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Classical PFT

Free Scalar Field Action: S0[f ] = − 1
2

∫
d2XηAB∂Af∂Bf

Parametrize XA = (T,X) → XA(xα) = (T (x, t), X(x, t)).

⇒ S0[f ] = − 1
2

∫
d2x

√
ηηαβ∂αf∂βf ,

ηαβ = ηAB∂αX
A∂βX

B .

Vary this action w.r.to f and 2 new scalar fields XA:

SPFT [f,XA] = − 1
2

∫
d2x

√
η(X)ηαβ(X)∂αf∂βf

δf : ∂α(
√
ηηαβ∂βf) = 0 ≡ ηAB∂A∂Bf = 0

δXA: no new equations,⇒ XA are undetermined functions

of x, t, so 2 functions worth of Gauge!

x, t arbitrary ≡ general covariance
So Hamiltonian theory has 2 constraints.

Remark:Free sclar field solns are f = f+(T +X) + f−(T −X)

Use split into “left movers + right movers” in Hamiltonian

theory.
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Hamiltonian description

T (x), X(x) become canonical variables. Use light cone

variables T (x) ±X(x) := X±(x).

Phase space: (f, πf ), (X+,Π+), (X−,Π−)

Constraints:H±(x) = [ Π±(x)X±
′

(x) ± 1
4 (πf ± f ′)2 ]

Define: Y ± = πf ± f ′

{Y +, Y −} = 0, {Y ±(x), Y ±(y)}= derivative of delta function
Gauge fix: X± = t± x “deparameterize”.

get back standard flat spacetime free scalar field action.
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Caution:

We set Spacetime Topology = S1 ×R

Not much known re:Polymer repn when space is non-

compact. Hence choose space= circle.

There are complications coming from using “single angular

coordinate chart” x on embedded circle. Also from using

single spatial angular inertial coordinate X on the flat

spacetime. Identifications of x and X“mod 2π” are needed.

These can be taken care of. Will mention subtelities as and

when dictated by pedagogy.
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Quantum Kinematics: Embedding Sector

Holonomies:

“Graph”: set of edges which cover the circle.

“Spins”: a label ke for each edge e.

“Holonomies”:e
i
∑

e
ke

∫
e
Π+

“Electric Field”: X+(x)

Poisson Brkts: {X+(x), e
i
∑

e
ke

∫
e
Π+} = ikee

i
∑

e
ke

∫
e
Π+

( for x inside e)
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Charge Networks: |γ,~k〉

X̂+(x)|γ,~k〉 = h̄k+
e |γ,~k〉 , x inside e.

̂
e
i
∑

e
k′+

e

∫
e
Π+ |γ,~k〉 = |γ,~k + ~k′〉

Inner Product: 〈γ′,~k′|γ,~k〉 = δγ′,γδ~k,~k′

Range of ke: h̄ke ∈ Za, a is a Barbero- Immirzi parameter with

dimensions of length.

Similarly for − sector.
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Quantum Kinematics: Matter Sector

Holonomy: e
i
∑

e
le

∫
e

Y +

Recall that {Y +(x), Y +(y)} is non- vanishing (=derivative of
delta function).

⇒ “Weyl Algebra”:
̂

e
i
∑

e
l′e

∫
e

Y + ̂
e
i
∑

e
le

∫
e

Y +

= exp[− ih̄
2 α(~l′,~l)]

̂
e
i
∑

e
(le+l′e)

∫
e

Y +

Charge network: |γ,~l〉
̂

e
i
∑

e
l′e

∫
e

Y + |γ,~l〉 = exp[− ih̄
2 α(~l′,~l)] |γ,~l +~l′〉

Range of le: Modulo some technicalities, le ∈ Zǫ , ǫ is another

Barbero- Immirizi like parameter with dimensions (ML)−
1
2 .
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Dirac Observables

Since gge transf act as diffeos, the integral over x ∈ [0, 2π] of

any periodic scalar density constructed solely from the

phase space variables, is an observable so that

O±

f :=
∫

S1 dxY
±(x)f(X±(x)) is an observable for real periodic

f .

In polymer repn Y ± are not good operators only their

exponentials are. So cant construct a “triangulation indep”

Ô±

f .

But ̂(exp iO±

f ) can be constructed!

̂exp
∫
dxY +(x)f(X+(x))|γ,~k,~l〉 := e−

ih̄
2

α(~f,~l)|γ,~k, (~l + ~f)〉
where fe = f(h̄ke).
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Physical Hilbert Space by Group
Averaging

Gge inv states satisfy Û±(φ±)Ψ = Ψ ∀φ±.
Formally:Ψ =

∑
|ψ′〉, sum over all distinct |ψ′〉 gge related tp

|ψ〉. Sum not normalizable in kinematic Hilbert space. Better
to think of sum of bras.
∑

〈γφ,~kφ,~lφ| lives in space of distributions:
Distributions are linear maps from finite span of chrge nets

into complexes. Sum of inner prodt of each bra in sum on a

given chrge network ket is finite (most terms are zero).

