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Spin-foams models

Is the EPRL mapinjective, doesn’t it kill any SU(2)
intertwiner?

Is the EPRL mapisometric, does it preserve the scalar
product between the SU(2) intertwiners?

If not, what is a complete,correct form of the partition
functionwritten directly in terms of the SU(2)
intertwiners, the preimages of the EPRL map?

– p.2



Spin-foams

Spin-foam approach to LQG is an analog of the
Feynman path integral(Rovelli and Reisenberger)
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Induced boundary spin-network

Spin network is obtained bytransversalsection of a
spin foam.
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Euclidean 4d QG as spin-foam

4d QG is regarded as a BF theory with constraints.

Spin-networks consists of gauge invariant functions.
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Euclidean 4d QG as spin-foam

In each step we add one vertex with evolution ofBF
theory, obtaining a transition amplitude between spin
networks.
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Euclidean 4d QG as spin-foam

In each step we add one vertex with evolution ofBF
theory, obtaining a transition amplitude between spin
networks.

Constraints are imposed as projections on edges
(nodes of spin-network).
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Details

The simplicity constraints are imposed on the
elements ofHΣ, locally at each vertex.
InvSimp(ρ1 ⊗ ...ρk ⊗ ρ∗k+1 ⊗ ...⊗ ρ∗N)
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Details

The simplicity constraints are imposed on the
elements ofHΣ, locally at each vertex.
InvSimp(ρ1 ⊗ ...ρk ⊗ ρ∗k+1 ⊗ ...⊗ ρ∗N)

In each subsequent spin-network intertwinersι should
be in this subspace,

To sum with respect to the spin-network histories with
the amplitude as a weight, one fixes anorthonormal
basis in each space of simple intertwiners.
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Simple intertwiners

There are three main proposals for the simple intertwiners:

1. that ofBarrett-Crane (BC)corresponding to the
Palatini action,

2. that ofEngle-Pereira-Rovelli-Livine (EPRL)
corresponding the Holst action with the value of the
Barbero-Immirzi parameterγ 6= ±1,

3. that ofFreidel-Krasnov (FK)also corresponding to
the Holst action with the value of the Barbero-Immirzi
parameterγ 6= ±1,
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EPRL intertwiner

Given intertwinerη ∈ Inv(ρk1
⊗ ...) with the spinskI

j±I =

∣

∣

∣

∣

1 ± γ

2

∣

∣

∣

∣

kI

kI = j+ + j−, if |γ| < 1 andkI = |j+ − j−|, if |γ| > 1. This follows from

adjusted/improvedconstraints.
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EPRL intertwiner

Given intertwinerη ∈ Inv(ρk1
⊗ ...) with the spinskI

j±I =

∣

∣

∣

∣

1 ± γ

2

∣

∣

∣

∣

kI

The map EPRL

ιEPRL(η) := (P+ ⊗ P−)c1 ⊗ ... ⊗ cnyη.

P± projections ontoSU(2)± invariants,

ci Clebsch-Gordon coefficientsρki
→ ρj+

i
⊗ ρj−i

.
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Orthonormal basis

One can show that the mapη → ιEPRL(η) is
injective, so one can labelled EPRL intertwiners by
theSU(2) intertwiners.
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Orthonormal basis

One can show that the mapη → ιEPRL(η) is
injective, so one can labelled EPRL intertwiners by
theSU(2) intertwiners.

The proof is based on the observation that in suitable
basis matrix of theιEPRL is “upper” triangularand
injective on“diagonal” entries.
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Proof 1

Suitable basis is given by an intermediate spink12
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Suitable basis is given by an intermediate spink12 andj±12.

+⊗ −
Instead of projecting we consider contractions with the el-

ements ofInvSU(2)×SU(2).
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Proof 2

Such a basis is graded byk12 andj+
12 + j−12 respectively,

+⊗ −
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Proof 2

Such a basis is graded byk12 andj+
12 + j−12 respectively,

+⊗ −
then

〈ι(ηk12
), ηj+

12
⊗ ηj−

12
〉 = 0, k12 > j+

12 + j−12.
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Proof 2

Such a basis is graded byk12 andj+
12 + j−12 respectively,

+⊗ −
then

〈ι(ηk12
), ηj+

12
⊗ ηj−

12
〉 = 0, k12 > j+

12 + j−12.

We can restrict our attention tok12 = j+
12 + j−12
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Proof 3

The contraction of

+⊗ −
k12 = j+

12 + j−12
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Proof 3
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Proof 3

...is equivalent to contraction of

+⊗ −
Imposing additional constraints onj±12 allows for
inductive procedure.

– p.12



Proof 3

...is equivalent to contraction of

+⊗ −
Imposing additional constraints onj±12 allows for
inductive procedure.

There are some technical details...
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Additional factor in the amplitude

However, the map isnot isometricfor |γ| 6= 1. In order
to cure the lack of unitarity one should replace the former
spin -foam amplitude by

Z[ψ] =
∑

j±f ,η
in/out
e

∏

f face

dim ρj+

f , j−f

∏

e edge

A(ηin
e , η

out
e )

∏

v vertex

Av({ι(ηe)})ψ({ι(ηbdr)}),

A(η1, η2) is the inverse of the matrix〈ι(η1), ι(η2)〉 so

PEPRL =
∑

ηin/out

Ain,out|ιEPRL(ηout)〉〈ιEPRL(ηin)|
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Asymptotic behavior of ιEPRL

Even if the mapιEPRL is not unitary the asymptotic
behavior ofA may occure to be rather simple.
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Asymptotic behavior of ιEPRL

Even if the mapιEPRL is not unitary the asymptotic
behavior ofA may occure to be rather simple.
γ = 1

2
, j1 = 2, j2 = 4, j3 = 4, j1 = 2; a, b ∈ {2, . . . , 6}:
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


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Asymptotic behavior of ιEPRL

Even if the mapιEPRL is not unitary the asymptotic
behavior ofA may occure to be rather simple.
γ = 1

2
, j1 = 2, j2 = 4, j3 = 4, j1 = 2; a, b ∈ {2, . . . , 6}:















0.3 0 0 0 0

0 0.23 0 0 0

0 0 0.21 0 0

0 0 0 0.22 0

0 0 0 0 0.32






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




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Asymptotic behavior of ιEPRL

Even if the mapιEPRL is not unitary the asymptotic
behavior ofA may occure to be rather simple.

Examples of lowj indicate that matrixA is
aproximately diagonal (conjecture).
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Asymptotic behavior of ιEPRL

Even if the mapιEPRL is not unitary the asymptotic
behavior ofA may occure to be rather simple.

Examples of lowj indicate that matrixA is
aproximately diagonal (conjecture).

If this is trueA does not change (spoil)asymptotic
behavior of the spin foam amplitude.
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Summary

The map
η 7→ ιEPRL(η)

is injectivefor all γ,
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Summary

The map
η 7→ ιEPRL(η)

is injectivefor all γ,

Simple examples shows that it isnot unitaryfor
|γ| 6= 1.

The basis labelled by SU(2) intertwiners is not
orthonormal and we should introduce anadditional
factorA in the spin-foam amplitude

〈η1|A−1η2〉 = 〈ιEPRL(η1)|ιEPRL(η2)〉
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