A non-commutative flux representation for LQG

Johannes Tambornino

Albert Einstein Institut, Potsdam, Germany

based on work with Aristide Baratin, Bianca Dittrich and Daniele Oriti (to appear)

'Open Problems in Loop Quantum Gravity'-workshop, Zakopane 01/03/2009

Motivation

LQG:

 $\begin{array}{ll} \text{holonomies} \ h_e[A] & \rightarrow \text{`multiplication operators'} \\ \text{fluxes} \ E_{e*}^i & \rightarrow \text{`derivative operators'} \end{array}$

simplicial context:

interpretation: fluxes as elementary building blocks for 2d-surfaces

Motivation

LQG:

 $\begin{array}{ll} \text{holonomies} \ h_e[A] & \rightarrow \text{`multiplication operators'} \\ \text{fluxes} \ E_{e*}^i & \rightarrow \text{`derivative operators'} \end{array}$

simplicial context:

interpretation: fluxes as elementary building blocks for 2d-surfaces

- Notion of simplicial geometry from a full LQG context?
- Spinfoam dynamics from LQG?
- LQG → non-Abelian flux algebra → non-commutative geometry?

Motivation

```
\begin{array}{ccc} & \mathbf{LQG}: \\ \mathsf{holonomies} \ h_e[A] & \to \text{`multiplication operators'} \\ \mathsf{fluxes} \ E_{e*}^{i} & \to \text{`derivative operators'} \end{array}
```

simplicial context:

interpretation: fluxes as elementary building blocks for 2d-surfaces

- Notion of simplicial geometry from a full LQG context?
- Spinfoam dynamics from LQG?
- LQG → non-Abelian flux algebra → non-commutative geometry?

```
A flux representation for LQG: holonomies h_e[A] \rightarrow 'derivative operators' fluxes E_{e*}^i \rightarrow 'multiplication operators'
```

Strategy: Start with LQG-Hilbert space $\mathcal{H}_{AL} \to \text{perform unitary transformation using 'group}$ Fourier transform' methods

Outline of the talk

- 1. The LQG basis
- 2. Non-commutative Fourier transform techniques
- 3. LQG in the dual picture
- 4. Outlook

Ashtekar Isham '92; Baez '93; Ashtekar, Lewandowski '93; Marolf, Mourao '94; Ashtekar, Lewandowski '94; Ashtekar, Lewandowski, Marolf, Maurao, Thiemann '95]

Basic variables

regularization of classical phase space

Basic variables

regularization of classical phase space

this version:

phase space structure:

 $h \in \mathrm{SU}(2)$, $E \in \mathfrak{su}(2)$ \Rightarrow for each graph γ and dual graph γ^* : $\mathcal{P}_{\gamma} = \bigotimes_{e \in \gamma} (T^* \mathrm{SU}(2))^{|\gamma|}$

see also [Freidel, Speziale] for a derivation of \mathcal{P}_{γ} from a simplicial point of view

Quantization

example:

space of cylindrical functions:

'functions of a finite number of holonomies'

$$\begin{aligned} \operatorname{Cyl}^{\gamma} &= \{ C^{\gamma} : \mathcal{A} \to \mathbb{C}; A \mapsto C^{\gamma}(A) \, | \, C^{\gamma}(A) \\ &:= c(h_{e_1}(A), h_{e_2}(A), \dots h_{e_{|\gamma|}}(A)) \} \\ \operatorname{Cyl} &:= \bigoplus_{\gamma} \operatorname{Cyl}^{\gamma} \end{aligned}$$

Quantization

example:

space of cylindrical functions:

'functions of a finite number of holonomies'

$$\begin{aligned} \operatorname{Cyl}^{\gamma} &= \{ C^{\gamma} : \mathcal{A} \to \mathbb{C}; A \mapsto C^{\gamma}(A) \mid C^{\gamma}(A) \\ &:= c(h_{e_1}(A), h_{e_2}(A), \dots h_{e_{|\gamma|}}(A)) \} \\ \operatorname{Cyl} &:= \bigoplus_{\gamma} \operatorname{Cyl}^{\gamma} \end{aligned}$$

$$Cyl := \bigoplus_{\gamma} Cyl^{\gamma}$$

for each graph:

