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24 CHAPTER 1. INTRODUCTION AND OVERVIEW

Regge calculus has a long and twisted history, having followed times of great enthusiasm

and times of abandon during the years. Its importance was first advertised by Wheeler,

conceptually but also as a tool for numerical relativity, in his lecture notes at Les

Houches (Wheeler 1964). He further introduces in the same course the idea of a space-

time foam, according to which space-time appears smooth on large scales but is highly

curved with possibly different topologies on very short scales. This is because, on

these very short scales, one should expect a high deviation from flatness and therefore

the appearance of wormholes and other forms of gravitational collapse. The idea of a

space-time foam is a very influential concept and nearly every approach to quantum

gravity aims at consistently reconstruct this scenario.

Both ideas, Regge calculus and the concept of the space-time foam, were reconsidered

later by Hawking (Hawking 1978) as a way to implement a path integral for (Euclidean)

quantum gravity. The advantage of Regge calculus is that it allows very naturally an

extension to different topologies and hence fits well with the foam concept.

Simplicial minisuperspace

The construction of a path integral using Regge calculus was nicely described by Hartle

(Hartle 1985). We review it here as it sets up the program we intend to follow later

with spin foams. His construction was for Euclidean quantum gravity, and we will

make small adjustments to deal with the Lorentzian signature. Important questions in

the Euclidean context, such as the unboundedness of the gravitational action due to

conformal transformations (Gibbons, Hawking and Perry 1978) will be sidelined.

The main object of interest is the functional integral:

Ψ(3-geometries h) =
�

4-geometries g

ei
S(g)
� . (1.1)

The 4-geometries g over which one sums over should agree with the 3-geometries h
on the boundary of the region of space time considered. In the Euclidean case, the

functional Ψ(h) can be interpreted as the wave function of the universe (Hartle and

Hawking 1983)
1
.

Properly defining the sum above is the main goal of any path integral approach for

gravity. The strategy here is to restrict the sum to simplicial geometries only, defining

hence what Hartle calls a simplicial minisuperspace approximation for the functional

integral. To specify a geometrical configuration, first fix a simplicial net Σ, that is,

specify the vertices of the net and the combinations that make up the higher simplices

1The first appearance of a path integral for gravity was in (Misner 1957) after a suggestion by
Wheeler. The definition of the expression above is actually a problem in Wheeler’s lecture notes!

Spin foams constitute an attempt to define a path integral for gravity.

The main assumption is a restriction to a fixed simplicial net. 

Hope to define a dynamics for LQG.
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constrained BF theory   
Reisenberger ’94 &’97, Freidel and 
Krasnov ’99...

quantum geometry  
Barbieri ’98, Barrett and Crane ’98, 
Baez and Barrett ’99...

Spin foams
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SECγ =

�
�(e ∧ e)IJ ∧R(ω)IJ +

s

γ

�
(e ∧ e)IJ ∧R(ω)IJ

SP =

�
(�B +

s

γ
B)IJ ∧R(ω)IJ + φIJKLB

IJ ∧BKL
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�
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�
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�
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�

v

Av

discretize and constrain
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�nt � �L

t

�nt�

t

�nt = 0 |�nt| = At

−→ Inv (⊗t Hjt)K3 = ⊗t Hjt � |i, jt�
closure
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 Let us start with a single 4-simplex
     
general triangulations:  Dittrich and Ryan ’08 and talk by Ryan

 The classical phase space associated to a 4-simplex can be described in a number of ways
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 Barrett and Crane ’98 :

 Variables :

 Constraints :

44 CHAPTER 2. QUANTUM GEOMETRY

• Orientation:

Bab = −Bba (2.16)

• Closure: �

b �=a

BIJ
ab = 0 , ∀a (2.17)

• Diagonal simplicity:

(�Bab)IJB
IJ
ab = 0 , ∀(ab) (2.18)

• Cross simplicity:

(�Bab)IJB
IJ
ac = 0 , ∀a, b �= c (2.19)

• 3d non-degeneracy: Each tetrahedron geometry is non degenerate.

• 4d non-degeneracy: The 4-simplex is non degenerate, that is, for six triangles

sharing a common vertex, the six corresponding bivectors are linearly indepen-

dent.

