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“By and large it is uniformly true that in mathematics that
there is a time lapse between a mathematical discovery and the
moment it becomes useful; and that this lapse can be anything
from 30 to 100 years, in some cases even more; and that the
whole system seems to function without any direction, without
any reference to usefulness, and without any desire to do things
which are useful.”

John von Neumann
COLLECTED WORKS, VI, p. 489

For more mathematical quotes, see the first page of each chapter below,
[M], [S] or the www page at http://math.furman.edu/~mwoodard/mquot.
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“There are some things which cannot
be learned quickly, and time, which is all we have,
must be paid heavily for their acquiring.
They are the very simplest things,
and because it takes a man’s life to know them
the little new that each man gets from life
is very costly and the only heritage he has to leave.”

Ernest Hemingway
(From A. E. Hotchner, PAPA HEMMINGWAY, Random House,

NY, 1966)
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Chapter 0

Introduction

”The advantage is that mathematics is a field in which one’s
blunders tend to show very clearly and can be corrected or erased
with a stroke of the pencil. It is a field which has often been
compared with chess, but differs from the latter in that it is only
one’s best moments that count and not one’s worst.”

Norbert Wiener

EX-PRODIGY: MY CHILDHOOD AND YOUTH

Groups measure symmetry. No where is this more evident than in the
study of symmetry in 2- and 3-dimensional geometric figures. Symmetry,
and hence groups, play a key role in the study of crystallography, elemen-
tary particle physics, coding theory, campanology (see §5.11 below), and the
Rubik’ s cube, to name just a few.

This is a book biased towards learning group theory not learning to solve
”the cube”. To paraphrase the German mathematician David Hilbert, the
art of doing group theory is to pick a good example to learn from. The
Rubik’s cube will be our example. We motivate the study of groups by
creating a group-theoretical model of Rubik’s cube-like puzzles. Although
some solution strategies are discussed (for the 15 puzzle, the Rubik’s cube -
the 3×3×3 and 4×4×4 versions, the ”Rubik tetrahedron” or pyraminx, the
”Rubik dodecahedron” or megaminx, the skewb, square 1, the masterball,
and the equator puzzle), these are viewed more abstractly than most other
books on the subject. We regard a solution strategy merely as a reasonably

13



14 CHAPTER 0. INTRODUCTION

efficient algorithm for constructing any element in the associated group of
moves.

The approach here is different than some other group theory presentations
(such as Rotman [R]) in that

(a) we emphasize puzzle-related group theoretical examples over general
theory,

(b) we present some of the basic notions algorithmically (as in [Bu]), and

(c) we tried to keep the level as low as possible for as long as possible
(though only the reader can judge if we’ve keep it low enough long
enough, or too low too long!).

The hope is that by following along and doing as many of the exercises as
possible the reader will have fun learning about how groups can be used to
solve a ”real life” problem (assuming you consider solving the Rubik’s cube
a problem from real life!). Along the way, we shall also explain the rules of a
two person game (the Gordon game) which arises from group theory - a game
which arises from a group not a group which arise from a game. See also the
superflip game introduced in §4.5.2 (related to coin-turning games of H. W.
Lenstra) and W. Hamilton’s Icosian game in §6.2.1. This is probably one of
the few mathematics texts which contains an exercise of the form: “Play a
game!”.

Experience has shown that in order to keep up a pace which allows the
class to finish the proof of the ”fundamental theorems of cube theory” (see
§4.5.2 and §10.2) in one semester, the students should either (a) be candidates
for the honors program or (b) have some group-theoretical background. More
modest goals might be more appropriate for classes with less background.

Acknowledgements: Many of the graphs given below were produced with
the help of MAPLE. Some of the group-theoretical calculations (such as
the order of a group element) were determined with the help of GAP. The
contributions from students were a big help. I especially thank my former
students Gen Gomes, Ann Luers, Jim McShea, Justin Montague, and Spencer
Robinson for their help and collaboration on some of the topics. I’d also like
to thank Andy Southern for collaborating on some of the masterball material
[JS] which appears in chapter 14 and Dennis Spellman for the argument in
§9.7 where a presentation of wreath products is derived.



Chapter 1

Logic and sets

”If logic is the hygiene of the mathematician, it is not his
source of food; the great problems furnish the daily bread on
which he thrives.”

Andre Weil
”The future of mathematics”, AMER MATH MONTHLY,

May, 1950

”The rules of logic are to mathematics what those of structure
are to architecture.”

Bertrand Russell
MYSTICISM AND LOGIC AND OTHER ESSAYS, 1917,

p61

This chapter will present some background to make some of the termi-
nology and notation introduced later a little clearer. It is not intended to be
a rigorous introduction to mathematical logic.

1.1 Logic

A statement is a logical assertion which is either true or false. (Of course we
assume that this admitedly circular ’definition’ is a statement.) Sometimes
the truth or falsity of a statement is called its Boolean value. One can com-
bine several statements into a single statement using the connectives ’and’,
’or’, and ’implies’. The Boolean value of a statement is changed using the
’negation’. We shall also use ’if and only if’ and ’exclusive or’ but these can

15



16 CHAPTER 1. LOGIC AND SETS

be defined in terms of negation ∼ and the other three connectives (∨, ∧, and
⇒).

Exercise 1.1.1. Do this. In other words, express −∨ and ⇐⇒ in terms of
∼, ∨, ∧, and ⇒.

Notation: Let p and q be statements.

statement notation terminology

p and q p ∧ q ”conjunction”
p or q p ∨ q ”disjunction”

p implies q p ⇒ q ”conditional”
negate p ∼p ”negation”

p if and only if q p ⇐⇒ q ”if and only if”
either p or q (not both) p −∨ q ”exclusive or”

Truth tables: Given the Boolean values of p, q, we can determine the
values of p ∧ q, p ∨ q, p⇒ q, p ⇐⇒ q, p− ∧ q using the truth tables:

p q p ∧ q

T T T
T F F
F T F
F F F

p q p ∨ q

T T T
T F T
F T T
F F F

p q p ⇒ q

T T T
T F F
F T T
F F T

p q p ⇐⇒ q

T T T
T F F
F T F
F F T

p q p −∨ q

T T F
T F T
F T T
F F F

p ∼ p

T F
F T

Exercise 1.1.2. (M. Gardner) Determine which of the following statements is
true.
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• Exactly one of these statements is false.

• Exactly two of these statements are false.

• Exactly three of these statements are false.

• Exactly four of these statements are false.

• Exactly five of these statements are false.

• Exactly six of these statements are false.

• Exactly seven of these statements are false.

• Exactly eight of these statements are false.

• Exactly nine of these statements are false.

• Exactly ten of these statements are false.

Definition 1. Let B be the set {0, 1} with the two operations addition (+)
and multipication (*) defined by the following tables

p q p + q

1 1 0
1 0 1
0 1 1
0 0 0

p q p * q

1 1 1
1 0 0
0 1 0
0 0 0

(Note how these mimic the truth tables of ’exclusive or’ (−∨) and ’and’
(∧).) We call B the Boolean algebra.

Exercise 1.1.3. Use truth tables to verify DeMorgan’s laws:
(a) p ∧ (q ∨ r) ⇐⇒ (p ∧ q) ∨ (p ∧ r) ,
(b) p ∨ (q ∧ r) ⇐⇒ (p ∨ q) ∧ (p ∨ r),
and the laws of negation:
(c) ∼ (p ∧ q) ⇐⇒ (∼ p) ∨ (∼ q) ,
(d) ∼ (p ∨ q) ⇐⇒ (∼ p) ∧ (∼ q).

(You may want to do (a), (c), (d) first, then deduce (b) from these.)
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Definition 2. A logical argument is a sequence of statements (called hypotheses)
p1, p2, ..., pn, which imply a statement q (called the conclusion).

In other words, a logical argument is a true statement of the form

(p1 ∧ p2 ∧ ... ∧ pn)⇒ q.

Exercise 1.1.4. Use truth tables to verify the logical argument

((p⇒ q) ∧ (q ⇒ r))⇒ (p⇒ r).

Definition 3. ‘For all‘, written ∀, is the universal quantifier. ‘There exists‘,
written ∃, is the existential quantifier.

A variable is a letter denoting some (possibly unknown) object. A constant
is a letter denoting some specific, well-defined object. A term is a variable
or constant.

A predicate is a function

P : {terms} → {logical statements}.

Example 4. ‘Daffy Duck‘ is a constant. ‘x and Daffy Duck are cartoon char-
acters‘ is a predicate involving a variable and a constant.

1.1.1 Expressing an everyday sentence symbolically

When creating a model of the Rubik’s cube, we shall of course need to con-
vert some ‘everyday statements‘ into symbolical form in order to perform
mathematical analysis. Let’s illustrate this with an example.

Example 5. Consider the statement ”Each student in this class is a mathe-
matics major”. Let

M(x) = x is a mathematics major, S(x) = x is a student in this class.

The symbolic form is

∀x, S(x)⇒M(x).

Exercise 1.1.5. Convert ”Someone in this class likes the Rubik’s cube” to
symbolic form.
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Exercise 1.1.6. (M. Gardner [Gar2]) Professor White, Professor Brown and
Professor Black were lunching together. ”Isn’t it remarkable”, said the lady,
”that our names are White, Black, and Brown and one of us has black hair,
one has brown hair, and one has white hair.”

”It is indeed”, answered the one with the black hair as Professor Black
bit into his sandwich, ”and have you noticed that not one has hair color to
match our name?”

The lady’s hair is not brown. What is the color of Professor Black’s hair?

white brown black lady
White
Brown
Black
lady ×

1.2 Sets

A set is a ’well-defined’ collection of objects. The objects in a set are the
elements of the set.

There are two common ways to describe a set:
(a) list all its elements (if the set is finite, e.g., {1, 2, 3}),
(b) describe the set using properties of its elements (e.g., the set of all

even integers can be described by {n | n an integer, 2 divides n}).

Remark 1. We must be a little careful when describing sets using properties
since some ‘self-referential‘ properties lead to contraditions: let

R = {x | x /∈ x}.

In other words, for all x, x ∈ R ⇐⇒ x /∈ x. In particular, if we take x = R
then this becomes

R ∈ R ⇐⇒ R /∈ R,

an obvious contradition. The problem is that R is not ”well-defined” (in
the sense that it does not satisfy the set-theoretic axioms which we will skip
here).

The empty set is the set containing no elements, denoted ∅.
Notation: Let S and T be sets. Assume that S ⊂ X.
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statement notation terminology

set of elements in S and T S ∩ T intersection
set of elements in S or T S ∪ T union

set of elements in S or T (not both) S∆T symmetric difference
set of elements not in S Sc complement

S is a subset of T S ⊂ T subset

Exercise 1.2.1. Use Venn diagrams to verify the DeMorgan laws:
(a) S ∩ (T ∪ U) = (S ∩ T ) ∪ (S ∩ U) ,
(b) S ∪ (T ∩ U) = (S ∪ T ) ∩ (S ∪ U) ,
and the laws of negation:
(c) (S ∩ T )c = Sc ∪ T c,
(d) (S ∪ T )c = Sc ∩ T c.

Definition 6. We call two sets S, T disjoint if they have no elements in
common, i.e., if

S ∩ T = ∅.

If

S = ∪ni=1Si,

where the S1, S2, ..., Sn are pairwise disjoint sets then we call this union a
partition of S.

Example 7. If

S = Z, S1 = {...,−2, 0, 2, ...} = even integers,

S2 = {...,−3,−1, 1, 3, ...} = odd integers,

then S = S1 ∪ S2 is a partition of the integers into the set of even and odd
ones.

Logic/set theory analogs: Just as one can use connectives to form new
statements from old statements, there are analogous ways to form new sets
from old ones using ’intersection’ (the analog of ’and’), ’union’ (the analog
of ’or’), and ’complement’ (the analog of ’negation’). The analog of ’implies’
is ’subset’.
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set theory logic
sets statements

union or
intersection and

subset implies
symmetric difference exclusive or

equal if and only if
Venn diagrams truth tables

For more on logic or set theory, see for example [C] or [St].
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Chapter 2

Functions, matrices, relations
and counting

“I think mathematics is a vast territory. The outskirts of
mathematics are the outskirts of mathematical civilization. There
are certain subjects that people learn about and gather together.
Then there is a sort of inevitable development in those fields. You
get to a point where a certain theorem is bound to be proved,
independent of any particular individual, because it is just in the
path of development.”

William P. Thurston
MORE MATHEMATICAL PEOPLE, NY, 1990, p332

“Chance favors the prepared mind.”
Louis Pasteur

This chapter will introduce some frequently used notions.

2.1 Functions

Let S and T be finite sets.

Definition 8. : A function f from S to T is a rule which associates to each
element s ∈ S exactly one element t ∈ T . We will use the following notations

23
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for this:
f : S → T (”f is a function from S to T”),
f : s 7−→ t (”f sends s in S to t in T”),
t = f(s) (”t is the image of s under f”).

A function is also called a map, mapping, or transformation. We call S
the domain of f , T the range of f , and the set

f(S) = {f(s) ∈ T | s ∈ S}

the image of f. The Venn diagram depicting this setup is:

The Cartesian product of two sets S, T is the set of pairs of elements
taken from these sets:

S × T = {(s, t) | s ∈ S, t ∈ T}.

Example 9. If R denotes the set of all real numbers then the Cartesian prod-
uct R × R is simply the plane of pairs of real numbers we are all familiar
with.

More generally, we may iterate this process and take the Cartesian prod-
uct the set of real numbers with itself n times (where n > 1 is any integer)
to get R× ...× R (n times). This n-fold Cartesian product is denoted more
conveniently by Rn. An element of the set Rn will be called a vector or an
n-vector to be specific.

The graph of a function f : S → T is the subset

{(s, f(s) | s ∈ S} ⊂ S × T.
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It is not possible for every subset of S × T the graph of some function
from S to T . The following fact classifies exactly which subsets of S×T can
arise as the graph of a function from S to T .

Lemma 10. : Let X ⊂ S × T . X is the graph of a function from S to T if
and only if, for all (s1, t1) ∈ X and (s2, t2) ∈ X, whenever t1 6= t2 we also
have s1 6= s2.

Exercise 2.1.1. Verify this. (Hint: Let

pr1 : S × T → S
(s, t) 7−→ s

be projection onto the 1st component. Recall that the graph of a function
has the property that pr−1

1 (s) is always a singleton.)

Definition 11. If the image of the function f : S → T is all of T , i.e., if
f(S) = T , then we call f surjective (or ”onto”, or ”is a surjection”).

Equivalently, a function f from S to T is surjective if each t in T is the
image of some s in S under f. Occasionally, you see the following special
notation for surjective functions:

f : S →� T (f ”maps S surjectively onto T”).

Exercise 2.1.2. State a general rule which determines those subsets X of
S×T which are the graph of some surjective function from S to T . (Use the
projection onto the second component,

pr2 : S × T → T
(s, t) −→ t

in your rule.)

Question: Suppose that |S| < |T |. Is there a surjective function f :
S → T? Explain.

Definition 12. : A function f : S → T is called injective (or ”one-to-one”
or ”an injection”) if each element t belonging to the image f(S) is the image
of exactly one s in S.
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In other words, f is an injection if the condition f(s1) = f(s2) (for some
s1, s2 ∈ S) always forces s1 = s2. Sometimes the ”hook arrow” notation is
used to denote an injective function

f : S ↪→ T.

Question: Suppose that |S| > |T |. Is there an injective function f : S →
T? Explain.

Exercise 2.1.3. Suppose that |S| = |T |. Show that a function f : S → T is
surjective if and only if it is injective.

Definition 13. A function f : S → T is called a bijection if it is both
injective and surjective.

Equivalently, a bijection from S to T is a function for which each t in T
is the image of exactly one s in S.

Exercise 2.1.4. Give an algorithm for determining if a given finite subset X
of S × T is the graph of a bijection from S to T .

Definition 14. A set S is called countable if there exists a bijection f : S →
Z to the set of integers Z.

Example 15. The set S of all rational numbers 0 < r < 1 is countable since
you can define f : S → Z as follows: f(1) = 1/2, f(2) = 1/3, f(3) = 2/3,
f(4) = 1/4, f(5) = 3/4, f(6) = 1/5, f(7) = 2/5, f(8) = 3/5, and so on.
There are φ(n) terms of the form m/n, where m is relatively prime to n and
φ(n) denotes the number of positive integers less than or equal to n which are
relatively prime to n (i.e., have no common prime divisors). (φ is sometimes
called Euler’s phi function).

Exercise 2.1.5. Give an algorithm for determining if a given finite subset X
of S × T is the graph of a bijection from S to T .

Example 16. Let C be the cube in 3-space having vertices at the points
O = (0, 0, 0), P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1), P4 = (1, 1, 0), P5 =
(1, 0, 1), P6 = (0, 1, 1), P7 = (1, 1, 1). We shall also (to use a notation which
will be used more later) denote these by dbl, dfl, dbr, ubl, dfr, ufl, ubr,
ufr, resp. Let C0 = {O,P1, ..., P7} be the set of the 8 vertices of C, let
C1 = {uf, ur, ub, ul, fr, br, bl, f l, df, dr, db, dl} be the set of the 12 edges of
C, and let C2 = {F,B, U,B, L,R} be the set of the 6 faces of C. Let r be
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the rotation of a point (x, y, z) by 180 degrees about the passing through the
points (1/2, 1/2, 0), (1/2, 1/2, 1). Note that r : R3 → R3 is a function which
sends the cube C onto itself.

The cube C is pictured as follows:

This function r induces three functions

f0 : C0 → C0, f1 : C1 → C1, f2 : C2 → C2.

where fi is the function which sends x ∈ Ci to its image r(x) under r (which
is again in Ci), for i = 0, 1, 2. Each fi is a bijection.

Exercise 2.1.6. Finish the labeling of the vertices and the faces in the above
picture and describe f1 and f2 explicitly by filling out the tables

v f0(v) e f1(e) f f2(f)
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Lemma 17. If f : S → T is a bijection then there exists a function f−1 :
T → S defined by the following property: for s ∈ S and t ∈ T , we have

f−1(t) = s if and only if f(s) = t.

Exercise 2.1.7. Prove this.

Definition 18. The function f−1 in the above lemma is called the inverse function
of f .

2.2 Functions on vectors

This section presents a few basic facts about matrices, which we regard as
a certain type of function which sends vectors to vectors. For further de-
tails, see any text on linear algebra, for example [JN] where the historical
introduction below is borrowed from.

2.2.1 History

The mathematician who first published a major work which seriously studied
matrices and matrix algebra in the western world was Lord Arthur Cayley
(1821-1895) of Cambridge, England. He wrote a memoir on the theory of
linear transformations which was published in 1858 and is often thought of
as one of the “fathers” of matrix theory, though in fact it was his friend and
colleague James Sylvester who first coined the term “matrix”.

Here is one of the earliest examples which motivated Cayley: if we have
three coordinate systems (x, y), (x′, y′), and (x′′, y′′) , connected by{

x′ = x+ y
y′ = x− y

and {
x′′ = −x′ − y′
y′
′
= −x′ + y′

then the relationship between (x, y) and (x′′, y′′) is given{
x′′ = −x′ − y′ = −(x+ y)− (x− y) = −2x
y′
′
= −x′ + y′ = −(x+ y) + (x− y) = −2y
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If we do as Cayley did and abbreviate the three change of coordinates by the
square array of the coefficients then we obtain the three arrays[

1 1
1 −1

]
,

[
−1 −1
−1 1

]
,

[
−2 0
0 −2

]
.

Cayley noticed that there was an algebraic rule which allows us to determine
the third array from the first two, without doing the substitution we did
above to relate (x′′, y′′) to (x, y). This rule involves the rows of the first
array and the columns of the second array. For example, to get the entry in
the upper left-hand corner of the third array, Cayley explained we need to
combine the first row of the first array with the first column of the second
array as follows: −2 = 1 · (−1) + 1 · (−1). (The general formula will be given
below.) To get the entry in the upper right-hand corner of the third array,
we combine the first row of the first array with the second column of the
second array: 0 = 1 · (−1) + 1 · 1. To get the entry in the lower left-hand
corner of the third array, we combine the second row of the first array with
the first column of the second array: 0 = 1 · (−1) + (−1) · (−1). Finally, to
get the entry in the upper left-hand corner of the third array, we combine
the first row of the first array with the first column of the second array:
−2 = 1 · (−1) + (−1) · 1. The relationship which we just described betweeen
the about three arrays he called ”matrix multiplication”.

2.2.2 3× 3 matrices

First, a 3× 3 matrix is a 3× 3 table of real numbers

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


which acts on R3 by matrix multiplication:

A~v =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 x
y
z

 =

 a11x+ a12y + a13z
a21x+ a22y + a23z
a31x+ a32y + a33z


In general, any such 3× 3 matrix gives rise to a function A : R3 → R3.
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Example 19. If A = I3, the 3× 3 identity matrix, 1 0 0
0 1 0
0 0 1


then I3~v = ~v for all ~v ∈ R3.

2.2.3 Matrix multiplication, inverses

An m×n matrix (of real numbers) is a rectangular array or table of numbers
arranged with m rows and n columns. It is usually written:

A =


a11 a12 ... a1n

a21 a22 ... a2n
...

...
am1 am2 ... amn

 .

The (i, j)th entry of A is aij. The ith row of A is[
ai1 ai2 · · · ain

]
(1 ≤ i ≤ m)

The jth column of A is 
a1j

a2j
...
amj

 (1 ≤ j ≤ n)

A matrix having as many rows as it has columns (m = n) is called a
square matrix. The square n× n matrix

1 ... 0

0
. . .

...
... 0

0
... 0 1


is called the n× n identity matrix and denoted I or In.
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2.2.4 Muliplication and inverses

You can multiply an m× n matrix A by a n× p matrix B and get a m× p
matrix AB. The (i, j)th entry of AB is computed as follows:

1. Let k = 1 and c0 = 0.

2. If k = m, you’re done and aij = cm. Otherwise proceed to the next
step.

3. Take the kth entry of the ith row of A and multiply it by the kth entry
of the jth row of B. Let ck = ck−1 + aikbkj.

4. Increment k by 1 and go to step 2.

In other words, multiply each element of row i in A with the corresponding
entry of column j in B, add them up, and put the result in the (i, j) position
of the array for AB.

If A is a square n×n matrix and if there is a matrix B such that AB = In
then we call B the inverse matrix of A, denoted A−1.

2.3 Relations

A relation on a set is a generalization of the concept of a function from S to
itself.

Definition 20. : Let S be a set. If R is a subset of S × S then we call R a
relation on S. If (x, y) ∈ R then we say that x is related to y.

We may also regard a relation R on S as a function

R : S × S → {0, 1}.

In this form, we say x is related to y (for x, y ∈ S) if f(x, y) = 1.
This is a very general notion. There are lots and lots of relations in

mathematics - inequality symbols, functions, subset symbols are all common
examples of relations.

Example 21. Let S be any set and let f be a function from S to itself. This
function gives rise to the relation R on S defined by the graph of f :

R = {(x, y) ∈ S × S | y = f(x), for x ∈ S}.
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(It is through this correspondence that we may regard a function as a rela-
tion.)

Example 22. Let S be the set of all subsets of {1, 2, ..., n}. Let R be defined
by

R = {(S1, S2) | S1 ⊂ S2, S1 ∈ S, S2 ∈ S}.

Note that R is a relation.

Exercise 2.3.1. Find a relation corresponding to the symbol < on the real
line.

Definition 23. LetR be a relation on a set S. We callR an equivalence relation
if

(a) any element s ∈ S is related to itself (”reflexive”),

(b) if s is related to t (i.e., (s, t) belongs to S) then t is related to s
(”symmetry”),

(c) if s1 is related to s2 and s2 is related to s3 then s1 is related to s3

(”transitivity”).

Example 24. The equality symbol = provides an equivalence relation on the
real line: let D = {(x, x) | x real}. This is an equivalence relation on the real
line: note x = y if and only if (x, y) belongs to D.

Notation: If R is an equivalence relation on S then we often write x ∼ y
or x ≡ y in place of (x, y) ∈ R, for simplicity.

Example 25. Fix an integer n > 1. For integers x, y, define x ≡ y if and
only if n divides x − y. In this case, we say that x is congruent to y mod
n. The equivalence class of x is sometimes (for historical reasons) called
the residue class (or congruence class) of x mod n. This notation was first
introduced by Gauss 1

Exercise 2.3.2. (a) Let f(x) = x2, let S be the real line, and let R be the
corresponding relation as in the first example. Is R an equivalence relation?

(b) Let f(x) = 2x, let S be the real line, and let R be the corresponding
relation as in the first example. Is R an equivalence relation?

1C. F. Gauss, 1777-1855, is regarded by many as one of the top mathematicians of all
time. At the age of 21 he wrote ”Disquisitiones Arithmeticae”, which started a new era
of number theory and introduced this notation.
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Exercise 2.3.3. Let R be the corresponding relation as in the second example.
Is R an equivalence relation?

Let R be an equivalence relation on a set S. For s ∈ S, we call the subset

[s] = {t ∈ S | s ∼ t}

the equivalence class of s in S.

Example 26. For integers x, y, define x ≡ y if and only if 3 divides x− y. the
equivalence classes are

[0] = {...,−6,−3, 0, 3, 6, ...},
[1] = {...,−5,−2, 1, 4, 7, ...},
[2] = {...,−4,−1, 2, 5, 8, ...}.

Exercise 2.3.4. Show that for any s1 and s2 in S, we have either
(a) [s1] = [s2], or
(b) [s1] is disjoint from [s2].

As a consequence of this exercise, we see that if R is an equivalence
relation on a set S then the equivalence classes of R partition S into disjoint
subsets. We state this as a separate lemma for future reference (we also
assume S is finite for simplicity):

Lemma 27. : If S is a finite set and R is an equivalence relation on S then
there are subsets

S1 ⊂ S, S2 ⊂ S, ..., Sk ⊂ S,

satisfying the following properties:
(1) S is the union of all the Si’s:

S = S1 ∪ S2 ∪ ... ∪ Sk = ∪iSi

(2) the Si’s are disjoint: for 1 ≤ i ≤ k, 1 ≤ j ≤ k, if i 6= j then Si ∩ Sj = ∅.
(These last two properties say that the Si’s partition S in the sense of the

previous chapter.)
(3) the Si’s exhaust the collection of equivalence classes of R: for each

1 ≤ i ≤ k, there is an si ∈ S such that

Si = [si].

(This element si is called a representative of the equivalence class Si.)
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Example 28. For real numbers x, y, define x ≡ y if and only if x − y is an
integer. The equivalence classes are of the form

[x] = {..., x− 2, x− 1, x, x+ 1, x+ 2, ...},

for x real. Each equivalence class has exactly one representative in the half
open interval [0, 1).

Remark 2. Conversely, given a partition as in (1), there is an equivalence
relation R such that Si = [si], for some some si ∈ S, where

[s] = {x ∈ S | s ∼ x}

is the equivalence class of s with respect to R. Indeed, we define

R = ∪ki=1Si × Si.

This is an equivalence relation and s ∼ t if and only if s, t ∈ Si, for some
i = 1, 2, ..., k.

Exercise 2.3.5. Let S be the set Z of all integers. Let R be the relation
defined by (x, y) ∈ R if and only if x− y is an even number (i.e., an integer
multiple of 2).

(1) Show that this is an equivalence relation,
(2) Find the sets Si in the above lemma which partition S,
(3) Find a representative of each equivalence class Si.

2.4 Counting

This section quickly surveys the few basic counting principles we shall use
later.

Addition principle: Let S1, ..., Sn denote disjoint finite sets. Then

|S1 ∪ ... ∪ Sn| = |S1|+ ...+ |Sn|.

Example 29. If there are n bowls, each containing some distinguishable mar-
bles and if Si is the set of marbles in the ith bowl then the number of ways
to pick a marble from exactly one of the bowls is |S1| + ... + |Sn|, by the
addition principle.
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Corollary 30. (Pigeonhole principle) If there are n objects (pigeons) which
must be placed in m (md < n) boxes (pigeonholes) then there is at least one
box with at least d+ 1 objects.

Example 31. If you are in a room with 9 others then there must be either at
least 5 people you know or 5 people you don’t know (not counting yourself).
In this case, there are n = 9 objects and m = 2 boxes (the friend box and
the stranger box) so we may take d = 4 in the pigeonhole principle.

Multiplication principle: Let S1, ..., Sn denote finite sets. Then

|S1 × ...× Sn| = |S1| · ... · |Sn|.

Example 32. If there are n bowls, each containing some distinguishable mar-
bles and if Si is the set of marbles in the ith bowl then the number of ways
to pick exactly one marble from each of the bowls is |S1| · ... · |Sn|, by the
multiplication principle.

Corollary 33. The number of ordered selections, taken without repetition,
of m objects from a set of n objects (m < n) is

n!

(n−m)!
= n · (n− 1) · ... · (n−m+ 1).

Corollary 34. The number of ordered selections, taken with repetition al-
lowed, of m objects from a set of n objects (m < n) is nm.

Example 35. The number of n-tuples, without repetition, of objects from the
set {1, 2, ..., n} is

n! = n · (n− 1) · ... · 1.

Exercise 2.4.1. Let C be a set of 6 distinct colors. Fix a cube in space
(imagine it sitting in front of you on a table). We call a coloring of the cube
a choice of exactly one color per side. Let S be the set of all colorings of
the cube. We say x, y ∈ S are equivalent if x and y agree after a suitable
rotation of the cube.

(a) Show that this is an equivalence relation.
(b) Count the number of equivalence classes in S.
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Chapter 3

Permutations

“What we have to learn to do, we learn by doing”

Aristotle

ETHICS

“Mathematics, springing up from the soil of basic human ex-
perience with numbers and data and space and motion, builds up
a far-flung architectural structure composed of theorems which re-
veal insights into the reasons behind appearences and of concepts
which relate totally disparate concrete ideas.”

Sanders MacLane

AMER. MATH. MONTHLY, 1954

Let Tn = {1, 2, ..., n} be the set of integers from 1 to a fixed positive
integer n. When n is fixed and there is no ambiguity sometimes we will
simply write T for Tn. A permutation of T is a bijection from T to itself. (A
bijection was defined in Definition 13.) For example, on the 3 × 3 Rubik’s
cube there are 9 · 6 = 54 facets. If you label them 1, 2, ..., 54 (in any way
you like) then any move of the Rubik’s cube corresponds to a permutation
of T54. In this chapter we present some basic notation and properties of
permutations.

Notation: We may denote a permutation f : T → T by a 2× n array:

f ↔
(

1 2 ... n
f(1) f(2) ... f(n)

)

37
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Example 36. The identity permutation, denoted by I, is the permutation
which doesn’t do anything:

I =

(
1 2 ... n
1 2 ... n

)
Definition 37. Let

ef (i) = #{j > i | f(i) > f(j)}, 1 ≤ i ≤ n− 1.

Let

swap(f) = ef (1) + ...+ ef (n− 1).

We call this the swapping number (or length of the permutation f since it
counts the number of times f swaps the inequality in i < j to f(i) > f(j).
If we plot a bar-graph of the function f then swap(f) counts the number of
times the bar at i is higher than the bar at j. We call f even if swap(f) is
even and we call f odd otherwise.

The number

sign(f) = (−1)swap(f)

is called the sign of the permutation f .

Example 38. Let n = 3, so T = {1, 2, 3}. We may describe the permutation
f : T → T for which f(1) = 2, f(2) = 1, f(3) by a 2× 3 array(

1 2 3
2 1 3

)
or by a ”crossing diagram”:

1 1

\/

/\

2 2

3 -- 3

The number of crosses in this diagram is the swapping number of f, from
which we can see that the permutation is odd.
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Exercise 3.0.2. Express f : T → T given by f(1) = 3, f(2) = 1, f(3) = 2,
as (a) a 2× 3 array, (b) a crossing diagram. Find its swapping number and
sign.

Definition 39. Let f : T → T and g : T → T be two permutations. We
can compose them to get another permutation, the composition, denoted
fg : T → T :

t 7−→ f(t) 7−→ g(f(t))
T → T → T

Notation We shall follow standard convention and write our composi-
tions of permutations left-to-right. (This is of course in contrast to the
right-to-left composition of functions you may have seen in calculus.) When
a possible ambiguity may arise, we call this type of composition ”composi-
tion as permutations” and call ”right-to-left composition” the ”composition
as functions”.

When f = g then we write ff as f 2. In general, we write the n-fold
composition f...f (n times) as fn. Every permutation f has the property
that there is some integer N > 0, which depends on f , such that fN = 1. (In
other words, if you repeatedly apply a permutation enough times you will
eventually obtain the identity permutation.)

Definition 40. The smallest integer N > 0 such that fN = 1 is called the
order of f .

Example 41. Let T = {1, 2, 3} and let

f =

(
1 2 3
2 1 3

)
g =

(
1 2 3
3 1 2

)
We have

fg =

(
1 2 3
1 3 2

)
, f 2 = 1, g3 = 1.

Exercise 3.0.3. Compute (a) fg and (b) the order of f and the order of g,
where

(a) f =

(
1 2 3
3 2 1

)
g =

(
1 2 3
3 1 2

)

(b) f =

(
1 2 3
3 1 2

)
g =

(
1 2 3
2 1 3

)
Exercise 3.0.4. If f, g, h are permutations of T , is (fg)h = f(gh)? Explain
why.
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3.1 Inverses

We can look at the graph of a function f : T → T and determine
(a) if it is injective,
(b) if it is surjective,
(c) the inverse f−1, if it exists.

Indeed, from the graph of f we can determine the image f(T ) and this deter-
mines if f is surjective or not. The inverse exists only if f is injective (hence, in
our case, surjective by exercise 2.1.3). It’s graph is determined by reflecting
the graph of f about the diagonal, x=y.

Lemma 42. The following statements are equivalent:
(1) f : T → T is injective,
(2) f : T → T is surjective,
(3) |f(T )| = |T |.

proof: The equivalence of the first two statements is by the exercise at
the end of chapter 1. (2) is equivalent to (3), by definition of surjectivity. �

Example 43. The inverse of (
1 2 3
3 1 2

)
is obtained by reflecting the graph

about the x = y line:
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Exercise 3.1.1. Graph and determine the inverses of the following permuta-
tions:

(a) f =

(
1 2 3
2 1 3

)
(b) f =

(
1 2 3 4
2 3 4 1

)
(c) f =

(
1 2 3 4 5
2 1 5 3 4

)
There are two more commonly used ways of expressing a permutation.

The first is the ”matrix notation”:

Definition 44. To a permutation f : T → T , given by

f =

(
1 2 ... n

f(1) f(2) ... f(n)

)
we associate to it the matrix P (f) of 0′s and 1′s defined as follows: the ij-th
entry of P (f) is 1 if j = f(i) and is 0 otherwise.

(A brief introduction to matrices is given in the appendix.)

Definition 45. A square matrix which has exactly one 1 per row and per
column (as P (f) does) is called a permutation matrix .

Lemma 46. There are n! distinct n×n permutation matrices and there are
n! distinct permutations of the set {1, 2, ..., n}.
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Exercise 3.1.2. Prove this using the multiplication counting principle from
the section on counting in the previous chapter.

Example 47. The matrix of the permutation f given by

f =

(
1 2 3
2 1 3

)
is

P (f) =

 0 1 0
1 0 0
0 0 1


Note that matrix multiplication gives 0 1 0

1 0 0
0 0 1

 1
2
3

 =

 2
1
3


from which we can recover the 2× 3 array.

Theorem 48. If f : T → T is a permutation then

(a) P (f)


1
2
...
n

 =


f(1)
f(2)

...
f(n)


Furthermore, the inverse of the matrix of the permutation is the matrix of
the inverse of the permutation:

(b) P (f)−1 = P (f−1),
and the matrix of the product is the product of the matrices:
(c) P (fg) = P (f)P (g).

proof: If ~v is the column vector with entries v1, v2, ..., vn (the vi are
arbitrary real numbers) then P (f)~v is the column vector whose ith coordinate
is equal to vj if f sends i to j, by definition of P (f). Since, in this case,
j = f(i) (here we write f(i) to denote the image of i under the permutation
f , ’ even though i really gets plugged into f on the left), this implies that
P (f)~v is the column vector with entries vf(1), vf(2), ..., vf(n). This proves (a).

Note (b) is a consequence of (c) so we need only prove (c). We compute
P (fg)~v and P (f)P (g)~v. By the same reasoning as in (a), we find that the
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ith coordinate of P (fg)~v is v(fg)(i). Similarly, the ith coordinate of P (g)~v is
v′i = vg(i). Therefore, the ith coordinate of P (f)(P (g)~v) is v′f(i) = vg(f(i)) =

v(fg)(i). This implies P (fg)~v = P (f)P (g)~v. Since the vi were arbitrary real
numbers, this implies the theorem. �

Example 49. Let

f =

(
1 2 3
2 1 3

)
, g =

(
1 2 3
3 2 1

)
, h =

(
1 2 3
2 3 1

)
,

so f = f−1, g = g−1, h = fg. Moreover,

P (g) =

 0 0 1
0 1 0
1 0 0

 , P (h) =

 0 1 0
0 0 1
1 0 0

 .

A direct matrix calculation verifies that P (f)P (g) = P (fg) = P (h) and
P (h−1) = P (g−1f−1) = P (g−1)P (f−1) = P (g)P (f), as predicted by the
above theorem.

The matrix can be determined from the graph of the function f : T → T
as follows: in the n × n grid of integral points (x, y), with x and y integers
between 1 and n inclusive, fill in all the plotted points with 1′s and all the
unplotted points with 0′s The resulting n× n array is the matrix P (f).

Rubik’s cubers will often, without knowing it perhaps, use the following
lemma to solve their cube:

Lemma 50. Let r ∈ Sn denote any permutation and let i, j denote distinct
integers belonging to {1, 2, ..., n}. Let s denote the permutation sending i to
j:

(i)s = j.

Then sr = r−1sr is the permutation sending (i)r to (j)r:

sr((i)r) = (j)r.

More specifically (and this is the specific case which this lemma is most
often applied): let i1, i2, ..., ik denote distinct integers belonging to {1, 2, ..., n}.
Let s denote the permutation sending ij to ij+1:

s(ij) = ij+1, 1 ≤ j < k, s(ik) = i1, s(m) = m, ∀m /∈ {i1, ..., ik}.

Then sr = r−1sr is the permutation sending (ij)r to (ij+1)r:

sr((ij)r) = (ij+1)r, 1 ≤ j < k, sr((ik)r) = (i1)r, sr(m) = m, ∀m /∈ {(i1)r, ..., (ik)r}.
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In other words, if you have a move s which is a 3-cycle on 3 particular
edges, say

uf 7−→ ul 7−→ ur 7−→ uf,

and another move r which sends these edges somewhere else, say r = F 2

so that r : uf 7−→ df but leaves the other edges alone, then r−1sr is the
permutation

df 7−→ ul 7−→ ur 7−→ df.

Try it!