Hilbert space: $\mathcal{H}_{\gamma}:=L_2(\mathrm{SU}(2)^{|\gamma|},d\mu_H)$

inner product:
$$\langle \phi \mid \psi \rangle_{\gamma} := \int \prod\limits_{i=1}^{|\gamma|} dg_i \bar{\phi}(g_1, \ldots, g_{|\gamma|}) \psi(g_1, \ldots, g_{|\gamma|})$$

Quantization

example:

space of cylindrical functions:

'functions of a finite number of holonomies'

$$Cyl^{\gamma} = \{C^{\gamma} : \mathcal{A} \to \mathbb{C}; A \mapsto C^{\gamma}(A) \mid C^{\gamma}(A)$$

$$:= c(h_{e_1}(A), h_{e_2}(A), \dots h_{e_{|\gamma|}}(A))\}$$

$$Cyl := \bigoplus_{\alpha} Cyl^{\gamma}$$

for each graph:

Hilbert space: $\mathcal{H}_{\gamma} := L_2(\mathrm{SU}(2)^{|\gamma|}, d\mu_H)$

inner product:
$$\langle \phi \mid \psi \rangle_{\gamma} := \int \prod_{i=1}^{|\gamma|} dg_i \bar{\phi}(g_1, \dots, g_{|\gamma|}) \psi(g_1, \dots, g_{|\gamma|})$$

fundamental operators:

$$\begin{array}{ll} (f_{\gamma} \rhd \phi_{\gamma})(g_i) := (f_{\gamma}\phi_{\gamma})(g_i) & \longrightarrow \text{pointwise muliplication} \\ (E_e^i \rhd \phi_{\gamma})(g_i) := (X_e^i \rhd \phi_{\gamma})(g_i) & \longrightarrow \text{(SU(2)-) derivation} \end{array}$$

 $\phi_{\gamma} \in \mathcal{H}_{\gamma}, \quad f_{\gamma} \in \operatorname{Cyl}^{\gamma}, \quad X_{e}^{i} : \text{ left-, or right--invariant vector fields on the } e\text{--th copy of } \operatorname{SU}(2),$ depending on edge--orientation

The LQG basis Cylindrical consistency

Ashtekar-Isham-Lewandowski Hilbert space

cylindrical consistency:

```
How to evaluate \langle \phi_{\gamma_1} \mid \psi_{\gamma_2} \rangle for \gamma_1 \neq \gamma_2??? \rightarrow choose a bigger graph \gamma that contains \gamma_1, \gamma_2 and use \mathbf{add}, \mathbf{sub}, \mathbf{inv} to evaluate scalar product on \gamma
```


Ashtekar-Isham-Lewandowski Hilbert space

cylindrical consistency:

How to evaluate $\langle \phi_{\gamma_1} \mid \psi_{\gamma_2} \rangle$ for $\gamma_1 \neq \gamma_2$??? \rightarrow choose a bigger graph γ that contains γ_1, γ_2 and use $\mathbf{add}, \mathbf{sub}, \mathbf{inv}$ to evaluate scalar product on γ

One has to ensure that $\ \langle \phi \mid \psi \rangle_{\gamma} \$ does not depend on the choice of γ used to evaluate the inner product. [Ashtekar, Lewandowski].

$$L_2(\mathrm{SU}(2)^{|\gamma|},d\mu_H)\stackrel{\mathsf{projective\ limit}}{ o} \mathcal{H}_{AL}:=L_2(\bar{\mathcal{A}},d\mu_{AL})$$

LQG is a true continuum theory!

