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Evaluating the dynamics

Testing the semiclassical limit of a quantum theory or deriving
potential predictions requires a handle on properties of physical
semiclassical states.

Different problems arise in this context:
→ Semiclassicality (definition, classes of states)
→ Physicality and dynamics (implementing and solving

constraints)

Especially in quantum gravity, long evolution times are often
involved. While initial (kinematical) states may be chosen to be
of special (coherent) form, evolved states can easily become
much, much, much, . . . more general.

Here: State properties in deparameterizable systems.

ECD – p.2



Deparameterizable systems

Constraint of the form

Cnonrel = p+ +H(α, pα) = 0

or
Crel = p2

+ −H(α, pα)2 = 0

for canonical variables (α, pα) and (β+, p+). No terms in the
constraint depend on β+, which will play the role of time.

Reduced phase space quantization:
→ Choice of time β+ before quantization.
→ Quantum dynamics determined by Schrödinger evolution

with Ĥ(α, pα) or ±|Ĥ(α, pα)|.
→ Easy to define initial (“kinematical”) coherent states.
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“Relativistic” harmonic oscillator

Ĉ = p̂2
+ − p̂2

α − α̂2

Physical states solve

i~
∂

∂β+
Ψ(α, β+) = ±

√
p̂2

α + α̂2 Ψ(α, β+)

Solutions:

Ψ±(α, β+) =

∞∑

n=0

cnϕn(α) exp(∓iλnβ+/~)

with harmonic oscillator eigenstates ϕn(α) and
λn =

√
(2n+ 1)~. Constants cn determined by initial values.
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Physical semiclassical states

Harmonic oscillator (“kinematical”) coherent states at β+ = 0:

cn = exp

(
−|z|2

2

)
zn

√
n!

, z ∈ C

such that

Ψ(α, 0) = (2/π)1/4 exp

(
−1

2
(|z|2 − z2 + 2α2 − 4izα)

)

Evolving state: coefficients

cne
−iλnβ+/~ =

1√
n!
e−|z|2/2zn exp(−i

√
2n+ 1β+/

√
~)

non-coherent for β+ 6= 0.

ECD – p.5



Wave function
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Uncertainty

(∆α)2(∆pα)2 − ∆(αpα)2 ≥ ~
2

4

1 2 3 4

Β+

Α0

2

4

6

8

10

12

Uncertainty

ECD – p.7



Skewness
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Deparameterized quantization

→ No gauge choices, but frame fixed before quantization.

→ Square root.

→ Initial coherent states very special.
Can change dramatically when evolved.

Gaussian: Probe 1-dimensional freedom in
infinite-dimensional state space.

ECD – p.9



Effective canonical dynamics (ECD)

New perspective:
→ Map quantum system to “classical-type” system:

dynamical systems methods.

→ Deals with full quantum system; implements all
requirements (constraints, physical inner product).

→ Equations normally hopeless, but tractable approximation
methods exist.

→ Reproduces low-energy effective action when applied to
anharmonic oscillator (including “mass renormalization”).

[MB, A. Skirzewski: math-ph/0511043, hep-th/0606232]
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Setup

Describe (density) state by its moments:

∆(O1 . . . On) :=

〈
n∏

i=1

(Ôi − 〈Ôi〉)
〉

Weyl

for Oi ∈ {α, pα, β+, p+}.

Phase space from

{〈Â〉, 〈B̂〉} :=
〈[Â, B̂]〉
i~

When restricted to maximal order n of moments,
(degenerate) Poisson structures arise.
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Poisson brackets

Results in {〈α̂〉, 〈p̂α〉} = 1, {〈α̂〉,∆(· · ·)} = 0 = {〈p̂α〉,∆(· · ·)},

{∆(αapb
α),∆(αcpd

α)} = a!b!c!d!

∞∑

r=0

(~2/4)r
2r−a−b∑

s=0

(−1)r+s 1

s!(2r + 1 − s)!

× ∆(αa+b+c−2r−1pa+b+c+d−4r−2
α )

(c− 2r − 1 + s)!(a− s)!(d− s)!(b− 2r − 1 + s)!

+ad∆(αa−1pb
α)∆(αcpd−1

α ) − bc∆(αapb−1
α )∆(αc−1pd

α)

Example: second order moments

{(∆α)2,∆(αpα)} = 2(∆α)2

{(∆α)2, (∆pα)2} = 4∆(αpα)

{∆(αpα), (∆pα)2} = 2(∆pα)2
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Effective constraints

Physical states 〈Ĉ〉 = 0, but also

Cpol := 〈(p̂ol − 〈p̂ol〉)Ĉ〉 = 0

for polynomials p̂ol in basic operators. Infinitely many first-class
constraints for infinitely many variables. (Ordering!)

Semiclassical states: ∆(αapb
α) ∼ ~

(a+b)/2.

Gaussian: ∆(αapb
α) =

σb−aa!b!