A proof of this lemma will be given in chapter 8.

3.2 Cycle notation

The most common notation for a permutation is probably the ”cycle nota-
tion”. The symbol

(a1 a2 ... ar) (some r less than or equal to n)

denotes the permutation f of T which is defined by

f(a1) = a2, f(a2) = a3, ..., f(ar) = a1,

and f(i) = i, if i is not equal to one of the a1, ..., ar. Such a permutation is
called cyclic. The number r is called the length of the cycle.

We call two such cycles (a1 a2 ... ar) and (b1 b2 ... bt) disjoint if the sets
{a1, a2, ..., ar} and {b1, b2, ..., bt} are disjoint.

Lemma 51. If f and g are disjoint cyclic permutations of T then fg = gf .

proof: This is clear since the permutations f and g of T affect disjoint
collections of integers, so the permutations may be performed in either order.
�

Lemma 52. The cyclic permutation (a1 a2 ... ar) has order r.

proof: Note f(a1) = a2, f
2(a1) = a3, ..., f r−1(a1) = ar, f

r(a1) = a1, by
definition of f . Likewise, for any i = 1, ..., r, we have f r(ai) = ai. �
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Theorem 53. Every permutation f : {1, 2, ..., n} → {1, 2, ..., n} is the prod-
uct of disjoint cyclic permutations. More precisely, if f is a permutation of
{1, 2, ..., n} (with n > 1) then there are non-empty disjoint subsets of distinct
integers

S1 = {a11, ..., a1,r1} ⊂ {1, 2, ..., n},
S2 = {a21, ..., a2,r2} ⊂ {1, 2, ..., n},

...,
Sk = {ak1, ..., ak,rk},

such that

{1, 2, ..., n} = S1 ∪ ... ∪ Sk, n = r1 + r2 + ...+ rk,

and
f = (a11, ..., a1,r1)...(ak1, ..., ak,rk).

This product is called a cycle decomposition of f . If we rearrange the
cardinalities ri of these sets Si in decreasing order, say we write this as

r′1 ≥ r′2 ≥ ... ≥ r′k,

then the k-tuple (r′1, ..., r
′
k) is called the cycle structure of f and f is called

a (r′1, ..., r
′
k)-cycle. For example, (1, 2)(3, 4, 5) is a (3, 2)-cycle.

proof: The proof is constructive.
Let f : T → T be a permutation. List all the elements

{c10 = 1, c11 = f(1), c12 = f 2(1), c13 = f 3(1), ...},

(which must, of course, be finite in number but might also only contain the
single element c10 = 1). This is called the ”orbit of 1 under f”. Now list the
elements in the ”orbit of 2”:

{c20 = 2, c21 = f(2), c22 = f 2(2), c23 = f 3(2), ...},

and so on until we get to the ”orbit of n”:

{cn0 = 2, cn1 = f(n), cn2 = f 2(n), cn3 = f 3(n), ...}.

If you pick any two of these n sets, they will either be the same (up to
ordering) or disjoint. Denote all the distinct orbits which contain at least
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two elements by O1, ..., Ok. (It doesn’t matter what order you write them in
or in what order you write the elements in each individual orbit.) Suppose
that

O1 = a11, ..., a1,r1 so |O1| = r1,
O2 = a21, ..., a2,r2 so |O2| = r2,

.

.

.
Ok = ak1, ..., ak,rk so |Ok| = rk.

In this case, r1 + r2 + ... + rk ≤ n, with equality if and only if none of the
orbits is a singleton. The cycle notation of f is the expression

(a11a12...a1,r1)...(ak1 ak2 ... ak,rk).

�

Example 54. • The cycle notation for(
1 2 3
2 1 3

)
is (1 2).

• The cycle notation for (
1 2 3
2 3 1

)
is (1 2 3).

• The cycle notation for (
1 2 3 4
3 4 1 2

)
is (1 3)(2 4) = (2 4)(1 3).

• The cycle notation for (
1 2 3 4 5
3 4 1 5 2

)
is (1 3)(2 4 5) = (4 5 2)(1 3).

• The disjoint cycle decomposition of (2, 3, 7)(3, 7, 10) is (2, 3)(7, 10).
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Exercise 3.2.1. Divide a square into 4 subsquares (”facets”) and label them
1, 2, 3, 4. For example,

-----------------

| | |

| 1 | 2 |

| | |

-----------------

| | |

| 3 | 4 |

| | |

-----------------

Let r denote counterclockwise rotation by 90 degrees. Then, as a per-
mutation on the facets, r = (1 3 4 2). Let fx denote reflection about the
horizonal line dividing the square in two, let fy denote reflection about the
vertical line dividing the square in two. Use the cycle notation to determine
the permutations of the facets

(a) r2

(b) r3,
(c) fx,
(d) fy,
(e) fx ∗ r ∗ fx,
(f) fx ∗ fy.

Exercise 3.2.2. Label the 24 facets of the 2× 2 Rubik’s cube as follows:
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+--------------+

| 1 2 |

| u |

| 3 4 |

+--------------+--------------+--------------+--------------+

| 5 6 | 9 10 | 13 14 | 17 18 |

| l | f | r | b |

| 7 8 | 11 12 | 15 16 | 19 20 |

+--------------+--------------+--------------+--------------+

| 21 22 |

| d |

| 23 24 |

+--------------+

(You may want to xerox this page then cut this cube out and tape it
together for this exercise.) Let X denote rotation clockwise by 90 degrees of
the face labeled x, where x ∈ {r, l, f, b, u, d} (so, for example, if x = f then
X = F ). Use the cycle notation to determine the permutations of the facets
given by

(a) R,
(b) L,
(c) F ,
(d) B,
(e) U ,
(f) D.

Lemma 55. A cyclic permutation is even if and only if the length of its cycle
is odd. A general permutation f : T → T is odd if and only if the number of
cycles of even length in its cycle decomposition is odd.
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We shall not prove this here. (For a proof, see Theorem 3.3 in Gaglione
[G], §3.2.)

Lemma 56. The order of a permutation is the least common multiple (lcm)
of the lengths r1, r2, ..., rk of the disjoint cycles in its cycle decomposition.

Example 57. The order of (1 3)(2 4) is 2. It is even. The order of (1 3)(2 4 5)
is 6. It is odd.

3.3 An algorithm to list all the permutations

In Martin Gardner’s Scientific American article [Gar1] an algorithm is men-
tioned which lists all the permutations of {1, 2, ..., n}. This algorithm, due
originally to the mathematician Hugo Steinhaus, gives the fastest known
method of listing all permutations of {1, 2, ..., n}.

We shall denote each permutation by the second row in its 2 × n array
notation.

For example, in the case n = 2:

1 2
2 1

are the permutations.
To see the case n = 3, the idea is to
(a) write down each row n = 3 times each as follows:

1 2
1 2
1 2
2 1
2 1
2 1

(b) ”weave” in a 3 as follows

1 2 3
1 3 2
3 1 2
3 2 1
2 3 1
2 1 3
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In case n = 4, the idea is to

(a) write down each row n = 4 times each as follows:

1 2 3
1 2 3
1 2 3
1 2 3
1 3 2
1 3 2
1 3 2
1 3 2
3 1 2
3 1 2
3 1 2
3 1 2
3 2 1
3 2 1
3 2 1
3 2 1
2 3 1
2 3 1
2 3 1
2 3 1
2 1 3
2 1 3
2 1 3
2 1 3
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(b) now ”weave” a 4 in:

1 2 3 4
1 2 4 3
1 4 2 3
4 1 2 3
4 1 3 2
1 4 3 2
1 3 4 2
1 3 2 4
3 1 2 4
3 1 4 2
3 4 1 2
4 3 1 2
4 3 2 1
3 4 2 1
3 2 4 1
3 2 1 4
2 3 1 4
2 3 4 1
2 4 3 1
4 2 3 1
4 2 1 3
2 4 1 3
2 1 4 3
2 1 3 4

In general, we have the following

Theorem 58. (Steinhaus) There is a sequence of (not necessarily distinct)
2-cycles, (a1, b1),...,(aN , bN), where N = n! − 1, such that each non-trivial
permutation f of {1, 2, ..., n} may be expressed in the form

f =
k∏
i=1

(ai, bi),

for some k, 1 ≤ k ≤ N . Furthermore, these products (for k = 1, 2, ..., N) are
all distinct.
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In other words, each permutation may be written as a product of (not
necessarily disjoint) 2-cycles. This will be proven in section 5.11 on Cam-
panology below.

There is an analogous result valid only for even permutations: each even
permutation may be written as a product of (not necessarily disjoint) 3-
cycles. This will be stated more precisely (and proved) later — see Proposi-
tion 159.



Chapter 4

Permutation Puzzles

“How can it be that mathematics, being after all a product
of human thought independent of experience, is so admirably
adapted to the objects of reality?”

Albert Einstein

“Though this be madness, yet there is method in’t.”
Shakespeare

We shall describe several permutation puzzles in this chapter.
A one person game is a sequence of moves following certain rules satisfy-

ing

• there are finitely many moves at each stage,

• there is a finite sequence of moves which yields a solution,

• there are no chance or random moves,

• there is complete information about each move,

• each move depends only on the present position, not on the existence or
non-existence of a certain previous move (such as chess, where castling
is made illegal if the king has been moved previously).

A permutation puzzle is a one person game (solitaire) with the following
five properties listed below. Before listing the properties, we define the ”puz-
zle position” to be the set of all possible legal moves. The five properties of
a permutation puzzle are:

53
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1. for some n > 1 depending only on the puzzle’s construction, each move
of the puzzle corresponds to a unique permutation of the numbers in
T = {1, 2, ..., n},

2. if the permutation of T in (1) corresponds to more than one puzzle
move then the the two positions reached by those two respective moves
must be indistinguishable,

3. each move, say M , must be ”invertible” in the sense that there must
exist another move, say M−1, which restores the puzzle to the position
it was at before M was performed,

4. if M1 is a move corresponding to a permutation f1 of T and if M2 is a
move corresponding to a permutation f2 of T then M1 ∗M2 (the move
M1 followed by the move M2) is either

• not a legal move, or

• corresponds to the permutation f1 ∗ f2.

Notation: As in step 4 above, we shall always write successive puzzle
moves left-to-right.

4.1 15 puzzle

One of the earliest and most popular permutation puzzles is the ”15 puzzle”.
The ”solved position” looks like
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These numbered squared represent sliding blocks which can only move into
the blank square. We shall sometimes label the blank square as ”16” for
convenience. The moves of the puzzle consist of sliding numbered squares
(such as 12, for example) into the blank square (e.g., swapping 12 with 16).
In this way, each move of this puzzle may be regarded as a permutation of
the integers in {1, 2, ..., 16}.

Exercise 4.1.1. Check that the five conditions of a permutation puzzle are
satisfied by the 15 puzzle.

Not every permutation of the {1, 2, ..., 16} corresponds to a possible po-
sition of the puzzle. For example, the position

cannot be attained from the previous position. (The mathematical reason for
this is explained in 6.3 below, for example.) Apparently, the puzzle inventor
Sam Loyd applied for a U.S. patent for the above puzzle (the one with the 14,
15 swapped) but since it could not be ”solved” - i.e., put in the correct order
1, 2, ..., 15 - no working model could be supplied, so his patent was denied.
(This is in spite of the fact that there were apparently thousands of them on
the market already.)

The moves of the 15 puzzle may be denoted as follows: suppose we are
in a position such as
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The possible moves are

R = Ru,r,d,l = (r 16) = swap r and 16,
L = Lu,r,d,l = (l 16) = swap l and 16,
U = Uu,r,d,l = (u 16) = swap u and 16,
D = Du,r,d,l = (d 16) = swap d and 16.

Exercise 4.1.2. Verify that the five defining properties of a permutation puz-
zle are satisfied by this example.

We shall call the 15 puzzle a planar puzzle since all its pieces lie on a flat
board.

4.2 Devil’s circles (or Hungarian rings)

This is a planar puzzle consisting of two or more interwoven ovals, each of
which has several labeled (by colors or numbers) pieces, some of which may
belong to more than one oval. A puzzle move consists of shifting an oval by
one or more ”increments”, and hence all the pieces on it, along the oval’s
grooved track. The pieces are equally spaced apart (in spite of the typed
depiction below) and those pieces which lie on more than one oval can be
moved along either oval.

For simplicity, consider the puzzle consisting of only two ovals, each hav-
ing 6 pieces:
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The pieces 1 and 3 can be moved along either oval. Note that each move
corresponds to a unique permutation of the numbers in {1, 2, ..., 10}. For
example, rotating the right-hand oval clockwise one increment corresponds
to the permutation

1 2 3 4 5 6 7 8 9 10
6 1 2 3 4 5 7 8 9 10

which we may write in cycle notation as (6 5 4 3 2 1).

Exercise 4.2.1. Verify that the five defining properties of a permutation puz-
zle are satisfied by this example.

4.3 Equator puzzle

This puzzle is in the shape of a sphere but has 3 circular bands encircling
a sphere, each having 12 square-shapped pieces and each band intersecting
each other at a 90 degree angle. Each pair of circles intersects at two points,
or ”nodes”, and at each such node there is a puzzle piece shared by the two
circular bands. There are 6 nodes total. The total number of movable pieces
is therefore 3 · 12− 6 = 30.

On some puzzles the sphere is painted a map of the earth, others have
colored puzzle pieces. The rough idea, minus any colors, is depicted in the
following picture:
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For concreteness, suppose we are looking at a globe equator puzzle. The
longitudinal band circles the equator, one latitudinal band passes through
North America and the other latitudinal band passes through Europe and
Africa. A move of the puzzle consists of rotating one of the bands (along
with all the pieces it contains) in either direction. Successive puzzle moves
may change the “orientation” of a piece, as we will see later. When the 30
pieces are such that the puzzle is a correct map of the Earth then we call the
position ”solved”.

For ease of drawing, let us redraw the globe of the Earth using the ”Mer-
catur projection”, i.e., as a wall map:

1 1 1 1

2 13 12 22

3 14 11 21

4 23 24 15 25 26 10 27 28 20 29 30

5 16 9 19

6 17 8 18

7 7 7 7

The "solved" position
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Sometimes we shall also denote 1 by NP (”north pole”) and 7 by SP
(”south pole”).

This description is a little misleading due to the fact that it tells us where
a piece is but not, for example, whether it is upside down or not. We shall
ignore this problem for now and simply describe how a move affects the
position of a piece. We see from the above labeling that any move of the
Equator puzzle corresponds to a unique permutation of the integers in 1, 2,
..., 30. For example, the move which rotates the equator east-to-west by 30
degrees corresponds to the permutation

(4 30 29 20 28 27 10 26 25 15 24 23).

Now we shall show to assign an orientation to a piece. We shall regard an
orientation (which is, after all, simply an indication of what angle the piece
is ”twisted”) as an integer 0, 1 ,2, or 3. First, if a piece is not in its correct
position, it gets an orientation of 0. If a piece is in its correct position then
it gets a 0, 1, 2, or 3, depending on its angle from the correct angle (i.e., the
angle the piece has in the ”solved” position):

0

|

|

|

3 ------------------- 1

|

|

|

2

Example 59. A piece which has been rotated by 90 degrees counterclockwise
from its correct orientation gets an orientation of 3.

In general, the labels for the pieces of the Equator puzzle should be
choosen from the set given by the Cartesian product of the set of integers
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used to label the positions, {1, 2, ..., 30}, by the set of integers used to label
the orientations:

S = {1, 2, ..., 30} × {0, 1, 2, 3} = {(m,n) | 1 ≤ m ≤ 30, 0 ≤ n ≤ 3}.
Each move of the Equator corresponds to a unique permutation of the

set S. There are 120 elements of S, call them

S = {s1, s2, ..., s120}.
If we identify the set S with the set T = {1, ..., 120} then we move of the
Equator corresponds to a unique permutation of the set T .

Exercise 4.3.1. Verify that the Equator puzzle satisfies the five defining prop-
erties of a permutation puzzle.

Question: Can you show the following: If a piece is correctly oriented
then its antipodal piece is also correctly oriented?

Notation: We introduce notation for 3 basic moves of the Equator puzzle
which generate all possible puxzzle moves. Let us label the three circular
bands on the globe as C1, C2, and C3. Let C1 be the band which, in the
solved position, contains the pieces labeled 1, 2, ..., 12; let C2 be the band
which, in the solved position, contains the pieces labeled 7, 13, ..., 22; and
let C3 be the band which, in the solved position, contains the pieces on the
equator.

Let r1 be the puzzle move associated to the rotation of C1 given by

1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 1

Let r2 be the puzzle move associated to the rotation of C2 given by

1 13 14 15 16 17 17 18 19 20 21 22
13 14 15 16 17 17 18 19 20 21 22 1

Let r3 be the puzzle move associated to the rotation of C3 given by

4 23 24 15 25 26 10 27 28 20 29 30
30 4 23 24 15 25 26 10 27 28 20 29

It is clear after a little thought that each of these moves corresponds to a
permutation of the 120 position/orientation labels of the pieces of the equator
puzzle. Furthermore, such a permutation determines the puzzle position
uniquely since it specifies the facet’s position and orientation.

Exercise 4.3.2. Verify that the remaining properties of a permutation puzzle
are satisfied.
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4.4 Rainbow Masterball

Some rules for the rainbow masterball (referred to simply as ”masterball”
in the following): A masterball sphere has 32 tiles of 8 distinct colors. We
shall assume that the masterball is in a fixed position in space, centered
at the origin. A geodesic path from the north pole to the south pole is
called a longitudinal line and a closed geodesic path parallel to the equator
is called a latitudinal line. There are 8 longitudinal lines and 3 latitudinal
lines. In spherical coordinates, the longitudinal lines are at the angles which
are multiples of π/4 (i.e., at θ = nπ/4, n = 1, .., 8) and the latitudinal lines
are at φ = π/4, π/2, 3π/4. (Here π = 3.141592... as usual.)

The sphere shall be oriented by the right-hand rule - the thumb of the
right hand wrapping along the polar axis points towards the north pole. We
assume that one of the longitudinal lines has been fixed once and for all. This
fixed line shall be labeled ”1”, the next line (with respect to the orientation
above) as ”2”, and so on.

Allowed moves: One may rotate the masterball east-to-west by multiples
of π/4 along each of the 4 latitudinal bands or by multiples of π along each
of the 8 longitudinal lines.

A facet will be one of the 32 subdivisions of the masterball created by
these geodesics. A facet shall be regarded as immobile positions on the sphere
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and labeled either by an integer i ∈ {1, ..., 32} or by a pair (i, j) ∈ [1, 4]×[1, 8],
whichever is more convenient at the time. If a facet has either the north
pole or the south pole as a vertex then we call it a small (or polar) facet.
Otherwise, we call a facet large (or middle or equatorial). A coloring of the
masterball will be a labeling of each facet by one of the 8 colors in such a
way that

(a) each of the 8 colors occurs exactly twice in the set of the 16 small
facets,

(b) each of the 8 colors occurs exactly twice in the set of the 16 large
facets.

A move of the masterball will be a change in the coloring of the masterball
associated to a sequence of manuevers as described above.

If we now identify each of the 8 colors with an integer in {1, ..., 8} and
identify the collection of facets of the masterball with a 4×8 array of integers
in this range. To solve an array one must, by an appropriate sequence of
moves corresponding to the above described rotations of the masterball, put
this array into a ”rainbow” position so that the matrix entries of each column
has the same number. Thus the array

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

is ”solved”. The array

6 7 8 1 2 3 4 5
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

corresponds to a rotation of the north pole facets by 3π/4.
Notation We use matrix notation to denote the 32 facets of the mas-

terball. The generators for the latitudinal rotations are denoted r1, r2, r3, r4.
For example, r1 sends

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
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to
12 13 14 15 16 17 18 11
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

which is pictured as:

As you look down at the ball from the north pole, this move rotates the
ball clockwise. The other moves r2, r3, r4 rotate the associated band of the
ball in the same direction - clockwise as viewed from the north pole.

The generators for the longitudinal rotations are denoted f1, f2, ..., f8. For
example, f1 sends

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

to
44 43 42 41 16 17 18 11
34 33 32 31 25 26 27 28
24 23 22 21 35 36 37 38
15 14 13 12 45 46 47 48
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which is pictured as:

With these rules, one can check the relation

f5 = r4
1 ∗ r4

2 ∗ r4
3 ∗ r4

4 ∗ f1 ∗ r4
1 ∗ r4

2 ∗ r4
3 ∗ r4

4.

Exercise 4.4.1. Find similar identities for f6, f7, f8.

Also, one can check that

r1 = (f3 ∗ f7)
−1 ∗ r−1

4 ∗ f3 ∗ f7.

Exercise 4.4.2. There are similar identities for r2, r3, r4. Find them.

Identify the facets of the masterball with the entries of the array

8 7 6 5 4 3 2 1
16 15 14 13 12 11 10 9
24 23 22 21 20 19 18 17
32 31 30 29 28 27 26 25

(there is a reason for labeling the facets ”backwards” like this but it’s not im-
portant). We may express the generators of the masterball group in disjoint
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cycle notation as a subgroup of S32 (the symmetric group on 32 letters):

r−1
1 = (1 2 3 4 5 6 7 8),

r−1
2 = (9 10 11 12 13 14 15 16),

r−1
3 = (17 18 19 20 21 22 23 24),
r−1
4 = (25 26 27 28 29 30 31 32),

f1 = (5 32)(6 31)(7 30)(8 29)(13 24)(14 23)(15 22)(16 21),
f2 = (4 31)(5 30)(6 29)(7 28)(12 23)(13 22)(14 21)(15 20),
f3 = (3 30)(4 29)(5 28)(6 27)(11 22)(12 21)(13 20)(14 19),
f4 = (2 29)(3 28)(4 27)(5 26)(10 21)(11 22)(12 23)(13 24),
f5 = (1 28)(2 27)(3 26)(4 25)(9 20)(10 19)(11 18)(12 17),
f6 = (8 27)(1 26)(2 25)(3 32)(16 19)(9 18)(10 17)(11 24),
f7 = (7 26)(8 25)(1 32)(2 31)(15 18)(16 17)(9 24)(10 23),
f8 = (6 25)(7 32)(8 31)(1 30)(14 17)(15 24)(16 23)(9 22),

Exercise 4.4.3. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.

More information on this puzzle will be given in a later chapter.

4.5 Rubik’s cubes

We shall introduce the 2× 2, 3× 3, 4× 4, and higher Rubik’s cubes.

4.5.1 2× 2 Rubik’s cube

The ”pocket” Rubik’s cube has 6 sides, or ”faces”, each of which has 2 ·2 = 4
”facets”, for a total of 24 facets:
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Fix an orientation of the Rubik’s cube in space. Therefore, we may label
the 6 sides as f, b, l, r, u, d, as in the picture. It has 8 subcubes. Each
face of the cube is associated to a “slice” of 4 subcubes which share a facet
with the face. The face, along with all of the 4 cubes in the “slice”, can
be rotated by 90 degrees clockwise. We denote this move by the upper case
letter associated to the lower case letter denoting the face. For example, F
denotes the move which rotates the front face by 90 degrees to clockwise.

As in chapter 4, we label the 24 facets of the 2×2 Rubik’s cube as follows:

+--------------+
| 1 2 |

| u |

| 3 4 |
+--------------+--------------+--------------+--------------+
| 5 6 | 9 10 | 13 14 | 17 18 |

| l | f | r | b |

| 7 8 | 11 12 | 15 16 | 19 20 |
+--------------+--------------+--------------+--------------+

| 21 22 |

| d |

| 23 24 |
+--------------+

The 24 facets will be denoted by xyz where x is the face on which the
facet lives and y, z (or z, y - it doesn’t matter) indicate the 2 edges of the
facet. Written in clockwise order:
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front face: fru, frd, fld, flu

back face: blu, bld, brd, bru

right face: rbu, rbd, rfd, rfu

left face: lfu, lfd, lbd, lbu

up face: urb, urf, ulf, ulb

down face: drf, drb, dlb, dlf

Exercise 4.5.1. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.

For future reference, we call this system of notation (which we will also
use for the 3× 3 and 4× 4 Rubik’s cube) the Singmaster notation.

4.5.2 3× 3 Rubik’s cube

In this section we shall, for the most part, simply introduce enough notation
(due to Singmaster [Si]) to allow us to check that the puzzle is in fact a
permutation puzzle. We shall also introduce a two-person game which is
easier to play and learn than solving the cube.

The Rubik’s cube has 6 sides, or ”faces”, each of which has 3 · 3 = 9
”facets”, for a total of 54 facets. We label these facets 1, 2, ..., 54 as follows:

+--------------+
| 1 2 3 |

| 4 u 5 |

| 6 7 8 |
+--------------+--------------+--------------+--------------+
| 9 10 11 | 17 18 19 | 25 26 27 | 33 34 35 |

| 12 l 13 | 20 f 21 | 28 r 29 | 36 b 37 |

| 14 15 16 | 22 23 24 | 30 31 32 | 38 39 40 |
+--------------+--------------+--------------+--------------+

| 41 42 43 |

| 44 d 45 |

| 46 47 48 |
+--------------+
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then the generators, corresponding to the six faces of the cube, may be
written in disjoint cycle notation as:

F = (17 19 24 22)(18 21 23 20)(6 25 43 16)(7 28 42 13)(8 30 41 11),
B = (33 35 40 38)(34 37 39 36)(3 9 46 32)(2 12 47 29)(1 14 48 27),
L = (9 11 16 14)(10 13 15 12)(1 17 41 40)(4 20 44 37)(6 22 46 35),
R = (25 27 32 30)(26 29 31 28)(3 38 43 19)(5 36 45 21)(8 33 48 24),

U = (1 3 8 6)(2 5 7 4)(9 33 25 17)(10 34 26 18)(11 35 27 19),
D = (41 43 48 46)(42 45 47 44)(14 22 30 38)(15 23 31 39)(16 24 32 40).

Exercise 4.5.2. Check this. (It is helpful to xerox the above diagram, cut it
out and tape together a paper cube for this exercise.)

The notation for the facets will be similar to the notation used for the
2 × 2 Rubik’s cube. The corner factes will have the same notation and the
edge facets will bve denoted by xy, where x is the face the facet lives on and
y is the face the facet borders to. In clockwise order, starting with the upper
right-hand corner of each face:

front face: fru, fr, frd, fd, fld, fl, flu, fu

back face: blu, bl, bld, bd, brd, br, bru, bu

right face: rbu, rb, rbd, rd, rfd, rf, rfu, ru

left face: lfu, lf, lfd, ld, lbd, lb, lbu. lu

up face: urb, ur, urf, uf, ulf, ul, ulb, ub

down face: drf, dr, drb, db, dlb, dl, dlf, df

Exercise 4.5.3. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.

First fundamental theorem of cube theory

We shall frequently need the following fact:

Theorem 60. Beginning with a solved cube, label the following facets with
an invisible ”+” (i.e., mark the spatial position of the facet on the cube with
a ”+”):

• U facet of the uf edge subcube

• U facet of the ur edge subcube

• F facet of the fr edge subcube
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• all facets which can be obtained from these by a move of the slice group.

Label the U and D facets of each corner subcube with an invisible ”+”. These
”+” signs are called the standard reference markings. Each move g of the Ru-
bik’s cube yields a new collection of ”+” labels, called the markings relative to g.
A position of the Rubik’s cube is determined by the following decision process:

(a) How are the edge subcubes permuted?
(b) How are the center subcubes permuted?
(c) How are the corner subcubes permuted?
(d) Which of the relative edge markings are flipped (relative to the stan-

dard reference markings)?
(e) Which of the relative corner markings are rotated from the standard

reference markings and, if so, by how much (2π/3 or 4π/3 radians clockwise,
relative to the standard reference markings)?

This is labeled as a theorem because of its relative importance for us, not
because of it’s difficulty! This is the ”First Fundamental Theorem of Rubik’s
cube theory”.

As an exercise, the reader should convince him or herself that this theorem
is correct.

The superflip game

The position of the Rubik’s cube where every edge is flipped, but all the
others subcubes are unaffected, is called the superflip position.

To play the game, first choose two particular faces as your up (U) and
front (F) face - say white is up and red is front (assuming you have a cube
with adjacent white and red faces). Imagine the cube being placed in space
with rectangular coordinate axes in such a way that the bdl corner is at the
origin (0, 0, 0), the dl edge is along the x-axis and the bl edge is along the
z-axis.

The rules (“slice-superflip game”):

1. Players alternate making moves starting with the cube in the solved
position. The first player is determined by (say) a coin toss.

2. A move consists of flipping over exactly two edges. Both edges must
lie in a slice. The edge closest to the origin (or, if this is a tie, closest
to the x-axis) must be flipped from ”solved” to ”wrong”.
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3. The first player to reach the superflip position wins.

Of course, to play this game you must know several edge-flipping moves,
such as those in §14.2.1 below.

This game is related to a game which might be called a “three dimensional
acrostic twins game”. (See [BCG], vol II, page 441, for a two dimensional
acrostic twins game.)

Several alternate versions of this game may also be played.
“Nonslice-superflip game”: The rules are the same except the condition

that the two edges belong to the same slice is either dropped altogether or
replaced by the condition that the two edges do not belong to the same slice.

“Möbius-superflip game”: The rules for this version are the same except
the condition that two edges are flipped is to be replaced by any number
of edges less than 6 (i.e., exactly 2, 4, or 6) is to be flipped. This game is
related to a game which might be called a ”three dimensional Möbius”. (See
[BCG], vol II, page 434, for a Möbius game.)

Exercise 4.5.4. Play a game!

4.5.3 4× 4 Rubik’s cube

The 4× 4 Rubik’s cube has 6 sides, or ”faces”, each of which has 4 · 4 = 16
”facets”, for a total of 96 facets. As usual, we fix an orientation of the cube
in space, so we may pick a front face, back face, ... . We label these facets
1, 2, ..., 96 as follows:
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+-----------------+

| 49 50 51 52 |

| 61 62 63 64 |

u

| 73 74 75 76 |

| 77 78 79 80 |

+------------------+-----------------+-----------------+-----------------+

| 53 54 55 56 | 1 2 3 4 | 5 6 7 8 | 9 10 11 12 |

| 65 66 67 68 | 13 14 15 16 | 17 18 19 20 | 21 22 23 24 |

l f r b

| 77 78 79 80 | 25 26 27 28 | 29 30 31 32 | 33 34 35 36 |

| 89 90 91 92 | 37 38 39 40 | 41 42 43 44 | 45 46 47 48 |

+------------------+-----------------+-----------------+-----------------+

| 57 58 59 60 |

| 69 70 71 72 |

d

| 81 82 83 84 |

| 93 94 95 96 |

+-----------------+

The reader may want to xerox the above diagram, cut it out and tape
together a paper cube.

Notation: We need notation for the facets and for the moves.
Facets: To label the facets, we must pick an orientation of each face, say
clockwise. For example, the the front face may be labeled as
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+---------------------+

| flu fu1 fu2 fru |

| fl1 f4 f1 fr1 |

f

| fl2 f3 f2 fr2 |

| fld fd2 fd2 frd |

+---------------------+

The labeling of the other faces is similar.

Exercise 4.5.5. Label the other 5 faces.

Moves: Parallel to each face x are 4 slices of 16 subcubes each labeled
X1, X2, X3, X4, in order of their distance from the face. For example, the
front face f has 16 subcubes comprising the F1 slice, the two inner slices are
F2, F3, and the last slice F4 is actually the same as the first slice B1 associated
to the back face.
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The 12 generators (written in disjoint cycle notation), corresponding 2
each to the six faces of the cube are given by:

U1 = (49 52 88 85)(62 63 75 74)(50 64 87 73)×
×(51 76 86 61)(5 1 53 9)(6 2 54 10)(7 3 55 11)(8 4 56 12),

U2 = (17 13 65 21)(18 14 66 22)(19 15 67 23)(20 16 68 24),
L1 = (96 48 49 1)(84 36 61 13)(72 24 73 25)(60 12 85 37)×
×(89 53 56 92)(90 65 55 80)(91 77 54 68)(66 67 79 78),

L2 = (59 11 86 38)(71 23 74 26)(83 35 62 14)(95 47 50 2),
F1 = (89 5 93 92)(77 17 81 80)(65 29 69 68)(53 41 57 86)×

×(1 4 40 37)(2 16 39 25)(3 28 38 13)(14 15 27 26),
F2 = (73 6 81 91)(74 18 82 79)(75 30 83 67)(76 42 84 55),
R1 = (40 88 9 57)(28 76 21 69)(16 64 33 81)(4 52 49 93)×

×(41 5 8 44)(42 17 7 32)(43 29 6 20)(18 19 31 30),
R2 = (39 87 10 58)(27 75 22 70)(15 63 34 82)(3 51 46 94),
B1 = (52 53 44 60)(51 65 32 59)(50 77 20 58)(49 89 8 57)×
×(9 12 48 45)(10 24 47 33)(11 36 46 21)(22 23 35 34),

B2 = (54 72 43 64)(66 71 31 63)(78 70 19 62)(90 69 7 61),
D1 = (57 60 96 93)(58 72 95 81)(59 84 94 69)×

×(70 71 83 82)(45 89 37 41)(46 90 38 42)(47 91 39 43)(48 92 40 44),
D2 = (33 77 25 29)(34 78 26 30)(35 79 27 31)(36 80 28 32).

Exercise 4.5.6. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.

4.5.4 n× n Rubik’s cube

Other than the 2 × 2, 3 × 3, and 4 × 4 cubes, the only other Rubik’s cube
manufactured, as far as I know, is the 5 × 5 Rubik’s cube. Apparently,
there are mechanical problems which cause the manufacture of the n × n
cubes to be overly expensive or perhaps even impossible, for n large. For
information, at least theoretically, on the solution of such cubes, the reader
might be interested in the article [L] or the postings in the archives of the
“cube-lovers” list [CL].

4.6 Skewb

The skewb is a cube which has been subdivided into regions differently than
the Rubik’s cube. First, fix an orientation of the cube in space, so we may
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talk about a front face, a back face, up, down, left, and right. Each of these
6 square faces are subdivided into 5 facets as follows:

The 4 corner facets are labeled exactly as in the case of the Rubik’s cube
(as the lower case xyz, where x is the label of the face the facet lives on, y
and z the two neighboring faces).

The skewb itself is a cube subdivided as follows: there are 8 corner pieces
which are each in the shape of a tetrahedron. For example, if you hold a
cube in front of you the upper right hand corner of the front face is the facet
of a tetrahedron whose facets are labels f1, r4, u2.

The moves of the skewb are different from the Rubik’s cube as well: Label
the corners as XY Z, where xyz is the notation for any of the facets belonging
to that corner piece. Pick a cornerXY Z of the cube and draw a line L passing
through that corner vertex and the opposite corner vertex (”skewering the
cube”). That line defines a 120 degree rotation in the clockwise direction
(viewed from the line looking down onto the corner you picked). One move
of the skewb is defined in terms of this rotation as follows: Of course a 120
degree rotation of the entire cube about the line L will preserve the cube but
swap some faces and some vertices. The skewb has a mechanism so that you
can actually rotate half (a ”skewed” half) the skewb by 120 degrees about
L and leave the other half completely fixed. This rotation of half the skewb
about L will also be denoted XY Z.
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We may also label the 5 · 6 = 30 facets as follows:

+--------------+

| 20 17 |

| 16 u |

| 19 18 |

+--------------+--------------+--------------+--------------+

| 5 2 | 10 7 | 25 22 | 30 27 |

| 1 l | 6 f | 21 r | 26 b |

| 4 3 | 9 8 | 24 23 | 29 28 |

+--------------+--------------+--------------+--------------+

| 15 12 |

| 11 d |

| 14 13 |

+--------------+

Example 61. Consider the rotation UFR associated to the corner ufr. This
move permutes the facets of the skewb. As a permutation, the disjoint cycle
notation for this move is

UFR = (6 16 21)(7 18 25)(10 17 24)(8 19 22).

Note, in particular UFR does not move the 9-facet.

The eight basic moves are given by

FUR = (6 16 21)(7 18 25)(10 17 24)(8 19 22)
RUB = (21 16 26)(22 17 30)(25 20 29)(23 18 27)
BUL = (26 16 1)(27 20 5)(28 17 2)(30 19 4)
LUF = (1 16 6)(2 19 10)(5 18 9)(3 20 7)

FDR = (11 6 21)(25 13 9)(23 15 7)(24 12 8)
BDR = (26 11 21)(29 13 23)(27 12 22)(30 14 24)

FDL = (6 11 1)(9 15 3)(10 12 4)(8 14 2)
LDB = (1 11 26)(3 13 27)(4 14 28)(5 15 29).
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All other moves are obtained by combining these moves sequentially.

The reader who wishes may check these by xeroxing the above diagram,
cutting it out and taping it together.

Exercise 4.6.1. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.

4.7 Pyraminx

The pyraminx is a puzzle in the shape of a tetrahedron. A tetrahedron is
a 4-sided regular platonic solid, all of whose faces are equilateral triangles.
Each of the 4 faces of the puzzle is divided into 9 triangular facets:

There are a total of 4 · 9 = 36 facets on the pyraminx. They will be
labeled as follows (the reader may want to xerox this, cut it out, then fold
the corners and tape it into a tetrahedron):
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We fix an orientation of the tetrahedron in space so that you are looking
at a face which we call the ”front”. We may also speak of a ”right”, ”left”,
and ”down” face. We label the 4 faces as f(ront), r(ight), l(eft), d(own). We
label the vertices U(p), R(ight), L(eft), and B(ack).

The tetrahedron itself has been subdivided into sub-tetrahedrons as fol-
lows: to each vertex X (so X ∈ {U,R, L,B}) there is an opposing face F of
the solid. For each such face, we slice the solid along two planes parallel to
the vertex X and lying in between the face and the vertex. We want these
planes, along with the face and the vertex to be spaced apart equally. The
sub-tetrahedrons in the slice of the face itself will be called the face slice as-
sociated to the face F , denoted F1, the sub-tetrahedrons in the middle slice
parallel to the face F will be called the middle slice associated to that face,
denoted F2, and the sub-tetrahedron containing the vertex X to the face tip
associated to that vertex, denoted F3.

To each face labeled F , we have a clockwise rotation by 120 degrees of
the first slice F1 of the face. We shall denote this rotation also by F1. This
rotation only moves the facets living on the slice F1. Similarly, we have a
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clockwise rotation by 120 degrees of the second slice F2 of the face. We
shall denote this rotation also by F2. F3 denotes the clockwise rotation by
120 degrees of the opposing sub-tetrahedron containing the vertex X. These
moves permute the labels for the 36 facets, hence may be regarded as a
permutation of the numbers 1, 2, ..., 36.

For example, the clockwise rotation by 120 degrees (looking at the front
face) of the sub-tetrahedron opposite to the front face will be denoted F3.
The disjoint cycle notation for this move, regarded as a permutation, is

F3 = (23 22 36).

