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Spin foams constitute an attempt to define a path integral for gravity.

- 5(9)
U (3-geometries h) = Z eior

4-geometries g

The main assumption is a restriction to a fixed simplicial net.

Hope to define a dynamics for LQG.
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Introduction

Two main approaches :

Spin foams

constrained BF theory

Reisenberger '94 &'97, Freidel and
Krasnov '99...

quantum geometry

Barbieri ’98, Barrett and Crane ’98,
Baez and Barrett ’99...
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Introduction
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Introduction

Barbieri’s quantum tetrahedron:
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Classical phase space

Let us start with a single 4-simplex

general triangulations: Dittrich and Ryan '08 and talk by Ryan

The classical phase space associated to a 4-simplex can be described in a number of ways
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Classical phase space

Barrett and Crane ’98 :

Variables: Bl <+ B! (a,b=1..5;1,J =0...3)

Constraints : , ,
e Orientation:

Bab — _Bba
e Closure:
Z BY =0, Va
b#a

e Diagonal simplicity: + non-degeneracy

B,) BY =0 Y(ab .
(cBav) 17 B , V(ab) conditions
e Cross simplicity:

(*Bab)IJB({CJ =0 , \V/CL, b 7é C

Theorem 1. (Barrett and Crane) FEach geometric 4-simplex determines a set of bivec-
tors satisfying the constraints above, and each set of bivectors satisfying these con-
straints determines a geometric 4-stmplex unique up to parallel translation and inver-
sion through the origin.

|0
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Classical phase space

Let us consider some modifications : Engle, R.P, Rovelli 07

Constraints :

e Simplicity:
Va , 3N, s.t. N,;B) =0Vb # a.

spacelike triangles in the Lorentzian case talk by Conrady

/

Variables : X, T =N, X, € G (G=S0(4) or SO(3,1))
Xab — Xa—le b
b, X
b — Xa_l . Xa_l > B, ( ab ab)
/CL
N
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Classical phase space

Parallel transport:

ba,b - Aab ) Xab > bba — _XabbbaXba

Closure:
Z bl =0, Va
b#a
Simplicity:
b =0, Vi
Non-degeneracy: The 3d and 4d geometries are non-degenerate;

Flatness:

XabXchca =1 ,‘v’(abc) = E|Xa S SL(Q, C) S.t. Xab — Xa_le
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The quantum 4-simplex

Engle, Livine, R.P, Rovelli ’08, Freidel and Krasnov '08

Group elements are quantized as multiplication operators and bivectors
according to the following identification to left invariant vector fields:

S o S
Jp ~> xby + —by <i> by ~ 2 1 *xJy — —Ji

Y ST Y

mimics the Immirzi parameter in the continuum
theory, but in principle any choice of identification is
possible

Sunday, February 28, 2010



The quantum 4-simplex

Let us look at the constraints one by one :

First the Flatness condition:

A(X ) = / ] dXad(XaXa X, )

To deal with the simplicity constraints, write the vertex amplitude in the dual
representation:

Al map) = / T dXo, A(X0) DX (Xay)
ab

a

|5
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The quantum 4-simplex

Euclidean Lorentzian
L*(G) =D Hy ®Hy
X
Hj+ ) H(k.p)
J=3"+i"
Horih= @D H Hiwp) = €D Hy

j=1jt =31 7>k

(G, 57 )55, m) (k,p); j, m)

X; 7, m)

Ki JOZ L’L _ —6 ] J]k
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The quantum 4-simplex

Then the simplicity constraints: this is where the different models may differ
one from each other

bg:O:>Lt—; =0

A number of ways to impose these constraints have been proposed.

They will impose some restrictions on the representations labeling the data on
the boundary of the 4-simplex
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The quantum 4-simplex

é; = Et — i[—{t
8

Master constraint;

R e it+iT <1

= '~ and j = . .
7 T = T {Iﬁ—ﬂ v >1

M; = Z (5”02’0;57 ordering

p =k and j = |k

Matrix elements: Ding and Rovelli ’09

find H s.t. Vib,d € H @|Cilo) =0
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The quantum 4-simplex

é; = Et — i[—{t
8

Expectation values:

(Cy) =0

Freidel and Krasnov ’08

does not specify a Hilbert space!!

Expectation values + minimization of uncertainties

Conrady and Hnybida ’10 and talk by Conrady
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The quantum 4-simplex

Closure and parallel transport:

Version |:

closure is automatically imposed by gauge invariance (remember Barbieri’s
quantum tetrahedron)

B,p are quantized as left invariant vector fields and By, as right invariant
vector fields on that copy of the group.

Version ll:

Both constraints are recovered as critical point equations in the semiclassical
analysis for the 4-simplex, and can be left free for the moment.