(see [Lewandowski, Okolow, Sahlmann, Thiemann 0.05] for uniqueness of \mathcal{H}_{AL})

Non-commutative Fourier transformation techniques

```
Freidel, Livine '05;
Freidel, Majid '06; Joung, Mourad, Noui '08]
```

'map between functions on $\,\mathrm{SU}(2)\,$ and functions on $\,\mathfrak{su}(2)\,$ '

Non-commutative Fourier transform Plane Waves

define:

$$e: \mathrm{SU}(2) imes \mathfrak{su}(2) o \mathbb{C}; \quad (g,x) \mapsto e_g(x) := e^{\mathrm{Tr}(x|g|)}$$

ullet Tr in fundamental representation, $|g|=\mathrm{sgn}(\mathrm{Trg})\mathrm{g}$

Non-commutative Fourier transform Plane Waves

define:

$$e: \mathrm{SU}(2) imes \mathfrak{su}(2) o \mathbb{C}; \quad (g,x) \mapsto e_g(x) := e^{\mathrm{Tr}(x|g|)}$$

- Tr in fundamental representation, $|g| = \operatorname{sgn}(\operatorname{Trg})g$
- identification $\mathfrak{su}(2) \simeq \mathbb{R}^3$ (as vector spaces) \Rightarrow interpret $e_g(x)$ as elements of $C(\mathbb{R}^3)$

Plane Waves

define:

$$e: \mathrm{SU}(2) imes \mathfrak{su}(2) o \mathbb{C}; \quad (g,x) \mapsto e_g(x) := e^{\mathrm{Tr}(x|g|)}$$

- ullet Tr in fundamental representation, $|g|=\mathrm{sgn}(\mathrm{Trg})\mathrm{g}$
- identification $\mathfrak{su}(2)\simeq \mathbb{R}^3$ (as vector spaces) \Rightarrow interpret $e_g(x)$ as elements of $C(\mathbb{R}^3)$
- ullet symmetry: $e_{-g}(x)=e_g(x)$, no distinction between upper and lower hemisphere of ${
 m SU}(2)$

Non-commutative Fourier transform Algebra and *-product

ullet define $\mathcal{C}(\mathbb{R}^3)$: linear span of $e_g(x)$

i.e.
$$\mathcal{C}(\mathbb{R}^3)\ni\hat{\phi}(x)=\int\phi(g)e_g(x)$$

Algebra and ★ –product

- define $\mathcal{C}(\mathbb{R}^3)$: linear span of $e_g(x)$ i.e. $\mathcal{C}(\mathbb{R}^3)\ni \hat{\phi}(x)=\int \phi(g)e_g(x)$
- equip $\mathcal{C}(\mathbb{R}^3)$ with a *-product (associative, non-commutative):

$$\star: \mathcal{C}(\mathbb{R}^3) \times \mathcal{C}(\mathbb{R}^3) \to \mathcal{C}(\mathbb{R}^3); \quad (e_g \star e_{g'})(x) := e_{gg'}(x)$$

extension to all $\mathcal{C}(\mathbb{R}^3)$ by linearity

Algebra and ★ –product

- define $\mathcal{C}(\mathbb{R}^3)$: linear span of $e_g(x)$ i.e. $\mathcal{C}(\mathbb{R}^3)\ni \hat{\phi}(x)=\int \phi(g)e_g(x)$
- equip $\mathcal{C}(\mathbb{R}^3)$ with a *-product (associative, non-commutative):

$$\star: \mathcal{C}(\mathbb{R}^3) \times \mathcal{C}(\mathbb{R}^3) \to \mathcal{C}(\mathbb{R}^3); \quad (e_g \star e_{g'})(x) := e_{gg'}(x)$$

extension to all $\,\mathcal{C}(\mathbb{R}^3)\,$ by linearity

• $\mathcal{C}_\star(\mathbb{R}^3):=(\mathcal{C}(\mathbb{R}^3),\star)$ non–commutative algebra of functions over \mathbb{R}^3

Group Fourier transform

define 'group Fourier transformation' as

$$\mathcal{F}:C(\mathrm{SU}(2))\to\mathcal{C}_\star(\mathbb{R}^3);\quad f(g)\mapsto \hat{f}(x):=(\mathcal{F}\triangleright f)(x):=\int dg e_g(x)f(g)$$

Group Fourier transform

define 'group Fourier transformation' as

$$\mathcal{F}: C(\mathrm{SU}(2)) \to \mathcal{C}_{\star}(\mathbb{R}^3); \quad f(g) \mapsto \hat{f}(x) := (\mathcal{F} \triangleright f)(x) := \int dg e_g(x) f(g)$$