The basic moves are given as follows:

F1 = (2 32 27)(8 31 26)(7 30 12)(19 29 11)×
×(18 28 3)(1 17 13)(6 15 4)(5 16 14)
F2 = (9 35 25)(21 34 24)(20 33 10)

F3 = (23 22 36)
R1 = (3 36 17)(11 34 16)(10 35 6)×

×(24 31 5)(23 32 1)(2 22 18)(9 20 7)(8 21 19)
R2 = (12 33 15)(26 29 14)(25 30 4)

R3 = (27 28 13)
L1 = (1 28 22)(5 29 21)(4 33 9)×

×(14 34 8)(13 36 2)(3 27 23)(11 26 24)(12 25 10)
L2 = (6 30 20)(16 31 19)(15 35 7)

L3 = (17 32 18)
D1 = (13 18 23)(14 19 24)(15 20 25)×

×(16 21 26)(17 22 27)(28 32 36)(29 31 34)(30 35 33)
D2 = (4 7 10)(5 8 11)(6 9 12)

D3 = (1 2 3)

All other moves are obtained by combining these moves sequentially. In-
deed, later, we shall want to use moves of the form F2 ∗ F3, for each face
F , but the disjoint cycle notation for these permutations are a little more
cumbersome to write down.

Exercise 4.7.1. Verify that the properties of a permutation puzzle are satisfied
for this puzzle.
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4.8 Megaminx

This puzzle is in the shape of a dodecahedron. A dodecahedron is a 12-sided
regular platonic solid for which each of the 12 faces is a pentagon. We call
two faces neighboring if they share an edge. There are 20 vertices and 30
edges on a dodecahedron.

Each of the puzzle faces has been subdivided into 11 facets by slicing each
edge with a cut which is both parallel to that edge and not far from the edge
(say one-fifth the way to the opposite vertex). A picture is as follows:

There are a total of 11·12 = 132 facets on the puzzle. Each face of the solid
is parallel to a face on the opposite side. Fix a face of the dodecahedron and
consider a plane parallel to that face slicing through the solid and about one-
fifth the way to the opposite face. There are 12 such slices. Two such slices
associated to two neighboring edges will intersect inside the dodecahedron
at a 120 degree angle but two such slices associated to two non-neighboring
edges will not intersect inside the dodecahedron (though they will intersect
outside the solid of course). We slice up the solid dodecahedron in this way.
This creates a smaller dodecahedron in the center and several other irregular
smaller pieces.

For each such slice associated to a given face fi there is a basic move
still denoted fi of the megaminx given by clockwise rotating the slice of the
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megaminx by 120 degree, leaving the rest of the dodecahedron invariant.
Such a move effects 26 facets of the megaminx and leaves the remaining 106
facets completely fixed.

Label the 12 faces of the solid as f1, f2, ..., f12 in some fixed way. Imagine
that the dodecahedron is placed in 3-space in such a way that one side on the
xy-plane and is centered along the positive z-axis so that one of the vertices
of the top face is at the xyz-coordinate (r, 0, s), where r is the radius of the
inscribed circle for the pentagon and s is the distance from the ”up” face to
the ”down” face of the dodecahedron.

Exercise 4.8.1. Suppose r = 1. Find s. (This is fairly hard - see the chapter
on Platonic solids for some ideas.)

The up face we label as f1. The others may be labeled according to the
following graph, where faces are represented by vertices and two vertices are
connected by an edge if the corresponding faces are neighboring.

A more symmetric way to order the faces of the dodecahedron is as follows
(see [B], exercise 18.35):
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f1 u
f2 u0

f3 u1

f4 u2

f5 u3

f6 u4

f7 d2

f8 d3

f9 d4

f12 d
f11 d1

f10 d0

One property of this labeling is explained in the following

Exercise 4.8.2. Suppose that the permutation (0 1 2 3 4) of the numbers
{0, 1, 2, 3, 4} acts on the labels u0, ..., u4 and d0, ..., d4 in the obvious way.
Show that this permutation of the faces corresponds to a rotation of the
dodecahedron.

Notice that, like the cube, each vertex is uniquely determined by speci-
fying the three faces it has in common. We use the notation x.y.z for the
vertex of the dodecahedron which lies on the three faces x, y, z. Note that
the order is irrelevent: x.y.z denotes the same vertex as y.x.z or z.y.x.

The facets of the megaminx may be specified as with the Rubik’s cube:
a corner facet may be specified as [x.y.z], where x is the face the facet lives
on and y, z are the two neighboring faces of the facet. An edge facet may
be specified by [x.y], where x is the face the facet lives on and y is the other
neighboring face of the facet. The center facet of f1 will simply be denoted
by [f1]. We will call this label the intrinsic label.

We may label the facets of the up face f1 as follows:
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f1 facet symbol numerical label intrinsic label
a 1 [f1.f6.f2]
b 2 [f1.f2]
c 3 [f1.f2.f3]
d 4 [f1.f3]
e 5 [f1.f3.f4]
f 6 [f1.f4]
g 7 [f1.f4.f5]
h 8 [f1.f5]
i 9 [f1.f5.f6]
j 10 [f1.f6]
k 11 [f1]

For the next face (the f2 face), we label the facets in such a way that the
abc edge of f1 joins the ghi edge of f2:

f2 facet symbol numerical label intrinsic label
a 12 [f2.f6.f7]
b 13 [f2.f7]
c 14 [f2.f7.f8]
d 15 [f2.f8]
e 16 [f2.f8.f3]
f 17 [f2.f3]
g 18 [f2.f3.f1]
h 19 [f2.f1]
i 20 [f1.f5.f6]
j 21 [f2.f6]
k 22 [f2]

In general, we can label the remaining facets in such a way that the
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basic moves are, as permutations, given by:

f1 = (1 3 5 7 9)(2 4 6 8 10)(20 31 42 53 64)×
×(19 30 41 52 63)(18 29 40 51 62)

f2 = (12 14 16 18 20)(13 15 17 19 21)(1 60 73 84 31)×
×(3 62 75 86 23)(2 61 74 85 32)

f3 = (23 25 27 29 31)(24 26 28 30 32)(82 95 42 3 16)×
×(83 96 43 4 17)(84 97 34 5 18)

f4 = (34 36 38 40 42)(35 37 39 41 43)(27 93 106 53 5)×
×(28 94 107 54 6)(29 95 108 45 7)

f5 = (45 47 49 51 53)(46 48 50 52 54)(38 104 117 64 7)×
×(39 105 118 65 8)(40 106 119 56 9)

f6 = (56 58 60 62 64)(57 59 61 63 65)(49 115 75 20 9)×
×(50 116 76 21 10)(51 117 67 12 1)

f7 = (67 69 71 73 75)(68 70 72 74 76)(58 113 126 86 12)×
×(59 114 127 7 13)(60 115 128 78 14)

f8 = (78 80 82 84 86)(79 81 83 85 87)(71 124 97 23 14)×
×(72 125 98 24 15)(73 126 89 25 16)

f9 = (89 91 93 95 97)(90 92 94 96 98)(80 122 108 34 25)×
×(81 123 109 35 26)(82 124 100 36 27)

f10 = (100 102 104 106 108)(101 103 105 107 109)×
×(91 130 119 45 36)(92 131 120 46 37)(93 122 111 47 38)
f11 = (111 113 115 117 119)(112 114 116 118 120)×

×(102 128 67 56 47)(103 129 68 57 48)×
×(104 130 69 58 49)

f12 = (122 124 126 128 130)(123 125 127 129 131)×
×(100 89 78 69 111)(101 90 79 70 112)(102 91 80 71 113)

4.9 Other permutation puzzles

I have left out several puzzles: ”topspin” and ”turnstile” (planar puzzles),
”mozaika” (an equator-like puzzle, but the hemispheres may be rotated inde-
pendently), ”alexander’s star” (a stellated icosahedron), ”the ”impossiball”
(a spherically shaped icosahedron - see [H]), ”mickey’s challenge” (a spher-
ically shaped irregular polyhedron - essentially the same as the skewb but
with some added orientations of faces).

The puzzle ”Christoph’s jewel”, essentially a ”Rubik octahedron”, may
be solved using ”super-Rubik’s cube moves” (see [H]). (Indeed, one may take
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a Rubik’s cube, strip off all the stickers (using soap and water), and replace
them with new stickers modeling a Rubik octahedron. This is because the
octahedron is the dual solid of the cube, as described in chapter 7 below
”Symmetry groups of the Platonic solids”.)

The ”orbix” puzzle (a battery run puzzle which has 12 buttons which light
up) is a permutation puzzle if you think of a move (which switches certain
of the buttons on/off) as permuting the elements of the set of all subsets of
the 12 buttons (the subset of buttons which are lit) amongst themselves.

There is some mention of such puzzles in, for example, [Si], [H], [B], [GT]
and [Jwww].



Chapter 5

Groups, I

Q: “What’s commutative and purple?”
A: “An abelian grape”.
— Ancient Math Joke

“In 1910 the mathematician Oswald Veblen and the physicist
James Jeans were discussing the reform of the mathematical cur-
riculum at Princeton University. ‘We may as well cut out group
theory,‘ said Jeans. ‘That is a subject which will never be of any
use to physics.‘ It is not recorded whether Veblen disputed Jeans’
point, or whether he argued for the retention of group theory on
purely mathematical grounds. All we know is that group theory
continued to be taught. And Veblen’s disregard for Jeans’ advice
continued to be of some importance to the history of science at
Princeton. By the irony of fate group theory later grew into one
of the central themes of physics, and it still dominates the think-
ing of all of us who are struggling to understand the fundamental
particles of nature.”

Freeman J. Dyson
SCIENTIFIC AMERICAN, Sep, 1964

When we studied permuation puzzles in Chapter 4, recall that one of
the criteria was that each move was ”invertible”. This is, in fact, one of
the conditions for the set of all legal moves of a permutation puzzle to form
a group. A group is a set G with a binary operation (namely a function
∗ : G×G→) satisfying certain properties to be given later, one of which is

85
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that each element has an inverse element associated to it. One should be a
little careful, since not every permutation puzzle gives rise to a group in this
way. For example, the set of moves of the 15 puzzle do not form a group in
this way though the set of moves of the Rubik’s cube group do.

Just as for sets, we must decide on how to describe a group. If G is
finite then one way is to list all the elements in G and list (or tabulate)
all the values of the function ∗. Another method is to describe G in terms
of some properties and then define a binary operation ∗ on G. A third
method is to give a ”presentation” of G. Each of these has its advantages and
disadvantages. We shall eventually introduce all three of these approaches.

First, we start with an example.

5.1 The symmetric group

Before defining anything, we shall provide a little motivation for some general
notions which will arise later.

Let X be any finite set and let SX denote the set of all permutations of
X onto itself:

SX = {f : X → X | f is a bijection}.

This set has the following properties:

1. if f, g belong to SX then fg (the composition of these permutations)
also belongs to SX , (”closed under compositions”),

2. if f, g, h all belong to SX then (fg)h = f(gh), (”associativity”),

3. the identity permutation I : X → X belongs to SX (”existence of the
identity”),

4. if f belongs to SX then the inverse permutation f−1 also belongs to SX
(”existence of the inverse”).

The set SX is called the symmetric group of X. We shall usually take for
the set X a set of the form {1, 2, ..., n}, in which case we shall denote the sym-
metric group by Sn. This group is also called the symmetric group on n letters.

Example 62. : Suppose X = {1, 2, 3}. We can describe SX as

SX = {I, s1 = (1 2), s2 = (2 3), s3 = (1 3 2), s4 = (1 2 3), s5 = (1 3)}.
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We can compute all possible products of two elements of the group and
tabulate them in a multiplication table is

I s1 s2 s3 s4 s5

I I s1 s2 s3 s4 s5

s1 s1 I s3 s2 s5 s4

s2 s2 s4 I s5 s1 s3

s3 s3 s5 s1 s4 I s2

s4 s4 s2 s5 I s3 s1

s5 s5 s3 s4 s1 s2 I

Exercise 5.1.1. Verify the four properties of SX mentioned above. (Note that
the verification of associativity follows from the associative property of the
composition of functions - see the Exercise 3.0.4).

5.2 General definitions

We take the above four properties of the symmetric group as the four defining
properties of a group:

Definition 63. Let G be a set and suppose that there is a mapping

∗ : G×G×G
(g1, g2) 7−→ g1 ∗ g2

(called the group’s operation) satisfying

(G1) if g1, g2 belong to G thn g1 ∗ g2 belongs to G (”G is closed under ∗”),

(G2) if g1, g2, g3 belong to G then (g1∗g2)∗g3 = g1∗(g2∗g3) (”associativity”),

(G3) there is an element 1 ∈ G such that 1 ∗ g = g ∗ 1 = g for all g ∈ G
(”existence of an identity”),

(G4) if g belongs toG then there is an element g−1 ∈ G, called the inverse of g
such that g ∗ g−1 = g−1 ∗ g = 1 (”existence of inverse”).

Then G (along with the operation ∗) is a group.
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Example 64. Actually, this is a ”non-example”. Let S be the set of all legal
moves (one can eventually make from a legally obtained position) of the 15
puzzle (as described in Chapter 4). In a given position, for example the
solved position, there aren’t that many possibilities: there are only 2 moves
in the solved position and there are never any more that 4 moves possible
from any position.

From the solved position one can move (15, 16) and (12, 16) (where 16
denotes the blank square) but not for example (1, 16). Since (15, 16), (1, 16) ∈
S and since (1, 16)(15, 16) is not a legal move, it follows that composition of
legal moves is not always legal. This shows that composition is not a binary
operation, so property number (G1) fails to hold.

In the above definition, we have not assumed that there was exactly one
identity element 1 of G because, in fact, one can show that if there is one then
it is unique. (To do this you need to use the cancellation law: if a ∗ c = b ∗ c,
where a, b, c ∈ G, then a = b.) Likewise, if G is a group and g ∈ G then the
inverse element of g is unique. There are other properties of a group which
can be derived from (G1)-(G4). We shall prove them as needed.

The multiplication table of a finite group G is a tabulation of the values
of the binary operation ∗. Let G = {g1, ..., gn}. The multiplication table of
G is:

* g1 g2 ... gj ... gn
g1

g2
...
gi gi ∗ gj
...
gn

Some properties:

Lemma 65. (a) Each element gk ∈ G occurs exactly once in each row of the
table.

(b) Each element gk ∈ G occurs exactly once in each column of the table.
(c) If the (i, j)th entry of the table is equal to the (j, i)th entry then gi∗gj =

gj ∗ gi.
(d) If the table is symmetric about the diagonal then g ∗ h = h ∗ g for all

g, h ∈ G. (In this case, we call G abelian.)
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Example 66. Let C12 be the group whose elements are {0, 1, ..., 11} and for
which the group operation is simply ”addition mod 12”, just as one adds time
on a clock (except that we call ”12 o’clock” ”0 o’clock”). Thus 5 + 8 = 1,
1 + 11 = 0, and so on.

Question: What is the inverse element of 5? The inverse of 1?
This group is called the cyclic group of order 12.

Exercise 5.2.1. Compute the multiplication table for C12.

Definition 67. Let n > 1 be an integer and let Cn be the group whose
elements are {0, 1, ..., n − 1} (more precisely, {0, 1, ..., n− 1}, where i is the
residue class mod n of i) and for which the group operation is simply ”addi-
tion mod n”. This group is called the cyclic group of order n.

For further details on cyclic groups, see for example [G] or [R].

Definition 68. Let g and h be two elements of a group G. We say that g
commutes with h (or that g, h commute) if g ∗ h = h ∗ g. We call a group
commutative (or ”abelian”) if every pair of elements g, h belonging to G
commute. If G is a group which is not necessarily commutative then we call
G noncommutative (or ”nonabelian”).

Example 69. The integers, with ordinary addition as the group operation, is
an abelian group.

Exercise 5.2.2. Show that any group having exactly 2 elements is abelian.

Now the reader should understand the punchline to the joke quoted at
the beginning!

Convention: When dealing with groups in general we often drop the
∗ and denote multiplication simply by juxtaposition (that is, sometimes we
write gh in place of g ∗h), with one exception. If the group G is abelian then
one often replaces ∗ by + and then + is not dropped.

Now that we know the definition of a group, the question arises: how
might they be described? The simplest answer is that we describe a group
much as we might describe a set: we could list all its elements and give the
multiplication table or we could describe all its elements and their multipli-
cation in terms of some property from which we can verify the four properties
of group. Though the first way has the distinct advantage of being explicit, it
is this second alternative which is the most common since it is usually more
concise.
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Our objective is to introduce terminology and techniques which enable us
to analyse mathematically permutation puzzles. The type of groups which
arise in this context are defined next.

Definition 70. Let X be a finite set. Let g1, g2, ..., gn be a finite set of
elements of permutations of X (so that they all belong to SX). Let G be the
set of all possible products of the form

g = x1 ∗ x2... ∗ xm, m > 0,

where each of the x1, ..., xm is taken from the set {g1, ..., gn}. The set G,
together with the group operation given by composition of permutations, is
called a permutation group with generators g1, ..., gn. We sometimes write

G =< g1, ..., gn >⊂ SX .

It is not too hard to justify our terminology:

Lemma 71. A permutation group is a group.

proof: Let G be a permutation group as in the above definition. We
shall only prove that each g ∈ G has an inverse, leaving the remainder of the
properties for the reader to verify.

The set {gn | n ≥ 1} ⊂ SX is finite. There are n1 > 0, n2 > n1 such that
gn1 = gn2 . Then g−1 = gn2−n1−1 since g · gn2−n1−1 = 1. �

Remark 3. The above definition can be generalized: Replace SX by any group
S which includes all the generators g1, ..., gn. The resulting set G is called
the group generated by the elements g1, ..., gn.

Algorithm:
Input: The generators g1, ..., gn (as permutations in SX),
Output: The elements of G,
S = {g1, ..., gn, g

−1
1 , ..., g−1

n },
L = S ∪ {1},

for g in S do

for h in L do

if g*h not in L then L = L union {g*h} endif

endfor

endfor
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Note that the size of the list L in the for loop changes after each iteration
of the loop. The meaning of this is that the if-then command is to be executed
exactly once for each element of the list.

Exercise 5.2.3. Verify that permutation group G satisfies the four properties
of a group (G1)-(G4).

Definition 72. If G is a group then the order of G, denoted |G|, is the
number of elements of G. If g is an element of the group G then the order
of g, denoted ord(g), is the smallest positive integer m such that gm = 1, if
it exists. If such an integer m does not exist then we say that g has ”infinite
order”.

Example 73. For example, there is an even permutation of order 42 in S12, for
example (1, 2)(3, 4, 5)(6, 7, 8, 9, 10, 11, 12), and an odd permutation of order
15 in S8, for example (1, 2, 3)(4, 5, 6, 7, 8).

Singmaster [Si] states that the maximal order in the Rubik’s cube group
is 1260.

We shall be able to make use of the following fact frequently.

Theorem 74. (a) (Cauchy) Let p be a prime dividing |G|. There is a g ∈ G
of order p.

(b) (Lagrange) Let n be an integer not dividing |G|. There does not exist
a g ∈ G of order n.

This will be proven a little later.
As an application of this: we shall see later that the Rubik’s cube group G

has the property that |G| = 227314537211. It follows from this and Lagrange’s
theorem that there is no move of the Rubik’s cube of order 13 but there is
one of order 11.

Exercise 5.2.4. Let X = {1, 2, 3}. We use the notation of the example above.
(a) Let G be the permutation group with generator s1, G =< s1 >. Verify

that there are only two elements in G.
(b) What is the order of s5?
(c) Let G be the permutation group with generator s3, G =< s3 >. Verify

that there are only three elements in G.
(d) Find the order of s3.
(e) Show that SX =< s1, s2 >.
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Definition 75. If G is a permutation group G with only one generator then
we say that G is cyclic.

Lemma 76. If G =< g > is cyclic with generator g then |G| = ord(g).

proof: Let m = ord(g), so gm = 1. We can list all the elements of G as
follows:

1, g, g2, ..., gm−1.

There are m elements in this list. �

5.2.1 The Gordon game

Let G be a finite group, written

G = {g0 = 1, g1, ..., gn}.

You and your opponent share a set of move tokens, denoted

M = {g1, ..., gn},

and place tokens, denoted

P = {g1, ..., gn}.

Rules to play:

• Players alternate turns. Each turn consists of removing one move token
and one place token according to the conditions listed below. The first
person who cannot make a legal play loses.

Let m0 = p0 = 1 and let i = 1.

• First player picks any move token m1 ∈ M and the place token p1 =
m1 ∈ P . These tokens m1 and p1 are then removed from M and P ,
resp..

• The next player picks any move token mi+1 such that pi+1 = mi+1pi ∈
P . These tokens mi+1 and pi+1 are then removed from M and P , resp..

• Increment i and go to the previous step.
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Example 77. Let
G = F7 = {0, 1, 2, 3, 4, 5, 6}.

The moves of a game are determined by recording the move tokens. One
possible game is

• 4 1 3 2
0 1 2 3 4 5 6

where the • over the identity element 0 of the group indicates that it isn’t
moved and the numbers above a group element indicates when it was moved:

1st: m1 = 2, p1 = 2; 2nd: m2 = 4, p2 = 6;
1st: m3 = 6, p3 = 5; 2nd: m4 = 3, p4 = 1;

2nd player wins

Exercise 5.2.5. Play a game!

Remark 4. If G = Z/pZ (the cyclic group with p elements) there is a conjec-
ture that the 2nd player has a winning strategy when p > 5 (see Isbell’s note
[I]). In general, strategies are not not only not known, they haven’t even
been conjectured.

Remark 5. If you and your opponent both try to drag the game on as long as
possible, can you exhaust the set of move tokens and the set of place tokens?
The answer is known for abelian groups, dihedral groups and groups of order
< 32. The general answer is unknown.

5.3 Subgroups

Definition 78. Let G be a group. A subgroup of G is a subset H of G such
that H, together with the operation ∗ inherited as a subset of G, satisfies
the group operations (G1)-(G4) (with G replaced by H everywhere).

Notation: If G is a group then we will denote the statement ”H is a
subgroup of G” by

H < G.

Problem: What are the subgroups of the Rubik’s cube group? It turns
out that there are too many to list but later, when we have a more useful
way of describing a group (using generators and relations - see §9.3), we will
explicitly determine some of the subgroups of ”small” order.
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Theorem 79. (Lagrange) Let H be a subgroup of a finite group G. Then
|H| divides |G|.

proof: For x, y ∈ G, define x ∼ y if xH = yH, where

xH = {x ∗ h | h ∈ H}.

This is an equivalence relation (Exercise: Check reflexive, symmetry, and
transitivity). Moreover, the equivalence class of x consists of all elements in
G of the form x∗h, for some h ∈ H, i.e., [x] = xH. Let g1, ..., gm ∈ G denote
a complete set of representatives for the equivalence classes of G. Because
of the cancellation law for groups, |xH| = |H| for each x ∈ G. Furthermore,
we know that the equivalence classes partition G, so

G = ∪mi=1[gi] = ∪mi=1giH.

Comparing cardinalities of both sides, we obtain |G| = |g1H|+ ...+ |gmH| =
m|H|. This proves the theorem. �

Definition 80. If H and G are finite groups and H < G then the integer
|G|/|H| is called the index of H in G, denoted [G : H] = |G|/|H|.

Exercise 5.3.1. Show, as a corollary to the previous Theorem 79, that The-
orem 74 is true.

Example 81. A permutation group G generated by elements g1, ..., gn belong-
ing to SX is a subgroup of SX , i.e., G < SX .

Example 82. Let
AX = {g ∈ SX | g is even}.

This is a subgroup of Sn called the alternating subgroup of degree n .

Definition 83. The center of a group G is the subgroup Z(G) of all elements
which commute with every element of G:

Z(G) = {z ∈ G | z ∗ g = g ∗ z, for all g ∈ G}.

Of course, the identity element always belongs to G. If the identity ele-
ment is the only element of Z(G) then we say G has trivial center. On the
other hand, G is commutative if and only if G = Z(G).

Exercise 5.3.2. Let G = S3. Determine Z(G).
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5.4 Examples of groups

Example 84. The collection of all moves of the 15 puzzle may be viewed as
a subgroup of S16.

Example 85. The collection of all moves of the Rubik’s cube may be viewed
as a subgroup G of S48. The center of G consists of exactly two elements,
the identity and the ”superflip” move which has the effect of flipping over
every edge, leaving all the corners alone and leaving all the subcubes in their
original position. One move for the superflip is

superflip = R ∗ L ∗ F ∗B ∗ U ∗D ∗R ∗ L ∗ F ∗B ∗ U ∗ F 2 ∗MR∗
∗F 2 ∗ U−1 ∗M2

R ∗B2 ∗M−1
R ∗B2 ∗ U ∗M2

R ∗D,

where MR is middle right slice rotation by 90 degrees (viewed from the right
face). The proof of this fact uses the determination of the group structure of
G given later (see also [B]).

5.4.1 The dihedral group

Pick an integer n > 2 and let R be a regular n-gon centered about the origin
in the plane. If n = 3 then R is an equilateral triangle, if n = 4 then R is a
square, if n = 5 then R is a pentagon, and so on. Let G denote the set of all
linear transformations of the plane 1 to itself which preserve the figure R. The
binary operation ◦ : G × G → G given by composition of functions gives G
the structure of a group. This group is called the group of symmetries of R.

Label the vertices of the n-gon as 1, 2, ..., n. The group G permutes
these vertices amongst themselves, hence each g ∈ G may be regarded as
a permutation of the set of vertices V = {1, 2, ..., n}. In this way, we may
regard G as a permutation group since it is the subgroup of Sn generated by
the elements of G.

The fact that this group has 2n elements follows from a simple counting
argument: Let r ∈ G denote the element which rotates R by 2π/n radians
counterclockwise about the center. Let L be a line of symmetry of R which
bisects the figure into two halves. Let s denote the element of G which is
reflection about L. There are n rotations by a multiple of 2π/n radians

1If we regard R as a figure in 3-space centered above the origin and let G denote the
set of all linear transformations of 3-space then we obtain a slightly larger group in some
cases [NST].
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about the center in G: 1, r, r2, ..., rn−1. There are n elements of G which
are composed of a reflection about L and a rotations by a multiple of 2π/n
radians about the center: s, s ◦ r, s ◦ r2, ..., s ◦ rn−1. These comprise all the
elements of G.

One remarkable property of this symmetry group, which we shall use in
the example in the next section, is that it is generated by any two distinct
reflections in the group:

Lemma 86. Pick two distinct lines L,L′ of symmetries of R, each of which
bisects R in half, and let s, s′ (resp.) denote the corresponding reflections,
regarded as elements in Sn. Then G =< s, s′ >.

The interested reader is referred to [NST], [R], or [Ar], chapter 5, §3, for
a proof.

The symmetry group of R is known as the dihedral group of order 2n,
denoted D2n. We shall state the precise relation in a later chapter (chapter
8) after we have introduced more terminology.

Example 87. Let G be the symmetry group of the square: i.e., the group of
symmetries of the square generated by the rigid motions

g0 = 90 degrees clockwise rotation about O,
g1 = reflection about `1,
g2 = reflection about `2,
g3 = reflection about `3,
g4 = reflection about `4,

where `1, `2, `3 denote the lines of symmetry in the picture below:
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The elements of G are

1, g0, g
2
0, g

3
0, g1, g2, g3, g4.

Let X be the set of vertices of the square. Then G acts on X.

5.4.2 Example: The two squares group

This material is based on an idea mentioned in [FS].
Let H =< R2, U2 > denote the group generated by the two square moves,

R2 and U2 or the Rubik’s cube. (The reader with a cube in hand may want
to try the Singmaster magic grip : the thumb and forefinger of the right
hand are placed on the front and back face of the fr, br edge, the thumb and
forefinger of the left hand are placed on the front and back face of the uf, ub
edge; all moves in this group can be made without taking your fingers off the
cube.) This group contains the useful 2-pair edge swap move (R2 ∗ U2)3.

We can find all the elements in this group fairly easily:

H = {1, R2, R2 ∗ U2, R2 ∗ U2 ∗R2, (R2 ∗ U2)2, (R2 ∗ U2)2 ∗R2, (R2 ∗ U2)3,
(R2 ∗ U2)3 ∗R2, (R2 ∗ U2)4, (R2 ∗ U2)4 ∗R2, (R2 ∗ U2)5, (R2 ∗ U2)5 ∗R2},

Therefore, |H| = 12. Note that 1 = (R2 ∗ U2)6, U2 = (R2 ∗ U2)5 ∗ R2, and
U2 ∗ R2 = (R2 ∗ U2)5. (By the way, this listing without repetition of H by
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successive multiplication by R2 then U2 may be reformulated graphically by
saying the ”the Cayley graph of H with generators R2, U2 has a Hamiltonian
circuit”. This interpretation will be discussed in the next chapter.)

To discover more about this group, we label the vertices of the cube as
follows:

The move R2 acts on the set of vertices by the permutation (1 4)(2 3)
and the move U2 acts on the set of vertices by the permutation (4 5)(3 6).
We label the vertices of a hexagon as follows:
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The permutation (1 4)(2 3) is simply the reflection about the line of
symmetry containing both 5 and 6. The permutation (4 5)(3 6) is simply
the reflection about the line of symmetry containing both 1 and 2. By a fact
stated in section 5.4.1, these two reflections generate the symmetry group of
the hexagon.

5.5 Commutators

Definition 88. If g, h are two elements of a group G then we call the element

[g, h] = g ∗ h ∗ g−1 ∗ h−1

then commutator of g, h.

Not that [g, h] = 1 if and only if g, h commute. Thus the commutator
may be regarded as a rough measurement of the lack of commutativity.

Exercise 5.5.1. Let G = S3, the symmetric group on 3 letters. Compute the
commutators

[s1, s2], [s2, s1].

Exercise 5.5.2. Let R,U be as in the notation for the Rubik’s cube moves
introduced in the previous chapter. Determine the order of the move [R,U ].
(Ans: 6)

Definition 89. (Singmaster [Si]) Let G be the permutation group generated
by the permutations R,L, U,D, F,B regarded as permutations in S54. The
Y commutator is the element

[F,R−1] = F ∗R−1 ∗ F−1 ∗R.

The Z commutator is the element

[F,R] = F ∗R ∗ F−1 ∗R−1.

Exercise 5.5.3. (a) Find the orders of the Y commutator and the Z commu-
tator.

(b) Find the order of [R, [F,U ]].
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Example 90. If x, y are basic moves of the Rubik’s cube associated to faces
which share an edge then

(a) [x, y]2 permutes exactly 3 edges and does not permute any corners,
(b) [x, y]3 permutes exactly 2 pairs of corners and does not permute any

edges.

Definition 91. Let G be any group. The group G′ generated by all the
commutators

{[g, h] | g, h belong to G}
This is called the commutator subgroup of G.

This group may be regarded as a rough measurement of the lack of com-
mutativity of the group G.

Remark 6. We will see later that the group generated by the basic moves
of the Rubik’s cube - R,L, U,D, F,B - has a relatively large commutator
subgroup. In other words, roughly speaking ”most” moves of the Rubik’s
cube can be generated by commutators such as the Y commutator or the Z
commutator.

Definition 92. If we repeatedly take commutator subgroups we get a series
of groups G, G′, G′′ = (G′)′, and so on. The derived series of a group G is
the sequence of subgroups

... < (G′)′ < G′ < G.

A group G is called solvable if one of the groups in the derived series is the
trivial group consisting only of the identity.

Exercise 5.5.4. Let G be an abelian group. Show that G is solvable.

5.6 Conjugation

Definition 93. : If g, h are two elements of a group G then we call the
element

gh = h−1 ∗ g ∗ h
the conjugation of g by h.

Note that gh = 1 if and only if g, h commute. Thus the conjugates may
be regarded as a rough measurement of the lack of commutativity.
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Exercise 5.6.1. Show g ∗ [g−1, h−1] = gh.

Exercise 5.6.2. Let G = S3, the symmetric group on 3 letters, in the notation
of the example above. Compute the conjugations

ss21 , ss12 .

Exercise 5.6.3. Let R,U be as in the notation for the Rubik’s cube moves
introduced in the previous chapter. Determine the order of the move RU .
(Ans: 4)

Definition 94. : We say two elements g1, g2 of G are conjugate if there is
an element h ∈ G such that g2 = gh1 .

It turns out that it is easy to see when two permutations g, h ∈ Sn are
conjugate: they are conjugate if and only if the cycles in their respective dis-
joint cycle decompositions have the same length when assanged from shortest
to longest. For example, the elements

g = (6, 9)(1, 3, 4)(2, 5, 7, 8), h = (1, 2)(3, 4, 5)(6, 7, 8, 9)

are conjugate. We shall leave the details and the proof for later - see §8.3.1

Exercise 5.6.4. Show that the notion of conjugate defines an equivalence
relation. That is, show that

(a) any element g ∈ G is conjugate to itself (”reflexive”),
(b) if g is conjugate to h (g, h belonging to G) then h is conjugate to g

(”symmetry”),
(c) if g1 is conjugate to g2 and g2 is conjugate to g3 then g1 is conjugate

to g3 (”transitivity”).

Notation: The set of equivalence classes of G under the equivalence
relation given by conjugation, will be denoted G∗.

The polynomial

pG(t) =
∑
g∈G∗

tord(g),

is called the generating polynomial of the order function on G. Note two
elements which are conjugate must have the same order since (h−1gh)n =
(h−1gh)(h−1gh)...(h−1gh) = h−1gnh, for n = 1, 2, ... and g, h ∈ G.

In [Si], §5.10D, D. Singmaster asks for the possible orders of the elements
of the Rubik’s cube group and how many elements of each order there are.
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(A method for determining this will be described later in this text.) This
question of Singmaster motivates the following:

Problem: Determine pG(t) for the Rubik’s cube group.

Example 95. For S8, the generating polynomial is

t+ 4t2 + 2t3 + 4t4 + t5 + 5t6 + t7 + t8 + t10 + t12 + t15

and for S12 it is

t+ 6t2 + 4t3 + 9t4 + 2t5 + 16t6 + t7 + 4t8 + 2t9 + 6t10+
t11 + 9t12 + 2t14 + 2t15 + t18 + 2t20 + t21+

t24 + t28 + 3t30 + t35 + t42 + t60.

(Both of these calculations were performed by MAPLE.) For example, it
follows that there is an even permutation of order 42 in S12 and an odd
permutation of order 15 in S8.

Singmaster [Si] states that the maximal order in the Rubik’s cube group
is 1260.

Definition 96. : Fix an element g in a group G. The set

Cl(g) = {h−1 ∗ g ∗ h | h ∈ G}

is called the conjugacy class of g in G. It is the equivalence class of the
element g under the relation given by conjugation.

If H is a subgroup of G and if g is a fixed element of G then the set

Hg = {g−1 ∗ h ∗ g | h ∈ H}

is a subgroup of G. Such a subgroup of G is called a subgroup conjugate to
H.

Exercise 5.6.5. Let S be the set of all subgroups of G. We define a relation
R on S by

R = {(H1, H2) ∈ S × S | H1 is conjugate to H2}.

Show that R is an equivalence relation.

Exercise 5.6.6. Let G = Sn and let H =< g > be a cyclic subgroup generated
by a permutation g of the set {1, 2, ..., n}. With respect to the equivalence
relation in the previous exercise, show that a subgroup K of G belongs to
the equivalence class [H] of H in G if any only if K is cyclic and is generated
by an element k of G conjugate to g ∈ G.
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5.7 Orbits and actions

Definition 97. Let X be a set and let G be a group. We call X a G-set and
we say G acts on X provided the following conditions hold:

1. each g belonging to G gives rise to a function

φg : X → X,

2. the identity 1 of the group G defines the identity function on X,

3. if g, h belong to G then the composite

φgh : X → X

satisfies φgh(x) = φh(φg(x)).

We call this action a left action since the left-most element (namely, g) in
the product gh acts first.

Similarly, we define

Definition 98. LetX be a set and letG be a group. We sayG acts on X on the right
provided the following conditions hold:

1. each g belonging to G gives rise to a function

φg : X → X,

2. the identity 1 of the group G defines the identity function on X,

3. if g, h belong to G then the composite

φgh : X → X

satisfies φgh(x) = φg(φh(x)).

We call this action a right action since the right-most element (namely, h) in
the product gh acts first.

Remark 7. (1) We shall see another interpretation of these definitions in the
later chapter entitled, ”Groups, II”.

(2) Given a left action φg, one can create a right action by defining φ′g =
φg−1 .
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Following the standard convention, the Rubik’s cube will act on the set
of facets of the cube on the right.

Definition 99. Let G act on a set X. We call the action transitive if for
each pair x, y belonging to X there is a g ∈ G such that y = φg(x).

In other words, a group G acts transitively on a set X if any element x
of X can be send to any other element y of X by some element of G.

Example 100. Let X be a finite set and let G = SX be the symmetric group
of X. Then X is a G-set and G acts transitively on X.

Exercise 5.7.1. Show that the action in the previous example is transitive.

Example 101. Let G be the group of all 2 × 2 invertible matrices with real
entries, G = GL2(R). This group acts on the set of column vectors on the
left.

Exercise 5.7.2. Let G be the permutation group generated by the permu-
tations R,L, U,D, F,B, regarded as elements of S48. Let E denote the set
of edges of the cube, which we identify with the set of edge subcubes. Let
V denote the set of vertices of the cube, which we identify with the set of
corner subcubes of the cube. Let X be the set of all movable subcubes of the
Rubik’s cube (which may identify as the union of E and V ). Then G acts
on X, E and G acts on V .

Question (a) Is the action of G on X transitive?
(a) Is the action of G on E transitive?
(b) Is the action of G on V transitive?

Exercise 5.7.3. Let G be a group and let X = G. Define left multiplication
of G on X by:

φg : X → X
x 7−→ φg(x) = g ∗ x.

(a) Show that left multiplication defines a left action of G on X.
(b) Show that this action is transitive.
(c) Show that each φg : G→ G is a permutation of the set G, so φg ∈ SG.

Exercise 5.7.4. Let G be a group and let X = G. Define right multiplication
of G on X by:

φg : X → X
x 7−→ φg(x) = x ∗ g.

(a) Show that right multiplication defines a right action of G on X.
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(b) Show that this action is transitive.
(c) Show that each φg : G→ G is a permutation of the set G, so φg ∈ SG.

Exercise 5.7.5. Let G be a group and let X = G. Define conjugation on X
by:

φg : X → X
x 7−→ φg(x) = g−1 ∗ x ∗ g.

Show that conjugation defines an action of G on X (X and G as above).

Exercise 5.7.6. Let G be a group and let X denote the set of all subgroups
of G. Define conjugation on X by:

φg : X → X
x 7−→ φg(x) = g−1 ∗ x ∗ g.

Show that this defines an action of G on X.

Remark 8. In general, the actions in the last two exercises are not transitive.

Definition 102. Let G be a group acting on a set X. For each x belonging
to X, the set

G ∗ x = {φg(x) | g ∈ G}

is called the orbit of x ∈ X under G.