Grp averaging technique yields correct physical inner

product on space of Grp Averages of charge nets.
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Finest Lattice

Turns out that Grp Average of a certain family of charge nets

yields a superselected sector corresponding to a regular

spacetime lattice a.

Roughly speaking the family is that of all charge nets such

that the difference of the embedding charges on successive

edges is the minimal possible i.e. on γ±, h̄k±eI+1
− h̄k±eI

= ±a.
The span of Grp Averages of all charge nets in this family is

left invariant by the action of all the Dirac observables.

Since the minimal possible increment, a, in the embedding

charges is used to define this sector, there is no state outside

this sector corresponds to any finer discrete spacetime

structure. Hence the name “Finest Lattice”.
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Emergence of Lattice Field Theory

Restrict attention to Superselected “Finest Lattice” Sector

True degrees of freedom encoded in Dirac Observables.

Classical sympl structure is represented by commutators of

basic kinematic operators. Dirac Observables are composite

opertrs. So do not expect (do not get!) repn of classical

continuum sympl structure for Dirac Observables i.e. of true

d.o.f.

Recall:eiO+

f = e
i
∫

S1
dxY +(x)f(X+(x))

. Do not get repn of classical

P.B. for all choices of f .

However: Do get repn of classical sympl structure for those

continuum functions f(X±) which are piecewise constant -

i.e. constant on edges of dual lattice.

Thus emergent sympl structure of true degrees of freedom

that of lattice field theory.
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Can also show that dynamics of true degrees of freedom is

that of lattice field theory.

Remark: localising support of f to one dual lattice edge can

get lattice approximant to local field operator. Discrete

(lattice) Fourier transform of this yields approximant to the

creation-ann modes.
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Fock vacuum 2 point function

Want polymer state which approximates behaviour of Fock 2

pt function. Precise nature of approx is thru defn of

continuum limit.

Note that the B-I parameters a, ǫ dictate the smallest

increment of embedding,matter chrges. Also a is the lattice

spacing. Hence continuum limit is a→ 0, ǫ→ 0.

Accordingly we consider 2 parameter family of polymer

quantizations with 2 parameter family of states and 2

parameter family of Dirac observables which are lattice

approximant to the annihilation- creation modes.

Require exp value of quadratic combinations of mode

operators for wavelengths >> lattice spacing to approach

Fock vacuum exp value in the continuum limit.

We explicitly construct such a set of states.
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Summary

We constructed Polymer quantization of PFT with following

features:

Absence of Ad-hoc Triangulations in oprtr actions

Correct implementation of constraint algebra: Classical

constraints ensure foliation indep of the dynamics. Foliation

indep implies a consistent spacetime dynamics. Correctly

implemented, quantum constraints play similar role (Kuchař).

Quantum sptime covariance is tied to our faithful repn of grp

of gge transformations.

Continuum Limit: Crucial that limit is indep of h̄ so seperation

of notions of quantum and continuum. Limit not of 1

parameter set of ad- hoc triangulations in single quantiztn;

rather, limit of 1 (B-I) parameter family of unitarily inequivalent

quantizations.
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Further research...

Thiemann Quantzn and Sptime Covariance:We used density

weight 2 constraints. Classically equiv to 1 sptl diffeo and 1

Hamiltonian constr. As in LQG solve sptl diffeo by averaging,

impose Ham constr on diff inv distributions (more on this if

time...)

Non- comp sptl toplgy: Related to CGHS model.

Breaking of Local Lorentz Invariance: No dispersion due to ±
seperation. Lattice breaks LLI. Eff theory?

Lorentzian to Euclidean PFT?:

etc., etc...
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Thiemann type quantization

We use density wt 2 constraints:

H±(x) = [ Π±(x)X±
′

(x) ± 1
4 (πf ± f ′)2 ].

Constraint algebra is Lie algebra

Define Cdiff (x) = H+ +H−,

Cdiff (x) =
[
Π+(x)X+′

(x) + Π−(x)X−
′

(x) + πf (x)f
′

(x)
]
.

Define Cham = 1√
X+′ (x)X−

′ (x)
(H+ −H−)

Constraint algebra is Dirac algebra, same algebra as for

gravity with sptl metric = pull back of flat sptime metric to the

Cauchy slice.

First impose sptl diffeo constr then Ham constr on sptl diff inv

distrbtns.
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Results

Can write 1√
X+′ (x)X−

′ (x)
as opertr thru Thiemann- like tricks.

Solns obtained here, trivially solve sptl diff constraint

If straightfwd regulrztn done for Ham constr ala LQG, no soln

of ours is soln to Ham constr!

There is non trivial reg for which our solns are solns of Ham

constr!
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