The fact that this set of constraints determine a 4-simplex geometry appeared first in

(Barrett and Crane 1998). The theorem was originally designed for Euclidean geometry,

but as it makes no use of the metric, it can also be applied to the Lorentzian case.

Theorem 1. (Barrett and Crane) Each geometric 4-simplex determines a set of bivec-
tors satisfying the constraints above, and each set of bivectors satisfying these con-
straints determines a geometric 4-simplex unique up to parallel translation and inver-
sion through the origin.

Proof. The diagonal simplicity constraint implies that each bivector is simple, that

is, of the form B = u ∧ v. Each simple bivector determines a plane through the origin

in R3,1. Cross simplicity implies that any two of these planes on a given tetrahedron

belong to the same three dimensional hyperplane.

Given a geometric 4-simplex, the bivectors constructed out of its triangles satisfy the

closure condition by Stoke’s theorem and the non-degeneracy conditions by assumption,

which proves the first part of the theorem.

Now consider a set of bivectors Bt satisfying the constraints above. The simplicity

constraints and 4d non-degeneracy imply that the four planes of a tetrahedron lie in a

common hyperplane or share a common direction. The 3d non-degeneracy condition

rules out the case where they share a common direction.

To construct the geometric 4-simplex, shift one of the five hyperplanes away from the

origin by parallel translation. The hyperplanes now bound a geometric 4-simplex, with

bivectors B�
t = λtBt proportional to the ones we started with. The closure and ori-

entation conditions imply that the λt are all equal. Moving the hyperplane scales the
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+ non-degeneracy 
conditions

BIJ
ab ↔ BIJ

t (a, b = 1...5 ; I, J = 0...3)
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2.3. BIVECTOR GEOMETRY 45

4-simplex and therefore one can fix all the λt to 1 or −1. Hence B�
t = µBt, for µ = ±1.

Because µ is only determined up to a sign, the geometric 4-simplex is then only deter-
mined up to an inversion through the origin. �

A major role is played by both diagonal and cross simplicity constraints. In the Barrett-
Crane construction, the bivectors are associated to Lie algebra elements and these
constraints, being quadratic in the bivectors, translate into constraints on representa-
tions associated to triangles and tetrahedra. As we saw in the proof above, they imply
that the planes associated to faces of a given tetrahedron all lie in the same three di-
mensional hyperplane. The same condition can be restated using directly the normals
N I

a
3:

• Simplicity:
∀a , ∃ Na s.t. Na IB

IJ
ab = 0 ∀b �= a. (2.20)

The formula (2.15) for the bivector in terms of the normals is then trivially obtained.
In fact, because of the orientation condition the bivector Bab is orthogonal to both
normals Na and Nb, thus proportional to �Na ∧Nb.

Let us further explore the 4-simplex geometry. First define the dihedral angle between
two tetrahedra (see Barrett and Foxon 1994). For a 4-simplex in Minkowski space
with all tetrahedra space-like, the dihedral angles are all boost parameters. The a-th
tetrahedron has a outward-pointing timelike normal vector N̂a, and the dihedral angle
at the intersection of two tetrahedra is determined up to sign by

coshΘab = |N̂a · N̂b|, (2.21)

and can be viewed as a distance on the unit hyperboloid.

The sign of the dihedral angle is more delicate. One could define them all to be positive,
but this would lead to additional signs in the formula for the Regge action. It is much
better to take account of the nature of the triangle where the two tetrahedra meet.
The tetrahedra come in two types: the outward normals are either future-pointing or
past-pointing. The triangles are then classified into two types: thin wedge, where one
of the incident tetrahedra is future and the other one past, and thick wedge, where both
are either future or past (see figure 2.1). The dihedral angle is defined to be positive
for a thin wedge and negative for a thick wedge.

An important object in what follows is the dihedral boost. Define Fa the future pointing
normal associated to the tetrahedron a, that is, Fa = εaN̂a, where εa = +1 if N̂a is
future pointing and εa = −1 if N̂a is past pointing. Then the dihedral boost Dab

3Note that from this point and on we start to diverge from the work of Barrett and Crane.