Algorithm
Input: A set S of generators of a permutation group G and an x belonging

to X
Output: The orbit of x, G ∗ x

orbit = {x}

for y in orbit do

for g in S do

if g*y not in orbit then orbit = orbit union {g*y} endif

endfor

endfor

Note that the size of the list orbit in the for loop changes after each
iteration of the loop. As mentioned before, the meaning of this is that the
if-then command is to be executed exactly once for each element of the list.
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Exercise 5.7.7. Let G be the Rubik’s cube group and let x be the uf edge
facet. Find the orbit of x under the action of G using the above algorithm.
Show each step.

Exercise 5.7.8. Let G be the group of moves of the Rubik’s cube and let X
be the set of vertices of the cube. Let H be the subgroup of G generated by
U ∗R. Find:

(1) the order of U ∗R, (Ans: 105)
(2) the orbit (in the Singmaster notation) of the ufr vertex in X under

H.

Definition 103. Let G be a group acting on a set X with the action denoted
by φ. For each x belonging to X, the subgroup

stabG(x) = Gx = {g ∈ G | φg(x) = x}

is called the stabilizer of x in G.

Exercise 5.7.9. Let G be a group acting on a set X, φg : X → X, for all
g ∈ G. Show that, for all x ∈ X and all g ∈ G, we have stabG(φg(x)) =
g ∗ stabG(x) ∗ g−1.

Example 104. Let G be the group of symmetries of the square (see the ex-
ample above), let X be the set of vertices of the square, and let x0 be the
vertex in the lower right hand corner. Then stabG(x0) =< g3 >.

Exercise 5.7.10. Let G be any group and let X = G. Let G act on X by left
multiplication:

φg : X → X
x 7−→ φg(x) = g ∗ x.

Show that
stabG(x) = 1,

for all x belonging to X = G.

Exercise 5.7.11. Let G be any group and let X = G. Let G act on X by
conjugation:

φg : X → X
x 7−→ φg(x) = g ∗ x ∗ g−1.

Show that
stabG(x) = {g ∈ G | g ∗ x = x ∗ g},
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for all x belonging to X = G. (The subgroup

CG(x) = {g ∈ G | g ∗ x = x ∗ g}

is called the centralizer of x in G.)

Example 105. Let X be the set of consisting of the 48 facets of the Rubik’s
cube which are not center facets - i.e., the ”movable” facets. Let V denote
the subset of facets which belong to some corner subcube, E the subset of
facets which belong to some edge subcube. Let G denote the Rubik’s cube
group. As noted above, G acts on X, V , E. The action of G on X induced
an equivalence relation as follows: we say that a facet f1 is ”equivalent”
to a facet f2 if there is an element of G (i.e., a move of the Rubik’s cube)
which sends one facet to the other. By exercise 5.7.2, there are exactly two
equivalence classes, or orbits, of G in X: V and E. In particular, the action
of G on V is transitive and the action of G on E is transitive.

5.8 Cosets

Let G be a group and H a subgroup of G. For g belonging to G, the subset
g ∗H of G is called a left coset of H in G and the subset H ∗ g of G is called
a right coset of H in G.

Exercise 5.8.1. If H is finite, show |H| = |g ∗H| = |H ∗ g|.
Exercise 5.8.2. If X is a left coset of H in G and x is an element of G, show
that x ∗X is also a left coset of H in G.

Notation: The set of all left cosets is written G/H and the set of all
right cosets of H in G is denoted H\G.

These two sets don’t in general inherit a group structure from G but they
are useful none-the-less. (G/H is a group with the ”obvious” multiplication
(g1 ∗H) ∗ (g2 ∗H) = (g1g2) ∗H if and only if H is a ”normal” subgroup of
G - we will define ”normal” below.)

As an example of their usefulness, we have the following relationship
between the orbits and the cosets of the stabilizers.

Lemma 106. Let G be a finite group acting on a set X. Then

|G ∗ x| = |G/stabG(x)|,

for all x belonging to X.
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proof: The map

g ∗ stabG(x) 7−→ g ∗ x

defines a function f : G/stabG(x)→ G ∗ x. This function is a bijection since
it is both and injection (Exercise: Check this) and a surjection (Exercise:
Check this). �

Exercise 5.8.3. Let G be the group of symmetries of the square. Using the
notation above, compute G/ < g3 > and G ∗ x0.

Theorem 107. (Lagrange): If G is a finite group and H a subgroup then

|G/H| = |G|/|H|.

Corollary 108. If H,G are as above then the order of H divides the order
of G.

proof of Theorem: Let X be the set of left cosets of H in G and let G
act on X by left multiplication. Apply the previous lemma with x = H. �

Exercise 5.8.4. Let G = S3, the symmetric group on 3 letters, and let H =<
s1 >, in the notation of §5.1 above.

(a) Compute |G/H| using Lagrange’s Theorem.

(b) Explicitly write down all the cosets of H in G.

Definition 109. : Let H be a subgroup of G and let C be a left coset of H
in G. We call an element g of G a coset representative of C if C = g ∗ H.
A complete set of coset representatives is a subset of G, x1, x2, ..., xm, such
that

G/H = {x1 ∗H, ..., xm ∗H},

without repetition (i.e., all the xi ∗H are disjoint).

Exercise 5.8.5. For g1, g2 ∈ G, define g1 ∼ g2 if and only if g1 and g2 belong
to the same left coset of H in G.

(a) Show that ∼ is an equivalence relation.

(b) Show that the left cosets of H in G partition G.
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5.9 Dimino’s Algorithm

We saw in an earlier chapter an algorithm for computing all the elements of
a permuation group G. We shall discuss a more efficient algorithm for doing
this in this section. For more details, see [Bu].

Notation: Let S = {g1, g2, ..., gn} be a set of generators for a permutation
group G. Let

S0 = ∅,
Si = {g1, ..., gi},
G0 = {1},

Gi =< Si >= the group generated by the elements in Si,

for 1 ≤ i ≤ n.
Algorithm (inductive step):
Input: The generators S of G and a list L of all the elements of the

permutation subgroup Gi−1.
Output: A list L of elements of Gi and a list C of coset representatives

of Gi/Gi−1.

C = {1}

for g in C do

for s in S_i do

if s*g not in L then

C = C union {s*g}

L = L union s*g*G_{i-1}

endif

endfor

endfor

Algorithm (Dimino):
Input: The generators S of G
Output: A list of elements of G

(Initial case S_1 = <g1>)

order = 1, element[1] = 1, g = g1

while g <> 1 do

order = order + 1

element[order] = g



110 CHAPTER 5. GROUPS, I

g = g*g1

endwhile

(General case)

for i from 2 to n do

<insert inductive step here>

endfor

Example 110. Let G = S3 =< s1, s2 >. We use Dimono’s algorithm to list
all the elements of G. We have

G0 = {1} < G1 =< s1 >< G2 = G.

First, we list the elements of G1 =< s1 >. Since s1 = (1 2), it is order 2, so

G1 = {1, s1}.

This is our list L which we will apply the ”inductive step” of Dimino’s al-
gorithm to (with i = 2). We start with C = {1}. Now we look at the left
cosets of G1 in G2 = G. We have (with g = 1, s = s1)

s1 ∗G1 = G1,

so we don’t increase the size of C or L. Next, we have (with g = 1, s = s2)

s2 ∗G1 = {s2, s2 ∗ s1} 6= G1,

so L = {1, s1, s2, s2 ∗ s1}, C = {1, s2}. Next, we have (with g = s2, s = s1)

s1 ∗ s2 ∗G1 = {s1 ∗ s2, s1 ∗ s2 ∗ s1} 6= G1.

(We know s1 ∗ s2 ∗G1 6= G1 since neither of the two elements in s1 ∗ s2 ∗G1

is the identity.) Thus, we increase L,C:

L = {1, s1, s2, s2 ∗ s1, s1 ∗ s2, s1 ∗ s2 ∗ s1},

and C = {1, s2, s1 ∗ s2}. We know we may stop here since we know |S3| = 6
but the algorithm still has one more statement to execute. Next, we have
(with g = s2, s = s2)

s2 ∗ s2 ∗G1 = G1,

so we don’t increase the size of C or L (as expected). This step terminates
the algorithm and S3 = L.
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Exercise 5.9.1. Perform Dimino’s algorithm on

S4 =< s1 = (1 2), s2 = (2 3), s3 = (3 4) > .

5.10 Permutations and campanology

This section is based on a capstone project of S. Robinson [Rob].
Standing outside of Westminster Abbey as the bells chime, the result you

hear may actually be much more mathematical, than musical. While your
ears think they detect melody,they are being deceived. The bells are not be-
ing rung in melody at all; in actuality, they are being rung in permutations
([Wh], p771). Since the seventeenth century, and possibly before, cathedral
bells in England have been rung by such permutations or changes ([Wh],
p771). The art and study of such bell ringing is referred to as campanology.
While campanology had been around for at least a century before the for-
malization of what is now known as group theory, elements of group theory
are implicit in campanology.

Fabian Stedman, referred to as ”one of the ’fathers of bell ringing,’” is
conjectured by Arthur White, to have been, perhaps, the first group theorist
([Wh], p771). Born in 1640 to Reverend Francis Stedman, Fabian Stedman’s
connections with campanology took root at the early age of 15 when he moved
to London to work as an apprentice to a Master Printer. While in London
Stedman joined a bell-ringing society known as the Scholars of Cheapside
and served as the societies treasurer in 1662. In 1664, Stedman went on to
join another bell-ringing society known then as the ”Society of Colledg(sic)
Youths,” which has since been renamed the Ancient Society of College Youths
and is still in existence today ([Wh], p771). Stedman remained with the
society becoming Steward of College Youths in 1677 and eventually in 1682
Master of the Society. Stedman’s major contributions to campanology are
reflected in his efforts on Tintinnlogia and Campanalogia, the first two books
published on the subject, in 1668 and 1677, respectively ([Wh], p771).

To leap right into a discussion of Stedman’s work, campanology, or group
theory even in their most general terms without some cursory definitions
would be futile. Below is a glossary of a few essential terms:

• Transposition: a cycle (i,j) of length 2 which interchanges i and j

• Change: the swapping of one or more disjoint pairs of adjacent bells
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• Plain change: involves swapping one pair of adjacent bells only

• Cross change: involves more than one swapping pair of bells

• Round: A unique ordering of the bells (i.e. (1, 2, 3, ..., n))

The following picture was taken from [Wa], page 71.

In the beginning, change ringing concerned itself with a single row of
bells whose order could be denoted by (1, 2, 3, ..., n). Considering the case
where n = 6 the concepts of plain and cross changes can be understood more
clearly. If we use only plain changes we can generate permutations of the
bells as follows:

1 2 3 4 5 6
2 1 3 4 5 6
2 1 4 3 5 6
2 1 4 3 6 5,

It should be fairly obvious on inspection that the first plain change swaps
1 and 2, the second swaps 3 and 4, and the third swaps 5 and 6. Considering
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the same set of six bells acted upon by a cross change, the same result is
achieved in one change, as seen below:

1 2 3 4 5 6
2 1 4 3 6 5.

More useful and interesting patterns can be generated by combining plain
and cross changes. The plain lead on four bells is one of the most simplistic
patterns and was devised sometime around 1621 by alternating consecutive
cross and plain changes as seen below:

1 2 3 4
2 1 4 3
2 4 1 3
4 2 3 1
4 3 2 1
3 4 1 2
3 1 4 2
1 3 2 4
1 2 3 4

It is easy to see that the pattern which defines the plain lead on four bells is
nothing more than a cross change followed by a plain change on the middle
two bells until we reach the round, which is where we started. Generat-
ing the plain lead on four bells is analogous algebraically to generating the
dihedral group on four elements, D4. We begin by representing the cross
change as a = (1, 2)(3, 4) which swaps the first two and last two bells and
representing the plain change as b = (2, 3) which swaps the middle pair.
Algebraically, D4 is generated by multiplication. We begin with the first
element in the group, a. To generate the next element in the group we
multiply this first element by b. To generate the third element we sim-
ply multiply this second term, ab, by a to get aba. Continuing on in this
manner we multiply alternately by a then b to generate the dihedral group
D4 = {a, ab, aba, (ab)2, a(ab)2, (ab)3, (ab)3a, (ab)4}. Since (ab)4 yields the
round, we say (ab)4 = 1 and D4 = {1, a, ab, aba, (ab)2, a(ab)2, (ab)3, (ab)3a}.
While this simple example illustrates the implicit elements of group theory
which seem to be at the heart of bell ringing, moving on to a more complex
example illuminates perhaps more significant implications.

We turn our attention now to the composition which is commonly referred
to as Plain Bob Minimus. Plain Bob Minimus begins at the round and ends at
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the round (1, 2, 3, 4) and contains all possible permutations of these four bells.
Calling the earlier definitions to mind, it should be evident that generating
the Plain Bon Minimus composition is equivalent algebraically to generating
the symmetric group on 4 elements, S4, which is shown:

1 2 3 4 1 3 4 2 1 4 2 3

2 1 4 3 3 1 2 4 4 1 3 2

2 4 1 3 3 2 1 4 4 3 1 2

4 2 3 1 2 3 4 1 3 4 2 1

4 3 2 1 2 4 3 1 3 2 4 1

3 4 1 2 4 2 1 3 2 3 1 4

3 1 4 2 4 1 2 3 2 1 3 4

1 3 2 4 1 4 3 2 1 2 4 3

1 2 3 4

We can now analyze this composition as we did D4. We begin first by let-
ting a = (1, 2)(3, 4) and b = (2, 3) represent possible changes between rows.
If we look at the first column of the Plain Bob Minimus composition, we see
that it is nothing more than the dihedral group, D4, which is a subgroup of
S4. To generate the second column of S4 we introduce a c = (3, 4) and we
simplify our notation by letting k = (ab)3ac. Multiplying through we gen-
erate the second column, {k, ka, kab, kaba, k(ab)2, ka(ab)2, k(ab)3, k(ab)3a}.
Almost immediately we should realize that this is the left coset kD4. Em-
ploying c again to obtain the third column yields k2D4, which is the final
left coset since multiplication by c a third time brings us to rounds. The
generation of the Plain Bob Minimus shows that S4 can be expressed as the
disjoint union of cosets of the subgroup D4, that is, also stated, the cosets
of D4 in S4 partition S4. There is an important generalization of this fact,
which states:

Theorem 111. For any group G and any subgroup H, the cosets of H in G
partition G.

(See Exercise 5.9.5 above.)
Now, since we chose a = (1, 2)(3, 4), b = (2, 3), and c = (3, 4), where b and

c are obviously by definition 2-cycle or transpositions and a is the product
of two such 2-cycles or transpositions, we have shown a further result, that
each element of S4 can be written as a product of 2-cycles. More generally,
we can state the following theorem:
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Theorem 112. Let f be a member of Sn, i.e., let f be any permutation of
degree n. Then f can be written as a product of transpositions.

To sketch a proof of this theorem (following [G]) and hence prove Theorem
58 as promised, we need only to recall that: Every permutation of Sn can be
written uniquely (up to order) as a product of disjoint cycles (Theorem 53
above).

Note that any cycle can be written as a product of transpositions as
below:

(a1, a2, ..., ak) = (a1, ak)(a1, ak−1)...(a1, a2).

We see that since any permutation can be written in terms of cycles and
any cycle can be written as product of transposition, it follows that every
permutation of Sn can be written as a product of transpositions. �

Considering both the plain lead on four bells and the Plain Bob Minimus
composition, it is obvious that group theory is latent in the study of cam-
panology. As White concludes in his essay, he is not suggesting ”that Fabian
Stedman was using group theory explicitly, but rather that group theoretical
ideas were implicit in (Stedman’s) writings and compositions” ([Wh], p778).
Whether we can consider Stedman the first group theorist, then, is unclear;
what is clear, however, is that when we hear the bells of Westminster Abbey
chime, we are hearing not just melody but mathematics.
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Chapter 6

Graphs and ”God’s algorithm”

“...O, cursed spite,
that ever I was to set it right!”

Hamlet, Act 1, scene 5

In this chapter we introduce a graphical interpretation of a permutation
group, the Cayley graph. This is then interpreted in the special case of a
group arising from a permutation puzzle.

To begin, what’s a graph? A graph is a pair of countable sets (V,E),
where

• V is a countable set of singleton elements called vertices,

• E is a subset of unordered pairs {{v1, v2} | v1, v2 ∈ V } called edges.

A graph is drawn by simply connecting points representing vertices to-
gether by a line segment if they belong to the same edge.

A digraph, or directed graph, is a pair of countable sets (V,E), where

• V is a countable set of vertices,

• E is a subset of ordered pairs {(v1, v2) | v1, v2 ∈ V } called edges.

A digraph is drawn by simply connecting points representing vertices
together by an arrow if they belong to the same edge (v1, v2), the araow
originating at v1 and arrowhead pointing to v2.

117
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If e = {v1, v2} belongs to E then we say that e is an ”edge from v1 to
v2” (or from v2 to v1). If v and w are vertices, a path from v to w is a finite
sequence of edges beginning at v and ending at w:

e0 = {v, v1}, e1 = {v1, v2}, ..., en = {vn, w}.

If there is a path from v to w then we say v is connected to w. We say that a
graph (V,E) is connected if each pair of vertices is connected. The number
of edges eminating from a vertex v is called the degree (or ”valence”) of v,
denoted degree(v).

Example 113. : If

V = {a, b, c}, E = {{a, b}, {a, c}, {b, c}},

then we may visualize (V,E) as

* c

/ \

/ \

a * --- * b

Each vertex has valence 2.

Definition 114. : If v and w are vertices connected to each other in a graph
(V,E) then we define the distance from v to w, denoted d(v, w), by

d(v, w) = min
v,w∈V connected

#{edges in a path from v to w}

By convention, if v and w are not connected then we set d(v, w) = ∞. The
diameter of a graph is the largest possible distance:

diam((V,E)) = max
v,w∈V

d(v, w).

In the above example, the diameter is 1.

6.1 Cayley graphs

Let G be a permutation group,

G =< g1, g2, ..., gn > < SX .
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The Cayley graph of G with respect to X = {g1, g2, ..., gn} is the graph (V,E)
whose vertices V are the elements of G and whose edges are determined by
the following condition: if x and y belong to V = G then there is an edge
from x to y (or from y to x) if and only if y = gi ∗ x or x = gi ∗ y, for some
i = 1, 2, ..., n.

The Cayley digraph ofG with respect toX = {g1, g2, ..., gn} is the digraph
(V,E) whose vertices V are the elements ofG and whose edges are determined
by the following condition: if x and y belong to V = G then there is an edge
from x to y if and only if y = x ∗ gi, for some i = 1, 2, ..., n.

Exercise 6.1.1. Show that the Cayley graph of a permutation group is con-
nected.

Lemma 115. Let ΓG = (V,E) denote the Cayley graph associated to the per-
mutation group G =< g1, g2, ..., gn >. Let N = |{g1, g

−1
1 , g2, g

−1
2 , ..., gn, g

−1
n }|.

Then, for all v ∈ V , degree(v) = N .

proof: Assume not. Then there is a v ∈ V = G with either

(i) degree(v) < N , or

(ii) degree(v) > N .

First, we note that, for each h ∈ {g1, g
−1
1 , g2, g

−1
2 , ..., gn, g

−1
n }, the set

{v, h ∗ v} is an edge of ΓG. This follows from the definition of the Cayley
graph.

If r = degree(v) > N then, by definition of the Cayley graph, there are
distinct v1, ..., vr ∈ V with v = hi ∗ vi, for all 1 ≤ i ≤ r, where the h1, ..., hr
are distinct elements of {g1, g

−1
1 , g2, g

−1
2 , ..., gn, g

−1
n }. This contradicts the

definition of N .

If r = degree(v) < N then, by definition of the Cayley graph, there are
distinct hi, hj in {g1, g

−1
1 , g2, g

−1
2 , ..., gn, g

−1
n } such that hi ∗ v = hj ∗ v. Since

G is a group and V = G (as sets), we may cancel the v’s from both sides of
the equation hi ∗ v = hj ∗ v, contradicting the assumption that hi is distinct
from hj. �

Example 116. : Let

G =< s1, s2 >= S3,

where s1 = (1 2), and s2 = (2 3). Then the Cayley graph of G with respect
to X = {s1, s2} may be visualized as
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Example 117. : Let
G =< s1, s2 >= S3,

where s1 = (1 2), and s2 = (2 3). Then the Cayley digraph of G with respect
to X = {s1, s2} may be visualized as
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Exercise 6.1.2. Construct the Cayley graph of C4, the cyclic group, with
respect to the generator s = (1, 2, 3, 4).

Exercise 6.1.3. Construct the Cayley graph of S4, the symmetric group on
four letters, with respect to the generators s1 = (1 2), s2 = (2 3) and s3 =
(3 4).

Exercise 6.1.4. Construct the Cayley digraph of S3 with respect to the gen-
erators f = (1, 3), r = (1, 2, 3). (Show, in particular, that f, r do indeed
generate S3.)

Example 118. : Let

G =< R,L, U,D, F,B > < S54

be the group of the 3×3 Rubik’s cube. Each position of the cube corresponds
to an element of the group G (i.e., the move you had to make to get to that
position). In other words, each position of the cube corresponds to a vertex
of the Cayley graph. Each vertex of this graph has valence 12

Exercise 6.1.5. Check this.

Moreover, a solution of the Rubik’s cube is simply a path in the graph
from the vertex associated to the present position of the cube to the vertex
associated to the identity element. The number of moves in the shortest
possible solution is simply the distance from the vertex associated to the
present position of the cube to the vertex associated to the identity element.
The diameter of the Cayley graph of G is the number of moves in the best
possible solution in the worst possible case.

6.2 God’s algorithm

Problem: Let G be the group of a permutation puzzle. Find the diameter
of the Cayley graph of G.

This problem is unsolved for must puzzles (including the 3 × 3 Rubik’s
cube) and appears to be very difficult computationally. The cases where it
is known include (with no attempt at completeness) the following:

puzzle diameter
pyraminx 11 (not including tip moves)

2× 2 Rubik’s cube 14
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For the 2× 2 Rubik’s cube, see [CFS].
Problem: Let G be the group of a permutation puzzle and let v be a

vertex in the Cayley graph of G. Find an algorithm for determining a path
from v to the vertex v0 associated to the identity having length equal to the
distance from v to v0.

This problem is much harder. The algorithm, if it exists, is called God’s algorithm.
A good reference for recent progress on God’s algorithm for various Rubik’s
cube-like puzzles may be found on Mark Longridge’s www page [Lo].

Exercise 6.2.1. Find the Cayley graph of the ”sliced squared” group

G =< M2
R,M

2
F ,M

2
D >,

where MR is the middle slice move which turns the middle slice parallel to
the right face clockwise 90 degrees (with respect to the right face). Find the
diameter of this graph.

Let Γ be a graph. A Hamiltonian circuit on Γ is a sequence of edges
forming a path in Γ which passes through each vertex exactly once. (If you
think of the vertices as cities and the edges as roads then a Hamiltonian
circuit is a tour visiting each city exactly once.)

The following unsolved problem was first mentioned in this context (as
far as I know) by A. Schwenk:

Problem: Let G be the group of the 3×3 Rubik’s cube puzzle. Does the
Cayley graph of G have a Hamiltonian circuit? In other words, can we (in
principle) ”visit” each possible position of the Rubik’s cube exactly once, by
making one move at a time using only the basic generators R,L, U,D, F,B?

This is a special case of a more general unsolved problem: For an arbitary
permutation group with more than two elements, it is not known if the Cayley
graph is Hamiltonian [CG].

An example of one where it is known is the following:

Example 119. Let G be the group Sn with generators given to be the set of
all transpositions:

G = Sn, X = {(i, j) | 1 ≤ i < j ≤ n}.

(There are many more transpositions than necessary to generate Sn since
the subset of transpositions of the form (i, i + 1), 1 ≤ i ≤ n − 1, suffice to
generate Sn [R].) The algorithm of Steinhaus (see §3.3) shows that there is
a Hamiltonian circuit in the Cayley graph of Sn with respect to X.

The reader interested in more examples is referred to [CG].
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6.2.1 The Icosian game

Sir William Hamilton, an Irish prodigy of the 18th century, may have origi-
nated the problem of finding Hamiltonian paths (hence the name) by patent-
ing a game called the Icosian game or the Hamilton game. The idea is to find
a Hamiltonian path around the vertices of the icosahedron. A picture (from
the MacTutor History of Mathematics archive [OR]) of the orginal game is:

6.3 The graph of the 15 puzzle

This section, which is based on [Mc], discusses the 15 puzzle from the graph-
theoretical point of view following [W].

The 15 puzzle was introduced in §4.1 above. The object of the puzzle
was to order the pieces from one to fifteen from left to right, top to bottom,
as shown in the solved position:
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To solve a mixed up puzzle, one would slide the squares around in the
puzzle. In order to do this you must slide a numbered square into the place
of the space. We could represent this mathematically by saying that this is
a transposition of that numbered square and the blank.

If we label each space in the puzzle in the above Figure, as a vertex, and
label the vertices numerically, then the resulting graph is represented by

We will let 16 denote the blank and call this graph Γ. The only legal
moves of the puzzle are transpositions of the 16th vertex and a vertex that is
adjacent to it. Therefore, any permutation of the vertices produces a labeling
on Γ.
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6.3.1 General definitions

Now let Γ be a simple graph with the vertex set V (Γ) of cardinality N .
(In the above example N = 16.) By a labeling we mean the placement of
the numbers one through N on distinct vertices of Γ, where N denotes the
blank. In other words, a labeling on Γ is a bijective mapping f : V (Γ) →
{1, 2, ..., N}. Two labelings f, g on Γ are adjacent if and only if g is a result
of a single transposition on f of vertex N with a vertex adjacent to N on f .
In other words, f and g are adjacent if they differ by one legal move of the
puzzle. From Γ, we make a new graph puz(Γ) as follows [W]: the vertex set
V (puz(Γ)) contains all labelings on Γ, and two vertices in puz(Γ) are joined
by an edge if the associated labelings are adjacent.

For example, the labelings below are adjacent:

We can consider a sequence of moves on Γ to be a path p, such that
p = (x0, x1, x2, ..., xn) where the x′is are vertices of Γ, and xi and xi−1 are
adjacent. Such a path p is said to be from x0 (its initial vertex) to xn (its
terminal vertex). The path p is simple if x0, x1, x2, ..., xn are distinct. If x0 =
xn then (a not necessarily simple path) p is called a closed path based at x0.
Let x0 be a fixed vertex of Γ. The set of paths based at x0 forms a group
(under composition of paths) called the homotopy group of Γ based at x0,
denoted Γ(x0).

Now suppose we paint the blocks of the 14-15 puzzle in a checkerboard
pattern:
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In this arrangement the blank would start on a white square. If we were
to move the blank up, then it is now on a black square. That is one transpo-
sition, therefore the movement is odd. If we then move the blank to the left,
the blank would be on a white square. This is a total of two transpositions;
therefore, the movement is even. After three transpositions the blank would
be on a black square, therefore it would be an odd permutation. Therefore if
the blank ends on a white square, an even permutation has occurred. If the
blank ends on a black square, an odd permutation has occurred.

A legal position of the 15-Puzzle is any sequence of legal transpositions
starting from the solved position such that the blank ends up in the bottom
right-hand corner. Each such position corresponds to a permutation of the
15 numbered vertices and hence to an element of the symmetric group S15.
The set of all such permutations (arising as a sequence of transpositions) in
S15 forms a group called the group of the 15-Puzzle.

Note that the group of the 15-puzzle is isomorphic to the homotopy group
of the 15 puzzle graph based at the ”blank” vertex.

If we assign the number 16 to the blank, then we can see that we can
arrange the pieces of the puzzle in 16! different ways. However, if we take
only legal positions of the 15-Puzzle, then we are fixing one of the pieces.
As a result the number of ways to permute the rest of the pieces, with the
blank on the white square at the bottom right-hand corner, is at most 15!.
All such permutations have to be even, by the checkerboard analysis above.
15!/2 is the number of even permutations of 15 elements (there are an equal
number of even and odd permutations). From this we see that the 15-puzzle
has 15!/2 possible legal positions.

Theorem 120. The positions with the empty space at the bottom right that
can be reached from the start position of the 15-Puzzle by shifting tiles are in
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a bijective correspondence with the 15!/2 = 1, 307, 674, 368, 000 even permu-
tations of the numbers from 1 to 15.

Remark 9. The 14-15 Puzzle cannot be solved, because it is an odd permu-
tation. It only has one transposition, 14 interchanged with 15.

proof: If we label the empty space 16, then every possible position of the
puzzle may be regarded as an element of the symmetric group S16 and an
element of puz(Γ). There are 16! elements in S16, and 16! vertices of puz(Γ).
With the argument earlier we can show that all legal positions of the puzzle
are obtained by an even number of transpositions. Therefore, all legal moves
are even permutations of the puzzle.

Now we must show that there is a certain 3-cycle in the group of the
15-Puzzle. For example, if we shift the three pieces surrounding the empty
space around in a circle following the order of moves south-east-north-west
then the three-cycle (11, 12, 15) is produced, as indicated in the previous
Figures combined with

It can be shown that if you fix the 11 and 12 pieces, then any other piece
can take the place of the 15 by following one of the cycles below:
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By Lemma 160, such 3-cycles generate A15. This proves the theorem.
Alternatively, with some work we can show that any number can replace

the 11 in the three-cycle, and we can show that any other number can replace
the 12. From this we can conclude that any three-cycle can be formed. Since
every even permutation is a combination of three-cycles (by Proposition 159),
every even permutation of the 15-Puzzle can be reached. �

With this information, we can make a generalization to rectangular puz-
zles of size m× n with m > 1 and n > 1:

Theorem 121. The group of an m× n rectangular puzzle is the alternating
group Amn−1.

The proof of this is similar to the proof for the 4× 4 puzzle, if m > 3 and
n > 3. (The special cases when 1 < m < 4 or 1 < n < 4 must be treated
separately). The size of the alternating group is given by (mn− 1)!/2.

6.4 Remarks on applications, NP-completeness

Cayley graphs have been used by computer scientists to model interconnec-
tion networks for parallel processors (see [CFS], [CG] for some references).

The problem of finding an efficient algorithm for the shortest solution to
the m×n puzzle is difficult. It amounts to finding the shortest path between
two points in a graph which is, in general, a difficult problem computationally
[GJ].

There is a class of problems called ”NP-complete” problems. Without
getting into precise details which would take us too far afield, this is a class
of problems which are in some sense ”equally hard” to solve. If you can find
a ”polynomial time” algorithm to solve one then you can find one to solve
any other problem in that class as well. For example, [GJ] and [BCG] have
a list of games and puzzles whose solutions are NP-complete problems.



Chapter 7

Symmetry groups of the
Platonic solids

“Plato said God geometrizes continually.”

Plutarch
Convivialium disputationum, liber 8,2

“We do not listen with the best regard to the verses of a man
who is only a poet, nor to his problems if he is only an algebraist;
but if a man is at once acquainted with the geometric foundation
of things and with their festal splendor, his poetry is exact and
his arithmetic musical.”

Ralph Waldo Emerson

Society and Solitude

chapter 7, Work and Days

This chapter requires a little more mathematical sophistication from the
reader than the earlier chapters. However, the exercises are (I think) choosen
to be doable.

7.1 Descriptions

The “Platonic solids” are the 5 regular polyhedrons:

129
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polyhedron # faces # vertices # edges group p,q
tetrahedron 4 4 6 T 3,3
hexahedron 6 8 12 O 4,3
octahedron 8 6 12 O 3,4

dodecahedron 12 20 30 I 5,3
icosahedron 20 12 30 I 3,5

Here:

p, called the face degree, denotes the number of edges bounding each face,

q, called the vertex degree, denotes the number of faces meeting each
vertex.

A vertex of one of these solids is therefore specified by the q-tuple of
faces meeting that vertex. We saw several examples of this already when
we specified notation for the movements of the associated Rubik’s cube-like
puzzles in chapter 5.

These solids may be drawn in rectangular coordinates using

polyhedron coordinates
tetrahedron (1,1,1), (1,-1,-1), (-1,-1,1), (-1,1,-1)
hexahedron (1,1,1), (1,1,-1), (1,-1,1), (-1,1,1),

(1,-1,-1), (-1,1,-1), (-1,-1,1), (-1,-1,-1)
octahedron (1,0,0), (0,0,1), (0,1,0),

(-1,0,0), (0,-1,0), (0,0,-1)
dodecahedron (0,±φ−1,±φ), (±φ−1,±φ,0),

(±φ,0,±φ−1), (±1,±1,±1),
icosahedron (1,0,φ), (1,0,−φ), (-1,0,φ), (-1,0,−φ),

(0,φ,1), (0,φ,-1), (0,−φ,1), (0,−φ,-1),
(φ,1,0), (φ,-1,0), (−φ,1,0), (−φ,-1,0)

where φ denotes the golden ratio.

If P1, P2, P3 are three vertices of an icosahedron which form a triangular
face then (P1 +P2 +P3)/3 forms a vertex of the dual dodecahedron and every
vertex of the dual dodecahedron arises in this way.

The three ”Platonic groups” (the group of ”symmetries” of these figures)
will be described below. Their names:

T = symmetric group of the tetrahedron = tetrahedral group,

O = symmetric group of the octahedron (or cube) = octahedral group,

I = symmetric group of the icosahedron (or dodecahedron) = icosahedral group.
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7.2 Background on symmetries in 3-space

This subsection presents, with some proofs, background on isometries in 3
dimensions necessary for understanding the symmetry groups of the Platonic
solids.

We fix once and for all the ”right-hand-rule” orientation in 3-space. We
call a distance-preserving transformation in 3-space which fixes the origin a
symmetry of 3-space. We say that such a symmetry is orientation preserving
if it preserves the right-hand rule orientation.

Example 122. : Let s : R3 → R3 denote the function which takes each vector
v belonging to R3 and returns its reflection s(v) about the yz-plane. This is
not orientation preserving since it reverses the direction of a counterclockwise
moving circular path in the yz-plane. In terms of rectangular coordinates,
s(x, y, z) = (−x, y, z).

Let
R3 = {(x, y, z) | x, y, z real numbers}

denote 3-space. We also write this, when convenient, as column vectors

R3 = {

 x
y
z

 | x, y, z real}

The distance function on R3 is the function

d(~v1, ~v2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

where ~v1 = (x1, y1, z1), ~v2 = (x2, y2, z2). This may be expressed in terms of
the inner product ~v1·~v2 = x1x2+y1y2+z1z2 as d(~v1, ~v2) =

√
(~v1 − ~v2) · (~v1 − ~v2).

Conversely, the polarization identity:

~v1 · ~v2 =
1

2
(||~v1 + ~v2||2 + ||~v1 − ~v2||2)

allows one to recover the value of the inner product from the knowledge of
the values of the distance function.

We call a function f : R3 → R3 an isometry if it satisfies

d(f(v1), f(v2)) = d(v1, v2)

for all v1 and v2 belonging to R3.



132 CHAPTER 7. SYMMETRY GROUPS OF THE PLATONIC SOLIDS

We want to understand isometries a little better since they will preserve
distances (and, in particular, preserve the shapes of solids) and therefore
provide us with the kinds of symmetries of 3-space we want to consider. We
can construct isometries using certain types of 3× 3 matrices. (Appendix 1
of this chapter gives a little background on matrices.)

Lemma 123. If A is a 3 × 3 matrix then the function A : R3 → R3 is an
isometry if and only if At ∗ A = I3, where At denotes the transpose identity
matrix (obatined by flipping the entries of A about the diagonal.

Remark 10. In particular, ifA is an isometry then det(A)2 = det(At) det(A) =
det(At ∗ A) = det(I3) = 1.

proof: The distance function is preserved if and only if the dot product
function is preserved. (This is a consequence of the ”polarization identity”
- see the appendix.) Let m(~v, ~w) = ~v · ~w, where · denotes the vector dot
product. Since m(A~v,B ~w) = ~v · (At ∗B)~w, we have

m(A~v,A~w) = m(~v, ~w), ∀v, w ∈ R3

if and only if
~v · (At ∗B)~w = ~v · ~w, ∀v, w ∈ R3

if an only if At ∗ A = I3. �
You may have been wondering how one could construct an isometry. This

lemma gives us lots of examples.

Example 124. A rotation matrix in 3-dimensions may be written in the form

R(φ, θ, ψ) =

 r11 r12 sin(θ) sin(ψ)
r21 r22 sin(θ) cos(ψ)

sin(φ) sin(θ) − sin(θ) cos(φ) cos(θ),


where

r11 = cos(φ) cos(ψ)− cos(θ) sin(φ) sin(ψ),
r12 = sin(φ) cos(ψ) + cos(θ) cos(φ) sin(ψ),
r21 = − cos(φ) sin(ψ)− cos(θ) sin(φ) cos(ψ),
r22 = − sin(φ) sin(ψ) + cos(θ) cos(φ) cos(ψ).

and where the angles φ, θ, ψ are the ”Euler angles”. This represents the
rotation of 3-space obtained by the following sequence of rotations: rotate by
angle ψ about the z-axis, rotate by the angle θ about the x-axis (0 ≤ θ ≤ π),
then rotate by angle φ about the z-axis again.

Although this is an interesting fact due to its explicitness, we shall not
use this expression.
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Question: Are there any isometries which do not come from matrices as
in the above lemma? Yes: any translation gives rise to an isometry.

Question: Are there any examples of isometries which do not arise from
a composition of a translation and an orthogonal matrix? No: the following
theorem classifies all the isometries.

Theorem 125. A function f : R3 → R3 is an isometry fixing the origin if
and only if f is left multiplication by an orthogonal matrix.

This will not be proven here (see Artin [Ar], chapter 4, section 5, Propo-
sition 5.16).

As a consequence of this lemma, we see that if the matrix A gives rise to as
isometry then det(A) is either equal to 1 or -1 (since det(A)2 = det(At ∗A) =
det(I3) = 1). In particular, the determinant of such a matrix is non-zero, so
the matrix is invertible.

Lemma 126. The set of all 3 × 3 matrices A such that the function A :
R3 → R3 is an isometry forms a group under matrix multiplication.

Exercise 7.2.1. Verify the group axioms needed to prove this lemma.

Notation: This group will be denotedO3(R) and called the orthogonal group
of R3. We denote by SO3(R) the following subset

SO3(R) = {A ∈ O3(R) | det(A) = 1}.

which is called the special orthogonal group of R3.

Lemma 127. SO3(R) is a subgroup of O3(R).

Exercise 7.2.2. Verify the group axioms for SO3(R).

It is known that the number of cosets in O3(R)/SO3(R) is 2. In fact, it
is known that

O3(R) = SO3(R) ∪ s ∗ SO3(R) (disjoint union) (7.1)

where s is the reflection in the above example (this follows from [Ar], chapter
4, section 5).