- for general $\ f \in C(SU(2))$ $\ \mathcal{F}$ is not invertible: $e_g(x) = e_{-g}(x)$.
- \Rightarrow need to restrict to subspace of 'even' functions: $C^+(SU(2)) := \{f \in C(SU(2)|f(g) = f(-g))\}$
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$

Peter-Weyl decomposition:

$$f(g) = f(-g)$$

$$\Rightarrow f(g) = \sum_{j \in \mathbb{N}} d_j f_j^{mn} D_{mn}^j(g) ,$$

only even spins contribute!

Group Fourier transform

define 'group Fourier transformation' as

$$\mathcal{F}:C(\mathrm{SU}(2))\to\mathcal{C}_\star(\mathbb{R}^3);\quad f(g)\mapsto \hat{f}(x):=(\mathcal{F}\triangleright f)(x):=\int dg e_g(x)f(g)$$

- for general $f \in C(SU(2))$ \mathcal{F} is not invertible: $e_g(x) = e_{-g}(x)$.
- \Rightarrow need to restrict to subspace of 'even' functions: $C^+(SU(2)) := \{f \in C(SU(2)|f(g) = f(-g))\}$
- effectively: restrictions to functions on SO(3)

Peter-Weyl decomposition:

$$f(g) = f(-g)$$

$$\Rightarrow f(g) = \sum_{j \in \mathbb{N}} d_j f_j^{mn} D_{mn}^j(g) ,$$

only even spins contribute!

inverse Fourier transform:

$$\mathcal{F}^{-1}: \mathcal{C}_{\star}(\mathbb{R}^{3}) \to C^{+}(\mathrm{SU}(2)); \quad f(g) := (\mathcal{F}^{-1} \triangleright \hat{f})(g) := \int dx (e_{g^{-1}} \star \hat{f})(x)$$

Hilbert space and unitary map

• define inner product on $\mathcal{C}_{\star}(\mathbb{R}^3)$ as

$$\langle . | . \rangle_{\star} : \mathcal{C}_{\star}(\mathbb{R}^3) \times \mathcal{C}_{\star}(\mathbb{R}^3) \to \mathbb{C}; \quad (\hat{f}, \hat{f}') \mapsto \left\langle \hat{f} | \hat{f}' \right\rangle_{\star} := \int dx (\bar{\hat{f}} \star f')(x)$$

• Hilbert space: $\mathcal{H}_{\star} := \overline{\mathcal{C}_{\star}(\mathbb{R}^3)}$ wrt $\langle . | . \rangle_{\star}$

Hilbert space and unitary map

• define inner product on $\mathcal{C}_{\star}(\mathbb{R}^3)$ as

$$\langle . | . \rangle_{\star} : \mathcal{C}_{\star}(\mathbb{R}^3) \times \mathcal{C}_{\star}(\mathbb{R}^3) \to \mathbb{C}; \quad (\hat{f}, \hat{f}') \mapsto \left\langle \hat{f} | \hat{f}' \right\rangle_{\star} := \int dx (\bar{\hat{f}} \star f')(x)$$

- Hilbert space: $\mathcal{H}_{\star} := \overline{\mathcal{C}_{\star}(\mathbb{R}^3)}$ wrt $\langle . | . \rangle_{\star}$
- ullet $\mathcal F$ is a unitary transformation between $\ \mathcal H_g:=L_2(\mathrm{SU}(2)/\mathbb Z_2)$ and $\ \mathcal H_\star$.