2(3a+b)/2(a/2)!(b/2)!
~

(a+b)/2 if a, b even

Fixed order of ~:
Finitely many equations and variables; solve order by order.
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“Relativistic” harmonic oscillator

Second order in moments:

C = 〈p̂+〉2 − 〈p̂α〉2 − 〈α̂〉2 + (∆p+)2 − (∆pα)2 − (∆α)2

Cβ+
= 2〈p̂+〉∆(β+p+) + i~〈p̂+〉 − 2〈p̂α〉∆(β+pα) − 2〈α̂〉∆(β+α)

Cp+
= 2〈p̂+〉(∆p+)2 − 2〈p̂α〉∆(p+pα) − 2〈α̂〉∆(p+α)

Cα = 2〈p̂+〉∆(p+α) − 2〈p̂α〉∆(αpα) − i~〈p̂α〉 − 2〈α̂〉(∆α)2

Cpα
= 2〈p̂+〉∆(p+pα) − 2〈p̂α〉(∆pα)2 − 2〈α̂〉∆(αpα) + i~〈α̂〉

Some kinematical moments must be complex.

Deparameterized to 〈p̂+〉 = ±HQ with quantum Hamiltonian

HQ =
√
〈p̂α〉2 + 〈α̂〉2

(
1+

〈α̂〉2(∆pα)2 − 2〈α̂〉〈p̂α〉∆(αpα) + 〈p̂α〉2(∆α)2

2(〈p̂α〉2 + 〈α̂〉2)2

)

Reality imposed on Dirac observables 〈α̂〉(β+), 〈p̂α〉(β+), ∆(· · ·)(β+).
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Comparison
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Second order moments
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Advantages

→ Deal directly with relevant observables.

→ Minimal restrictions on states; preserve genericness.

→ If deparameterized, square roots only of numbers, not
operators.

C = 〈p̂+〉2 − 〈p̂α〉2 − 〈α̂〉2 + (∆p+)2 − (∆pα)2 − (∆α)2 = 0

→ No need to choose time before quantization:
gauge and frame independence.

(Especially useful for cosmological perturbations.)

→ Local internal time possible (but tricky).

[Work in progress with P. Höhn, A. Tsobanjan; see also Rovelli 1990]
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Application 1: Group coherent states

Number of constraints can often be reduced when spectral
properties of Ĉ known.

→ Example: 〈ψ|Ĉ2|ψ〉 = 0 implies Ĉ|ψ〉 = 0 if zero in discrete
spectrum of Ĉ. [A. Corichi: arXiv:0801.1119]

(Discrete: Have to get only close to zero, not exactly to
zero.)

→ Group coherent states: non-canonical algebra of basic
operators. Finite-dimensional quantum phase space.

Small number of constraints may suffice;
see simplicity constraint. [F. Conradi’s talk]
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Application 2: Quantum cosmology

Deparameterizable if free, massless scalar φ = β+.
→ Wheeler–DeWitt: H = |qp| quadratic

→ Loop quantum cosmology: H = |ImJ | linear in terms of
non-canonical basic variable J (holonomy-like)

Harmonic cosmology: Equations for moments decouple; exact
effective system; no quantum back-reaction; dynamical coherent
states.

Loop effects: Simple effective dynamics in proper time

(
˙〈â〉

〈â〉

)2

=
8πG

3

(
ρ

(
1 − ρ

ρcrit

))

as seen numerically for this model. [A. Ashtekar, T. Pawlowski, P. Singh]

As special as harmonic oscillator, but basis for perturbations.
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Application 3: Ground states

Ground state of harmonic oscillator: Hamiltonian

HQ =
1

2m
p2 +

1

2
mω2q2 +

1

2m
(∆p)2 +

1

2
mω2(∆q)2

Implies

d

dt
(∆q)2 =

2

m
∆(qp)

d

dt
∆(qp) = −mω2(∆q)2 +

1

m
(∆p)2

d

dt
(∆p)2 = −mω2∆(qp)

Stationary: ∆(qp) = 0, thus ∆p = mω∆q.

Minimal uncertainty: ∆q =
√

~/2mω fixes spread.
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Boundary Hamiltonian?

Try same procedure to fix shape and parameters of boundary
states for graviton propagator.

Brown–York quasilocal energy:
∫
(K −K0), integrated trace of

extrinsic curvature (minus background subtraction).

Quadratic in connection variables, of form H = qp: Harmonic
cosmology per point, just like field theory as harmonic oscillators
per point/mode.

But: no ground state in harmonic cosmology, except zero
volume.

[Work in (really slow) progress; discussions with S. Speziale]
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Conclusions

Effective canonical dynamics provides perturbation techniques
for physical state properties.

Evaluates relevant properties, minimal requirements, generic
class of states. Amenable to dynamical systems analysis.

Effective constraints: Applies to discrete as well as continuous
spectrum. Many subtleties avoided.

Well-adapted to canonical quantum gravity: harmonic systems
exist as basis for perturbation expansion.

In progress:
Computational/numerical tools [D. Brizuela], more on constrained
systems, quantum field theory, loop quantum gravity.
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