 Let us consider some modifications :

 Constraints :

 Variables : XaT = Na

Xab = X−1
a Xb b

(bab, Xab)

a

Na

Xa ∈ G (G=SO(4) or SO(3,1))

Engle, R.P., Rovelli ’07

spacelike triangles in the Lorentzian case

bab = X−1
a ⊗X−1

a �Bab

talk by Conrady
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2.4. QUANTIZATION 49

A consistent choice of SO(2) rotations for all the triangles exists if and only if the
boundary data is the boundary data of a geometrical 4-simplex. This is equivalent
to stating that there exist group elements Xa associated to tetrahedra such that the
rotations gab are given by gab = X−1

b DabXa. If this is the case, we call the boundary
data Regge-like. This notion will be important when discussing the asymptotics of the
4-simplex amplitude in chapter 4.

2.4 Quantization

Note. From now on we replace the part of the Lorentz group connected to the identity
SO↑(3, 1) by its double cover SL(2,C), to which we refer loosely as the Lorentz group.
We review the relation between these two groups in appendix A.

Our starting point for quantization will be the classical system described by the set
of variables (bab, Xab) and subject to the constraints described above, that we recollect
here:

• Parallel transport:

bab = −X̂ab ⊗ X̂ab � bba = −X̂abbbaX̂ba (2.35)

• Closure: �

b �=a

bIJab = 0 , ∀a (2.36)

• Simplicity:
b0iab = 0 , ∀i (2.37)

• Non-degeneracy: The 3d and 4d geometries are non-degenerate;

• Flatness:

XabXbcXca = 1 , ∀(abc) ⇔ ∃Xa ∈ SL(2,C) s.t.Xab = X−1
a Xb (2.38)

The flatness condition implies that the Xab are of the form Xab = X−1
a Xb. The Xa are

defined up to a global Lorentz transformation. One can then use the group elements Xa

to reconstruct the bivectors Bab = Xa⊗Xa �bab. That these conditions are sufficient to
reconstruct a geometric 4-simplex then follows from the theorem of Barrett and Crane
above.

The advantage of introducing group variables is that one can use standard techniques
for the quantization of group manifolds (Isham at Les Houches 1983). At each trian-
gle these variables (bt, Xt) parameterize the cotangent space over the Lorentz group

Sunday, February 28, 2010
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Group elements are quantized as multiplication operators and bivectors 
according to the following identification to left invariant vector fields:

mimics the Immirzi parameter in the continuum 
theory, but in principle any choice of identification is 
possible

Engle, Livine, R.P., Rovelli ’08, Freidel and Krasnov ’08

Jt � �bt +
s

γ
bt bt �

γ2

sγ2 − 1

�
�Jt −

s

γ
Jt

�
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 Let us look at the constraints one by one :

 First the Flatness condition:

A(Xab) =

� �

a

dXa δ(XaXabX
−1
b )

this defines a function of ten copies of the group

 To deal with the simplicity constraints,  write the vertex amplitude in the dual 
representation:

A(jab,mab) =

� �

ab

dXab A(Xab)D
χab
jabmab jbamba

(Xab)

=

� �

a

dXa �jabmab;χab|X−1
a Xb |χab; jbamba�

Sunday, February 28, 2010
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Euclidean Lorentzian
L2(G) =

�

χ

H̄χ ⊗Hχ

H(k,p)H(j+,j−)

H(j+,j−) =
j=j++j−�

j=|j+−j−|

Hj H(k,p) =
�

j≥|k|

Hj

|(j+, j−); j,m� |(k, p); j,m�

|χ; j,m�

Ki = J0i , Li =
1

2
�0ijkJ

jk
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 Then the simplicity constraints: this is where the different models may differ 
one from each other

 A number of ways to impose these constraints have been proposed.

 They will impose some restrictions on the representations labeling the data on 
the boundary of the 4-simplex

b0it = 0 ⇒ Li
t −

s

γ
Ki

t = 0

Sunday, February 28, 2010
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Master constraint: 

�Ct := �Lt −
s

γ
�Kt

Mt =
�

δijC
i
tC

j
t

j+ =
1 + γ

|1− γ| j
− and j =

�
j+ + j− γ < 1
|j+ − j−| γ > 1

p = γk and j = |k|

Matrix elements:

find H s.t. ∀ψ,φ ∈ H �ψ| �Ct|φ� = 0

Ding and Rovelli ’09

ordering
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Expectation values:

�Ct := �Lt −
s

γ
�Kt

Freidel and Krasnov ’08

� �Ct� = 0
does not specify a Hilbert space!!