Space of cylindrical functions

standard LQG:

• space of functions: $Cyl := \bigoplus_{\gamma} \otimes_{e \in \gamma} C(SU(2))$

ullet Cyl dense in \mathcal{H}_{AL}

Space of cylindrical functions

standard LQG:

- space of functions: $Cyl := \bigoplus_{\gamma} \otimes_{e \in \gamma} C(SU(2))$
- Cyl dense in \mathcal{H}_{AL}

unitary transformation:

• Restriction to SO(3)-LQG: $\operatorname{Cyl}^+ := \bigoplus_{\gamma} \otimes_{e \in \gamma} C^+(SU(2))$

Space of cylindrical functions

standard LQG:

- space of functions: $Cyl := \bigoplus_{\gamma} \otimes_{e \in \gamma} C(SU(2))$
- Cyl dense in \mathcal{H}_{AL}

unitary transformation:

- Restriction to SO(3)-LQG: $\operatorname{Cyl}^+ := \bigoplus_{\gamma} \otimes_{e \in \gamma} C^+(SU(2))$
- ullet for each graph γ :

LQG in the dual picture Cylindrical consistency I

LQG in the dual picture Cylindrical consistency I

LQG in the dual picture Cylindrical consistency I

LQG in the dual picture Cylindrical consistency II

associated with each graph we have a natural inner product

$$\left\langle \hat{\phi}_1 \mid \hat{\phi}_2 \right\rangle_{\star,\gamma} := \int \prod_{i=1}^{|\gamma|} dx_i (\bar{\hat{\phi}}_1 \star_{1,\dots,|\gamma|} \hat{\phi}_2)(x_1,\dots,x_{|\gamma|})$$

Cylindrical consistency II

associated with each graph we have a natural inner product

$$\left\langle \hat{\phi}_1 \mid \hat{\phi}_2 \right\rangle_{\star,\gamma} := \int \prod_{i=1}^{|\gamma|} dx_i (\bar{\hat{\phi}}_1 \star_{1,\dots,|\gamma|} \hat{\phi}_2)(x_1,\dots,x_{|\gamma|})$$

- consider two functions $\;\hat{\phi}_{\gamma_1}(x_i),\hat{\psi}_{\gamma_2}(y_j)\;$ defined on possibly different graphs $\;\gamma_1,\gamma_2\;$
- ullet choose any graph $\,\gamma\,$ that contains $\,\gamma_1,\gamma_2\,$
- one can check that $\langle \phi_1 \mid \phi_2 \rangle_{\star,\gamma}$ does not depend on the choice of γ by
 - 1. either direct computation,
 - 2. or using unitarity of \mathcal{F}
- ⇒ Cylindrical consistency fulfilled, projective limit can be taken.

Action of fundamental operators

Fluxes:

$$\begin{aligned} (R^i \triangleright e_g)(x) &:= & \left[\frac{d}{dt}e_{[\exp(t\sigma^i)g]}(x)\right]_{t=0} \\ &= & \left[\frac{d}{dt}e_{[\exp(t\tau^i)]}\right]_{t=0} \star e_g(x) \qquad a.e. \\ &= & \operatorname{Tr}(x\tau^i) \star e_g(x) \\ &= & x^i \star e_g(x) \\ \Rightarrow & (E_e^i \triangleright \hat{\phi})(x_1, \dots, x_{|\gamma|}) &:= & (x_e^i \star_e \hat{\phi})(x_1, \dots x_{|\gamma|}) \end{aligned}$$

LQG in the dual picture

Action of fundamental operators

Fluxes:

$$\begin{split} (R^i \triangleright e_g)(x) &:= & \left[\frac{d}{dt}e_{[\exp(t\sigma^i)g]}(x)\right]_{t=0} \\ &= & \left[\frac{d}{dt}e_{[\exp(t\tau^i)]}\right]_{t=0} \star e_g(x) \qquad a.e. \\ &= & \operatorname{Tr}(x\tau^i) \star e_g(x) \\ &= & x^i \star e_g(x) \\ \Rightarrow & (E_e^i \triangleright \hat{\phi})(x_1,\dots,x_{|\gamma|}) &:= & (x_e^i \star_e \hat{\phi})(x_1,\dots x_{|\gamma|}) \end{split}$$