Lemma 128. The isometry A in O3(R) is orientation preserving if and only
if det(A) = 1.

We will not prove this lemma here.
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7.3 Symmetries of the tetrahedron

Fix a tetrahedron centered at the origin, with one vertex along the z-axis.
Each edge has an ”opposite” edge on the tetrahedron (which is actually per-
pendicular to it if you look at it straight on). Each vertex has an ”opposite”
face.

There are orientation preserving symmetries (called rotations) of the
tetrahedron and orientation reversing symmetries of the tetrahedron. The
orientation preserving symmetries of the tetrahedron will be denoted ST .
They are obtained as follows:

• the 4 axes of symmetry through the centers of the faces yield 2 elements
each (120 degree clockwise rotation when viewed from outside and a
240 degree rotation), for a total of 8 elements,

(This “tetrahedral symmetry” allows for the mechanical construction
of the pyraminx.)

• the 3 pairs of edges (formed by an edge and its opposite) yield one
element each (a 180 degree rotation), for a total of 3 elements.

These, plus the identity, give 12 elements in ST .
Using the coset decomposition (7.1), we have T = ST ∪ s ∗ST (disjoint),

so |T | = 24.
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Remark 11. It turns out that ST is essentially the alternating group A4 of
even permutations of S4 and T is essentially S4 itself. We shall state the
precise result in the next chapter.

7.4 Symmetries of the cube

We fix a cube centered about the origin in 3-space. The set of centers of
the faces of a cube forms a set of vertices of an octahedron drawn inside the
cube. This octahedron is called the “dual” polyhedron.

These two polyhedra have the same symmetry group, which we denote
by O. There are orientation preserving symmetries, or rotations, of the cube
and orientation reversing symmetries of the cube. The orientation preserving
symmetries of the cube will be denotes SO. They are obtained as follows:

• the 3 axes of symmetry through the centers of the faces yield 3 elements
each (90 degree clockwise rotation when viewed from outside, a 180
degree rotation, and a 270 degree rotation), for a total of 9 elements,

(This ”hexahedral symmetry” allows for the mechanical construction
of the Rubik’s cube.)

• the 4 axes through the opposing vertices yield 2 elements each (all of
order 3), for a total of 8 elements,

(This ”tetrahedral symmetry” allows for the construction of the skewb
[H].)
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• the 6 axes through the opposing mid-edge points yield 1 element each
(of order 2), for a total of 6 elements.

These elements, plus the identity, yield 24 elements.

Lemma 129. There are 24 orientation preserving elements in O, i.e., |SO| =
24.

The above sketch is one way to see why this is true. Here’s another

proof: Let V be the set of vertices of the cube. The group SO acts on
the set V . Fix a v belonging to V and let H = stabSO(v). One can check
that |H| = 3 (since the only symmetry which fixes v is a rotation g about
the line through v and its opposite vertex. Since g is order 3, H =< g > is
order 3 as well). We have |V | = 8, so by a lemma in the previous chapter
on orbits and stabilizers, we have |SO/H| = |V |. By Lagrange’s theorem,
|SO| = |SO/H||H| = 8 · 3 = 24. �

Now we know SO, what is O? Note that s, the reflection in the example
in the previous section, belongs to O. Using the coset decomposition of the
previous section, we have the coset decomposition

O = SO ∪ s ∗ SO (disjoint union).

We know that |s ∗ SO| = |SO| = 24, so

Lemma 130. The order of the octahedral group is |O| = 48.

Remark 12. It turns out that SO is essentially the symmetric group S4 and
O is ”isomorphic to the direct product” S4 × C2. We shall state the precise
definitions and result in the next chapter.
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7.5 Symmetries of the dodecahedron

The set of centers of the faces of a dodecahedron forms a set of vertices
of an icosahedron drawn inside. This icosahedron is called the ”dual” poly-
hedron. We fix a dodecahedron in 3-space so that the vertices of the dual
icosahedron are as listed in section 1 above.

Let SI denote the group of orientation preserving symmetries of the do-
decahedron. Note SI is a finite subgroup of SO3(R). Let I denote the
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group of all symmetries of the dodecahedron. Note I is a finite subgroup of
O3(R) and that SI is a subgroup of I. Let F denote the set of faces of the
dodecahedron, so |F | = 12. SI acts on F .

Lemma 131. SI acts on F transitively.

We won’t prove this. If you look at a dodecahedron it follows ”by inspec-
tion”. The reason why this is useful is that it tells us that if x is any face
then any other face can be obtained from x by applying some element of SI.
In other words, the orbit of x is all of F : SI ∗ x = F .

If x is any face then the only orientation preserving symmetries which
don’t send x to a different face is a rotation by an integer multiple of 72
degrees about the line passing through the center of x and the center of its
opposite face. There are, for each face x, exactly 5 distinct rotations of this
type. Therefore,

|stabSI(x)| = 5.

By a lemma in the section on orbits, we have

SI/stabSI(x) = SI ∗ x,

so |SI| = |stabSI(x)||SI ∗ x| = 5 · 12 = 60.
The elements of SI include:

• rotation by 2 ∗ π ∗ k/5, k = 0, 1, 2, 3, 4, about the line passing through
the center of a face and its opposite,

(This ”dodecahedral symmetry” allows for the construction of the megam-
inx.)

• rotation by 2 ∗ π ∗ k/3, k = 0, 1, 2, about the line passing through a
vertex and its opposite,

• rotation by π about the center of an edge.

Subgroups include:

• stabilizer of a vertex. These are all cyclic of order 3, and they are all
conjugate. There are 10 distinct such subgroups since a vertex and its
opposite share the same stabilizer.
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• stabilizer of a face. These are all cyclic of order 5, and they are all
conjugate. There are 6 distinct such subgroups since a face and its
opposite share the same stabilizer.

• stabilizer of an edge. These are all cyclic of order 2, and they are all
conjugate. There are 15 distinct such subgroups.

Exercise 7.5.1. Verify all these.

Remark 13. It turns out that SI is essentially the alternating group A5 of
even permutations of S5 and I is ”isomorphic to the direct product” A5×S5.
We shall state the precise result in the next chapter.

For an excellent discussion of the symmetries of the icosahedron, see [Ba].

7.6 Appendix: Symmetries of the icosahe-

dron and S6

A duad is a pair of diagonals (a diagonal is a segment from a vertex to its
antipodal opposite vertex) of the icosahedron. The top of the icosahedron
has 6 vertices and each diagonal must have exactly one of these 6 vertices as
an endpoint. There are 12 vertices, hence 6 diagonals, hence

(
6
2

)
= 15

different duads. Each duad determines a ”golden rectangle” (i.e., a rectangle
whose ratio length/width is either the golden ratio φ = (1 +

√
5)/2 or its

inverse. We may identify a duad with a pair of distinct integers {(i, j) | 1 ≤
i < j ≤ 6}, i.e., with a 2-cycle in S6. A duad may be pictured as
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Each element of the rotation group of the icosahedron (i.e., the group
of orientation-preserving symmetries of the icosahedron) must send a duad
to a duad. Each duad has 4-fold symmetry, i.e., can be send to itself in 4
ways. There are 15 duads, so there are 4 · 15 = 60 ways to send a duad to
another. This is precisely the number of orientation-preserving symmetries
of the icosahedron.

The 18-th century mathematician Sylvester (who, though from Great
Britain, once taught in Maryland) called a partitioning

X = X1 ∪ ... ∪Xn (disjoint),

of a set X a syntheme if each of the sets Xi, 1 ≤ i ≤ n, has the same number
of elements. If we take

X = {set of diagonals of the icosahedron}

then a syntheme is a set of three duads, no two having a diagonal in common.
There are (

6
2

)(
4
2

)
/3! = 15

different synthemes (the 3! since there are 3! ways to permute the duads
amongst themselves). A syntheme may be represented by a coloring of the
vertices on the top of the icosahedron using three colors, each for exactly two
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vertices. We may identify a syntheme with a product of 3 distinct 2-cycles
in S6. A syntheme may be pictured as

We partition the set of 15 duads into 5 groups of 3 as follows. (Recall
each syntheme is a triple of duads.) First, pick a syntheme, A1. Pick another
syntheme A2, so that A1, A2 have no duad in common. Continue on in this
way until you pick five synthemes A1, .., A5, no two of which have a duad
in common. Such a choice of 5 synthemes is called a pentad. There a 6
pentads, which we label P1, ..., P6 in any way you like. (A list of the six
pentads is given in [R], chapter 7.) Any permutation of the 6 diagonals of
the icosahedron gives rise to a permutation of the set of 6 pentads. Hence any
permutation of the 6 diagonals of the icosahedron, which may be regarded as
an element of S6, gives rise to a permutation of the set of 6 pentads, which
may also be regarded as an element of S6. This gives a map

f : S6 → S6.

This example will be discussed further in the next chapter. See also [R] and
[Ba].
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Chapter 8

Groups, II

”The art of doing mathematics consists in finding that special
case which contains all the germs of generality.”

David Hilbert

Groups are analogous to molecules. We (mathematicians) want to know
what they ”look like”, we want to know how to describe them, how to com-
pare them, how to ”make” more of them, if they fall into ”families” with
similar properties...

Given two groups G1, G2, a natural question is to ask how ”similar” are
they? (Exactly what is meant by ”similar” will be explained later.) We shall,
in this chapter, introduce notions and techniques useful for comparing two
groups. In a later chapter, we will focus on the 3× 3 Rubik’s cube group by
comparing it to ”better understood” groups.

8.1 Homomorphisms

A homomorphism between two groups is, roughly speaking, a function be-
tween them which preserves the (respective) group operations.

Definition 132. Let G1, G2 be groups, with ∗1 denoting the group operation
for G1 and ∗2 the group operation for G2. A function f : G1 → G2 is a
homomorphism if and only if, for all a, b ∈ G1, we have

f(a ∗1 b) = f(a) ∗2 f(b).

143
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Exercise 8.1.1. Prove the following: If f : G1 → G2 is a homomorphism of
groups then

f(G1) = {g ∈ G2 | g = f(x), for some x ∈ G1}
is a subgroup of G2.

The subgroup f(G1) < G2 is called the image of f and is sometimes
denoted im(f).

Example 133. Let G be a group and h a fixed element of G. Define f : G→ G
by

f(g) = h−1 ∗ g ∗ h, g ∈ G.
Then the following simple trick

f(a ∗ b) = h−1 ∗ (a ∗ b) ∗ h = h−1 ∗ a ∗ h ∗ h−1 ∗ b ∗ h = f(a) ∗ f(b)

shows that f is a homomorphism. In this case, im(f) = G, i.e., f is surjective.

Exercise 8.1.2. Let

A =

 0 1 0
1 0 0
0 0 1

 , B =

 1 0 0
0 0 1
0 1 0


Now, let G =< A,B > denote the group of all matrices which can be written
as any arbitrary product of these two matrices (in any order and with as
many terms as you want). We have

G = {I3 =

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 , 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 ,

 0 0 1
0 1 0
1 0 0

}
(You may want to try to check this as an exercise by regarding each such
matrix as a permutation matrix.) Define f : G→ S3 by

g f(g)
I3 1
A s1

B s2

A ∗B s1 ∗ s2

B ∗ A s2 ∗ s1

A ∗B ∗ A s1 ∗ s2 ∗ s1
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Show that this is a homomorphism.

Example 134. The function

sgn : Sn → {±1},

which assigns to each permutation its sign, is a homomorphism. One reason
why this is true is because the sign of a permutation g is the determinant of
the associated permutation matrix P (g). Since the determinant of the prod-
uct is the product of the determinants (this is a basic result in linear algebra
[JN]), we have sgn(gh) = detP (gh) = detP (g) detP (h) = sgn(g)sgn(h), for
all g, h ∈ Sn. From this it follows that sgn is a homomorphism.

Lemma 135. If f : G1 → G2 is a homomorphism then

(a) f(e1) = e2, where e1 denotes the identity element of G1 and e2 denotes
the identity element of G2,

(b) f(x−1) = f(x)−1, for all x belonging to G1,

(c) f(y−1 ∗1 x ∗1 y) = f(y)−1 ∗2 f(x) ∗2 f(y), for all x, y belonging to G1,
(∗1 denoting the group operation for G1 and ∗2 the group operation for G2).

proof: (a) We have f(x) = f(x ∗1 e1) = f(x) ∗2 f(e1), for any x ∈ G1.
Multiply both sides of this equation on the left by f(x)−1.

(b) We have, by part (a), e2 = f(e1) = f(x ∗1 x−1) = f(x) ∗2 f(x−1).
Multiply both sides of this equation on the left by f(x)−1.

Exercise 8.1.3. Prove part (c).

�

Definition 136. Let G1, G2 be finite groups. We say that G1 embeds (or
injects) into G2 if there exists an injective homomorphism f : G1 → G2. A
homomorphism f : G1 → G2 is a isomorphism if it is a bijection (as a function
between sets). In this case, we call G1 and G2 isomorphic and write G1

∼= G2.
An isomorphism from a group G to itself is called an automorphism.

The notion of an isomorphism is the notion we will use when we want
to same two groups are ”essentially the same group”, i.e., one is basically a
carbon copy of the other with the elements relabeled.
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8.2 Homomorphisms arising from group ac-

tions

Lemma 137. Let G be a group and X a finite set. If G acts on X (on
the left, resp. on the right) then there is a homomorphism G→ SX given by
g 7−→ φg. Conversely, if φ : G→ SX is a homomorphism then φ(g) : X → X
defines a (left, resp. right) action of G on X.

Exercise 8.2.1. Prove this.

Example 138. Let G be the Rubik’s cube group generated by the basic moves
R,L, U,D, F,B. For each move g ∈ G, let ρ(g) be the corresponding permu-
tation of the set of vertices V of the cube and let σ(g) be the corresponding
permutation of the set of edges E of the cube. Let Sn denote the symmetric
group on n letters and identify SV with S8, SE with S12. Then

(a) ρ : G→ S8 is a homomorphism,
(b) σ : G→ S12 is a homomorphism.

Exercise 8.2.2. Prove this.

Definition 139. Let G act on a set X. We call the action k-tuply transitive
if for each pair of ordered k-tuples (x1, x2, .., xk), (y1, y2, .., yk) of elements
belonging to X there is a g ∈ G such that yi = φg(xi) for each 1 ≤ i ≤ k.

Exercise 8.2.3. Is the Rubik’s cube group 2-transitive on the set of edge
facets?

The following result is one illustration of how unique the symmetric group
and alternating group are. (Recall that the alternating group An was defined
in example 82 above.)

Theorem 140. If k > 5 and G is a group acting k-transitively on a finite set
X then G is isomorphic to Sm or to An, for some m ≥ k or some n ≥ k+ 2.

Conversely, Sn acts n-transitively on {1, 2, ..., n} and An acts (n − 2)-
transitively on {1, 2, ..., n}.

This is proven in [R].

Remark 14. We shall discuss an example of this in §§13.6, 13.7. We shall
also, in conjunction with our group-theoretical determination of the Rubik’s
cube group proven later, be able to deduce from Theorem 140 the following
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Corollary 141. (a) The Rubik’s cube group G acts 6-transitively on the cor-
ners, leaving the edges alone. It acts 8-transitively on the corners but may
permute two edges.

(b) The Rubik’s cube group G acts 10-transitively on the edges, leaving
the corners alone. It acts 12-transitively on the edges but may permute two
corners.

8.3 Examples of isomorphisms

Example 142. Let G be the group in Exercise 8.1.2 and f : G → S3 the
homomorphism. This is in fact an isomorphism.

Example 143. Let H be the subgroup of the Rubik’s cube group generated
by the basic move R: H =< R >. Then H ∼= C4 (where C4 denotes the
cyclic group of order 4).

Example 144. Recall that to each permutation g of the set {1, 2, ..., n} we
can associate a n× n permutation matrix P (g) in such a way that

P (g)


x1

x2
...
xn

 =


xg(1)

xg(2)
...

xg(n)

 .

Here the image of i under the permutation g is denoted g(i), though in fact
one plugs i into g from the left.) We let Pn denote the set of all n × n
permutation matrices. This is a group under matrix multiplication. The
function

P : Sn → Pn,
g 7−→ P (g)

is an isomorphism. The proof that this is a bijection and a homomorphism
was given earlier in the chapter on permutations.

Example 145. From [NST], we have the following table of isomorphisms:
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name notation isomorphic to
symmetry group of tetrahedron T S4

rotation group of tetrahedron ST A4

symmetry group of octahedron O S4 × C2

rotation group of octahedron SO S4

symmetry group of icosahedron I A5 × C2

rotation group of icosahedron SI A5

symmetry group of regular n-gon D2n, n odd
Dn × C2, n even

rotation group of regular n-gon Dn

Example 146. This example may be found in [B].

Let Q denote the quaternion group:

Q = {1,−1, i,−i, j,−j, k,−k},

where i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, and in general, xy = −yx
for x, y belonging to i, j, k. Then Q is isomorphic to the group

Q∗ =< a, b > < G,

where

a = F 2 ∗MR ∗ U−1 ∗M−1
R ∗ U−1 ∗MR ∗ U ∗M−1

R ∗ U ∗ F 2,
b = F ∗ U2 ∗ F−1 ∗ U−1 ∗ L−1 ∗B−1 ∗ U2 ∗B ∗ U ∗ L,

via the map f : Q∗ → Q defined by φ(a) = i, φ(b) = k.

The proof of this claim will be formulated in a later chapter as an exercise.
(The easiest way to prove this uses ideas we haven’t yet introduced.)

Exercise 8.3.1. As above, let G be a group and h a fixed element of G. Define
ch : G→ G by

ch(g) = h ∗ g ∗ h−1, g ∈ G.

Show that this is an automorphism.

Definition 147. An automorphism as in the above exercise is called inner.
An automorphism of G which is not of this form, for some h ∈ G, is called
outer.
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(solution to Exercise 8.3.1: To verify this, we must show that f = ch is an
injective and surjective homomorphism (we drop the subscript for simplicity
of notation).

First, we show that f is injective. Suppose f(g1) = f(g2). Then f(g1 ∗
g−1
2 ) = 1, so that h ∗ g1 ∗ g−1

2 ∗ h−1 = 1. Multiply both sides of this equation
on the left by h and on the right by h−1. We obtain g1∗g−1

2 = 1. This implies
g1 = g2, so f is injective.

Now we show f is surjective. Let g be an arbitrary but fixed element of
G. Let y = h−1 ∗ x ∗ h. Then

f(y) = f(h−1 ∗ x ∗ h) = h ∗ h−1 ∗ x ∗ h ∗ h−1 = x.

Therefore, f is surjective.
We verified previously that f is a homomorphism.)
Notation: The set of all automorphisms of a group G is denoted Aut(G).

The subset of inner automorphisms is denoted

Inn(G) := {f ∈ Aut(G) | f = ch, some h ∈ G},

in the notation of the above 8.3.1.

Exercise 8.3.2. (a) Show Aut(G) is a group with composition as the group
operation.

(b) Show that Inn(G) is a subgroup of Aut(G).
(c) Show that the function φ : G → Inn(G) defined by φ(h) = ch is a

homomorphism.

8.3.1 Conjugation in Sn

The following result will be of importance to us in a later chapter:

Lemma 148. Suppose f : Sn → Sn is an inner automorphism. If g ∈ Sn is
a disjoint product of cycles of length k1, ..., kr then f(g) is a disjoint product
of cycles of length k1, ..., kr.

In other words, an inner automorphism (i.e., conjugation) must ”preserve
the cycle structure”. Lemma 50 , whose proof was promised earlier, follows
from this.

proof: Since f is inner, let it be conjugation by h ∈ Sn say, so f(g) =
h−1gh, for all g ∈ Sn. Let (i)g ∈ {1, ..., n} denote the image of i ∈ {1, ..., n}
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under g ∈ Sn. The lemma is a consequence of the following simple calcula-
tion: if (i)g = j then, for all 1 ≤ i ≤ n, we have

((i)h)(h−1gh) = (j)h. (8.1)

In other words, if g sends i 7−→ j then h−1gh sends (i)h 7−→ (j)h. It follows
that g and h−1gh have the cycle structure. �

Theorem 149. Two elements g, g′ ∈ Sn are conjugate if and only if they
have the same cycle structure.

proof: The Lemma proves the ”only if” direction of this equivalence.
Suppose that g, g′ ∈ Sn have the same cycle structure. Write their dis-
joint cycle decompositions using the lexicographical ordering imposed on the
lengths of the cycles occurring in the decomposition: say

g = (i1 ... in1)(in1+1 ... in2)...(ink+1 ... in),
g′ = (i′1 ... i

′
n1

)(i′n1+1 ... i
′
n2

)...(i′nk+1 ... i
′
n),

where 1 ≤ n1 < ... < nk < n. Pick an h ∈ Sn such that h : ij 7−→ i′j, for all
1 ≤ j ≤ n. Then g′ = h−1gh, by (8.1). �

8.3.2 Aside: Automorphisms of Sn

Though we shall not need it here, the following fact is interesting since it
illustrates what a unique role the symmetric group S6 plays in the family of
all symmetric groups.

Theorem 150. If n 6= 2, 6 then the homomorphism φ : Sn → Aut(Sn) (in
part (c) of the exercises above) is an isomorphism:

Sn ∼= Aut(Sn).

If n = 6 then |Aut(S6)| = 2 · |S6|.

Continuing our example from the appendix to the above chapter on the
Platonic solids:

Example 151. Any permutation of the 6 diagonals of the icosahedron, which
may be regarded as an element of S6, gives rise to a permutation of the set
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of 6 pentads, which may also be regarded as an element of S6. This gives a
map

f : S6 → S6,

which is in fact a homomorphism. This homomorphism is injective so it is
actually an automorphism.

However, a 2-cycle on the set of 6 diagonals (i.e., swapping exactly 2
diagonals) does not induce a 2-cycle on the set of these 6 pentads. In fact,
a 2-cycle on the set of diagonals gives rise to a product of three disjoint
2-cycles on the set of these 6 pentads. Therefore, by the above theorem
(which says that an inner automorphism must preserve the cycle structure)
this automorphism f cannot be an inner automorphism.

8.4 Kernels and normal subgroups

Let f : G1 → G2 be a homomorphism between two groups. Let

ker(f) = {g ∈ G1 | f(g) = e2},

where e2 is the identity element of G2. This set is called the kernel of f .

Lemma 152. ker(f) is a subgroup of G1.

Exercise 8.4.1. Prove this.

Example 153. Let
sgn : Sn → {±1}

denote the homomorphism which associates to a permutation either 1, if it
is even, or -1, if it is odd. Then An = ker(sgn) ⊂ Sn.

The following properties of the kernel are useful:

Lemma 154. : Let f : G1 → G2 be a homomorphism between two groups.
(a) f is injective if and only if ker(f) = {e1}.
(b) if g belongs to the kernel and x is any element of G1 then x−1 ∗ g ∗ x

must also belong to the kernel.

proof: (a) f is injective if and only if f(g1) = f(g2) implies g1 = g2

(g1, g2 ∈ G1). Note f(g1) = f(g2) is true if and only if f(g1 ∗ g−1
2 ) = e2. If

ker(f) = {e1} then f(g1 ∗ g−1
2 ) = e2 implies g1 ∗ g−1

2 = e2, which implies
g1 = g2, which implies f is injective.
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Therefore, if ker(f) = {e2} then f is injective. Conversely, if f is injective
then f(x) = f(e1)(= e2) implies x = e1(x ∈ G1). This implies ker(f) = {e1}.

(b) Multiply both sides of e2 = f(g) on the left by f(x)−1 and on the
right by f(x). We get

e2 = f(x)−1 ∗ e2 ∗ f(x) = f(x−1) ∗ f(g) ∗ f(x) = f(x−1 ∗ g ∗ x),

as desired. �

Definition 155. Let H be a subgroup of G. We say that H is a normal
subgroup if, for each g ∈ G, g−1 ∗H ∗ g = H (i.e., for each g ∈ G and each
h ∈ H, g−1 ∗ h ∗ g belongs to H).

Notation: Sometimes we denote ”H is a normal subgroup of G” by

H / G

Example 156. An / Sn and |An| = 1
2
|Sn|.

We have already shown the following

Lemma 157. If f : G1 → G2 is a homomorphism between two groups then
ker(f) is a normal subgroup of G1.

Remark 15. The following remarkable result about the alternating group will
not be needed in this course, except as an example of a group with no normal
subgroups provided for the readers’ cultural benefit. It will not be proven
here. (For a proof, see for example [R].) It is - believe it or not - connected
with the fact that you cannot solve the general polynomial of degree 5 or
higher using radicals, i.e., that there is no analog of the quadratic formula
for polynomials of degree 5 or higher.

Theorem 158. If X has 5 elements or greater then AX has no non-trivial
proper normal subgroups. In other words, if H / AX is a normal subgroup
then either H = {1} or H = AX .

The next fact about the alternating group will be needed later in our
determination of the structure of the Rubik’s cube group. This fact also
arose in connection with our previous discussion of the ”legal positions” of
the 15 puzzle.

Proposition 159. Let H be the subgroup of Sn generated by all the 3-cycles
in Sn then H = An.
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proof: Since sgn : Sn → {±1} is a homomorphism, and since any 3-cycle
is even, any product of 3-cycles must also be even. Therefore, H ⊂ An. If
g ∈ An then g must swap an even number of the inequalities 1 < 2 < ... <
n−1 < n, by Definition 37. Therefore, (since any permuation may be written
as a product of 2-cycles, Theorem 58) g must be composed of permutations
of the form (i j)(k l) or (i j)(j k). But (i j)(k l) = (i j k)(j k l) and
(i j)(j k) = (i j k). Therefore, g ∈ H. This implies An ⊂ H, so An = H. �

The following more precise result is very useful for the purposes of the
analsis of permutation puzzles.

Lemma 160. ([W]) Let X be a finite set, |X| ≥ 3 and fix u, v as elements
in X. Then the 3-cycle (u, v, x), x an element of X − {u, v}, generates AX .
This lemma proves an even stronger statement than the previous claim. Now,
instead of only one element being fixed, there are two elements fixed and the
group is still generated.

8.5 Quotient subgroups

One of the most useful facts about normal subgroups is the following:

Lemma 161. If H is a normal subgroup of G then G/H is a group with the
following operation:

aH ∗ bH = (ab)H, (aH)−1 = a−1H,

for all a, b belonging to G. The identity element of this group is the trivial
coset H.

Exercise 8.5.1. Prove this.

This group G/H is called the quotient group of G by H and is sometimes
pronounced ”G mod H”.

Example 162. If f : G1 → G2 is a homomorphism between two groups then
G1/ker(f) is a group.

The ”basic building blocks” of the collection of finite groups are the groups
which have no non-trivial quotient groups. Intuitively, this is because a non-
trivial quotient group is closely related to the original group but smaller in
size (and hence perhaps subject to analysis by an inductive argument of some
type). These ”basic” groups are called ”simple”:
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Definition 163. A simple group is a group with no proper normal subgroups
other than the trivial subgroup {1}.

Example 164. If p is a prime then Cp (the cyclic group having p elements)
is simple. In fact, if G is any group which is both abelian and simple then
there is a prime p such that G ∼= Cp. If n > 4 then An is simple (as was
stated above in Theorem 158). These facts are proven in [R].

Simple groups are not very abundant. In fact, the first non-abelian simple
group is of order 60 (it’s A5).

The following basic result describes the quotient group G1/ker(f).

Theorem 165. (”first isomorphism theorem”) If f : G1 → G2 is a homo-
morphism between two groups then G1/ker(f) is isomorphic to f(G1).

proof: ker(f) is a normal subgroup of G1, so G1/ker(f) is a group.
We must show that this group is isomorphic to the group f(G1). Define
φ : G1/ker(f)→ f(G2) by φ(g · ker(f)) = f(g), for g ∈ G1. We must show

(a) φ is well-defined,
(b) φ is a homomorphism,
(c) φ is a bijection.
If g · ker(f) = g′ · ker(f) then g−1g′ ∈ ker(f), since ker(f) is a group.

This implies f(g−1g′) ∈ f(ker(f)) = {1}, so f(g) = f(g′). This implies φ is
well-defined.

Since ker(f) is normal, (g·ker(f))(g′·ker(f)) = gg′(g′−1ker(f)g′)ker(f) =
gg′ ·ker(f). Therefore φ((g ·ker(f))(g′ ·ker(f))) = φ(gg′ ·ker(f)) = f(gg′) =
f(g)f(g′) = φ(g · ker(f))φ(g′ · ker(f)), for all g, g′ ∈ G. This implies φ is a
homomorphism.

It is clear that φ is surjective. To show that φ is a bijection, it suffices
to prove φ is an injection. Suppose that φ(g · ker(f)) = φ(g′ · ker(f)), for
some g, g′ ∈ G. Then f(g) = f(g′), so f(g−1g′) = 1. By definition of the
kernel, this implies g−1g′ ∈ ker(f), so g · ker(f) = g′ · ker(f). This implies
φ is injective.
�
The other isomomorphism theorems will not be needed but will be stated

to help to illustrate the usefulness of the notion of normality:

Theorem 166. (”second isomorphism theorem”) If H,N are subgroups of a
group G and if N is normal then

(a) H ∩N is normal in H,
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(b) there is an isomorphism

H/(H ∩N) ∼= NH/N.

Theorem 167. (”third isomorphism theorem”) If N1, N2 are subgroups of a
group G, if N1 ⊂ N2, and if N1 and N2 are both normal then

(a) N2/N1 is normal in G/N1,
(b) there is an isomorphism between

(G/N1)/(N2/N1) ∼= G/N2.

We shall not prove these results here - see [G] or [R].

8.6 Direct products

Definition 168. Let H1, H2 be two subgroups. We say that a group G is
the direct product of H1 with H2, written

G = H1 ×H2,

if
(a) G = H1 ×H2 (Cartesian product, as sets),
(b) the group operation on G is given ”coordinate-wise” (still denoted

”*” for simplicity):

(x1, y1) ∗ (x2, y2) = (x1 ∗ x2, y1 ∗ y2),

for x1, x2 ∈ H1, y1, y2 ∈ H2 (where ∗ denotes multiplication in H1, H2, and
G).

Example 169. Let G be (as a set) the Cartesian product G = C2
2 , where

X2 = X×X and where C2 denotes the cyclic group of order 2 (with addition
mod 2 as the operation). Define addition on G coordinate-wise:

(m1, n1) + (m2, n2) = (m1 +m2, n1 + n2),

where 0 ≤ mi ≤ 1, 0 ≤ nj ≤ 2, for i = 1, 2, j = 1, 2.

Example 170. The symmetry group O of the octahedron is isomorphic to
S4×C2. The symmetry group I of the icosahedron is isomorphic to A5×C2.
(This is not isomorphic to S5, despite the fact that they both have the same
number of elements and they both contain A5 as a normal subgroup.)
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8.7 Examples

Example 171. Consider the subgroup H of the Rubik’s cube group generated
by the ”square slice moves”,

H =< M2
R,M

2
D,M

2
U > .

Then H =< M2
R > × < M2

D > × < M2
U >
∼= C2 × C2 × C2 = C3

2 .

8.7.1 The twists and flips of the Rubik’s cube

We recall some notation:

• X is the set of 48 facets of the Rubik’s cube which are not center facets,

• V denotes the subset of facets which belong to some corner subcube,

• E is the subset of facets which belong to some edge subcube.

• Let G denote the Rubik’s cube group.

• Let F be the group generated by all the moves of the Rubik’s cube
group which do not permute any corner or edge subcubes but may
twist or flip them.

• Let SX , SV , SE, denote the symmetric group on X, V,E, respectively.
We may regard F,G, as subgroups of SX . We may also regard SV , SE
as subgroups of SX (for example, SV is the subgroup of SX which leaves
all the elements of E fixed).

• Let

GV = SV ∩G, GE = SE ∩G, FV = SV ∩ F, FE = SE ∩ F.

Note that the action of G on X induces an equivalence relation as follows:
we say that a facet f1 is equivalent to a facet f2 if there is a move of the
Rubik’s cube which sends one facet to the other. There are exactly two
equivalence classes, or orbits, of G in X: namely, V and E. In particular,
the action of G on V is transitive and the action of G on E is transitive.
On the other hand, F leaves each vertex (resp., edge) fixed, though it may
permute the corner facets (resp., edge facets) associated to a vertex (resp.,
edge).
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Exercise 8.7.1. Show that:
(a) The set V of equivalence classes of F acting on V is in bijective

correspondence with the set of all vertices of the cube.
(b) The set E of equivalence classes of F acting on E is in bijective

correspondence with the set of all edges of the cube.

The interesting thing is that we have

F = FV × FE (direct product).

Exercise 8.7.2. Notation as above.
(a) Show F = FV × FE (direct product).
(b) Is SX = SV × SE (direct product)?

A harder question, which we will answer later in the negative: Is G =
GV ×GE (direct product)?

8.7.2 The slice group of the Rubik’s cube

The material below can also be found in [BH]. Some ideas are also discussed
in [Si].

Let H be the group < MR,MF ,MU > generated by the middle slice
moves. This group is called the ”slice group”. Let E be the set of edges of
the cube (which we identify with the set of edge subcubes), let C be the set
of center facets of the cube, and let X = E ∪C. H acts on X. Note that H
does not affect the corners (i.e, the vertices of the cube).

Questions: (a) Is the action of H on X transitive?
(b) Is the action of H on C transitive?
(c) Is the action of H on E transitive?
The answer to (a) is no - an edge subcube cannot be sent to a center

facet, for example, so there is an element of X which cannot be sent to any
other element of X by an element of H. The answer to (b) is yes - any center
facet can be sent to any other center facet by an element of H. The answer
to (c) is no - for example, the uf edge subcube cannot be sent to the ur edge
subcube by a slice move, so there is an element of E which cannot be sent
to any other element of E by an element of H.

The answer of ”no” to (c) brings about the following
Question: What are the orbits of H on E?
The answer may be phrased in various ways, but let us look at it in the

following way: suppose we call two edge subcubes equivalent if one can be
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sent to the other by a slice move (i.e., an element of H). There are 3 disjoint
equivalence classes: all the subcubes in the middle RL-slice are equivalent,
all the subcubes in the middle FB-slice are equivalent, and all the subcubes
in the middle UD-slice are equivalent. The distinct orbits of H acting on E
are the following:

• the middle RL-slice, denoted by ERL,

• the middle FB-slice, denoted by EFB,

• the middle UD-slice, denoted by EUD.

Note that

E = ERL ∪ EFB ∪ EUD,

is a partitioning of E into the distinct equivalence classes defined by the
action of H on E.

Each element of H determines an element in SX . We have a homomor-
phism

f : H → SX

This is another way of saying that H acts on the set X, which we already
know. Note that each basic slice move M (so M is either MR, MF , or MU)
is, as an element of SX , of the following form:

M = (4− cycle in SE)(4− cycle in SC).

Conversely, does an element of SX uniquely determine an element of H? In
other words, is f injective (i.e., an embedding)?

To answer this, fix an h ∈ H and think about what f(h) tells us: f(h)
tells us which each subcube moves to which other subcube but it doesn’t tell
us, for example, how a subcube is flipped or rotated.

The fundamental theorem 60 inspires the following question:
Question: Can an element of H flip, but not permute, an edge subcube

(and possibly permuting or flipping other subcubes of the cube)?
The answer is no. The reason why is that the slice moves can only rotate

a given edge subcube within the slice it belongs to.
It follows, therefore, that the permutations of the edge subcube and cen-

ters determine a unique element of the slice group. In other words, we have
proven the following
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Proposition 172. The homomorphism

f : H → SX

is an embedding.

Remark 16. The analog of this for the Rubik’s cube group is false!

H acts on the set ERL, so we have a homomorphism

rRL : H → SERL

and similarly, rUD : H → SEUD
, rFB : H → SEFB

.
H acts on each of the sets E and C, so we have homomorphisms

r = rRL × rUD × rFB : H → SERL
× SEUD

× SEFB
⊂ SE, s : H → SC ,

which we can put together to obtain an injective homomorphism

r × s : H → SERL
× SEFB

× SEUD
× SC

To determine H, we determine the image of H in SERL
×SEFB

×SEUD
×SC .

To do this, we first look at the image of H in each of SERL
, SEFB

, and
SEUD

. This is easy enough:

• the image of H in SERL
is < MR >∼= C4,

• the image of H in SEFB
is < MF >∼= C4,

• the image of H in SEUD
is < MU >∼= C4.

Later, we shall want to think of C4 as {0, 1, 2, 3}, with addition mod 4, and
the image of an element h ∈ H under one of the homomorphisms above,
rRL : H → SEFB

say, as an integer 0 ≤ rRL(h) ≤ 3.
Next, we must determine the image of H in SC . This is easy if it’s looked

at in the right way. As far as the movements of the center facets is concerned,
the slice moves may be replaced by their corresponding rotations of the entire
cube about an axis of symmetry. In this case, we see that the image of H in
SC is the same as the image of the orientation-preserving symmetry group
of the cube! This we know, by the discussion in chapter 7 and Example 145
above, is isomorphic to S4.



160 CHAPTER 8. GROUPS, II

Putting all this together, we see that the image of H in SERL
× SEFB

×
SEUD

× SC is isomorphic to a subgroup of

C3
4 × S4.

We may represent the elements of H , therefore, as 4-tuples (h1, h2, h3, h4),
with h1, h2, h3 ∈ C4 and h4 ∈ S4. Since each of the generating moves of H
(namely, MR, MU , and MF ) satisfies

sgn(r(h)) = sgn(s(h)),

for all h ∈ H, the image of H cannot be all of C3
4 × S4.

Proposition 173. The image of H in C3
4 × S4. is isomorphic to the kernel

of the map

t : C3
4 × S4 → {±1}

(h1, h2, h3, h4) 7−→ sgn(h1) · sgn(h2) · sgn(h3) · sgn(h4),

where each sgn is the sign of the permutation, regarded as an element of SX .

Exercise 8.7.3. Show that |ker(t)| = (43 · 4!)/2 = 768.

proof: We have shown that H is isomorphic to a subgroup of C3
4 × S4.

In fact, we know that the basic slice moves MR,MU ,MF (which generate H)
all belong to the kernel of t, so H is isomorphic to a subgroup of ker(t) <
C3

4 × S4.
It remains to show that every element in ker(t) belongs to H. To do this,

we consider the projection homomorphism

p : H → S4

obtained by composing the homomorphism r× s : H → C3
4 ×S4 constructed

above with the projection homomorphism C3
4 × S4 → S4. We have shown

that p is surjective. Our next objective is to compute the kernel of p and use
the first isomorphism theorem to determine H.

Claim: The kernel of p is

ker(p) = {h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)}.

Note that ker(p) is a subgroup of H so the sign of the permutation s(h)
is equal to the sign of the permutation r(h):

sgn(s(h)) = sgn(r(h)) = sgn(rRL(h)) · sgn(rUD(h)) · sgn(rFB(h)).
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This implies that

ker(p) ⊂ {h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)}.