Conrady and Freidel 08
Barrett, Dowdall, Fairbairn, Gomes and Hellmann ’09

Barrett, Dowdall, Fairbairn, Hellmann and R.P.’09
talk by Hellmann

20
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The quantum 4-simplex

Let us summarize:

A(Xy) = / ] dX.o(XaXan X, )

|

/ H anb A( ab) D;iabbmab PR (Xa,b)
ab

A(jaba mab)

— / H an <jabmab; Xab‘ Xa_le ’Xab;jbamba>

\4

A(]aba mab / H dX ]abmaba Xab(]ab)| X Xb |Xab(]ab) ]abmba>

It defines an amplitude for a spin-net on the boundary see talk by Rovelli

21
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Boundary states

For the moment the boundary state is a spin net with support on the dual
graph to the boundary to a 4-simplex.

general graphs: Kaminski, Kisielowski and Lewandowski ’09 and talk by Kaminski

Alternatively one can use coherent states to describe the boundary geometry.

Coherent tetrahedron: Livine and Speziale '07 and '08
Coherent states for any graph:
Immirzi ’96; Freidel and Speziale ’09; Bianchi, Magliaro and Perini ’10;

Barrett, Dowdall, Fairbairn, Gomes and Hellmann ’09; Conrady and Freidel
'09;

talk by Perini

23
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Boundary states

The coherent tetrahedron:

Pt y%
‘T>jt7’fbt790t — / dgg ) (®tCT|jta ﬁta Sﬁt>)
SU(2)

pd t

e

7,7, @) = g(h, ) > g, +7) = e g(n) > |7, +75)

Boosted tetrahedra:

‘jtaﬁt790t> — |Xt;jt,ﬁt790t>

Vertex amplitude:

A(Jabs Tiabs Pab) = /HdX (Jabs Trabs Pab; Xab] Xg  Xb [Xabi Joas Mba, Poa)

24
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Livine and Speziale '07

Freidel and Krasnov '08
Conrady and Freidel 08
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Spin foam amplitude

Z with no boundary

26
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Spin foam amplitude

Z with no boundary
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Spin foam amplitude

......... T
Jt. vy
...;ﬁ/q-t . ! ‘|‘jt
< (vt) - — 1, =d; / iz s ) (oo Pirel = Y Ldes mre) (e 1t
V X 52 Mrt=—]t
vT

ZE (,]t) — / H dX’UT H dQﬁTt H H <jt7 TALTt; Xt‘XfU_TlX’UT/ |Xt; jtﬁT/t>
T Tt

t vDOt
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Spin foam amplitude

What about the sum over spins?

Zs, = pljr) / [ dXor [ @re [ ] G ores xa | X0 Koo Xt Gie2rre)
Jt VT Tt

t vOt

29
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Spin foam amplitude

What about the sum over spins?

talk by Kaminski

/ 1(Jge) ~ J¢
Zs, = pljr) / [ dXor [ @re [ ] G ores xa | X0 Koo Xt Gie2rre)
Jt vT Tt t vDt
30
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Spin foam amplitude

Jt vT Tt t vDt

Zs =" G [ TTaXer [ e T[ 2, 50 Eooe
Jt VT Tt vt

inserting back the boundary J

ZE({’fLTta ¢t7jt}7 t C az) — Z /L(]t) / H erUT H d2’fl7.t H szt ezt Jt Zth Sut
Jt vT vl

Tt
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Spin foams constitute an attempt to define a path integral for gravity.

- 5(9)
U (3-geometries h) = Z eior

4-geometries g

The main assumption is a restriction to a fixed simplicial net.

Hope to define a dynamics for LQG.

32
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Spin foam amplitude

ZE({,fLTta Cbt;jt},t C 82) — Z % ]t / HdXUT Hd2’n,7_t HQ Z:t Jt 22p5¢ Svt
Jt

First, define it properly

Then, check if it has anything to do with gravity

Relation with Regge calculus: Asymptotic papers
Vector geometries : Barrett, Fairbairn and Hellmann ’09

Degenerate configurations

Finally, what do we do with that!?

33
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Observables

Area operator A% — 72[,?

Volume operator <iHA/7,2 7)) = 73 <i‘eabcemanTLng‘j> Ding and Rovelli '09

Graviton propagator  Bianchi, Magliaro and Perini 09 and talk by Rovelli
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Conclusions

We are interested in defining and understanding a path integral for simplicial gravity

Let us summarize the steps in the construction

|) Classical phase space for a 4-simplex, in particular choice of boundary data!!
2) Quantize the 4-simplex

3) Glue simplices together

4) With the help of coherent states, exponentiate to get a path integral over classical
histories

5) Do something with it!
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