Cylindrical functions:

each $f\in \mathrm{Cyl}$ can be written as (restricting to one edge here) $f(g)=\int dx (e_g\star \hat{f})(x) \Rightarrow$ enough to know the action of 'plane waves':

$$e_g(x)e_g(y) = e_g(x+y)$$

LQG in the dual picture

Action of fundamental operators

Fluxes:

$$(R^{i} \triangleright e_{g})(x) := \left[\frac{d}{dt}e_{[\exp(t\sigma^{i})g]}(x)\right]_{t=0}$$

$$= \left[\frac{d}{dt}e_{[\exp(t\tau^{i})]}\right]_{t=0} \star e_{g}(x) \quad a.e.$$

$$= \operatorname{Tr}(x\tau^{i}) \star e_{g}(x)$$

$$= x^{i} \star e_{g}(x)$$

$$\Rightarrow (E_{e}^{i} \triangleright \hat{\phi})(x_{1}, \dots, x_{|\gamma|}) := (x_{e}^{i} \star e \hat{\phi})(x_{1}, \dots x_{|\gamma|})$$

Cylindrical functions:

each $f \in \text{Cyl}$ can be written as (restricting to one edge here) $f(g) = \int dx (e_g \star \hat{f})(x) \Rightarrow \text{enough to know the action of 'plane waves':}$

$$e_g(x)e_g(y) = e_g(x+y)$$

Fluxes act as \star -multiplication operators, cylindrical functions as generators of translation (in x-space)!

Geometrical interpretation

Gauge invariance

remark: construction not limited to 4-valent case!

Geometrical interpretation

Gauge invariance

remark: construction not limited to 4-valent case!

Geometrical interpretation

Gauge invariance

remark: construction not limited to 4-valent case!

- \Rightarrow Gauss constraint implies \star –closure in x–space. Natural interpretation: x^i are the oriented areas of faces $e^* \in \gamma^*!$
- \Rightarrow We can interpret $\hat{\phi}(x_i)$ as functions living on a dual cell–complex γ^* , flux operators provide information about (fuzzy) geometry.

Dual SNF and Semiclassical analysis

• what do 'dual SNF' look like? any function $\hat{\phi} \in \mathcal{H}_{\star}$ can be Peter–Weyl–decomposed into 'dual spin–network basis' as $\hat{\phi}(x) = \sum\limits_{j,m,n} d_j \phi_{mn}^j \hat{D}_{mn}^j$

$$\begin{array}{l} \hat{D}_{mn}^{j}(x) := \int d_g e_g(x) D_{mn}^{j}(g) = \frac{\mathcal{J}_{d_j}(|x|)}{|x|} D_{mn}^{j}(e^{-i\pi\vec{x}\cdot\vec{\sigma}}) \quad \text{[Liyine]} \\ \mathcal{J}_{j}(z) \quad \text{Bessel-functions} \end{array}$$

ullet \Rightarrow $\hat{D}^{j}_{mn}(x)$ peaked on |x|=2j+1

Dual SNF and Semiclassical analysis

• what do 'dual SNF' look like? any function $\hat{\phi} \in \mathcal{H}_{\star}$ can be Peter–Weyl–decomposed into 'dual spin–network basis' as $\hat{\phi}(x) = \sum\limits_{j,m,n} d_j \phi_{mn}^j \hat{D}_{mn}^j$

$$\begin{array}{l} \hat{D}_{mn}^{j}(x) := \int d_g e_g(x) D_{mn}^{j}(g) = \frac{\mathcal{I}_{d_j}(|x|)}{|x|} D_{mn}^{j}(e^{-i\pi\vec{x}\cdot\vec{\sigma}}) \quad \text{[$^{\text{Livine}}$]} \\ \mathcal{I}_{j}(z) \quad \text{Bessel-functions} \end{array}$$

- $\Rightarrow \hat{D}_{mn}^{j}(x)$ peaked on |x| = 2j + 1
- Livine–Speziale coherent states $|j, \hat{n}\rangle$ $\hat{D}_{\hat{n}|\hat{n}}^{j}(x) := \int dg e_{q}(x) \langle j, \hat{n} \mid D^{j}(g) \mid j, \hat{n}\rangle$

Speziale '07

- saddle point analysis reveals that in the large j-limit this function is peaked on $\hat{x} = \hat{n}$!
- this confirms the interpretation that the label \hat{n} in these states can be identified with the classical 3d–normals (in the large j–limit)!

