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» |sthe EPRL mapnjective doesn't it kill any SUR)
Intertwiner?

» |sthe EPRL mapsometrig does it preserve the scalar
oroduct between the SPJ) intertwiners?

» |f not, what Is a completegorrect form of the partition
functionwritten directly in terms of the S\2|)
Intertwiners, the preimages of the EPRL map?
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# Spin network Is obtained kyansversasection of a
spin foam.

# Colouring are induced on the spin-network from the
spin foam.

a) b) |



I Euclidean 4d QG as spin-foam

#» 4d QG is regarded as a BF theory with constraints.
# Spin-networks consists of gauge invariant functions.



I Euclidean 4d QG as spin-foam

# |n each step we add one vertex with evolutionf
theory, obtaining a transition amplitude between spin

networks.



I Euclidean 4d QG as spin-foam

# |n each step we add one vertex with evolutionf
theory, obtaining a transition amplitude between spin
networks.

# Constraints are imposed as projections on edges
(nodes of spin-network).



| Details

# The simplicity constraints are imposed on the
elements oft{s,, locally at each vertex.

INVinp (P1 @ .0k @ Py @ .o @ piy)



| Details

# The simplicity constraints are imposed on the
elements oft{s,, locally at each vertex.

INVinp (P1 @ .0k @ Py @ .o @ piy)

# |n each subsequent spin-network intertwinessiould
ne In this subspace,

—



| Details

# The simplicity constraints are imposed on the
elements ofHy;, locally at each vertex.

—nVSan(pl & .. Pk & IOk—l—l X ... & ’ON)

# |n each subseguent spin-network intertwinessould
ne In this subspace,

# To sum with respect to the spin-network histories with
the amplitude as a weight, one fixesathonormal
basis IN each space of simple intertwiners.
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I Simpleintertwiners

There are three main proposals for the simple intertwiners

1. that ofBarrett-Crane (BCgorresponding to the
Palatini action,

2. that ofEngle-Pereira-Rovelli-Livine (EPRL)
corresponding the Holst action with the value of the
Barbero-Immirzi parametey #+ =1,

3. that ofFreidel-Krasnov (FKpalso corresponding to
the Holst action with the value of the Barbero-Immirzi

parametery #= +1,




I EPRL intertwiner

Given intertwinem € Inv(p;, ® ...) with the spinsk;

, 1 +
it = | =k

2

kr =47 +5,if |y| < landk; = [T — 5|, if |y| > 1. This follows from

adjusted/improvedonstraints.
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I EPRL intertwiner

Given intertwinem € Inv(p;, ® ...) with the spinsk;

, 1 +
it ==L ks

2

The map EPRL

LEPRL(U) L= (P+ ®P_)Cl X ... ®Cn_|77.

» P+ projections onta5U (2). invariants,

» ¢; Clebsch-Gordon coefficients, — p.+ ® p;-. |
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» One can show that the map— tzprr(n) is
Injective, so one can labelled EPRL intertwiners by
the SU(2) intertwiners.

o The proof is based on the observation that in suitable
basis matrix of thezpr;, IS “upper” triangularand
Injective on“diagonal” entries.
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| Proof 2

Such a basis is graded By, andj;, + j;, respectively,

i j -
kq k>
N i 5 N i s
J J
O 12 12

then

it

<[’(77k12)7 77];5 & 77]1_2> — Oa k12 > ];_2 —1_91—2

We can restrict our attention fq, = jfz + 715 |
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| Proof 3

...IS equivalent to contraction of

0.0

Imposing additional constraints g, allows for
Inductive procedure.

There are some technical details...
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I Additional factor in the amplitude

However, the map iaot isometricfor |y| # 1. In order
to cure the lack of unitarity one should replace the former
spin -foam amplitude by

Z H dlmp]f iz

zn/out f fa,ce

JE e
[T A ey 1] Ad ) ({¢(mar) }),
e edge v vertex

A(m,1m9) is the inverse of the matrig(n;), t(1,)) SO

Ppprr, = Z Am,out‘éEPRL(Uout»<LEPRLM_|

Nin/out
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# Even ifthe mapgpgry IS Not unitary the asymptotic
behavior ofA may occure to be rather simple.

Y= %le :27j2 :47j3:47j1 ZQ;CL,bE{Q,---,G}:
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I Asymptotic behavior of tppp;

# Even ifthe mapgpgry IS Not unitary the asymptotic
behavior ofA may occure to be rather simple.

7:%le:27j2:47j3:47j1:2;a7b€{2 """ 6}

(03 0 0 0 0 )
0 023 0 0 0
0 0 021 0 0
0 0 0 022 0

\ 0 0 0 0 032/
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I Asymptotic behavior of tppp;

# Even ifthe mapgpgry IS Not unitary the asymptotic
behavior ofA may occure to be rather simple.

» Examples of low; indicate that matrix4 is
aproximately diagonal (conjecture)

o Ifthisis true A does not change (spo#symptotic
behavior of the spin foam amplitude.
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I Summary

#» The map
1 +— tgprL(7)
IS injectivefor all -,
# Simple examples shows that itnst unitaryfor

vl # 1.

» The basis labelled by SQ) intertwiners is not
orthonormal and we should introduce asditional

factor A in the spin-foam amplitude

(m|A™ 'n2) = (teprc(m)|tepre(m2))

—
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