (91,92, 93, g4)
for each graph:

Hilbert space: H~ := La(SU(2)7, dug)

ol _
inner product: (¢ [ ¥)., := [ 1:[1 dgid(g1s- - 91y )Y(91, -5 9)])

fundamental operators:

(f4 > 67)(9i) == (FrP+)(9s) — pointwise muliplication
(B> 6r)(g0) = (Xi 0 63)(g1)  — (SU(2)-) derivation

by € Hy, fy €CylY, X : left-, or right—invariant vector fields on the e-th copy of SU(2),

depending on edge—orientation

6
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The LQG basis
Cylindrical consistency

7 72
ag)d
/ﬂg\/. 9 g
#(9) (add v ¢)(g,9") := P(9)1y
T Y2
si)b
W o p
#(9) (subp¢)(g1,92) = ¢(g192)

m 72

inv
—

g
#(9) (inv > ¢)(g) :== (g™ ")



The LQG basis
Ashtekar—Isham—Lewandowski Hilbert space

cylindrical consistency:
How to evaluate (¢, | 9,) for ~y1 # 2 777

— choose a bigger graph ~ that contains 1,72 and use add,sub,inv to evaluate scalar
product on ~y

" 72

add,sub,inv
—




The LQG basis
Ashtekar—Isham—Lewandowski Hilbert space

cylindrical consistency:
How to evaluate (¢, | 9,) for ~y1 # 2 777

— choose a bigger graph ~ that contains 1,72 and use add,sub,inv to evaluate scalar
product on ~y

" 72

add,sub,inv
—

One has to ensure that (¢ | 1/1)7 does not depend on the choice of v used to evaluate the inner

product. [ Ashtekar, Lewandowski]

projective limit
—

Lo(SU2), dugr) Har = La(A,dpar)

LQG is a true continuum theory! (see [ Lprandowski, Okolow, | for uniqueness of H 4 7,)



Non—commutative Fourier transformation techniques

[ Freidel, Livine '05;
Freidel, Majid '06; Joung, Mourad, Noui '08

‘map between functions on SU(2) and functions on su(2) '



Non—commutative Fourier transform

Plane Waves

define:

e:SU(2) x su(2) — C;  (g,2) — eg(z):

— Te(zlgl)

® Tr in fundamental representation, |g| = sgn(Trg)g
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Non—commutative Fourier transform

Plane Waves

define:
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® Tr in fundamental representation, |g| = sgn(Trg)g
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Non—commutative Fourier transform

Plane Waves

define:

e:SU) x su(2) — C;  (g,2) m eg(x) := eT(@l9D

® Tr in fundamental representation, |g| = sgn(Trg)g
e identification su(2) ~ R (as vector spaces) = interpret eq4(z) as elements of C(R?)

® symmetry: e_4(x) = eg(x) , no distinction between upper and lower hemisphere of SU(2)
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Non—commutative Fourier transform

Algebra and * —product

o define C(R3) : linear span of e4(x) ie. C(R®) 3 ¢(x) = [ d(g)ey(x)
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Non—commutative Fourier transform

Algebra and * —product

o define C(R3) : linear span of e4(x) ie. C(R®) 3 ¢(x) = [ d(g)ey(x)

® equip C(R3) with a +—product (associative, non—commutative):

*: C(R?) x C(R?) — C(R?);  (eg*ey)(x) = egy ()

extension to all C(R3) by linearity

® C.(R3):= (C(R3),%) non-commutative algebra of functions over R3

11/21



Non—commutative Fourier transform

Group Fourier transform

e define ‘group Fourier transformation’ as

FOSUER) — R f(g) = f(z) = (Fb f)() = / dgeq () 1(9)

12/21



Non—commutative Fourier transform

Group Fourier transform

define ‘group Fourier transformation’ as

F:C(SUQ2) = C«(R%);  f(9) = f(2) := (Fb f)(x) := /dgeg(x)f(g)

for general f € C(SU(2)) F is not invertible: ey(z) =e_q4(x) .

= need to restrict to subspace of ‘even’ functions:

CH(SU(2)) :=={f € C(SUQ)If(9) = f(-9))}

Peter—Weyl decomposition:

effectively: restrictions to functions on fl9) = f(=9) ;
SO(3) = flg) = ZN di f7"" Dinn(9)
JEN

only even spins contribute!




Non—commutative Fourier transform

Group Fourier transform

define ‘group Fourier transformation’ as

F:C(SUQ2) = C«(R%);  f(9) = f(2) := (Fb f)(x) := /dgeg(x)f(g)

for general f € C(SU(2)) F is not invertible: ey(z) =e_q4(x) .