Conversely, pick an h ∈ H such that s(h) = 1 and rRL(h)+rUD(h)+rFB(h) ≡
0 (mod 2). We may represent this element h as a 4-tuple (n1, n2, n3, s), with
0 ≤ n1, n2, n3 ≤ 3 and s = 1 ∈ S4.

For example,

• the element M1 = MR ∗M−1
F ∗MD ∗MF is represented by the 4-tuple

(1, 1, 0, 1),

• the element M2 = MR ∗MD ∗MF ∗M−1
D is represented by the 4-tuple

(0, 1, 1, 1),

• the element M3 = MF ∗MD ∗M−1
R ∗M

−1
D ∗MF ∗M−1

D ∗MR ∗MD is
represented by the 4-tuple (0, 0, 2, 1).

These elements generate all the elements of the group

{(a, b, c, 1) | a, b, c ∈ C4, a+ b+ c ≡ 0 (mod 2)}.

Note that the group {(a, b, c) | a, b, c ∈ C4, a+ b+ c ≡ 0 (mod 2)} is, in turn,
the kernel of the map C3

4 → C2 given by (a, b, c) 7−→ a+ b+ c ≡ 0 (mod 2).

Exercise 8.7.4. Show that |{(a, b, c) | a, b, c ∈ C4, a+ b+ c ≡ 0 (mod 2)}| =
43/2 = 32.

Therefore, the element h choosen above must be expressible as a ”word”
in these three elements M1,M2,M3. This shows that

{h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡ 0 (mod 2)} ⊂ ker(p),

which implies the claim.
To summarize what we have so far: we have a surjective homomorphism

p : H → S4 with kernel {h ∈ H | s(h) = 1, rRL(h) + rUD(h) + rFB(h) ≡
0 (mod 2)}. The kernel has |ker(p)| = 32 elements and the image has
|im(p)| = |S4| = 4! = 24 elements. Since, by the first isomomorphism
theorem,

H/ker(p) ∼= S4,

we have |H| = 32 · 24 = 768. But the kernel of the homomorphism t :
C3

4 × S4 → {±1}, which we know contains H as a subgroup, also has 768
elements. This forces h = ker(t). �
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The slice group of the megaminx

The subgroup S of the megaminx group generated by all elements of the form
x∗y−1, where x, y correspond to faces which have no intesection is called the
slice group of the megaminx.

Problem (Longridge): Determine S.

8.8 Semi-direct products

If a group G contains two subgroups H1 and H2, with H1 CG normal, such
that each element of G can be written uniquely as a product h1h2, with
h1 ∈ H1 and h2 ∈ H2 then we say that G is the semi-direct product of
H1 and H2. In this situation, H2 is called a complement of H1. In this
section, we shall define two more ways of seeing how a semi-direct product
can be expressed. Later, we shall see that the Rubik’s cube group is an easily
described subgroup of a certain semi-direct product.

Definition 174. Now suppose that H1, H2 are both subgroups of a group
G.

We say that G is the semi-direct product of H1 by H2, written

G = H1 >CH2

if
(a) G = H1 ∗H2,
(b) H1 and H2 only have 1, the identity of G, in common,
(c) H1 is normal in G.

This is the ”internal version” of the semi-direct product.

Of course, if we define anything using two apparently different definitions,
we’d better be sure that they are equivalent! The fact that they are is a
theorem (Theorem 7.23 in [R]) which we won’t prove here.

Note that the multiplication rule in G doesn’t have to be mentioned since
we are assuming here that G is given.

The ”external version” is defined by a construction as follows:

Definition 175. Assume we have a homomorphism

φ : H2 → Aut(H1).



8.8. SEMI-DIRECT PRODUCTS 163

Define multiplication on the set H1 ×H2 by

(x1, y1) ∗ (x2, y2) = (x1 ∗ φ(y1)(x2), y1 ∗ y2).

This defines a group operation. This group, denoted H1>CφH2, is the (ex-
ternal) semi-direct product.

This definition will be used with the example of H1 = Cn
m and H2 = Sn

in the next chapter.
These last two definitions are equivalent by Theorems 7.22-7.23 in [R].
As a set, H1 >CH2 is simply the Cartesian product H1 ×H2.

Example 176. Let R2 denote the direct product of the additive group of real
numbers with itself:

R2 = {(x, y) | x, y real},
with the group operation being addition performed componentwise. Let C2

denote the multiplicative cyclic group with 2 elements, whose elements we
write (somwhat abstractly) as C2 = {1, s}. (We may think of s as being
equal to -1 but there is a reason for this notation which shall be made clear
soon.) Define an action of C2 on R2 by

1(x, y) = (x, y), s(x, y) = (y, x), (x, y) ∈ R2.

Let G be the set
G = R2 × C2.

Define the binary operation ∗ : G×G→ G by

(g1, z1) ∗ (g2, z2) = (g1 + z1(g2), z1 ∗ z2),

for all g1, g2 ∈ G and all z1, z2 ∈ C2. This is a group - the semi-direct product
of R2 with C2.

To see this, we must answer some questions:
(a) closed under the operation? Yes
(b) existence if identity? Yes, e = ((0, 0), 1)
(c) existence of inverse? Yes, ((x, y), 1)−1 = ((−x,−y), 1), and ((x, y), s)−1 =

((−y,−x), s).
(d) associative? This is the hard one:

((g1, z1) ∗ (g2, z2)) ∗ (g3, z3) = (g1 + z1(g2), z1 ∗ z2) ∗ (g3, z3)
= (g1 + z1(g2) + (z1 ∗ z2)(g3), (z1 ∗ z2) ∗ z3)

(g1, z1) ∗ ((g2, z2) ∗ (g3, z3)) = (g1, z1) ∗ (g2 + z2(g3), z2 ∗ z3)
= (g1 + z1(g2) + z1(z2(g3)), z1 ∗ (z2 ∗ z3))
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This implies associativity.

Exercise 8.8.1. Let G be the semi-direct product constructed in the above ex-
ample. Show that R2 (which we identify with the subgroup {((x, y), 1) | (x, y) ∈
R2} of G) is a normal subgroup.

Example 177. Let

S3 = {1, s1, s2, s1∗s2, s2∗s1, s1∗s2∗s1}, H1 = {1, s2, s1∗s2∗s1}, H2 = {1, s1}.

Let

φ : H2 → Aut(H1)

be defined by

φ(1) = 1 (the identity automorphism)
φ(s1)(h) = s−1

1 ∗ h ∗ s1 = s1 ∗ h ∗ s1

(since s−1
1 = s1), h ∈ H1.

Define the (external) semi-direct product of H1, H2 by G = H1 >CH2.

Exercise 8.8.2. Let G be the semi-direct product constructed in the above
example. Show that H1 (which we identify with the subgroup {(h, 1) | h ∈
H1} of G) is a normal subgroup.

There is of course a close relationship between internally defined semi-
direct products and externally defined ones. The following lemma, which is
proven in [R], explains this connection:

Lemma 178. If G is the (internal) semi-direct product of H1 by H2 (so H1

is a normal subgroup of G) then there is a homomorphism

φ : H2 → Aut(H1)

such that G ∼= H1 >Cφ(H2).

Example 179. Let Cd be the cyclic group of order d, which we may regard as a
set as Cr = {0, 1, ..., d}, with addition performed mod d. Let N = Cn

d , which
we regard as the group of ”n-vectors” with ”coefficients” in Cd. Let H = Sn
be the symmetric group on n letters, i.e., the group of all permutations

p : {1, 2, ..., n} → {1, 2, ..., n}.
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The group H acts on N by permuting the indices, i.e., the coordinates of the
vectors. For p ∈ Sn, define p∗ : Cn

d → Cn
d by

p∗(v) = (vp−1(1), ..., vp−1(n)), v = (v1, ..., vn) ∈ Cn
d .

Now, for p, q ∈ Sn and v, w ∈ Cn
d , define

(p, v) ∗ (q, w) = (pq, w + q(v)).

This defines a semi-direct product Cn
d >CSn.

(It is known that Cn
d >CSn is isomorphic to the group of all ”Cn-valued

n×n monomial matrices”, [R], Exercise 7.33. A monomial matrix is a matrix
which contains exactly one non-zero entry for each row and column.)

8.9 Wreath products

Let G1 be a group, let G2 be a group acting on a finite set X2. Fix some
labeling of X2 as say X2 = {h1, h2, ..., hm}, where m = |X2| and let GX2

1

denote the direct product of G1 with itself m times, with the coordinates
labeled by the elements of X2.

Definition 180. The wreath product of G1, G2 is the group

G1 wrG2 = GX2
1 >CG2

where the action of G2 on GX2
1 is via its action on X2.

In particular, to each t ∈ G1 wrG2 there is a g2 ∈ G2. We denote this
projection by g2 = pr(t). Define the base of the wreath product by

B = {t ∈ G1 wrG2 | pr(t) = 1},

so B = GX2
1 .

Example 181. Let Rn denote the direct product of the additive group of
reals with itself n times. The group operation on Rn is componentwise ad-
dition. Let Sn denote the symmetric group. This acts on Rn by permuting
coordinates: if r ∈ Sn is a permutation then define

r(x1, ..., xn) = (xr(1), ..., xr(n)),
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for (x1..., xn) ∈ Rn. This action respects the addition operation:

r(x1 + y1, ..., xn + yn) = r(x1, ..., xn) + r(y1, ..., yn),

(x1..., xn), (y1..., yn) ∈ Rn. (Incidently, it also preserves scalar multiplication:

r(a ∗ (x1, ..., xn)) = a ∗ r(x1, ..., xn),

for (x1..., xn) ∈ Rn, a ∈ R, so r defines an invertible linear transformation on
Rn; in fact, there is a homomorphism Sn → Aut(Rn), where Aut(Rn) denotes
the group of all invertible linear transformations on Rn; do you recognize this
homomorphism? It has occurred previously in the notes...)

Let G be the set
G = Rn × Sn

and define a binary operation ∗ : G×G→ G by

(g1, p1) ∗ (g2, p2) = (g1 + p1(g2), p1 ∗ p2),

for all g1, g2 ∈ G and all p1, p2 ∈ Sn. This is a group.
(a) closed under the operation?
(b) existence if identity? e = ((0, 0), 1)
(c) existence of inverse? ((x, y), 1)−1 = ((−x,−y), 1), ((x, y), p)−1 =

(−p−1(x, y), p−1).
(d) associative? This is the hard one:

((g1, p1) ∗ (g2, p2)) ∗ (g3, p3) = (g1 + p1(g2), p1 ∗ p2) ∗ (g3, p3)
= (g1 + p1(g2) + (p1 ∗ p2)(g3), (p1 ∗ p2) ∗ p3)

(g1, p1) ∗ ((g2, p2) ∗ (g3, p3)) = (g1, p1) ∗ (g2 + p2(g3), p2 ∗ p3)
= (g1 + p1(g2) + p1(p2(g3)), p1 ∗ (p2 ∗ p3))

This implies associativity.
This group is the wreath product of R with Sn:

G = R wrSn,

where R is the base.

Lemma 182. (a) The base B, which is isomorphic to the direct product

G
|X2|
1 , is a normal subgroup of G1 wrG2,

(b) (G1 wrG2)/B is isomorphic to G2.
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For this, we refer to chapter 8 of [NST] or to [R].

Example 183. Let H be the enlarged Rubik’s cube group of all legal and
illegal moves of the 3 × 3 Rubik’s cube. In other words, in addition to the
usual basic moves (namely, R,L, U,D, F,B), we allow you to take apart the
cube and reassemble the corner and edge subcubes (but we do not allow
you to remove stickers from the facets). Let C3 denote the group of all
rotations of a particular corner subcube by a 120 degree angle (actually, this
group depends on the corner being rotated but since these groups are all
isomorphic we drop the dependence from the notation). Let C2 denote the
group of all flips of a particular edge subcube (rotations by a 180 degree
angle). (Again, this group depends on the edge being flipped but since these
groups are all isomorophic we drop the dependence from the notation). Then
we shall prove later that

H = (C3 wrSV )× (C2 wrSE),

where V is the set of corner subcubes and E is the set of edge subcubes.

8.9.1 Application to order of elements in Cm wrSn

In some cases, wreath products turn out to be relatively concrete and familiar
groups. Let S(n,m) denote the group of all n × n monomial matrices with
entries in Cm.

We begin with the following result:

Theorem 184. There is an isomorphism between Cm wrSn and the group
S(n,m) which sends an element (~v, f) ∈ Cm wrSn, ~v = (v1, v2, ..., vn) ∈ Cn

m

and f ∈ Sn, to the matrix P (f)~v.

This follows from a result (see Theorem 197) which will be proven in the
next chapter. It is also a special case of an exercise in [R]. In any case, it is
clear from this that an element (~v, f) ∈ Cm wrSn, ~v = (v1, v2, ..., vn) ∈ Cn

m

and f ∈ Sn, is order d only if the permutation matrix P (f) is order d. Indeed,

(~v, f)2 = (~v + f(~v), f 2),
(~v, f)3 = (~v + f(~v) + f 2(~v), f 3),

...
(~v, f)k = (~v + ...+ fk−1(~v), fk).

We conclude with the following classification of the elements of order d
in the wreath product.
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Lemma 185. An element (~v, f) ∈ Cm wrSn, ~v = (v1, v2, ..., vn) ∈ Cn
m and

f ∈ Sn, is order d if and only if fd = 1 and ~v + ...+ fd−1(~v) = 0.

This result can, in principle, be used in conjunction with with the explicit
determination of the Rubik’s cube group given later to determine all the
elements of a given order. As an application, the elements of order 2 of the
Rubik’s cube group will be given later.



Chapter 9

The Rubik’s cube and the word
problem

Further details in the following background material may be found in [R],
[MKS].

Definition 186. Given a list L of questions, a decision algorithm for L is a
uniform set of unambiguous instructions which, when applied to any question
in L gives the correct answer “yes” or “no” after a finite number of steps.

9.1 Background on free groups

Let X = {x1, ..., xn} denote a set and X−1 a set disjoint from X whose
elements we denote by {x−1

1 , ..., x−1
n }. Assume that the map x 7−→ x−1 defines

a bijection X → X−1. It will be convenient to let x1 = x, x0
i = 1, where 1 is

an element not belonging to X∪X−1 which we will call the identity element.
A word on X is a sequence

w = (a1, a2, ..., aN),

where N > 0 is some integer and each ai belongs to

X ∪X−1 ∪ {1}.

The sequence of all 1’s is called the empty word. The inverse of the word w
is the word

w−1 = (a−1
N , ..., a−1

1 ).

169
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If ai = yei
i , where ei is in {0, 1,−1} and yi ∈ X, then we shall write the word

w as w = ye11 ...y
eN
N .

Example 187. Let X = {R,L, U,D, F,B}. The set of words on X are in a
bijective correspondence with the set of sequences of basic moves you can
make on the Rubik’s cube.

We call a word w = ye11 ...y
eN
N on X reduced if either w is empty or if the

exponents ei are non-zero and if there are no x ∈ X with x, x−1 adjacent in
w.

Definition 188. The free group Fn = FX on the generators x1, ..., xn is the
group of all reduced words on X.

The proof that Fn is a group is not entirely easy (verifying the associa-
tivity property is perhaps the hardest part), see Theorem 11.1 in [R].

9.1.1 Length

If, in the notation above, w = ye11 ...y
eN
N is a reduced word (so ei ∈ {0, 1,−1})

then we call N the length (or reduced length, to be more precise) of w.
If G =< g1, ..., gk >⊂ Sn is a finite permutation group generated by

permutations g1, ..., gk then we may still define the notion of length:

Definition 189. Suppose g ∈ G is not the identity, where G is a permutation
group as above. Then g may be written

g = ye11 ...y
eN
N ,

where each yi ∈ {g1, ..., gk} and where ei ∈ {0, 1,−1}. The number N and
the sets {y1, ..., yN}, {e1, ..., eN} may not be unique for a given g but among
all such possibilities there is at least one such that the value of N is minimum.
We call this the length of g, denoted `(g).

Let
PG(t) =

∑
g∈G

t`(g).

This is called the Poincaré polynomial of G.

The length of g is the distance in the Cayley graph between the vertex
g and the vertex 1. As was mentioned in the chapter on graph theory, the
problem of determining the largest possible distance in the Cayley graph
of the Rubik’s cube group is known as ”God’s algorithm” and is currently
unsolved.
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Example 190. Let G = Sn with generators gi = (i, i+1), i = 1, ..., n−1. The
Poincaré polynomial is known:

Πn
k=1

tk+1 − 1

t− 1
,

by [Hum], §3.15.
In case n = 2, this is

t3 + 2t2 + 2t+ 1 = (t+ 1)(t2 + t+ 1)

Problem What is the longest possible length of an element of the Rubik’s
cube group (with respect to the generators R,L, U,D, F,B)?

Problem What is the Poincare polyomial of the Rubik’s cube group (with
respect to R,L, U,D, F,B)?

9.1.2 Trees

We may represent the free group graphically as follows. We define the Cayley
graph of Fn inductively:

• draw a vertex for each element of X ∪X−1 (these are the vertices, V1

say, for the words of length 1),

• Suppose we are given that you have already drawn all the vertices for
the words of length k − 1, Vk−1 let’s call them. For each x ∈ X ∪X−1

and each v ∈ Vk−1, draw a vertex for each word of length k obtained
by multiplying v by x on the right, v ∗ x, and connect v and v ∗ x by
an edge.

There are infinitely many vertices, each of which has degree |X ∪ X−1|.
Moreover, this graph has no circuits or loops (i.e., no path of edges crosses
back over onto itself). Such a graph is called a tree.

Example 191. Let X = {R,L, U,D, F,B}. The elements of the free group
FX correspond to the mechanically different sequences of basic moves you
can make on the Rubik’s cube. Of course, different sequences of moves may
yield the same position of the Rubik’s cube (e.g., R4 and 1 are the same
position but sequence of moves used to attain them are distinct).

There are infinitely many vertices of the Cayley graph of FX , each of
which corresponds to a mechanically distinct move of the Rubik’s cube.
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9.2 The word problem

There is a way to list all the elements of Fn, called the lexicographic ordering.
We shall describe a way to list all the words in Fn as though they were in
a dictionary. We shall give an algorithm for determining if a word w ∈ Fn
occurs before a word w′, in which case we write w < w′. In the dictionary
below, we shall, for example, distingish between the the identity 1 and the
”non-reduced” word x1 ∗ x−1

1 .
The first element in this lexicographically ordered list is the word 1, the

next 2n words are the words

x1 < x−1
1 < ... < xn < x−1

n .

In general, we define y1..yM < z1...zN if either (a) M < N or (b) M = N
and y1 < z1 or y1 = z1 and y2 < z2 or y1 = z1 and y2 = z2 and y3 < z3 or ... .

List all the elements of Fn as

Fn = {w1, w2, ...},

so w1 = 1, w2 = x1, .... Let G be a subgroup of Fn or a permutation group
G =< g1, ..., gn >. If G is a permutation group then we regard a word wk as
an element of G by substituting gi for each xi, 1 ≤ i ≤ n.

Definition 192. Fix a g ∈ G. We say that G has a solvable word problem if
there is a decision algorithm for the list L of questions of the form: Is wk = g
in G?

Claim: Fn has a solvable word problem.
proof The following decision algorithm yields a solvable word problem.

1. If w is a word not equal to 1 then underline the first occurance, if any,
of the expression xi ∗ x−1

i . If no such expression occurs in w then go to
step 3, otherwise go to step 2.

2. delete the expression xi ∗ x−1
i from w and go to step 1.

3. If w = 1 then stop and return ”yes”, otherwise, stop and return ”no”.
�

Claim: Each finite permutation group has a solvable word problem.
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Exercise 9.2.1. Why?

Theorem 193. A decision algorithm for the word problem for the Rubik’s
cube group with generators R,L, U,D, F,B is the same as an algorithm for
solving the Rubik’s cube.

9.3 Generators, relations, and Plutonian robots

Here’s a hypothetical situation: You and a friend each have a robot on the
planet Pluto with a scrambled Rubik’s cube. You and your friend also have
duplicate cubes, scrambled the same way as your robots. (We will call the
robots R2D2 and R2B2 if you don’t mind!) These robots have manual dexter-
ity but no preprogramming on how to solve the cube. Furthermore, assume it
is very expensive to program different moves, so you want to teach the robot
the smallest number of separate moves that you can. On the other hand, the
moves need not be basic moves (U , R, ..) since it we will assume it costs
roughly the same to teach the robot the move R as the move R ∗ U2 ∗ R−1,
for example. Your solution will be a ”word” in these taught moves. Again,
to minimize the cost of transmission, you want the ”word” to be absolutely
as short as possible. A prize of 1 million dollars has been set up to the first
of you who can get their robot to solve its cube.

In other words, we want to solve the word problem for the cube and we
want to do it as efficiently as possible. Suppose we know we need n generators
and we know that this is the smallest number. How do we make a ”word” as
short as possible? To make a word in these generators as small as possible,
we must know all the ”relations” between these generators so we can, if
necessary, substitute them into the word and perform some cancelation. This
is what this section is about.

Let X be a finite set, say n = |X|. Let Y be a set of reduced words on
X. Let R be the smallest normal subgroup of Fn containing Y . Since R is
normal, the quotient Fn/R is a group.

Definition 194. Let G be a group. We say that G has generators X and
relations Y if G is isomorphic to Fn/R. A collection of generators and rela-
tions defining a group is called a presentation of the group.

As a matter of notation, an element r ∈ R is written as an equation r = 1
in G.
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Remark 17. For those with a background in topology: Serre [Ser], §3.3, gives
a topological interpretation of R as ”the fundamental group of the Cayley
graph of G with respect to X”.

Example 195. The cyclic group of order 3, C3, has one generator x and one
relation x3 = 1, so

X = {x}, R = {(x3)k | k ∈ Z} ⊂ F1 = {xk | k ∈ Z}.

Here the cosets of F1/R are R, xR, x2R. The set of these three cosets is closed
under multiplication. For example, (xR)(x2R) = x(Rx2)R = xx2RR =
x3R = R, so the inverse of the element xR is x2R.

More generally, Cn has presentation

Cn = {x | xn = 1}.

Exercise 9.3.1. By constructing moves of the Rubik’s cube of order 2, 3, 4,
show that the Rubik’s cube ”contains” the subgroups C2, C3, C4.

Lemma 196. The group Cm × Cn is presented by

Cm × Cn = {a, b | am = 1, bn = 1, ab = ba}.

Remark 18. In general, ifG is generated by g1, ..., gm with relationsRi(g1, ..., gm) =
1 and if H is generated by h1, ..., hn with relations Si(h1, ..., hn) = 1 then
G×H is the group generated by the gi, hj, with relations Ri(g1, ..., gm) = 1,
Si(h1, ..., hn) = 1, and gihj = hjgi. We shall not prove this but refer to
[MKS], Exercise 13, §4.1.

Exercise 9.3.2. By constructing moves of the Rubik’s cube of order 2, 3 which
commute show that the Rubik’s cube ”contains” the subgroups C2×C3

∼= C6.

We conclude this section with a table of all the finite groups of order less
than or equal to 25 and their generators and relations.

9.4 Generators, relations for groups of order

< 26

The following table was obtained from the tables in [TW].
Notation:
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Cn = cyclic group of order n,
Dn = dihedral group of order 2n

= symmetry group of the regular n-gon,
Q = quaternion group = {−1, 1,−i, i,−j, j,−k, k},
Sn = symmetric group of permutations of {1, 2, ..., n},

An = alternating group of even permutations of {1, 2, ..., n},
Fq = finite field with q elements (q=power of a prime),

Z/nZ = integers modulo n.
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Order Group G generators relations notes

2 C2 a a2 = 1
3 C3 a a3 = 1 G = A3

4 C4 a a4 = 1
4 C2 × C2 a, b a2 = 1, b2 = 1, Klein 4-group

ab = ba Aut(G) = GL(2,F2)
5 C5 a a5 = 1
6 C6 = C2 × C3 a a6 = 1
6 S3 a, b a3 = 1, b2 = 1, Aut(G) = G

aba = b G = GL(2,F2)
7 C7 a a7 = 1
8 C8 a a8 = 1
8 C2 × C4 a, b a2 = 1, b4 = 1,

ab = ba
8 C2 × C2 × C2 a, b, c a2 = 1, b2 = 1, Aut(G) = GL(3,F2)

c2 = 1, ab = ba,
bc = cb, ac = ca

8 D4 a, b a4 = 1, b2 = 1,
aba = b

8 Q a, b a4 = 1, b2 = a2,
aba = b

9 C9 a a9 = 1
9 C3 × C3 a, b a3 = 1, b3 = 1, Aut(G) = GL(2,F3)

ab = ba
10 C10 = C2 × C5 a a10 = 1
10 D5 a, b a5 = 1, b2 = 1,

aba = b
11 C11 a a11 = 1
12 C12 = C3 × C4 a a12 = 1
12 C2 × C6 a, b a2 = 1, b6 = 1,

= C2 × C2 × C3 ab = ba
12 D6 a, b a6 = 1, b2 = 1,

aba = b
12 A4 a, b a2 = 1, b3 = 1, Aut(G) = G

(ba)3 = 1
12 Q6 a, b a6 = 1, b2 = a3, ”dicyclic”

aba = b
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13 C13 a a13 = 1
14 C14 = C2 × C7 a a14 = 1
14 D7 a, b a7 = 1, b2 = 1, Aut(G) = G

aba = b
15 C15 = C3 × C5 a a15 = 1
16 C16 a a16 = 1
16 C2 × C8 a, b a2 = 1, b8 = 1,

ab = ba
16 C4 × C4 a, b a4 = 1, b4 = 1, Aut(G) = GL(2,Z/4Z)

ab = ba
16 C2

2 × C4 a, b, c a2 = 1, b2 = 1, c2 = 1,
ab = ba, ac = ca, bc = cb

16 C4
2 a, b, c, d a2 = 1, b2 = 1, Aut(G) = GL(4,F2)

c2 = 1, d2 = 1,
ab = ba, ac = ca, ad = da,
bc = cb, bd = db, cd = dc

16 D4 × C2 a, b, c a4 = 1, b2 = 1, c2 = 1,
aba = b, ac = ca, bc = cb

16 Q× C2 a, b, c Exercise
16 a, b, c a2 = 1, b2 = 1, c2 = 1,

abc = bca = cab
16 a, b a2 = 1, b2 = 1,

(ab)2 = 1, (a−1b)2 = 1
16 a, b a4 = 1, b4 = 1, a semidirect product

aba = b of C4 with C4

16 a, b a8 = 1, b2 = 1, a semidirect product
ab = ba5 of C8 with C2

(C2 normal)
16 a, b a8 = 1, b2 = 1, a semidirect product

ab = ba3 of C8 with C2

(C2 normal)
16 D8 a, b a8 = 1, b2 = 1, a semidirect product

aba = b of C8 with C2

(C2 normal)
16 Q8 a, b a8 = 1, b2 = a4,

aba = b
17 C17 a a17 = 1
18 C18 = C2 × C9 a a18 = 1
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18 C3 × C6 a, b a3 = 1, b6 = 1,
= C3 × C3 × C2 ab = ba

18 S3 × C3 a, b, c a3 = 1, b2 = 1, c3 = 1
aba = b, ac = ca, bc = cb

18 D9 a, b a9 = 1, b2 = 1, a semidirect product
aba = b of C9 with C2

(C2 normal),
Aut(G) = G

18 a, b, c a3 = 1, b3 = 1, c2 = 1
ab = ba, aca = c, bcb = c

19 C19 a a19 = 1
20 C20 = C4 × C5 a a20 = 1
20 C2 × C10 a, b a2 = 1, b10 = 1,

ab = ba
20 D10 a, b a10 = 1, b2 = 1,

aba = b
20 Q10 a, b a10 = 1, b2 = a5,

aba = b
20 a, b a5 = 1, b4 = 1, a semidirect product

ab = ba3 of C5 with C4

(C4 normal),
Aut(G) = G

21 C21 = C3 × C7 a a21 = 1
21 a, b a7 = 1, b3 = 1, a semidirect product

ab = ba4 of C7 with C3

(C3 normal),
Aut(G) = G

22 C22 = C2 × C11 a a22 = 1
22 D11 a, b a11 = 1, b2 = 1, Aut(G) = G

aba = b
23 C23 a a23 = 1
24 C24 = C3 × C8 a a24 = 1
24 C2 × C12 a, b a2 = 1, b12 = 1,

= C2 × C3 × C4 ab = ba
24 C2

2 × C6 a, b, c a2 = 1, b2 = 1, c6 = 1,
ab = ba, ac = ca, bc = cb
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24 D6 × C2 a, b, c a6 = 1, b2 = 1, c2 = 1,
aba = b, ac = ca, bc = cb

24 A4 × C2 a, b, c Exercise
24 Q6 × C2 a, b, c Exercise
24 D4 × C3 a, b, c Exercise
24 Q× C3 a, b, c Exercise
24 S3 × C4 a, b, c Exercise
24 D12 a, b a12 = 1, b2 = 1,

aba = b
24 Q12 a, b a12 = 1, b2 = a6,

aba = b
24 S4 a, b a4 = 1, b2 = 1, Aut(G) = G

(ab)3 = 1
24 SL(2,F3) a, b, c a4 = 1, b2 = a2, Aut(G) = Aut(Q)

c3 = 1, aba = b, = S4,
ac = cb, bc = cab a semidirect product

of Q with C3

(C3 normal)
24 a, b a3 = 1, b8 = 1, a semidirect product

aba = b of C3 with C8

(C8 normal)
24 a, b, c a3 = 1, b4 = 1, a semidirect product

c2 = 1, bcb = c, aba = b, of C3 with D4

ac = ca (D4 normal)
25 C25 a a25 = 1
25 C2

5 a, b Exercise

Problem Which of these is (isomorphic to) a subgroup of the Rubik’s cube
group?

Problem Of those which are subgroups, find moves associated to the gen-
erators given which satisfy the relations given.
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9.5 The presentation problem

The following problem is unsolved:

Problem (Singmaster [Si]): Let G be the Rubik’s cube group. Find a set
of generators and relations for G of minimal cardinality (i.e., |X|+ |Y |
is of minimal cardinality).

Problem : Find

(a) a set of generators for G of minimal cardinality,

(b) a set of relations for G of minimal cardinality,

(c) an expression for each such generator as a word in the basic moves
R,L, U,D, F,B.

The part (a) is known: there are 2 elements which generate G [Si]. Part (b)
is not known (though Dan Hoey’s post of Dec 17, 1995 to the cube-lover’s
list may describe the best known results [CL]; he suggests that G has a set
X of 5 generators and a set Y of 44 relations such that the total length of
all the reduced words in Y is 605).
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9.5.1 A presentation for Cn
m >CSn+1

We begin an assault on the problem of D. Singmaster mentioned above. This
section was written with Dennis Spellman.

We can identify the Cn
m >CSn+1 with the group of (n + 1) × (n + 1)

invertible monomial matrices g with coefficients in Cm having the following
condition on the determinant: if we write g = p · d, where p is a permuta-
tion matrix and d is a diagonal matrix then det(d) = 1 (this determinant 1
condition is a condition corresponding to the ”conservation of twists” for the
moves of the Rubik’s cube).

We may identify Cn
m with the subgroup

{(x1, ..., xn+1) | x1x2...xn+1 = 1, xi ∈ Cm}

and Cn
m >CSn+1 as a subgroup of the wreath product Sn+1 wr Cm.

Consider G = Cn+1
m >CSn+1. The group Sn+1 has presentation

Sn+1 =< a1, ..., an | (aiaj)
mij = 1, ∀1 ≤ i, j ≤ n >,

where

mij =


3, j = i± 1,
2, |i− j| > 1,
1, i = j.

The following diagram may help to visualize the exponents mij in the
case n = 4:
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As a group of (n + 1) × (n + 1) monomial matrices, we identify ai with
the permutation matrix,

si =



1 0 ... 0
. . .

1
0 1
1 0

1
. . .

0 ... 0 1


.

If I is the (n + 1) × (n + 1) identity matrix and if Eij denotes the matrix
which is 0 in every entry except the ij entry, which is 1, then

si = I − Eii − Ei+1,i+1 + Ei,i+1 + Ei+1,i.

The group Cm has presentation

Cm =< h | hm = 1 > .

The group Cn
m has presentation

Cn
m =< h1, ..., hn | hmi = 1, hihj = hjhi,∀1 ≤ i, j ≤ n+ 1 > .

We identify Cn
m with the Cartesian product

{(h1(x1), h2(x2), ..., hn(xn)) | xi ∈ Cm},

where hi(t) is the diagonal matrix

hi(t) = I − Eii − Ei+1,i+1 + tEi,i + t−1Ei+1,i+1.

There are the following identities between the si and the hj(t):

sihj(t)s
−1
i = hj(t), |i− j| > 1,

sihi(t)s
−1
i = hi(t)

−1,
si±1hj(t)s

−1
i±1 = hi(t)hi±1(t).

This in mind motivates the formulation of the following statement (which
we shall prove in the next section):
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Theorem 197.

Cn
m >CSn+1 =< a1, ..., an, h1, ..., hn | (aiaj)

mij = 1,
∀1 ≤ i, j ≤ n,

hmi = 1, hihj = hjhi,∀1 ≤ i, j ≤ n
aihja

−1
i = hj, |i− j| > 1,
aihia

−1
i = h−1

i ,
ai±1hja

−1
i±1 = hihi±1 >

Remark 19. The above result was proven before it was noticed that essentially
the same presentation may be found in the paper [DM] by Davies and Morris
(where the group Cn

m >CSn+1 is called a generalized symmetric group).

9.5.2 Proof

Let P denote the group presented in the above theorem. The claim is, of
course, that Cn

m >CSn+1
∼= P . There is a surjective homomorphism f :

P → Cn
m >CSn+1 given by sending the generators to the generators. The

problem is to which that this is injective. Let K = ker(f), so

|P | = |P/K||K| ≥ |P/K| = |Cn
m >CSn+1| = mn(n+ 1)!.

Note H =< h1, ..., hn | hmi = 1, hihj = hjhi > < P is a normal subgroup of
P since each ai sends a generator of H to a product of them or their inverses.
Also, note H ∼= Cn

m.
We claim that P/H ∼= Sn+1. From this it will follow that |P | = mn(n+1)!,

proving that |K| = 1, as desired.
To establish P/H ∼= Sn+1, we show that the presentation on P/H one

gets from Theorem 2.1 in [MKS] is the same as that of Sn+1. This is actually
easy to see: If W (a1, ..., an, h1, ..., hn) = 1 is a relation in the presentation, we
must determine the word W (a1, ..., an, h1, ..., hn)H in P/H. Note that every
relation ”collapses” and becomes trivial except for the relations (aiaj)

mij = 1.
These relations define the presentation for Sn+1, as desired. �
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Chapter 10

The 3× 3 Rubik’s cube group

In this chapter, we describe mathematically the moves of the 3 × 3 Rubik’s
cube.

10.1 Mathematical description of the 3 × 3

cube moves

In this section, we describe mathematically the moves of the 3 × 3 Rubik’s
cube. As we will see, this will lead eventually to the description of the
Rubik’s cube group as a subgroup of index 12 of a direct product of two
wreath products.

10.1.1 Notation

First, orient all the corners and edges as in theorem 60. These are depicted
as follows, except that we have replaced the ”+” in theorem 60 with a white
square:

185
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and

LetG =< R,L, U,D, F,B > be the group of the 3×3 Rubik’s cube and let
H be the ”enlarged” group generated by R,L, U,D, F,B and all the ”illegal”
moves (where one is allowed to disassemble and reassemble the cube but not
remove any facets). Let V denote the set of vertices of the cube (which we
identity with the set of corner subcubes of the Rubik’s cube) and let

ρ : H → SV

denote the homomorphism which associates to each move of the Rubik’s cube
the cooresponding permutation of the vertices. Let E denote the set of edges
of the cube (which we identity with the set of edge subcubes of the Rubik’s
cube) and let

σ : H → SE

denote the homomorphism which associates to each move of the Rubik’s cube
the corresponding permutation of the edges.



10.1. MATHEMATICAL DESCRIPTION OF THE 3×3 CUBE MOVES187

10.1.2 Corner orientations

Let v : H → C8
3 be the function which associates to each move g ∈ H the

corresponding corner orientations. More precisely, let g ∈ H and say g moves
corner i to corner j. Then vi(g) ∈ C3 is the orientation which the ith vertex
gets sent to by g, where the vertices are labeled as in the diagram shown and
where the orientation is the number of 120o clockwise twists required to turn
the relative reference ”+” obtained by moving corner i to j using the move
g into the standard reference ”+” on corner j.

Example 198. We have

X ~v(X)
F (2,0,0,1,1,0,0,2)
U (0,0,0,0,0,0,0,0)

F*U (2,0,0,1,1,0,0,2)
U*F (2,0,0,1,1,0,0,2)

D (0,0,0,0,0,0,0,0)
B (0,1,2,0,0,2,1,0)
R (1,2,0,0,2,1,0,0)
L (0,0,1,2,0,0,2,1)

Remark 20. The effect of a move g ∈ H on the corner orientations may also
be regarded as a relabeling of the ”+” markings.

Note that a move g ∈ H has two effects on the corners:
(a) a permutation ρ(g) ∈ SV of the vertices,
(b) a reorientation of the vertices moves in (a).

In particular, for g, h ∈ H, the orientation ~v(gh) can only differ from v(g) in
the coordinates corresponding to the vertices permuted by h.

We shall now verify that the ”relative” orientation ~v(gh) − ~v(g) is the
same as the orientation ~v(h), provided one takes into account the effect of g
on the vertices: ~v(h) = ρ(g)(~v(gh)− ~v(g)), i.e.,

Lemma 199. ~v(gh) = ~v(g) + ρ(g)−1(~v(h)).

proof: The move gh orients the ith corner subcube by vi(gh) and per-
mutes the vertices by ρ(gh), by definition.

On the other hand, gh will first act by g then h. The move g will reorient
the ith corner subcube by vi(g) and send the ith vertex to the ρ(g)(i)th vertex.
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To study the subsequent effect of h on this, let us subtract ~v(g) from
~v(gh), so that we are back to our original orientation (we will add ~v(g) back
in later). Call this position the modified cube for now.

The move h first orients the jth corner subcube of the modified cube by
vj(h) and permutes it to vertex ρ(h)(j). The ith subcube of the modified
cube comes from (via g) the ρ(g)−1(i)th subcube of the original cube. Thus
the ith corner subcube of the modified cube is, by means of h, reoriented by
vρ(g)−1(i)(h). To this we must add in vi(g) to get the total effect of gh on the
ith vertex of the original:

vi(gh) = vi(g) + vρ(g)−1(i)(h)),

for each 1 ≤ i ≤ 8, which implies Lemma 199. �

10.1.3 Edge orientations

Let w : H → C12
2 be the function which associates to each move g ∈ H the

corresponding corner orientations. More precisely, let g ∈ H and say g moves
corner i to corner j. Then wi(g) ∈ C2 is the orientation which the ith vertex
gets sent to by g, where the vertices are labeled as in the diagram shown and
where the orientation is the number of 180o flips required to turn the relative
reference ”+” obtained by moving corner i to j using the move g into the
standard reference ”+” on corner j.

