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Overview:

We consider a spherically symmetric quantum scalar field coupled to
spherically symmetric quantum gravity.

Since the problem has a constraint algebra with structure functions, we
will use the “uniform discretizations” approach.

In previous work we have constructed the state corresponding to the vacuum
and show that it results in a quantum state peaked around flat space (minus
a deficit angle) for the gravitational variables and a state closely resembling
the Fock vacuum for the scalar field.

We will use this state to compute propagators for the scalar field.



Context:

Loop quantum gravity is being extended systematically to situations of greater
and greater complexity:

-Loop quantum cosmology (lots of people).

-Spherically symmetric vacuum gravity (our previous work)
-Gowdy cosmologies (Madrid group).

-1+1 field theories (RRI).

In all these cases, however, one has never had to confront “the problem of
dynamics”, namely, that the constraint algebra of gravity has structure functions.

In loop quantum cosmology there is only one constraint with trivial algebra.

In the spherically symmetric case, special gauge fixings were used that rendered
the constraint algebra Abelian. In the Gowdy case, the issue was avoided by
polymerizing only partially the variables.



Our own work last year consisted in studying spherically symmetric gravity
coupled to a spherically symmetric scalar field in the loop representation.
We chose to polymerize the gravitational variables but not the scalar field.

We wrote the discretized master constraint for the model and using a variational
technigue sought to minimize fit.

The variational technique required a trial state. We chose a state that was a direct
product of the Fock vacuum for the scalar field times Gaussians for the gravitational
variables centered around the classical solution (flat space minus a solid deficit angle).

The minimum we found was not zero and did not have a continuum limit. However,
even for relatively large lattice spacings (many orders of magnitude larger than

the Planck scale) the master constraint was very small. This indicates that one

has a theory with fundamental discreteness that approximates general relativity
well.

Today we would like to build on these results by polymerizing the scalar field and
studying what kinds of corrections one gets for the propagators.



We start with the Hamiltonian for a scalar field in flat space-time (we ignore the
deficit angle since it changes things little)

H = [d*(P,” +(¢#))
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Polymerizing the field or the momentum?

Two options: polymerize the field or polymerize the momentum. Will explore both.
Similar results. However, polymerizing the momentum yields a theory that in the
continuum limit is not polymeric. Starting from the Hamiltonian we just discussed,
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And since P :Pq/s in the continuum limit the first term becomes P(p2
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Since final theory has fundamental discreteness, this may not be an issue?



Polymerizing the field
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Appropriateness of using the vacuum obtained without polymerizing the field

The “vacuum” state was obtained minimizing the master constraint without
polymerizing the field.

To check the appropriateness of continuing to use this state in the case of a
polymerized field, we computed the expectation value of the master constraint
with the field polymerized in the state obtained without polymerizing. Expanding
to leading order in the polymerization parameter the result obtained is
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Which shows that the state still yields a very small value for the master constraint
for the theory even with a polymerized scalar field.



Wish to study the propagator,
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To compute the propagator, one first transforms the interaction Hamiltonian to
momentum space and then performs the sums using identities for summations
of products of sine functions.
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Rewriting the previous expression using Wick’s theorem,
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or, graphically,
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If one Fourier transforms in time, and approximates the summations: > / dp
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And carrying out an expansion in pg, the integrals can be computed explicitly
for the lowest orders.



The final result is,
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Shift in momentum

Generically there will be higher powers of p (we only kept the lowest) in the

denominator. Therefore the resulting propagator is within the class considered

recently by Horava in his “Gravity at the Lifshitz point”,
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Polymerizing the momentum
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Just like before, we go to Fourier space in time, approximate summations by
integrals and compute them expanding in power of pe
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No mass term, but still of the Horava form.



Summary:

One can study spherically symmetric gravity coupled to a
spherical scalar field using technigues of loop quantum
gravity.

The study has progressed to the point where we can
compute propagators.

The resulting propagators are within Horava’s class of
Lorentz violating theories.

The scalar field may acquire a mass.
The value of the parameter [3 is unclear.

One may feel tempted to get a value for it say, by
making it responsible for the Higgs mass, but we should
recall that we are in a very limited context, spherical
symmetry.

The form of the Lorentz violation depends on how one
polymerizes.