= need to restrict to subspace of ‘even’ functions:

CH(SU(2)) :=={f € C(SUQ)If(9) = f(-9))}

Peter—Weyl decomposition:

effectively: restrictions to functions on fl9) = f(=9) ;
SO(3) = flg) = ZN di f7"" Dinn(9)
JEN

only even spins contribute!

inverse Fourier transform:

FL:Cu(R?) = CT(SUQR);  flg) = (F v f)lg) = /dl‘(eg—l * f)(@)



Non—commutative Fourier transform

Hilbert space and unitary map

® define inner product on C«(R3) as

(1 CE) X CE) = € (F )= (1), = [ dalF e f)(a)

e Hilbert space: H, :=Cyx(R3) wrt (.|.)

*
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Non—commutative Fourier transform

Hilbert space and unitary map

® define inner product on C«(R3) as

(1 CE) X CE) = € (F )= (1), = [ dalF e f)(a)

o Hilbert space: Hy := Cx(R3) wrt (. |.),
® Fis a unitary transformation between Hy := L2(SU(2)/Z2) and Hi .
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LQG in the dual picture

«Or «Fr o«

A
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LQG in the dual picture
Space of cylindrical functions

standard LQG:
® space of functions: Cyl:= @&y ®cecy C(SU(2))
® Cyl densein Hap
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LQG in the dual picture
Space of cylindrical functions

standard LQG:
® space of functions: Cyl:= @&y ®cecy C(SU(2))
® Cyl densein Hap
unitary transformation:
® Restriction to SO(3)-LQG: CylT := @ ®cecy CT(SU(2))
® for each graph ~ :

Y Y
94 T4

g2 €2
g1 x1

La([SU(2)/Z)) - H

¢(glv"'7g|'y\) (%(Il,...,a?h‘)
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LQG in the dual picture
Cylindrical consistency |

el 72

add

/\/‘ -
!
xr
T T

b(z) (add > ¢)(z, ') := P(z)do(z)
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LQG in the dual picture
Cylindrical consistency |

" 2

P N Vet
b(z) (add > @) (z, 2') := ¢(x)d0(z)
71 72

/\;\/. - Z1 x2
o)

(sub b @)(z1,22) = (dzy * ¢)(z2)
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LQG in the dual picture
Cylindrical consistency |

add
—

72
si)b
x1 To
o(x) (subp §)(z1,72) = (2, * §)(x2)
71 72

o(x) (inv > §)(2) := d(—2)

16 /21



LQG in the dual picture
Cylindrical consistency Il

® associated with each graph we have a natural inner product

ol

(& |¢2 /Hd% (S1 51,y $2) (@15 2)5)
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LQG in the dual picture
Cylindrical consistency Il

® associated with each graph we have a natural inner product

ol

b1l da) = dzi(1 %1,y $2)(@1, ... )
(d1162), /131 11,y 62) (@1 ]

® consider two functions dspyl (:Ei),’l[)—m (y;j) defined on possibly different graphs ~1, 2
® choose any graph ~ that contains 1,72
® one can check that (¢1 | ¢2), ~ does not depend on the choice of ~ by

1. either direct computation,
2. or using unitarity of F

= Cylindrical consistency fulfilled, projective limit can be taken.
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LQG in the dual picture

Action of fundamental operators
Fluxes:

; d
(Boe)@ = | Gemoonn®)]

[d } x ()
= —€[oxp(tri eg(x a.e.
g Clexptrt) | %o

= T?(mTi) *x eg(x)
= z'xey(x)

= (Eébqg)(xl,...,az‘,ﬂ) = (xze *e q;)(xl,...xm)
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LQG in the dual picture

Action of fundamental operators
Fluxes:

; d
(Boe)@ = | Gemoonn®)]

[d } x ()
= —€[oxp(tri eg(x a.e.
dt [ P(t )] +=0 9

= T?(xTi) *x eg(x)
= z'*xey(z)
é(EéDqg)(xl,...,mM) = (zl ke q;)(xh...acm)

Cylindrical functions:
each f € Cyl can be written as (restricting to one edge here)
f(g) = [dz(eg * f)(z) = enough to know the action of ‘plane waves’:

eg(®)eg(y) = eg(z +y)
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LQG in the dual picture

Action of fundamental operators
Fluxes:

; d
(Boe)@ = | Gemoonn®)]

[d } x ()
= —€[oxp(tri eg(x a.e.
g Clexptrt) | %o

= T?(xTi) *x eg(x)
= z'*xey(z)
é(EéDqg)(xl,...,a:‘,ﬂ) = (zl ke q;)(xh...xm)

Cylindrical functions:
each f € Cyl can be written as (restricting to one edge here)
f(g) = [dz(eg * f)(z) = enough to know the action of ‘plane waves’:

eg(®)eg(y) = eg(z +y)

translation (in x —space)!