Example 200. We have

X ~w(X)
F (1,0,0,0,0,0,0,0,1,0,0,0)
U (1,0,1,0,0,0,0,0,0,0,0,0)

F*U (1,0,1,0,1,0,0,0,1,0,0,0)
U*F (1,1,1,0,0,0,0,0,1,0,0,0)

B (0,0,0,0,0,0,1,1,0,0,0,0)
D (0,0,0,0,0,0,0,0,0,1,0,1)
R (0,1,0,0,0,1,1,0,0,1,0,0)
L (0,0,0,0,1,0,0,0,1,0,0,0)

Remark 21. The effect of a move g ∈ H on the edge orientations may also
be regarded as a relabeling of the ”+” markings.
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Note that a move g ∈ H has two effects on the edges:

(a) a permutation σ(g) ∈ SE of the edges,

(b) a reorientation of the edges which were moved in (a).

In particular, for g, h ∈ H, the orientation ~w(gh) can only differ from ~w(g)
in the coordinates corresponding to the edges permuted by h.

We shall now claim that

~w(gh) = ~w(g) + σ(g)−1(~w(h)), (10.1)

i.e., that

wi(gh) = wi(g) + wσ(g)−1(i)(h),

for each 1 ≤ i ≤ 12. The proof of this is so similar to the proof of Lemma
199 that we leave it to the student to modify its proof to verify (10.1).

10.1.4 The semi-direct product

Consider the following direct product of two semi-direct products:

H ′ = (C8
3 >CSV )× (C12

2 >CSE).

Remark 22. This may also we written in the notation of wreath products as
the following direct product of two wreath products:

H ′ = (SV wr C8
3)× (SE wr C12

2 ).

As a set, we think of H as belonging to C8
3×SV ×C8

3×SV . If we represent
elements h, h′ of H as h = (v, r, w, s), h′ = (v′, r′, w′, s′) ∈ C8

3 ×SV ×C8
3 ×SV

then the group operation will be given by

h ∗ h′ = (v, r, w, s) ∗ (v′, r′, w′, s′) = (v + P (r)(v′), rr′, w + P (s)(w′), ss′).

Consider the function

ι : H → (C8
3 >CSV )× (C12

2 >CSE)
g 7−→ (v(g), ρ(g), w(g), σ(g)).

Proposition 201. ι is an isomorphism, H ∼= H ′.
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proof: Since

(~v(g), ρ(g), ~w(g), σ(g)) ∗ (~v(h), ρ(h), ~w(h), σ(h))
= (~v(g) + P (ρ(g))(~v(h)), ρ(g)ρ(h), ~w(g) + P (σ(g))(~w(h)), σ(g)σ(h)),

the map ι is a homomorphism. Since any reorientation and permutation can
be achieved by some illegal move, ι must be surjective. By theorem 60, the
kernel of ι is trivial (this is just a fancy way of saying that if no subcube is
permuted or reoriented then the cube doesn’t change!). �

10.2 Second fundamental theorem of cube the-

ory

First, some preliminaries. We identify, as in §10.1, each g ∈ G with a 4-tuple

(~v(g), ρ(g), ~w(g), σ(g)),

where

• ρ(g) is the corresponding permutation of the set of vertices V of the
cube,

• σ(g) is the corresponding permutation of the set of edges E of the cube,

• v(g), w(g) are ”orientations” defined in §10.1.

Remark 23. Let Sn denote the symmetric group on n letters and identify SV
with S8, SE with S12. By example 138, we know that

(a) ρ : G→ S8 is a homomorphism,
(b) σ : G→ S12 is a homomorphism.

Question: Given a 4-tuple (v, r, w, s), where r, s are permutations of the
corners, resp. edges, as above and

v ∈ C8
3 , w ∈ C12

2 ,

what conditions on r, s, v, w insure that it corresponds to a possible position
of the Rubik’s cube?

The following result is, according to [BCG], due to Ann Scott.
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Theorem 202. (Second fundamental theorem of cube theory) A 4-tuple (v, r, w, s)
as above (r ∈ S8, s ∈ S12, v ∈ C8

3 , w ∈ C12
2 ) corresponds to a possible position

of the Rubik’s cube if and only if
(a) sgn(r) = sgn(s), (”equal parity as permutations”)
(b) v1 + ...+ v8 ≡ 0 (mod 3), (”conservation of total twists”)
(c) w1 + ...+ w12 ≡ 0 (mod 2), (”conservation of total flips”).

proof: First we prove the ”only if” part. That is, we assume that
(v, r, w, s) ∈ SV × SE ×C8

3 ×C12
2 represents a (legally obtained!) position of

the Rubik’s cube. From this we want to prove (a)-(c).
Let g ∈ G be the element which moves the Rubik’s cube from the solved

position to the position associated to this 4-tuple. Then r = ρ(g) and
s = σ(g). We know that g may be written as a word in the basic moves
R,L, U,D, F,B, say g = X1...Xk, where each Xi is equal to one of the
R,L, U,D, F,B. Observe that if X is any one of these basic moves then
sgn(ρ(X)) = sgn(σ(X)). Since sgn, ρ, and σ are homomorphisms, it follows
that

sgn(r) = sgn(ρ(g)) =
k∏
i=1

sgn(ρ(Xi)) =
k∏
i=1

sgn(σ(Xi)) = sgn(σ(X)) = sgn(s).

This proves (a).
We have verified (b) for the basic moves in example 198 above. Note that
(i) the conservation of twists condition in (b) is true for (v1, ..., v8) if and

only if it is true for any permutation P (p)(v) = (v(1)p, ..., v(8)p),
(ii) if (v1, .., v8) and (v′1, ..., v

′
8) each satisfy the conservation of twists con-

dition in (b) then their sum also satisfies it.
As above, write g as a word in the basic moves R,L, U,D, F,B, say

g = X1...Xk, where each Xi is equal to one of the R,L, U,D, F,B. We
assume that this expression is minimal in the sense that we choose the Xi so
that k is as small as possible. This k is called the length of g. (This length
is the same as the distance from g to the identity in the Cayley graph of G.)

We now prove (b) by induction on the length. We have already checked
it for all words of length k = 1.

Assume k > 1. By the formula giving the orientation of the product of
two moves in terms of the two orientations of the moves, we have

~v(X1...Xk−1Xk) = ρ(X1...Xk−1)
−1(~v(Xk)) + ~v(X1...Xk−1).
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The term ρ(X1...Xk−1)
−1(~v(Xk)) satisfies the conservation of twists condi-

tion in (b) by (i) above. The term ~v(X1...Xk) satisfies the conservation of
twists condition in (b) by the induction hypothesis. Their sum satisfies the
conservation of twists condition in (b) by (ii) above. This proves (b).

The proof of (c) is very similar to the proof of (b), except that we use
example 200 in place of example 198.

Exercise 10.2.1. Provide the details.

Now, we must prove the theorem in the ”if” direction. In other words,
assuming (a), (b), and (c) we must show that there is a corresponding legal
position of the Rubik’s cube. This part of the proof is constructive.

First, we prove a special case. Assume that r and s are both the identity
and that (w1, ..., w12) = (0, ..., 0).

There is a move which twists exactly two corners and preserves the
orientations and positions of all other subcubes. For example, the move
g = (R−1D2RB−1U2B)2 twists the ufr corner by 120o clockwise, the bdl
corner by 240o clockwise, and preserves the orientations and positions of all
other subcubes. This move can be easily modified, by a suitable conjugation,
to obtain a move which twists any pair of corners, and preserves the orienta-
tions and positions of all other subcubes. These moves generate all possible
8-tuples satisfying the conservation of twists condition in (b). This proves
the ”if” part of the theorem in the case that r and s are both the identity
and that (w1, ..., w12) = (0, ..., 0).

Next, we prove another special case. Assume that r and s are both the
identity and that (v1, ..., v8) = (0, ..., 0).

There is a move which flips exactly two edges and preserves the orien-
tations and positions of all other subcubes. For example, the move g =
LFR−1F−1L−1U2RURU−1R2U2R (found in [B], page 112) flips the uf edge,
the ur edge, and preserves the orientations and positions of all other sub-
cubes. This move can be easily modified, by a suitable conjugation, to ob-
tain a move which flips any pair of edges, and preserves the orientations and
positions of all other subcubes. These moves generate all possible 12-tuples
satisfying the conservation of flips condition in (c). This proves the ”if”
part of the theorem in the case that r and s are both the identity and that
(v1, ..., v8) = (0, ..., 0).

As a consequence of these last two special cases, it follows that the ”if”
part of the theorem is true in the case that r and s are both the identity.
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Finally, we prove our last special case. Assume that (v1, ..., v8) = (0, ..., 0)
and that (w1, ..., w12) = (0, ..., 0). Consider the following three claims.

• Given any three edges subcubes, there is a move which is a 3-cycle on
these edges and preserves the orientations and positions of all other
subcubes.

• Given any three corners, there is a move which is a 3-cycle on these
corners and preserves the orientations and positions of all other sub-
cubes.

• Given any pair of edges and any pair of corners, there is a move which
is a 2-cycle on these edges, a 2-cycle on these corners, and preserves
the orientations and positions of all other subcubes.

Exercise 10.2.2. Verify these three claims.

By proposition 159, we know that AE is generated by the edge 3-cycles
above and that AV is generated by the corner 3-cycles above. In other words,
we can construct a position of the Rubik’s cube associated to any 4-tuple
(r, s, 0, 0), provided r ∈ AV and s ∈ AE. The subgroup AE × AV is index
4 in SE × SV since |Sn/An| = 2. The third type of move, the edge-corner
2-cycles above, does not correspond to an element of the subset AE ×AV of
the Rubik’s cube group because an edge 2-cycle is an odd permutation of the
edges. Therefore, if we consider the subgroup of SE × SV generated by all
three types of moves we will obtain either all of SE × SV or some subgroup
of index 2 which properly contains AE × AV . The first possibility can be
ruled out since it contradicts the parity condition in (a). The only subgroup
of SE × SV of index 2 which properly contains AE × AV is the subgroup of
elements satisfying the parity condition in (a).

It follows that the ”if” part of the theorem is true in the case that v and
w are both zero.

The theorem is a consequence of these special cases because of the fol-
lowing

Claim: There is always a move, no matter what position of the Rubik’s
cube is in, which does not permute any subcubes but ”solves” the orientation
of the cube so that v and w are both zero.

Exercise 10.2.3. Prove this claim.

�

Corollary 203. G = {g = (v, r, w, s) ∈ H | (a), (b), (c) in the above theorem hold}.
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10.2.1 Some consequences

We shall now reformulate the above fact about the Rubik’s cube group from
a point of view which (to me anyway) allows us to count the number of
elements it has easier. Let

G0 = {(v, r, w, s) | r ∈ S8, s ∈ S12,
v = (v1, v2, ..., v8), vi ∈ {0, 1, 2}, v1 + ...+ v8 ≡ 0 (mod 3),

w = (w1, w2, ..., w12), wi ∈ {0, 1}, w1 + ...+ w12 ≡ 0 (mod 2)}.

Define a binary operation ∗ : G0 ×G0 → G0 by

(v, r, w, s) ∗ (v′, r′, w′, s′) = (v + P (r)(v′), r ∗ r′, w + P (s)(w′), s ∗ s′).

This defines a group structure on G0. This is a subgroup of the enlarged
Rubik’s cube group of index 6.

Theorem 204. There is an isomorphism

G0
∼= (C7

3 >CS8)× (C11
2 >CS12),

where Cn is the cyclic group with n elements and >C denotes the semi-direct
product and where Ck

n (n = 2, 3, k = 7, 11) is identified with the subgroup of
Ck+1
n defined by

{v = (v1, v2, ..., vk) | vi ∈ {0, 1, n− 1}, v1 + ...+ vk ≡ 0 (mod n)}.

In particular,

|G0| = |S8||S12||C11
2 ||C7

3 | = 8! · 12! · 211 · 37.

Theorem 205. The Rubik’s cube group G is the kernel of the homomorphism

φ : G0 → {1,−1}
(v, r, w, s) 7−→ sgn(r)sgn(s).

In particular, G < G0 is normal of index 2 and

|G| = 8! · 12! · 210 · 37.

Recall that the commutator subgroup G1 of G is the subgroup consisting
of all finite products of commutators

[g, h] = g ∗ h ∗ g−1 ∗ h−1,

where g, h are arbitary elements of G.
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Theorem 206. |G1| = |G|/2.

In fact, we can explicitly determine G1.

Theorem 207. G1 = {g ∈ G | sgn(ρ(g)) = sgn(σ(g)) = 1}.

This basically follows from the fact that the commutator subgroup of Sn
is An, for n > 4 (see chapter 3 of [R]; in fact, for n > 4, An is the only proper
non-trivial normal subgroup of Sn).

The above theorem implies that |G/G1| = 2 (to see this, use the first
homomorphism theorem). From this, it clearly follows (from those who see
it clearly) that G1 is a normal subgroup of G.

10.3 The homology group of the square 1 puz-

zle

This section is based on a paper written jointly with J. McShea [JM].
Here we study the group theoretic properties of the collection G of all

”words” in the basic moves of the square 1 puzzle which preserve the cube
shape. This collection G forms a group which, motivated by [W], we call
the homology group of the square 1 puzzle. The list of shapes which the
square 1 puzzle can make is given in [Sn2]. It is not hard to see that the
homology group of any one of these other shapes is conjugate to G, so from
a group-theoretic standpoint, we may focus our attention on the cube. We
shall also make use of the moves given in [Are] which belong to G.
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A bi-product of the proof is an collection of moves which can be used to
solve the square 1 puzzle, once it is put in the cube shape.

10.3.1 The main result

Let Sn denote the symmetric group of degree n, i.e., the group of permu-
tations of {1, 2, ..., n}. Let sgn : Sn → {±1} denote the homomorphism
which assigns to each permutation its sign (the sign of a cyclic permutation
of length r is (−1)r+1, for example).

We shall see that the size of the homology group of the square 1 is about
.8 billion.

Theorem 208. G is isomorphic to the kernel of index 2 in S8 × S8 of the
homomorphism f : S8 × S8 → {±1} defined by f(g1, g2) = sgn(g1)sgn(g2).
Consequently, |G| = 213345272 = 812851200.

As a corollary of the proof of this theorem, given below, we shall see that
any even permutation of the corners is possible and any even permutation of
the wedges is possible.

Let H denote the enlarged square 1 group generated by all legal moves
preserving the cube shape and all illegal moves (i.e., disassembly and re-
assembly is allowed) preserving the cube shape. It is clear that

H ∼= S8 × S8.

Some notation

We shall assume that the puzzle is in the solved position with the ”square
1” side in front, right-side up. Let

• u denote rotation of the up face by 30o clockwise,

• d denote rotation of the up face by 30o clockwise,

• R denote rotation of the cube by 180o though one of the skew-diagonal
cuts (in a given position, at most one such move is possible, so this is
unambiguous).

.
Like the 15 puzzle, and unlike the Rubik’s cube, not any sequence of u, d,

and R’s is possible.
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Let

T (x, y) = u ∗R ∗ x ∗ y ∗R ∗ u−1, B(x, y) = d−1 ∗R ∗ x ∗ y ∗R ∗ d,

where x, y are moves of the square 1 puzzle.

In the notation of these diagrams, we have

uRu−1d−1Rd = (2, 8)(4, 6)
T (u3, 1) = (1′, 6′, 7′, 4′)(1, 6, 7, 4)
T (1, d3) = (2′, 3′, 8′, 5′)(2, 3, 8, 5)
B(u3, 1) = (1, 2, 7, 8)(1′, 6′, 7′, 4′)
B(1, d3) = (3, 4, 5, 6)(2′, 3′, 8′, 5′).

Two subgroups

Let

Gu =< T (u3, 1), T (1, d3) >

and

Gd =< B(u3, 1), B(1, d3) >

Lemma 209. Gu and Gd are each isomorphic to C4 × C4.
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proof: We have T (u3, 1)T (1, d3) = T (1, d3)T (u3, 1). Moreover, T (u3, 1)
and T (1, d3) are each of order 4. Since

C4 × C4 =< a, b | a4 = 1, b4 = 1, ab = ba >,

the lemma follows. �
The homology group of the square 1 puzzle is defined to be

G =< d3, u3, B(u3, 1), B(1, d3), T (u3, 1), T (1, d3) >

We shall use the following labelings to describe the moves of the square 1
puzzle

10.3.2 Proof of the theorem

We shall prove the theorem in the following steps:

• Show that the wedge 3-cycle (1, 2, 3) and the corner 3-cycle (1′, 2′, 3′)
each belong to G.

• Show that any wedge 3-cycle (1, 2, i) and each corner 3-cycle (1′, 2′, i′)
belong to G.

• Show that there is a injective homomorphism φ : G → S8 × S8 where
the image φ(G) contains A8 × A8.

• Conclude that G ∼= S8 × S8/{±1}.

Step 1: First, we claim that (1, 2, 3) belongs to G. In fact, the 3-cycle
(1, 2, 3) is obtained from the move

M1 = (B(u3, 1)∗d3)∗((B(u3, 1)∗d−3)∗(B(u−3, 1)∗T (1, d−3)∗d6)))4∗(B(u3, 1)∗d3)−1.

(Incidently, this 80 move long manuever may be verified using GAP [Gap].
See also [Sn2].)

Next, we claim that (1′, 2′, 3′) belongs to G. In fact,

M2 = Ru3Rd−3Ru3(Ru−3)2d3Ru−3

is the product of 2-cycles (2′, 3′)(3, 4). (This move was found in [Sn2].) There-
fore, u3M2u

−3 is the product of 2-cycles (1′, 2′)(2, 3). The product of these
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is (1′, 2′, 3′)(2, 3, 4). Since (2, 3, 4) is obtained from u−3M1u
3, we see that

(1′, 2′, 3′) is in G. (This may also be verified using GAP.)
Step 2: Let g be any move in G which sends wedges 3 to wedge i, resp.,

and does not move wedges 1, 2 (it may permute other wedges and corners).
Then (1, 2, i) = g ∗ (1, 2, 3) ∗ g−1. Thus (1, 2, i) ∈ G.

The proof that each (1′, 2′, i′) ∈ G is similar.
Step 3: It is clear from our definition that there is an injectionG→ S8×S8

as sets. The verification that this is a homomorphism is straightforward.
Step 4: The group A8 is generated by the 3-cycles (1, 2, i) (see Lemma

160). Since these all belong to G, all even wedge permutations are possible.
Similarly, all even corner permutations are possible. Thus A8 × A8 ⊂ G.

Let p1 : S8 × S8 → S8 denote the projection onto the first factor.
Let p2 denote the projection onto the second factor. For each generator
g ∈ {d3, u3, B(u3, 1), B(1, d3), T (u3, 1), T (1, d3)} of G we have sgn(p1(g)) =
sgn(p2(g)). Thus the image φ(G) is strictly contained in S8 × S8. In fact,
this shows that φ(G) is contained in the kernel ker(f) of the homomorphism
f : S8 × S8 → {±1} defined in the statement of the theorem. Since

A8 × A8 ⊂ G ⊂ ker(f),

[ker(f) : A8 × A8] = 2, and T (u3, 1) /∈ A8 × A8, the theorem follows. �
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Chapter 11

Other Rubik-like puzzle groups

”An expert is someone who knows some of the worst mistakes
that can be made in his subject, and how to avoid them.”

Heisenberg, Werner
PHYSICS AND BEYOND, 1971

This chapter shall survey, sometimes without proofs, some results on the
group-theoretical structure of some of the permutation puzzle groups, as
discussed in [GT], [Lu], [B], chapter 2, [NST], chapter 19.

11.1 On the group structure of the skewb

This section is based on G. Gomes and J. Montague [GM].
Notation: We fix an orientation of the cube and label the sides by

R,L, U,D, F,B as in the case of the Rubik’s cube. The 120 degree clockwise
rotation of a corner is denoted by a 3-letter juxtaposition of the letters ab-
breviating the 3 faces which the corner meets. (When you twist a corner of
the skewb you must permute three other corners but the opposite side of the
skewb is unaffected.) Such a move will be called a basic move - there are 8
of them, though twisting about a corner and twisting about the antipodal
opposite corner is basically the same move (up to a rotation of the entire
cube.) For example, FRU denotes the 120 degree clockwise rotation of the
front-right-up corner, leaving the rest of the cube alone.

Let C denote the set of square center facets and V the set of vertices of
the cube.

201
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Let

G =< FRU,FLU,BRU,BLU,DFR,DFL,BDR,BDL >

denote the group of all (legal) skewb moves. Let G∗ denote the group of all
legal and ”illegal moves” (where disassembly then reassembly is allowed).

On each square center facet of the skewb we may choose a vertex with the
following property: if we draw an arrow pointing from the chosen vertex of
the square to the diametically opposite vertex on the square then the moves
of the skewb permute these arrows amongst themselves, except that some
arrows may possibly be reversed. This determines an orientation of each
center facet. Call this puzzle the super skewb. For this new puzzle, let

Gsuper =< FRU,FLU,BRU,BLU,DFR,DFL,BDR,BDL >

denote the group of all (legal) super skewb moves. Let G∗super denote the
group of all legal and ”illegal moves” (where disassembly is allowed).

We orient the corners as in the case for the Rubik’s cube. Let y(g) ∈
C8

3 = {0, 1, 2}8 denote the orientation for the corners.
For the superskewb, we orient the center facets similarly. Let z(g) ∈ C6

4 =
{0, 1, 2, 3}6 denote the orientation for the centers.

Let SC denote the symmetric group on the set C, SV the symmetric group
on the set V .

Claim: There are homomorphisms

ρ : G→ SC , σ : G→ SV ,

given, for each move g ∈ G, by

ρ(g) = permutation of the center facets associated to g,

and

σ(g) = permutation of the vertices associated to g.

Let

H = C8
3 × SC × SV

and define ∗ : H ×H → H by

(y, r, s) ∗ (y′, r′, s′) = (rr′, ss′, r−1(y′) + y).
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Let
Hsuper = C8

3 × SV × C6
4 × SC

and define ∗ : Hsuper ×Hsuper → Hsuper by

(y, r, z, s) ∗ (y′, r′, z′, s′) = (r−1(y′) + y, rr′, s−1(z′) + z, ss′).

Observation: There is an embedding of G into H and an embedding of
Gsuper into Hsuper.

Let GC be the group that acts only on the center facets of the skewb, and
GV the group that acts only on the vertices. Now,

G = GC ×GV .

Every generator of G is a 3-cycle on the center facets. This means that r is
an element of AC . It is a fact that the elements (i, j, k) of Sn generate An
(for i, j, k elements of {1, 2, ..., n}). Therefore, GC = A6.

The group that acts on the vertices of the skewb is slightly more com-
plicated. Unlike the Rubik’s cube, there is no condition like conservation
of twists which applies to the entire vertex set. Instead, we must split the
vertices of the skewb into two 4-corner orbits. This idea is borrowed from
Bandelow’s booklet on Mickey’s Challenge (a puzzle similar to the skewb).
An orbit is constructed by starting with one corner and including the op-
posite corner of each face that meets at the first corner. Referring back to
our original labeling of the skewb, the orbits are the odd corners {1, 3, 5, 7},
and the even corners {2, 4, 6, 8}. Let the orbit of odd corners be denoted by
V (odd), and let V (even) denote the orbit of even corners. We now partition
GV so that

GV = GV (odd) ×GV (even).

We know that each orbit maps to a permutation on 4 vertices and an orien-
tation on 4 vertices. So

GV is a subgroup of (C4
3 >CS4)× (C4

3 >CS4).

Let h = (s, u(h), t, v(h)) be an element of GV .
First we will examine the permutations of the vertices of both orbits.

Each generator produces a 3-cycle on the vertices, whether they are in the
odd or even orbit. Therefore, we can say that the permutations of each orbit
generate A4 by the same argument used for the center permutations. Now,

GV is a subgroup of (C4
3 >CA4)× (C4

3 >CA4).
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Claim 1: There exist h, such that s is an element of A4, u(h) = (0, 0, 0, 0),
t is an element of A4, and v(h) = (0, 0, 0, 0). We know this is true because
there are clean skewb moves which only permute 3 vertices.

Claim 2: Given any permutation u′ of (1, 2, 0, 0) by an element of A4

and any permutation v′ of (1, 2, 0, 0) by an element of A4, there exist h, such
that s = 1, u(h) = u′, t = 1, and v(h) = v′. This is true because there are
clean skewb moves which only twist vertices.

If we combine the moves of Claims 1 and 2, we should generate all of
the possible moves of GV . The condition on each of the vertex 4-tuples will
drop them in dimension to elements of C3

3 . So we can conclude that GV is a
subgroup of index 9 of

(C4
3 >CA4)× (C4

3 >CA4).

Note: This claim is verified by GAP.
Since GC = A6, and GV = (C3

3 >CA4) × (C3
3 >CA4), we can conclude

that
G = A6 × (C3

3 >CA4)× (C3
3 >CA4).

and
|G| = (6!/2) ∗ (4!/2)2 ∗ (36) = 37, 791, 360.

In conclusion, it is interesting to note that if we let G′ denote the illegal
skewb group - where reassembly is permitted - then

G′ = S6 × S8 × C8
3 .

and
|G|/|G′| = .0001984127...

This means that if you could take apart the skewb and reassemble it however
you wanted (leaving the stickers intact however), then only about .02 percent
of all possible reassemblies would be solvable. The analogous percentage for
the Rubik’s cube is 8.33.. percent. As M. Schönert points out in a post to
[CL], this makes the skewb harder to solve that the Rubik’s cube in some
sense .
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Permutation and Orientation Tables

Move Center Permutation Vertex Permutation
UFR (1 5 2) (2 6 4)
UFL (1 4 5) (1 7 3)
DFR (1 2 6) (1 5 7)
DFL (1 6 4) (4 6 8)
BRU (2 5 3) (1 3 5)
BLU (3 5 4) (2 4 8)
DBR (2 3 6) (2 8 6)
DBL (3 4 6) (3 7 5)

Move Vertex Orientation
UFR (1 2 0 2 0 2 0 0)
UFL (2 0 2 1 0 0 2 0)
DFR (2 0 0 0 2 1 2 0)
DFL (0 0 0 2 0 2 1 2)
BRU (2 1 2 0 2 0 0 0)
BLU (0 2 1 2 0 0 0 2)
DBR (0 2 0 0 1 2 0 2)
DBL (0 0 2 0 2 0 2 1)

UFR*UFL (0 2 2 2 0 0 2 0)
DFR*DFL (2 0 0 2 0 0 2 2)

Note: The orientations for the generator moves contain two repeated
orbits - permutations of (1 0 0 0) and permutations of (2 2 2 0).

11.2 Mathematical description of the 2 × 2

cube moves

This section, which is based on [DL], derives the group structure of the 2× 2
Rubik’s cube.

A position on the 2× 2 cube is determined by
(a) a permutation of the vertices, and
(b) the orientation of the corner sub-cubes.
An illegal move on the 2× 2 cube is a reassembly of the corners.
Let

H =< R,L, U,D, F,B, and all the illegal moves > .



206 CHAPTER 11. OTHER RUBIK-LIKE PUZZLE GROUPS

This will be called the enlarged 2× 2 cube group. LetG =< R,L, U,D, F,B >.
G is contained in H with G < H.

Let C8
3 = {0, 1, 2}8 be the group of 8-tuples with coordinate-wise addition

mod 3. Let v : H → C8
3 be defined as follows: Assume h ∈ H sends the ith

corner to the jth corner. vi(h) is the number in C3 = {0, 1, 2} which describes
the orientation that the standard reference marking of the ith corner is sent
to relative to the standard reference marking of the jth corner. The values
of v are tabulated in (198).

Let SV be the group of permutation of corner sub-cubes. We may identify
SV with S8 since we have labeled the corners 1, ..., 8. H is a subset of the
Cartesian product SV × C8

3 .
Let p(h) denote the permutation of the vertices of the cube associated to

h ∈ H. We have

(v, r) ∗ (v′, r′) = (v + r(v′), r ∗ r′)
(~v(g), p(g)) ∗ (~v(h), p(h)) = (~v(g) + p(g)~v(h), p(g) ∗ p(h))

= (~v(g ∗ h), p(g ∗ h)).

It is not hard to show, based on the results of the previous section, that
H = C8

3 >CS8 = {(v, r) | r ∈ SV , v ∈ C8
3}. In other words, H is the wreath

product of S8 and C3.

Theorem 210. A two-tuple (v, r) ∈ C8
3 × SV corresponds to a legal position

iff v1 + ...+ v8 ≡ 0 (mod 3) (conservation of twists).

proof: PART 1: In this part, we show that any pair (v, r) as in the
theorem (where v satisfies conservation of twists) corresponds to a legal move
g in such a way that r = ρ(g) and v = ~v(g).

Case 1: Assume r = 1 and v is arbitrary. From the solved position,
any two corners, corner i and corner j say, can be twisted so that corner
i has orientation 1, corner j has orientation 2, and all other corners have
orientation 0. Call such a move ei,j. Example: (R−1 ∗D2 ∗R ∗B−1 ∗U2 ∗B)2

is e2,7.
Let y = a1 ∗ e1,8 + ...+a7 ∗ e7,8, where ai ∈ {0, 1, 2}. This is a move of the

2×2 Rubik’s cube of the form (v, 1) - in other words, it permutes nothing but
may twist some corners. By construction, all moves of this form are legal.
For each ai ∗ ei,8 there are three different possible positions (independent of
all other aj ∗ ej,8). Since there three choices for each ai, there are a total of
37 distinct moves of the form y as above.
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On the other hand, there are exactly 37 possible moves of the form (v, 1)
which satisfy the conservation of twists. (proof: If v = (v1, ..., v8), vi ∈
{0, 1, 2}, and v1 + ...+v8 ≡ 0 (mod 3), then there are 3 ways to choose each
of v1, .., v7 but then once these are fixed the consevation of twists condition
leaves no choice for v8. This leaves a total of 37 choices.) These 37 possible
moves include, of course, the legal moves of the form y above. Thus every
move of the form (1, v), with v satisfying conservation of twists, is legal.

Case 2: Assume v = ~0 and r is arbitrary. Recall S8 is generated by the
two-cycles (see chapter 3 above, §§3.3-3.4).

Claim 1: Given any pair of corners, there is a 2-cycle move which swaps
them. (Example: F−1 ∗ U ∗ B ∗ U−1 ∗ F ∗ U2 ∗ B−1 ∗ U ∗ B ∗ U2 ∗ B−1).
Once two corners have been swapped, you may correct the orientation of any
sub-cube by Case 1. Thus any permutation which preserves orientations is a
legal moves.

Case 3: Assume v and r are both arbitrary but satisfying conservation of
twists. By case 2, we may make a legal move that changes (v, r) to (v, 1).
By case 1, (v, 1) is a legal move.

PART 2: In this part, we show that any legal move satisfies conservation
of twists.

Assume (v, r) ∈ C8
3 × SV is a legal move.

Define the length of a move g ∈ G to be the smallest number n of gener-
ators needed to create the move, written length(g) = n.

Induction hypothesis: If a move is length n, it satisfies conservation of
twists.

step n = 1: Every ~v(x) where x ∈ {R,L, U,D, F,B} satisfies the conser-
vation of twists.

step n > 1: Assume the induction hypothesis is true for all lengths≤ n−1.
Let x be length n and write x = x1 ∗ x2, where length(x1) ≤ n − 1 and
length(x2) = 1. Then ~v(x) = ~v(x1) + p(x1)~v(x2), by the group operation.
Furthermore, v(x1) satisfies conservation of twists by the induction hypothe-
sis. Since p(x1) simply permutes the coordinates of ~v(x2), ~v(x2) still satisfies
the conservation of twists. The sum of moves satisfying conservation of twists
still satisfies conservation of twists.

Conclusion: by induction, any move (v, r) ∈ C8
3 ×SV that is a legal move

satisfies the conservation of twists. �
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11.3 On the group structure of the pyraminx

The results of this section were worked out in A. Luers [Lu].
Notation: Let

• V denote the vertices of the tetrahedron (which we identify with the
set of corner pieces of the pyraminx),

• E denote the edges of the tetrahedron (which we identify with the set
of edge pieces of the pyraminx),

• C the set of interior pieces of the tetrahedon (ie, movable pieces of the
pyraminx not in E or V ),

• SV the permutation group of V ,

• AV the alternating group of V ,

• SE the permutation group of E,

• AE the alternating group of E.

Assume that the tetrahedron is lying on a flat surface in front of you,
with the triangle base pointing away from you. The corners are denoted L
(left), R (right), U (up), and B (back).

Basic Moves: Opposite each corner or vertex there are three layers: the
tip, the middle layer, and the opposite face. Let

• l denote the 120 degree clockwise rotation of the tip containing the left
corner,

• L denote the 120 degree clockwise rotation of the tip/middle layer
containing the left corner,

• r denote the 120 degree clockwise rotation of the tip containing the
right corner,

• R denote the 120 degree clockwise rotation of the tip/middle layer
containing the right corner,

• u denote the 120 degree clockwise rotation of the tip containing the up
corner,
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• U denote the 120 degree clockwise rotation of the tip/middle layer
containing the up corner,

• b denote the 120 degree clockwise rotation of the tip containing the
back corner,

• B denote the 120 degree clockwise rotation of the tip/middle layer
containing the back corner.

Let G =< R,L, U,B, r, l, u, b > denote the pyraminx group.
Each move g ∈ G induces a permutation of E denoted σ(g). Note that

G does not permute the vertices. Furthermore, the tip moves r, l, u, b do not
effect the edges.

Lemma 211. σ : G→ SE is a group homomorphism.

Example 212. ρ(L) is a 3-cycle in SV , σ(L) is a 3-cycle in SE.

11.3.1 Orientations

Assume for the moment that the pyraminx is fixed in space as above and is in
the ”solved” position. For each corner or edge piece, choose once and for all
one facet on that piece. There are three possible choices for each corner piece
and two for the edges. Mark each of these choosen facets with an imaginary
’+’, leaving the other facets unmarked. For the rest of this section, we
shall make the following choices for the marked facets (with reference to the
numbering in §4.7 ):

• marked edge facets: 4, 6, 10, 15, 20, 25

• marked corner facets: 1, 13, 17, 23

For each edge piece, assign to a move g ∈ G either

• a ’0’ if the ’+ facet’ for that piece when it was in the solved position is
sent to the ’+ facet’ for that piece when it was in the present position,

• a ’1’ otherwise,

This yields a 6-tuple of 0’s and 1’s: ~w(g) = (w1, w2, ..., w6).
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Example 213. We compute the effect of the basic twist moves on the edge
orientations:

X ~w(X)
B (0,0,0,1,0,1)
R (0,0,1,0,1,0)
L (1,0,1,0,0,0)
U (0,1,0,1,0,0)

R ∗ U−1 ∗R−1 ∗ U (1,1,0,0,0,0)

For each corner piece, assign to a move g ∈ G either

• a ’0’ if the ’+ facet’ for that piece when it was in the solved position is
sent to the ’+ facet’ for that piece in the present position,

• a ’1’ if the ’+ facet’ for that piece when it was in the solved position is
sent to the facet which is a 120 degrees rotation about its vertex from
the ’+ facet’ for that piece in the present position,

• a ’2’ otherwise, thus yielding a 4-tuple of 0’s, 1’s, and 2’s: ~v(g) =
(v1, v2, v3, v4).

Example 214. We compute the effect of the basic twist moves on the corner
orientations:

X ~v(X)
B (0,0,0,2)
R (0,0,2,0)
L (0,2,0,0)
U (2,0,0,0)

Proposition 215. If ~w(g) = (w1, w2, ..., w6) corresponds to a move g ∈ G
then

w1 + w2 + ...+ w6 ≡ 0(mod 2).

Observation: There is no corresponding condition for the v1, ..., v4,
since corner moves move them around freely.

proof: The proof uses the following lemma, but is otherwise essentially
the same as the corresponding fact (Theorem 202 (c)) which we proved for
the Rubik’s cube. The modifications required for the proof are left to the
student as an exercise to test their understanding of the argument. �
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Lemma 216. For g, h ∈ G, we have

~w(g ∗ h) = σ(g)−1(~w(h)) + ~w(g).

proof: The proof is essentially the same as the corresponding fact (Lemma
199) which we proved for the Rubik’s cube. The modifications required for
the proof are left to the reader as an exercise. �

Lemma 217. For g, h ∈ G, we have

~v(g ∗ h) = ~v(h) + ~v(g).

Exercise 11.3.1. Prove this lemma.

Let H denote the enlarged pyraminx group generated by G and the ”il-
legal edge moves” (that is, one may physically remove the edge pieces and
reassemble the pyraminx. Illegal center or corner moves are not allowed in
H. Let

H∗ = {(s, x, y) | r ∈ SV , s ∈ SE, x ∈ C4
3 , y ∈ C6

2}

and define ∗ : H∗ ×H∗ → H∗ by

(s, x, y) ∗ (s′, x′, y′) = (s ∗ s′, x+ x′, s′(y) + y′).

Theorem 218. • H∗ is, with this operation, a group.

• There is are isomorphisms

H ∼= H∗ ∼= C4
3 × (C6

2 >CSE),

and hence between H and the direct product of the tip moves C4
3 and

the wreath product

C4
3 × (SE wr C2).

• The map G→ H∗ defined by

g 7−→ (σ(g), ~v(g), ~w(g)),

is a homomorphism.
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11.3.2 Center pieces

Each corner piece has 3 center pieces neighboring it.
Facts:

• These center pieces, in the middle layer down from the corner and never
be moved into any other corner’s middle layer.

• The center pieces associated to a corner can never be moved into a
middle layer associated to another corner.

• The center pieces associated to a corner can always be color-aligned
with the colors of the corner piece by a corner twist move.

The third part says, in other words, that the center pieces can always be
”solved” by a corner piece.

11.3.3 The group structure

Theorem 219. G is isomorphic to

{(s, x, y) ∈ H∗ | s even, y1 + y2 + ...+ y6 ≡ 0(mod 2)}.