Expectation values + minimization of uncertainties

Conrady and Hnybida ’10 and talk by Conrady
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 Closure and parallel transport:

Version 1: 

closure is automatically imposed by gauge invariance (remember Barbieri’s 
quantum tetrahedron)

         are quantized as left invariant vector fields and         as right invariant 
vector fields on that copy of the group.        
Bab Bba

Version II: 

Both constraints are recovered as critical point equations in the semiclassical 
analysis for the 4-simplex, and can be left free for the moment.

Conrady and Freidel ’08
Barrett, Dowdall, Fairbairn, Gomes and Hellmann ’09
Barrett, Dowdall, Fairbairn, Hellmann and R.P. ’09
talk by Hellmann
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A(jab,mab) =

� �

a

dXa �jabmab;χab(jab)|X−1
a Xb |χab(jab); jabmba�

Let us summarize:

A(Xab) =

� �

a

dXa δ(XaXabX
−1
b )

A(jab,mab) =

� �

ab

dXab A(Xab)D
χab
jabmab jbamba

(Xab)

=

� �

a

dXa �jabmab;χab|X−1
a Xb |χab; jbamba�

Peter-Weyl

simplicity constraints

It defines an amplitude for a spin-net on the boundary see talk by Rovelli
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For the moment the boundary state is a spin net with support on the dual 
graph to the boundary to a 4-simplex. 

 Alternatively one can use coherent states to describe the boundary geometry.

Coherent tetrahedron:  Livine and Speziale ’07 and ’08

Coherent states for any graph:  

Immirzi ’96; Freidel and Speziale ’09; Bianchi, Magliaro and Perini ’10; 

Barrett, Dowdall, Fairbairn, Gomes and Hellmann ’09; Conrady and Freidel 
’09; 

talk by Perini

general graphs: Kaminski, Kisielowski and Lewandowski ’09 and talk by Kaminski

Sunday, February 28, 2010



Boundary states

24

 The coherent tetrahedron:

3.2. COHERENT TETRAHEDRA 67

σσσ = (σ1, σ2, σ3) are the Pauli matrices, the dot · is the scalar product in R3
and †

stands for Hermitian conjugation. Also, if the vector n̂ξ is associated to the spinor ξ
then the opposite vector −n̂ξ is associated to the spinor Jξ, where J is the anti-linear

map:

J

�
ξ0
ξ1

�
=

�
−ξ̄1
ξ̄0

�
(3.22)

Note that for a given vector n̂ the associated spinor is only defined up to a phase, and

the phase ϕ can be absorbed into the definition of ξ. Explicitly, for n̂ = (θ,φ):

ξ(θ,φ,ϕ) = eiϕ
�

cos θ/2
− sin θ/2eiφ

�
(3.23)

Define the map g : C2 → GL(2,C)

g(ξ) =

�
ξ0 −ξ̄1
ξ1 ξ̄0

�
, (3.24)

such that the definition of ξ(θ,φ,ϕ) is consistent with the definition of g(n̂,ϕ) before.
The coherent state |j, ξ� is defined analogously:

|j, ξ� := g(ξ) � |j,+j� (3.25)

The important property of coherent states is that they provide a (over)complete basis

for the carrying space Hj:

11j = dj

�

S2

d2n̂ |j, n̂,ϕ��j, n̂,ϕ| =
�

m

|j,m��j,m|. (3.26)

Note that the phases coming from the bra and ket states cancel out in the expression

above and there is no point in integrating over them. The semiclassical geometry of a

tetrahedron τ is described by the state (Livine and Speziale 2008)

|τ�jt,n̂t,ϕt =

�

SU(2)

dg g · (⊗t⊂τ |jt, n̂t,ϕt�) . (3.27)

This state belongs to the invariant subspace under the diagonal action of SU(2),

Inv
�
⊗jfHjf

�
, as can be easily verified. It can in particular be decomposed in the

usual intertwiner basis for the group. The states defined above provide an over com-

plete basis to this invariant space. An interesting property is that the subset satisfying

a closure condition

�

t⊂τ

jtn̂t = 0 (3.28)

n̂t

t

ϕt

 Boosted tetrahedra:

66 CHAPTER 3. SPIN FOAM

3.2 Coherent tetrahedra

The aim of this section is to give a semiclassical description to the quantum tetrahedron
described earlier. The ideas presented here were first introduced in (Livine and Speziale
2007), where the authors used the notion of coherent states for the SU(2) group defined
earlier by Perelomov (Perelomov 1986).