Fluxes act as x—multiplication operators, cylindrical functions as generators of

18/21



Properties

Geometrical interpretation

Gauge invariance remark: construction not limited to 4—valent case!

g3

g1

@(91,92,93,94) =
[ dg (991,992,993, 994)
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Properties

Geometrical interpretation

Gauge invariance remark: construction not limited to 4—valent case!

g3
*
g1

d(x1, 22,23, 74) = R
(x1+T2+T3+Ta) %0, (21, T2, T3, T4)

o(91,92,93,94) =
[ dg#(991, 992,993, 994)
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Properties

Geometrical interpretation

Gauge invariance

g3

*

g1

d(x1, 22,23, 74) = X
§(z1+z2+T3+T4) %z, (71, T2, T3, T4)

o(91,92,93,94) =
[ dg#(991, 992,993, 994)

= Gauss constraint implies x—closure in z—space. Natural interpretation: z* are the oriented areas of
faces e* € v*!

= We can interpret ¢A>(xl) as functions living on a dual cell-complex v*, flux operators provide
information about (fuzzy) geometry.
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Properties
Dual SNF and Semiclassical analysis

® what do 'dual SNF' look like?
any function ¢ € H, can be Peter-Weyl-decomposed into 'dual spin-network basis’ as

J,m,n
Dhn () := [ dgeg(2) Dinn(9) =
J;(z) Bessel-functions

Ta, (I))

||

Din (€777 U]

e = Dl..(z) peaked on |z| =2j + 1
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Properties
Dual SNF and Semiclassical analysis

what do 'dual SNF’ look like?
any function d) € H* can be Peter—Weyl-decomposed into 'dual spin—network basis’ as

j,m,n

Dgnn = [dgeg(z Dfnn(g) =
Jj(z) Bessel functions

Ta, (I))

||

Dipn(e™"5) [ tgr]

= Di,.(x) peaked on |z| =2j+1

Livine-Speziale coherent states |j, 7) [ spine o7]
Dj, ;(x) = [ dgeg(2) (5,7 | D’ (9) | 4, 72)
saddle point analysis reveals that in the large j—limit this function is peaked on & =7 !

this confirms the interpretation that the label 7 in these states can be identified with the
classical 3d—normals (in the large j-limit)!
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Properties
Dual SNF and Semiclassical analysis

what do 'dual SNF’ look like?
any function d) € H* can be Peter—Weyl-decomposed into 'dual spin—network basis’ as

i,m,n
j Ja; (=) _; L -
Dl (@) i= [dgeg(z)Dipn(g) = T4 D (e=i7%9) [ vigee]
Jj(z) Bessel functions

= Di,.(x) peaked on |z| =2j+1

Livine-Speziale coherent states |j, 7) [ spine o7]
Dj, ;(x) = [ dgeg(2) (5,7 | D’ (9) | 4, 72)
saddle point analysis reveals that in the large j—limit this function is peaked on & =7 !

this confirms the interpretation that the label 7 in these states can be identified with the
classical 3d—normals (in the large j-limit)!

x—space provides a new possibility to define semiclassical (coherent?) states for LQG with a
manifest (simplicial-) geometric interpretation (work in progress)
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Outlook

® generalization to full SU(2) —Loop Quantum Gravity? — use plane waves from [ Fo. M
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® generalization to full SU(2) —Loop Quantum Gravity? — use plane waves from [ Fo. M

projective limit
—

* Hir “Lo(E)" 777
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generalization to full SU(2) —Loop Quantum Gravity? — use plane waves from [ N Mirad

Hor projectiﬁve limit “Ly(B)" 772

explore further relation between different semiclassical states

. Thiemann '00; Livine, Speziale ‘07
— compare with [ g0 Magiiaro, Perini ‘10
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Outlook

ui, Mourad

generalization to full SU(2) —Loop Quantum Gravity? — use plane waves from [ N Mirad

Hor projectiﬁve limit “Ly(B)" 772

explore further relation between different semiclassical states

. Thiemann '00; Livine, Speziale ‘07
— compare with [ g0 Magiiaro, Perini ‘10

3d picture vs. 4d picture, intrinsic or extrinsic interpretation of x —variables? [ Freidel, Speziale '10]?

expand x—product in Planck—length, non—commutative geometry from LQG?
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