Dual SNF and Semiclassical analysis

what do 'dual SNF' look like? any function $\hat{\phi} \in \mathcal{H}_{\star}$ can be Peter-Weyl-decomposed into 'dual spin-network basis' as $\hat{\phi}(x) = \sum d_j \phi_{mn}^j \hat{D}_{mn}^j$

$$\begin{array}{l} \hat{D}_{mn}^{j}(x) := \int d_g e_g(x) D_{mn}^{j}(g) = \frac{\mathcal{I}_{d_j}(|x|)}{|x|} D_{mn}^{j}(e^{-i\pi\vec{x}\cdot\vec{\sigma}}) \quad \text{[$^{\text{Livine}}$]} \\ \mathcal{J}_{j}(z) \quad \text{Bessel-functions} \end{array}$$

- $\Rightarrow \hat{D}_{mn}^{j}(x)$ peaked on |x| = 2j + 1
- Livine–Speziale coherent states $|i, \hat{n}\rangle$ $\hat{D}_{\hat{n}}^{j}(x) := \int dg e_g(x) \langle j, \hat{n} \mid D^j(g) \mid j, \hat{n} \rangle$

- saddle point analysis reveals that in the large j-limit this function is peaked on $\hat{x} = \hat{n}$!
- this confirms the interpretation that the label \hat{n} in these states can be identified with the classical 3d-normals (in the large j-limit)!
- x-space provides a new possibility to define semiclassical (coherent?) states for LQG with a manifest (simplicial-) geometric interpretation (work in progress)

 $\bullet \ \ \text{generalization to full} \ \ SU(2) \ - \text{Loop Quantum Gravity?} \ \rightarrow \ \text{use plane waves from} \ \ [\ ^{\text{Noui, Mourad}}_{\text{Freidel, Majid}}]$

- $\bullet \ \ \text{generalization to full} \ \ SU(2) \ \text{Loop Quantum Gravity?} \ \to \ \text{use plane waves from} \ [\ ^{\text{Noui, Mourad}}_{\text{Freidel, Majid}}]$
- $\mathcal{H}_{\star,\gamma} \stackrel{\mathsf{projective limit}}{\rightarrow} "L_2(E)"$???

- $\bullet \ \ \text{generalization to full} \ \ SU(2) \ \text{Loop Quantum Gravity?} \ \rightarrow \ \text{use plane waves from} \ [\ ^{\text{Noui, Mourad}}_{\text{Freidel, Majid}}]$
- $\mathcal{H}_{\star,\gamma}$ projective limit " $L_2(E)$ " ???
- explore further relation between different semiclassical states
 - → compare with [Thiemann '00; Livine, Speziale '07]

- $\bullet \ \ \text{generalization to full} \ \ SU(2) \ \text{Loop Quantum Gravity?} \ \rightarrow \ \text{use plane waves from} \ \ [\ ^{\text{Noui, Mourad}}_{\text{Freidel, Majid}}]$
- $\mathcal{H}_{\star,\gamma}$ projective limit " $L_2(E)$ " ???
- explore further relation between different semiclassical states
 → compare with [Thiemann '00; Livine, Speziale '07] [Bianchi, Magliaro, Perini '10]
- 3d picture vs. 4d picture, intrinsic or extrinsic interpretation of x -variables? [Freidel, Speziale '10]?

- $\bullet \ \ \text{generalization to full} \ \ SU(2) \ \text{Loop Quantum Gravity?} \ \rightarrow \ \text{use plane waves from} \ [\ ^{\text{Noui, Mourad}}_{\text{Freidel, Majid}}]$
- $\mathcal{H}_{\star,\gamma}$ projective limit " $L_2(E)$ " ???
- explore further relation between different semiclassical states

 → compare with [Thiemann '00', Livine, Speziale '07]
 [Bianchi, Madilaro, Perini '10]
- 3d picture vs. 4d picture, intrinsic or extrinsic interpretation of x -variables? [Freidel, Speziale '10]?
- expand *-product in Planck-length, non-commutative geometry from LQG?