We collect here the essential facts concerning Perelomov’s construction. A coherent
state for SU(2) is labeled by a unit vector n̂ in S2 ∼ SU(2)/U(1) and a spin j. To the
normal n̂ associate a group element g(n̂) ∈ SU(2)/U(1) that maps the unit vector in
the z direction ez into the normal n̂. This rotation is defined up to a phase labeling
a rotation around the z direction. A phase ϕ ∈ (0, 2π) will label the representative of
g(n̂) in SU(2), that we denote g(n̂,ϕ) = g(n̂)eiϕσz , where σz is the Pauli matrix on the z
direction. We define g(n̂) such that the diagonal components are real. Parameterizing
each normal by the two spherical angles (θ,φ), we have:

g(n̂) = g(θ,φ) =

�
cos θ/2 sin θ/2e−iφ

− sin θ/2eiφ cos θ/2

�
(3.17)

The coherent state is defined by the action of g(n̂,ϕ) on the maximum weight state
|j,+j�3:

|j, n̂,ϕ� := g(n̂,ϕ) � |j,+j� = e
iϕj

g(n̂) � |j,+j�. (3.18)

The phase ϕ will play an important role in the construction of boundary states. The
decomposition of this state in the usual basis |j,m� is given by:

|j, n̂,ϕ� =
�

m

D
j
m,+j(g(n̂,ϕ)) |j,m�. (3.19)

These are coherent states in the sense that they minimize the uncertainty ∆H
2. The

expectation value of the generators is given by:

�j, n̂,ϕ| �H |j, n̂,ϕ� = jn̂ (3.20)

A different parametrization of coherent states is given by the identification between
unit spinors and unit vectors in R3:

ξ ⊗ ξ† =
1

2
(1 + σσσ · n̂ξ). (3.21)

3Alternatively one could define a coherent state by acting on the lowest weight state |j,−j�. The
difference is immaterial and we will always use the definition above.

|jt, n̂t,ϕt� −→ |χt; jt, n̂t,ϕt�

A(jab, n̂ab,ϕab) =

� �

a

dXa �jab, n̂ab,ϕab;χab|X−1
a Xb |χab; jba, n̂ba,ϕba�

 Vertex amplitude:
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v
τ

v�

τ �

...

t

Xvτ

(vt)

wedge

n̂vτt

n̂v�τt
jvt

jv�t

Σ with no boundary
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v
τ

v�

τ �

...

t

Xvτ

(vt)

jt

n̂τt

Σ with no boundary
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v
τ

v�

τ �

...

t

Xvτ

(vt)

jt

n̂τt
11jt = djt

�

S2

d2n̂τt |jt, n̂τt��jt, n̂τt| =
+jt�

mτt=−jt

|jt,mτt��jt,mτt|

ZΣ(jt) =

� �

vτ

dXvτ

�

τt

d2n̂τt

�

t

�

v⊃t

�jt, n̂τt;χt|X−1
vτ Xvτ � |χt; jtn̂τ �t�
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v
τ

v�

τ �

...

t

Xvτ

(vt)

jt

n̂τt

What about the sum over spins?

ZΣ =
�

jt

µ(jt)

� �

vτ

dXvτ

�

τt

d2n̂τt

�

t

�

v⊃t

�jt, n̂τt;χt|X−1
vτ Xvτ � |χt; jtn̂τ �t�
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v
τ

v�

τ �

...

t

Xvτ

(vt)

jt

n̂τt

µ(jt) ∼ jαt

What about the sum over spins?

ZΣ =
�

jt

µ(jt)

� �

vτ

dXvτ

�

τt

d2n̂τt

�

t

�

v⊃t

�jt, n̂τt;χt|X−1
vτ Xvτ � |χt; jtn̂τ �t�

talk by Kaminski
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Pvt =

�
Ωzvt e

jtSvt[X,n,z]

ZΣ =
�

jt

µ(jt)

� �
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t jt
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�
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� �

vτ

dXvτ
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τt
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�

vt

Ωzvt e
�

t jt
�

v⊃t Svt

inserting back the boundary
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24 CHAPTER 1. INTRODUCTION AND OVERVIEW

Regge calculus has a long and twisted history, having followed times of great enthusiasm

and times of abandon during the years. Its importance was first advertised by Wheeler,

conceptually but also as a tool for numerical relativity, in his lecture notes at Les

Houches (Wheeler 1964). He further introduces in the same course the idea of a space-

time foam, according to which space-time appears smooth on large scales but is highly

curved with possibly different topologies on very short scales. This is because, on

these very short scales, one should expect a high deviation from flatness and therefore

the appearance of wormholes and other forms of gravitational collapse. The idea of a

space-time foam is a very influential concept and nearly every approach to quantum

gravity aims at consistently reconstruct this scenario.

Both ideas, Regge calculus and the concept of the space-time foam, were reconsidered

later by Hawking (Hawking 1978) as a way to implement a path integral for (Euclidean)

quantum gravity. The advantage of Regge calculus is that it allows very naturally an

extension to different topologies and hence fits well with the foam concept.

Simplicial minisuperspace

The construction of a path integral using Regge calculus was nicely described by Hartle

(Hartle 1985). We review it here as it sets up the program we intend to follow later

with spin foams. His construction was for Euclidean quantum gravity, and we will

make small adjustments to deal with the Lorentzian signature. Important questions in

the Euclidean context, such as the unboundedness of the gravitational action due to

conformal transformations (Gibbons, Hawking and Perry 1978) will be sidelined.

The main object of interest is the functional integral:

Ψ(3-geometries h) =
�

4-geometries g

ei
S(g)
� . (1.1)

The 4-geometries g over which one sums over should agree with the 3-geometries h
on the boundary of the region of space time considered. In the Euclidean case, the

functional Ψ(h) can be interpreted as the wave function of the universe (Hartle and

Hawking 1983)
1
.

Properly defining the sum above is the main goal of any path integral approach for

gravity. The strategy here is to restrict the sum to simplicial geometries only, defining

hence what Hartle calls a simplicial minisuperspace approximation for the functional

integral. To specify a geometrical configuration, first fix a simplicial net Σ, that is,

specify the vertices of the net and the combinations that make up the higher simplices

1The first appearance of a path integral for gravity was in (Misner 1957) after a suggestion by
Wheeler. The definition of the expression above is actually a problem in Wheeler’s lecture notes!

Spin foams constitute an attempt to define a path integral for gravity.

The main assumption is a restriction to a fixed simplicial net. 

Hope to define a dynamics for LQG.
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Finally, what do we do with that?

First, define it properly

Then, check if it has anything to do with gravity

Relation with Regge calculus:  Asymptotic papers

Vector geometries : Barrett, Fairbairn and Hellmann ’09

Degenerate configurations

ZΣ({n̂τt,φt, jt}, t ⊂ ∂Σ) =
�

jt

µ(jt)

� �

vτ

dXvτ

�

τt

d2n̂τt

�

vt

Ωzvt e
�

t jt
�

v⊃t Svt
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• Classical phase space

• The quantum 4-simplex

• Boundary states

• Spin foam amplitude

• Observables
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Area operator

Volume operator

Graviton propagator

Ding and Rovelli ’09

Bianchi, Magliaro and Perini ’09 and talk by Rovelli

�i|V̂ 2
τ |j� = γ3�i|�abc�mnpL

m
a Ln

bL
p
c |j�

Â2
t = γ2L2

t
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We are interested in defining and understanding a path integral for simplicial gravity

Let us summarize the steps in the construction

1) Classical phase space for a 4-simplex, in particular choice of boundary data!!

2) Quantize the 4-simplex

3) Glue simplices together

4) With the help of coherent states, exponentiate to get a path integral over classical 
histories

5) Do something with it!
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