The idea to prove this is to show that

•

AE =< σ(R), σ(L), σ(U), σ(B) >

•

G → AE,
g 7−→ σ(g),

is surjective,

• G → {(w1, ..., w6) ∈ C6
2 | w1 + ... + w6 ≡ 0(mod 2)}, g 7−→ ~w(g), is

surjective (as a map of sets).
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Here’s the proof of the first point: We can label (as in §5.10 ) the edges
1, 2, ..., 6 so that the edges on the front face are 1, 2, 3, resp., where the
fl edge is 1, the fr edge is 2, and the fd edge is 3 (here f , r, l, and d
denote the front face, right face, left face, and down face, resp.). The move
[R,U−1] = R ∗ U−1 ∗ R−1 ∗ U is the counterclockwise cyclic permutation
(1, 3, 2) of the edges on the f face. (This move does not affect any corners
but does flip some edges, a fact which we may ignore for now since we are
only concerned with the permutations now.) In particular, (1, 3, 2) may be
written as a product of the generators in {σ(R), σ(L), σ(U), σ(B)}. Now pick
any i ∈ {4, 5, 6} and let s ∈ G denote a move which sends edge i to edge 2
and does not move edge 1 or 3. The move s ∗ [R,U−1] ∗ s−1 is the 3-cycle
(1, 3, i). It does not affect any corners or other edges. By Lemma 160, these
permutations generate A6

∼= AE. �
The second point follows immediately from the first point proven above.
Here’s the proof of the last point: The move g = [R,U−1] has the following

effect on the orientation: w(g) = (1, 1, 0, 0, 0, 0). The group

{(w1, ..., w6) ∈ C6
2 | w1 + ...+ w6 ≡ 0(mod 2)} ∼= C5

2

is a vector space over F2. The 5 vectors listed in the table for the values for
w are all independent. It follows from this and the group law for G proves
that the map g 7−→ ~w(g) is surjective. �

The theorem 219 above is thus proven.

11.4 A uniform approach

This section shall follow [GT] in a uniform discussion of the pyraminx, the
3× 3 Rubik’s cube, and the megaminx. Other puzzle groups are analyzed in
[GT] (see also [B], chapter 2, [NST], chapter 19).

Notation: Let

• Gp (resp., GR, Gm) denote the permutation puzzle group generated by
the basic moves of the pyraminx (resp., the Rubik’s cube, megaminx),

• Vp (resp., VR, Vm) denote the set of vertex pieces of the pyraminx (resp.,
the Rubik’s cube, megaminx),

• Ep (resp., ER, Em) denote the set of edge pieces of the pyraminx (resp.,
the Rubik’s cube, megaminx),
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• Fp (resp., FR, Fm) denote the set of facets of the movable pieces of the
pyraminx (resp., the Rubik’s cube, megaminx).

11.4.1 General remarks

Let G, V,E, F (resp.) denote either Gp, Ep, Vp, Fp (resp.), or GR, ER, VR, FR
(resp.), or Gm, Em, Vm, Fm (resp.).

Lemma 220. G acts on the set V , (resp., E,F ).

If g is any move in G then, since g acts on the sets V , E, and F , we may
regard g

• as an element of the symmetric group SV of V ,

• as an element of the symmetric group SE of E, or

• as an element of the symmetric group SF of F .

These groups SV , SE, and SF are different, so to distinguish these three
ways of regarding g, let us write

• gV for the element of SV corresponding to g,

• gE for the element of SE corresponding to g,

• gF for the element of SF corresponding to g.

What is the kernel of fV ? What is its image? To answer this question
(actually, we shall not answer this precise question but one similar to it) we
introduce a certain subgroup of the symmetric group.

Recall the alternating group AX is the subgroup of all even permutations
of X (in the sense of Example 82 above).

11.4.2 Parity conditions

Consider the function
fV E : G→ SV × SE

g 7−→ (gV , gE)

It is easy to check that this is a homomorphism.
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Theorem 221. The image fV E(G) of fV E is isomorphic to{
AV × AE, for the pyraminx, megaminx,

{(x, y) ∈ SV × SE | x, y both even or both odd}, for Rubik′s cube.

This is a consequence of a result proven below in the case of the Rubik’s
cube. To see what this theorem means, we look at an example.

Example 222. Let G = GR.
Question: Can you find a move of the Rubik’s cube which flips a single

edge subcube over, leaving the rest of the puzzle pieces unmoved?
If so, then the image of fEV would have to contain an element (x, y) with

x = 1 (since moving an edge only does not effect the vertices) and where y
is a 2-cycle. But x = 1 is even and a 2-cycle is odd. This contradicts the
theorem, which says that x, y are either both even or both odd. Therefore,
the answer is no: a single edge flip is impossible.

Next, some more notation: let

K = ker(fV E) C G

denote the kernel of the map fV E introduced above. This is a normal sub-
group of G.

Example 223. In the case of the Rubik’s cube, this subgroup K is the set of
moves which may reorient (i.e., flip or rotate) a subcube but does not swap
it with some other subcube. For example, the move

(R−1 ∗D2 ∗R ∗B−1 ∗ U2 ∗B)2,

which twists the ufr corner clockwise and the bld corner counterclockwise,
belongs to K.

Theorem 224. (Gold, Turner [GT]) G is a semi-direct product of K with
fV E(G).

This is a consequence of a result proven above in the case of the Rubik’s
cube. In the case of the 3 × 3 Rubik’s cube, some more details are given in
chapter 10. See also [GT] or [NST], chapter 19.
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Chapter 12

Interesting subgroups of the
cube group

“[Lefschetz and Einstein] had a running debate for many years.
Lefschetz insisted that there was difficult mathematics. Einstein
said that there was no difficult mathematics, only stupid mathe-
maticians. I think that the history of mathematics is on the side
of Einstein.”

Richard Bellman

EYE OF THE HURRICANE, 1984

It is remarkable that several “familiar” groups may be embedding into
the Rubik’s cube group, and hence be regarded as a subgroup of the cube
group. For example, we have seen in an earlier chapter how to embed the
group of quaternions Q = {1,−1, i,−i, j,−j, k,−k} inside the Rubik’s cube
group.

The subgroup method, discussed in the appendix, is a method for inves-
tigating God’s algorithm using a computer. One of the groups arising in this
method is the group studied in the first section of this chapter. The second
section studies the “two faces” group.

217
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12.1 The squares subgroup

Let G denote the subgroup of the Rubik’s cube group generated by the
squares of the basic moves:

G :=< U2, D2, R2, L2, F 2, B2 >

called the squares group. We shall verify below that the order of this group is
21334. (By the way, as a consequence of this and Burnside’s theorem [R], ch.
5, it follows that G is a solvable group. We shall not need this fact.) In this
section, we will investigate the group struction of G using the same method
which was used to determine the structure of the Rubik’s cube group.

The group G acts on the set of edges and the set of vertices of the cube.
There is a choice of orientation of the edges (resp., corners) similar to that
in §§10.1.2-3 such that each element of G preserves the edge (resp., corner)
orientations.

The action φ of G on the edges E of the cube has exactly 3 orbits: the
middle slice parallel to the right face ER, the middle slice parallel to the
front face EF , the middle slice parallel to the up face EU . In particular,
the group G acts (by restriction) on ER, EF , and EU . The action ψ of
G on the set of vertices V has exactly 2 orbits: V1 = {ufr, ubl, dfl, drb},
V2 = {ufl, ubr, dfr, dlb}. Therfore, the group G acts (by restriction) on V1

and V2. These actions yield associated homomorphisms:

φ : G→ SE,
φER

: G→ SER
,

φEF
: G→ SEF

,
φEU

: G→ SEU
,

ψ : G→ SV ,
ψ1 : G→ SV1 ,
ψ2 : G→ SV2 .

Proposition 225. G = φ(G)× ψ(G).

The proof of this is left as an exercise (hint: use the second fundamental
theorem of Rubik’s cube theory).

Lemma 226. If g ∈ G then

sgn(φER
(g))sgn(φEF

(g))sgn(φEU
(g)) = 1.
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Conversely, if (p1, p2, p3) ∈ SER
× SEF

× SEU
then there is a g ∈ G such that

p1 = φER
(g), p2 = φEF

(g), p3 = φEU
(g) if and only if sgn(p1)sgn(p2)sgn(p3) =

1.

As a consequence, we find that

φ(G) = ker(sgn× sgn× sgn : φER
(G)× φEF

(G)× φEU
(G)→ {±1})

∼= (S4 × S4 × S4)/C2.

In particular, |φ(G)| = (4!)3/2 = 2833.
It remains to determine ψ(G). We denote this group by H for nota-

tional simplicity. We may label the vertices of the cube 1, 2, ..., 8 in such a
way that H =< u, d, l, r, f, b >, where u = (1, 3)(2, 4), f = (1, 8)(4, 5), d =
(5, 7)(6, 8), b = (3, 6)(2, 7), r = (2, 5)(1, 6), l = (4, 7)(3, 8). The action of H
on the set of vertices of the cube has two orbits ({1, 3, 6, 8} and {2, 4, 5, 7}
in our labeling above), which we denote for simplicity by V1 and V2. There
are homomorphisms

ψ1 : H → SV1 , ψ2 : H → SV2 ,

but we shall not say much about these. Instead, we use GAP [Gap] to
determine more about H. According to GAP, this group has |H| = 96
elements and 10 conjugacy classes (by the way, GAP also says that all the
generators u, ..., b are conjugate):

size representative
1 1
12 d=(5,7)(6,8)
32 l*d=(3,6,8)(4,5,7)
3 d*l*b*l=(2,4)(5,7)
12 d*b*l=(2,4,7,5)(3,6)
3 l*b*l*u=(1,3)(6,8)
12 b*l*u=(1,3,6,8)(4,7)
3 u*d=(1,3)(2,4)(5,7)(6,8)
12 l*d*u=(1,3,6,8)(2,4,5,7)
6 u*r*d*f=(1,3)(2,5)(4,7)(6,8)

The stabilizer in H of any vertex v ∈ V , written Hv, is a subgroup of
order 24 isomorphic to the symmetric group S4.
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Furthermore, H has a normal subgroup N of order 48 (and index 2),
where N is a semidirect product of C3 by C4

2 , with C4
2 normal in N .

This is all we shall say about H.
The order of G is therefore G = |φ(G)| · |H| = 96 · (4!)3/2 = 21334, as

claimed above.

12.2 PGL(2,F5) and two faces of the cube

The material in this section was communicated to me by Dan Bump (the idea
originally arose in D. SIngmaster’s [Si]). This section is relatively advanced
in that it requires more mathematical background from the reader than the
previous chapters.

This section is devoted to ”determining” the two-face group generated by
only two basic moves, < F,U >. D. Singmaster [Si] has shown that

< F,U >∼= S7 × PGL2(F5),

where PGL2(F5) is a group of order 120 which is defined below. Here S7

arises from the action of the Rubik’s cube group on the edges and PGL2(F5)
arises from the action on the corners. In this chapter, we focus on the action
on the corners.

12.2.1 Finite fields

In this subsection, we introduce fields and especially finite fields.

The general definition

A field is a set F with an addition law + and a multiplication law · which
obeys the a list of properties similar to those for the field of real numbers R.
More precisely, we call (F,+, ·) a field if

(F1) (F,+) is an abelian group, with an identity element denoted 0 (”the
additive group of the field”),

(F2) for all x, y, z ∈ F , (x+ y)z = xz + yz (”distributive law”),

(F3) (F − {0}, ·) is an abelian group, with an identity element denoted 1
(”the multiplicative group of the field”).
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It happens to be true that if F is a finite field then not only is (F −{0}, ·)
an abelian group, it is actually a cyclic group.

Definition 227. Let F1, F2 be wo fields. A function f : F1 → F2 is called a
field isomorphism if

(a) when f is restricted to the additive group (F1,+), call this restriction
f again, it yields an isomorphism of groups f : (F1,+)→ (F2,+),

(b) when f is restricted to the multiplicative group (F1−{0}, ·), call this
restriction f again, it yields an isomorphism of groups f : (F1 − {0}, ·) →
(F2 − {0}, ·).

A construction of Fp

Recall from §2.3 that congruence modulo n (n > 1 an integer) is an equiv-
alence relation. Let n = p be a prime and let k denote the equivalence
class of k with respect to this equivalence relation. Let Fp denote the
finite field with p elements, so Fp is, as a set,

Fp = {0, 1, ..., p− 1},

with addition and multiplication being performed mod p.

Example 228. When p = 5, F5 will denote the finite field with 5 elements, so
F5 is, as a set,

F5 = {0, 1, 2, 3, 4},

with addition and multiplication being performed mod 5.

It is a general fact that if F is any finite field then there is a prime
number p such that px = 0 for all x ∈ F . This prime number is called the
characteristic of F . The easiest example of a finite field with characteristic
p is the finite field having p elements, Fp. It is not hard to see that any
other finite field F of characteristic p must be a finite dimensional vector
space over Fp. (Even if you’ve never seen a ”vector space over Fp” defined
before, if you know what a ”real vector space” is then you’ve got the right
idea.) The dimension of the vector space F is called the degree of F over Fp,
denoted d = [F : Fp], and F is called a field extension of Fp of degree d. It is
a general fact that for fixed p, d there is, up to isomorphism, only one such
field.

Next, we shall show how to construct in a very simple way such extensions.
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A construction of finite fields

First, some general remarks. Since F is a finite dimensional vector space
containing Fp, it has a vector space basis which we label as

e1 = 1, e2, ..., ed.

Thus F is, as a set, the collection of elements of the form

x1e1 + ...xnen, xi ∈ Fp.

Since F is a field, there are ckij ∈ Fp, which we call structure constants, such
that

eiej =
n∑
k=1

ckijek.

There are dki ∈ Fp, which we call inversion constants, such that

e−1
i =

n∑
k=1

cki ek.

These constants determine how to multiply and divide elements of F . We
shall consider F ”completely described” once we explicitly determine these
constants.

Example 229. Let p = 5, so F5 = {0, 1, 2, 3, 4}. The set of squares is given
by

{x2 | x ∈ F5} = {0, 1, 4}.

In particular, 2, 3 are not squares in this field. Let e2 =
√

2 be a formal sym-
bol for some element which satisfies e22 = 2. This is a root of the polynomial
x2 − 2 = 0.

The vector space F over F5 with basis {e1 = 1, e2} is 2-dimensional over

F5. Two elements x1e1 + x2e2 = x1 + x2

√
2 and y1e1 + y2e2 = y1 + y2

√
2 are

multiplied by the rule

(x1 + x2

√
2) · (y1 + y2

√
2) = x1y1 + 2x2y2 + (x1y2 + y1x2)

√
2.

It is a degree 2 field extension since

c111 = 1, c211 = 0, c112 = 0, c212 = 1, c121 = 2, c221 = 0,

and
d1

1 = 1, d2
1 = 0, d1

2 = 0, d2
2 = 3.
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The construction used in the above example may be summarized more
generally as follows:

1. Pick an element m ∈ Fp which is not the square of another element.

2. Let e1 = 1 and e2 =
√
m be a formal symbol for some element which

satisfies e22 = m.

3. As a set, let F = {xe1 + ye2 | x, y ∈ Fp}. To define F as a field, let +
be ”componentwise addition” mod p and let · be defined by

(x1 + x2

√
m) · (y1 + y2

√
m) = x1y1 +mx2y2 + (x1y2 + y1x2)

√
m.

A finite field F constructed in this way is called a quadratic extension of
Fp.

More generally, let d > 1 be an integer.

1. Pick an element m ∈ Fp which is not the dth power of another element.

2. Let e1 = 1, let e2 = m1/d be a formal symbol for some element which
satisfies ed2 = m, and (if d > 2) let ei = ei−2

2 for i = 3, ..., d.

3. As a set, let F = {x1e1 + ... + xded | xi ∈ Fp}. To define F as a
field, let + be ”componentwise addition” mod p and let · be defined by
expanding and collecting (x1e1 + ...+ xded) · (y1e1 + ...+ yded).

A finite field F constructed in this way is called a degree d extension of

Fp. It has pd elements. It turns out that any two fields having pd elements
must be isomorphic. Therefore, any finite field must be isomorphic to one
described above.

Definition 230. The projective plane

P1(Fp) = {0, 1, ..., p− 1,∞}

is defined to be the set of lines through the origin in the Cartesian plane F2
p,

associating each number (including ∞) with the slope of the corresponding
line.
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12.2.2 Möbius transformations

If a, b, c, d ∈ Fp are given numbers (not all equal to zero) then we define the
Mobius transformation f by:

f : P1(Fp)→ P1(Fp)
x 7−→ ax+b

cx+d
.

Theorem 231. f is a bijection if and only if det

(
a b
c d

)
6= 0.

Before proving this, we need the following

Definition 232. Define

GL(2,F5) = {
(
a b
c d

)
| a, b, c, d ∈ F5, ad− bc 6= 0}.

This set is a group under ordinary matrix multiplication and, furthermore,
acts on the set P1(F5) by means of Mobius transformations thus defining a
function (

a b
c d

)
: P1(F5)→ P1(F5)

Lemma 233. (a) The center of GL(2,Fp) (i.e., the subgroup of all elements
which commute with every element in GL(2,Fp)) is given by

Z(GL(2,Fp)) = {
(
a 0
0 a

)
| a ∈ Fp, a 6= 0}.

(b) This subgroup is normal in GL(2,Fp).
(c) There is an isomorphism

Z(GL(2,Fp)) ∼= F×p .

proof: (a) Since(
r 0
0 r

)(
a b
c d

)
=

(
r 0
0 r

)(
a b
c d

)
we can conclude that

{
(
a 0
0 a

)
| a ∈ Fp, a 6= 0} ⊂ Z(GL(2,Fp)).
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To show that

Z(GL(2,Fp)) ⊂ {
(
a 0
0 a

)
| a ∈ Fp, a 6= 0},

assume that (
r s
u v

)(
a b
c d

)
=

(
r s
u v

)(
a b
c d

)
for all a, b, c, d. This implies bu = cs for all b, c. This is impossible unless
u = s = 0. This in turn forces cr = cv, for all c. This implies r = v. This
proves the desired inclusion.

The proof of parts (b) and (c) are left as an exercise for the reader. �

Definition 234. The quotient group, denoted PGL(2,Fp) = GL(2,Fp)/Z(GL(2,Fp)),
is called the projective linear group. (This is a group since the center is a
normal subgroup by the lemma above.)

Lemma 235. This group PGL(2,Fp) acts on the set P1(Fp) by means of the
linear fractional transformations.

Remark 24. In fact, the action of PGL(2,Fp) on the set P1(Fp) is 3-transitive.
This not hard to prove but we left it to the interested reader to look it up in
[R] (see Theorem 9.48).

proof: First, we show that the GL(2,Fp) acts on the set P1(Fp) by means
of the linear fractional transformations. In other words, if

φ

(
a b
c d

)
(x) =

ax+ b

cx+ d

then

(a) φ

(
1 0
0 1

)
(x) = x, for all x (i.e., the linear fractional transformation

φ

(
1 0
0 1

)
is the identity map),

(b) φ(A) ◦ φ(B) = φ(AB), for all A,B ∈ GL(2,Fp).

We leave (a) to the reader and check (b). Let A =

(
a b
c d

)
and B =(

r s
u v

)
. Then

AB =

(
ar + bu as+ bv
cr + du cs+ dv

)
,



226CHAPTER 12. INTERESTING SUBGROUPS OF THE CUBE GROUP

so

φ(AB)(x) =
(ar + bu)x+ as+ bv

(cr + du)x+ cs+ dv
.

On the other hand, φ(A)(φ(B)(x)) is equal to

φ(A)(
rx+ s

ux+ v
) =

a( rx+s
ux+v

) + b

c( rx+s
ux+v

) + d
.

Simplifying this, we see that the last two displayed equations are equal. This
verifies (b).

Therefore, GL(2,Fp) acts on the set P1(Fp).

Let Z = Z(GL(2,Fp)). Since φ

(
a b
c d

)
= φ

(
ra rb
rc rd

)
, for all non-

zero r, it follows that we may define an action of PGL(2,Fp) on the set
P1(Fp) by φ(A · Z) = φ(A), for all A ∈ GL(2,Fp).
�
proof of the theorem: Let φ be as above and let f be as in the statement

of the theorem.

(⇐): Since GL(2,Fp) acts on the set P1(Fp), we have 1 = φ(AA−1) =
φ(A)φ(A−1), so φ(A) is invertible. This implies that f is a bijection.

(⇒): We prove the contrapositive. Suppose that det

(
a b
c d

)
= 0. By a

result in linear algebra (see any text book, for example [JN]), the row vectors
of this matrix are linearly dependent. This implies that there is an r ∈ Fp
such that either (a, b) = r · (c, d) or (c, d) = r · (a, b). In either case, the
quotient f(x) = ax+b

cx+d
is a constant independent of x, so cannot be surjective.

This proves that f is not a bijection, which verifies the contrapositive.

�

12.2.3 The main isomorphism

Let G denote the Rubik’s cube group. Let H be the subgroup generated by
F and U :

H =< F,U > .

Exercise 12.2.1. Show the group H acts on the set of vertices above (via the
Rubik’s cube group).
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We describe how to label the six vertices on the ”up” and ”front” faces
of the cube,

fru, flu, dfl, dfr, bru, blu,

with the elements in the projective plane

P1(F5) = {0, 1, 2, 3, 4,∞}

in a certain way. More precisely, we will show label the 6 vertices above with
elements of P1(F5) in such a way that (a), (b) of the following theorem hold
true.

Theorem 236. There are a0, a1, b0, b1, c0, c1, d0, d1 ∈ F5 (given explicitly be-
low) such that

(a) the action of F (the usual rotation of the front face) on these vertices
is the same as the action of some linear fractional transformation

fF (x) =
a0x+ b0
c0x+ d0

(b) the action of U (the usual rotation of the up face) on these vertices is
the same as the action of some linear fractional transformation

fU(x) =
a1x+ b1
c1x+ d1

In other words, the basic moves F , U may be regarded as linear fractions
transformations over a finite field!

Theorem 237. PGL(2,F5) =< fF , fU >.

Remark 25. PGL(2,F5) is isomorphic to S5 (this is part of Exercise 9.25 in
[R]).

We shall prove these below.

12.2.4 The labeling

Label the up and front vertices as
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Let

fF (x) =
x− 1

x+ 1
, fU(x) = 3x+ 3.

The map
φ : F 7−→ fF , U 7−→ FU ,

extends to a surjective homomorphism of groups

φ : < F,U > → < fF , fU > ⊂ PGL(2,F5).

Exercise 12.2.2. Verify the first theorem above.

12.2.5 Proof of the second theorem

Let (
a b
c d

)
∗
∈ PGL(2,FF )

denote the image of (
a b
c d

)
∈ GL(2,FF )

under the natural map GL(2,F5)→ PGL(2,F5), g 7−→ F×5 ∗ g.
Since

f 2
U =

(
0 −1
1 0

)
∗

we have (
0 −1
1 0

)
∗
∈< fU , fF > .
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Since

fF ∗ f 5
U =

(
−1 0
−1 −1

)
∗

it follows that (
1 0
1 1

)
∗
∈< fF , fU > .

Conjugating this matrix by f 2
U , we find that(

1 −1
0 1

)
∗
∈< fF , fU > .

It is known that SL(2,F5) is generated by elementary transvections (see
[R]). Therefore,

PSL(2,F5) ⊂< fF , fU >⊂ PGL(2,F5).

It is also known (see [R]) that

|PSL(2,F5)| = 60 and |PGL(2,F5)| = 120.

It remains to show that there is an element of < fF , fU > which does
not belong to PSL(2,F5). We claim that such an element is fU . Note that
det(fU) belongs to the set

3(F×5 )2 = {3x2 | x ∈ F×5 }.

But an element of PSL(2,F5) must have determinant 1. Since 3−1 = 2 (mod
5) is not a square mod 5, there is no element of F5 which satisfies 1 = 3x2.
Thus fU does not belong to PSL(2,F5). �

Exercise 12.2.3. As an application of theorem 237, use the example in section
5.4.2 to show that there exists an embedding D12 ↪→ PGL(2,F5) of the
symmetry group of the hexagon into PGL(2,F5).

12.3 The cross groups

Define a cross move of the cube to be a move of the form X ∗ Y −1, where
X, Y ∈ {R,L, U,D, F,B}. The subgroup of the Rubik’s cube group gener-
ated by the cross moves will be called the cross group.



230CHAPTER 12. INTERESTING SUBGROUPS OF THE CUBE GROUP

The cross moves permute the set V of vertices of the cube and there-
fore generate a subgroup of SV . This is called the vertex cross group. The
cross moves permute the set E of edges of the cube and therefore generate a
subgroup of SE. This is called the edge cross group.

All the enties in the following table are, as far as I am aware, are new
except for the M12 entry.

Rubik polyhedra edge cross group vertex cross group
tetrahedron A5

∼= PSL2(F5) C2 × C2

cube A12 PSL2(F7)
octahedron A12 PSL2(F5)

dodecahedron A30 A20

icosahedron A30 A12

rubicon A30 M12

In fact, the subgroup of the dodecahedral edge cross group generated by
a subset of the cross moves can yield (smaller but still simple) alternating
groups.

Problem: (F. Dyson) Work out the analogous cross groups of the ”Ru-
bicized” 4-dimensional regular polyhedra.

This is only known for the 4-dimensional Rubik’s hypercube. In the 4-
dimensional case, one can also define the face cross group since the moves of
the 4-dimensional Rubik’s hypercube also permute the set F of 2-dimensional
faces. We have the following results:

Rubik polyhedra edge cross group vertex cross group face cross group
4-dimensional cube AE AV AF

Problem: Are any of the analogous cross groups of the ”Rubicized”
3-dimensional Archimedian polyhedra simple?

It appears that the vertex cross group of the regular truncated cube is
not simple.

12.3.1 PSL(2,F7) and crossing the cube

Let C denote the vertex cross group of the Rubik’s cube.

Theorem 238. C ∼= PSL2(F7).
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The first proof of this is by computer!
first proof: Gap [Gap] gives that C is a simple group of order 168. By

the classification of simple groups (or, more simply, Exercise 9.26 in [R]), C
must be isomorphic to PSL2(F7). �

The second proof is from [CD].
second proof: PSL2(F7) can be generated by the three matrices:

f1 =

(
0 −1
1 0

)
, f2 =

(
2 1
0 1

)
, f3 =

(
2 0
0 1

)
.

We will label the vertices of the cube in the following manner:

Labeling the cube by the projective line P 1(F7)

Under this labeling, we can show that

• the image of the move m1 = (UD−1)2 will permute the vertices in
this way: (∞, 0)(1, 6)(2, 3)(4, 5), The same permutation is given by the
mobius transform (0x− 1)/(x+ 0) acting on P 1(F7).

• m2 = UR−1 gives us the permutation: (0, 1, 3)(2, 5, 4), which is given
by (2x+ 1)/(0x+ 1) acting of P 1(F7).

• m3 = BU−1LB−1 gives us the permutation (1, 2, 4)(3, 6, 5), which is
given by (2x+ 0)/(0x+ 1) acting on P 1(F7).
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You should notice that if the constants in these Möbius transformations
(a, b, c, d) are written in matrix form, they correspond to the generators of
PSL2(F7). Now we will define a homomorphism q : C → PSL2(F7), such
that q(m1) = f1, q(m2) = f2, q(m3) = f3. We want to show that our q is an
isomorphism.

To do this we will first show that it is surjective. Let f be a matrix in
PSL2(F7), which can be written as a product of generators f1, f2, f3 (where
q(m1) = f1, q(m2) = f2, q(m3) = f3). Now take f as some element of
PSL2(F7). f can be broken down as a product of its generators, f1, f2, f3,
we’ll say

f =
n∏
k=1

f ek
ik
.

Since we have a homomorphism, we can write it as a product of the images of
the generators of C. Again we can rewrite it as f = q(

∏n
k=1m

ek
ik

). Therefore
q is surjective.

To show that q is one to one we need to know that PSL2(F7) has order
168 [R], and that the order of the cross group is also 168. (This fact was
proven by computer.) We will prove by contradiction that q is one to one.

Now we assume that c1 and c2 are elements of C, such that q(c1) = q(c2),
and c1 is not equal to c2. |PSL2(F7)| = |q(C)|. We now subtract c2 from
C , and |q(C)| = |q(C − c2)| because q(c1) = q(c2). Now we can say that
|q(C − c2)| < or = |C − c2| because we know that q is surjective.

Since we have taken c2 out of C, we know |C − c2| < |C|, which by
transitivity implies |PSL2(F7)| < |C|. This is a contradiction because we
know |PSL2(F7)| = |C|. Therefore q is injective.

Now that we have shown that q is both surjective and injective, it is
bijective and an isomorphism. �

The above proof of the theorem tells us explicitly that there exists a
labeling of the vertices V of the cube by the elements of the projective line

P1(F) = {∞, 0, 1, 2, 3, 4, 5, 6},

with the property that there is a move c : V → V in C if and only if there is
a Möbius transformation f : P1(F)→ P1(F) in PSL2(F7).

Because the group of Möbius transformations in PSL2(F7) acts 2-transitively
on the projective line P1(F) (see [R], Theorem 9.45), it follows that we have
the following
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Corollary 239. C acts 2-transitively on V . In other words, for any ordered
pairs (v1, v2), (v′1, v2) of distinct vertices there is an element c ∈ C sending
vi to v′i, for i = 1, 2.

12.3.2 Klein’s 4-group and crossing the pyraminx

We leave the main result of this section as an Exercise - actually more of a
project - for the reader.

Exercise 12.3.1. (hard) Show that the subgroup of SV generated by the twist-
untwist moves of the pyraminx is isomorphic to the Klein 4 group C2 × C2.

The determination of the cross group for the megaminx is due to J. Con-
way. It will be presented in the next chapter.
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Chapter 13

Crossing the Rubicon

”Mathematical structures are among the most beautiful dis-
coveries by the human mind. The best of these discoveries have
tremendous metaphorical and explanatory power.”

Douglas Hofstadter

METAMATHEMATICAL THEMAS, 1985

Much of the material here can be found in [CS] and is due to John Conway.
The title of this chapter is, however, ”borrowed” from a similarly worded title
of an article by D. Hofstadter [H]. More details on parts of this chapter may
be found in Ann Luers’ paper [Lu].

This chapter shall be a little more advanced than some of the others. The
reader will be assumed to be familiar with some topics covered in a course
in linear algebra and elementary number theory or coding theory. We shall
also assume some results from Rotman [R], though for the understanding of
the material in this chapter the reader may simply take them on faith.

Let g1, ..., g12 denote the basic moves of the Rubik isocahedron. A sur-
prising result of Conway states that the group generated by gi ∗ g−1

j is the
simple ”sporadic” group M12. (This is stated more precisely below.) We shall
describe, in this chapter, what M12 is and some of its remarkable properties.
They form a basis for my opinion, which I hope you will agree with, that
M12 is one of the most interesting objects in mathematics.

Let p be a prime unless otherwise stated and let q be a power of p. We
shall assume that p > 3.

235
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13.1 Doing the Mongean shuffle

Consider a deck of 12 cards labeled 0, 1, ..., 11. Let r, s be the permutations

r(t) = 11− t, s(t) = min(2t, 23− 2t).

The permutation r reverses the cards around and the permutation s is called
the ”Mongean shuffle”. To perform the reverse shuffle, simply take a stack
of cards (face down, say) in your left hand and put them in your right hand
one-at-a-time (face down). To perform the Mongean shuffle, take the same
stack of cards and, one-at-a-time, put them alternately into one of two piles:
the first card face up into the first pile, the second card face down into the
second pile, the third card face up into the first pile, the fourth card face
down into the second pile, and so on until the pile is exhausted. Now pick
up the first pile of face up cards, flip the entire pile over so that they are all
fade down and put it on top of the second pile.

cards reverse shuffle Mongean shuffle
0 11 0
1 10 2
2 9 4
3 8 6
4 7 8
5 6 10
6 5 11
7 4 9
8 3 7
9 2 5
10 1 3
11 0 1

Definition 240. The Mathieu group M12 is defined to be the permutation
group M12 =< r, s > < S12.

13.2 Background on PSL2

We need a few basic facts about the projective special linear group of degree
2. We have already discussed the related group GL(2,Fp) in the previous
chapter, so we refer to there for more details.
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Definition 241. (1st version) Define SL2(Fq) to be the group of all 2 × 2
matrices having entries taken from the finite field Fq and having determi-
nant one. This is called the special linear group of degree 2 over Fq. The
center of this group, denoted Z, is the subgroup of 2 × 2 ”scalar” matrices
of the form diag(z, z), where z ∈ {1,−1}. (This is a normal subgroup of
SL2(Fq).) Define PSL2(Fq) to be the quotient SL2(Fq)/Z. This is called the
projective special linear group of degree 2 over Fq.

Definition 242. (2nd version) Define the projective line P1(Fq) of the finite
field Fq to be the q+ 1 values of the formal ratio x/y, where x, y run over all
elements of Fq. If y = 0 then we denote this formal value by ∞, so

P1(Fq) = Fq ∪ {∞}.

If q = p is a prime then we denote

P1(Fp) = {∞, 0, 1, ..., p− 1}.

Define PSL2(Fq) to be the group of all Mobius transformations on the pro-
jective line

f(x) = (ax+ b)/(cx+ d), x ∈ P1(Fq),
where ad− bc = 1 and a, b, c, d ∈ Fq (We define f(∞) = a/c.)

Mobius transformations are bijections from the projective line to itself,
so we may interpret each Mobius transformation as an element of SX , where
X = P1(Fq) (and therefore also of Sn, where n = |P1(Fq)| = q + 1).

Example 243. Let p = 11 and let f(x) = −1/x. Then

x f(x)
∞ 0
0 ∞
1 10
2 5
3 7
4 8
5 2
6 9
7 3
8 4
9 6
10 1
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Therefore, as a permutation, f = (∞, 0)(1, 10)(2, 5)(3, 7)(4, 8)(6, 9).

The following facts are known about the projective special linear group:

Theorem 244. If q > 3 then PSL2(Fq) is a simple group. Moreover, for all
prime powers q,

|PSL2(Fq)| = (q2 − 1)q/gcd(2, q − 1).

(Recall a simple group was defined in Definition 163.) This theorem is
over 100 years old. It is proven, for example, in [R].

Theorem 245. Choose a k ∈ Fq such that < k >= F×q . Let

f1(x) = x+ 1, f2(x) = k · x, f3(x) = −1/x.

Then PSL2(Fq) is generated by f1, f2, and f3. In particular, the action of
PSL2(Fq) on the projective line X = P1(Fq) yields an injective homomor-
phism PSL2(Fq)→ SX .

Basically, this is proven in [R] as well.

13.3 Galois’ last dream

Supposedly, the night before he died in a duel, Galois wrote a letter to a
friend stating the following remarkable theorem:

Theorem 246. (Galois) Assume p > 11. Then PSL2(Fp) has no embedding
into a symmetric group Sn with n ≤ p.

The following isomorphisms (for q ≤ 11) are known:

PSL2(Fq) ∼=


A4, q = 3,
A5, q = 5,
A6, q = 9.

If p = 7 or p = 11 then explicit embeddings of PSL2(Fp) into A8 (p = 7),
A12 (p = 11) are known (see [CS], ch 10, or [K] for an excellent discussion of
this).
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13.4 The M12 generation

One of the most amazing aspects about M12 is its close relationship with
other ”interesting” groups.

Definition 247. Define the permutation f4 of the set P1(Fp) = {∞, 0, 1, ..., p−
1}, for 3 ≤ p ≤ 11, as follows

f4 =


1, p = 3,

(1, 2)(3, 4), p = 5,
(1, 2)(3, 6), p = 7,

(2, 10)(3, 4)(5, 9)(6, 7), p = 11.

We have run across the group S6 before, when studying the symmetries
of the icosahedron. We have also seen that S6 is rather an interesting group
because it is the only non-abelian symmetric group Sn which has an outer
automorphism. One rather connection between M12 and S6 is given by the
following

Theorem 248. (a) If p = 5 then S6 =< f1, f2, f3, f4 >.

(b) If p = 11 then M12 =< f1, f2, f3, f4 >.

We shall see another interpretation of M12 below using coding theory!

Definition 249. Let

δ(x) =

{
x3/9, x ∈ (F23)

2 − 0,
9x3, x ∈ P1(F23)− (F23)

2.

This is an element of SX , where X = P1(F23). Define the Mathieu group M24

by

< f, δ | f ∈ PSL2(F23) > .

This is a permutation group in SX , where X = P1(F23).

By the way,

(a) (F23)
2 = {0, 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18},

(b) M12 = 8 · 9 · 10 · 11 · 12 = 95040,

(c) |M24| = 244823040.
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13.5 Coding the Golay way

Codes are used in everyday life, from ISBN numbers on books to barcodes on
food products to music CDs to satellite transmissions. There are many types
of codes, some more efficient than others, some with better error correcting
ability than others, some more practical than others, and so on. We shall
concern ourselves only with aspects which are related to (in one way or
another) permutation puzzles.

Definition 250. A q-ary code is a subset C of a finite dimensional vector
space V over the finite field Fq. A code word is an element of C. The number
of coordinates (i.e., the dimension of V) is called the length of the code word.
If q = 2 then the code is called binary (instead of 2-ary) and if q = 3 then
the code is called ternary (instead of 3-ary).

Example 251. V = Fnq = Fq × ...× Fq (n times) is a code.

Definition 252. Let Monn(Fq) denote the group of all n×n matrices which
have exactly one non-zero entry from Fq per row and per column. An element
of Monn(Fq) is called a monomial matrix.

Exercise 13.5.1. (a) Show Monn(Fq) is a group.

(b) Show |Monn(Fq)| = (q − 1)n · n!.

Definition 253. The set of all A ∈Monn(Fq) such that A∗C = C (i.e., are
the same code) is called the automorphism group of C, denoted Aut(C).

We shall see some examples below.

Definition 254. If w is a code word in Fnq then number of non-zero coordi-
nates of w is called the weight of w, denoted wt(w).

A cyclic code is a code which has the property that whenever (c0, c1, ..., cn−1)
is a code word then so is (cn−1, c0, ..., cn−2). If (c0, c1, ..., cn−1) is a code word
in a cyclic code V then we call

g(x) = c0 + c1x+ ...+ cn−1x
n−1

a generator polynomial for C .
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Example 255. The code with elements

(1, 1, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 0, 0), (0, 0, 1, 1, 0, 1, 0), (0, 0, 0, 1, 1, 0, 1)

is a binary cyclic code of length 7 and weight 3. It has generator polynomial

g(x) = 1 + x+ x3.

(This code is called a ”Hamming code” and has many interesting properties
which, to describe, would take us too far afield. The interested reader is
refered to [CS], ch. 3.)

Definition 256. Let n be a positive integer relatively prime to q and let
alpha be a primitive n-th root of unity. Each generator polynomial g of a
cyclic code C of length n has a factorization of the form

g(x) = (x− αk1)...(x− αkr),

where {k1, ..., kr} ⊂ {0, ..., n − 1}. The numbers αki , 1 ≤ i ≤ r, are called
the zeros of the code C. They do not depend on the choice of g.

Definition 257. Let p and n be distinct primes and assume that p is a
square mod n. The quadratic residue code of length n over Fp is the cyclic
code whose generator polynomial has zeros

{αk | k is a square mod n}.

The binary Golay code GC23 is the quadratic residue code of length 23 over
F2. The binary Golay code GC24 is the code of length 24 over F2 obtained
by appending onto GC23 a zero-sum check digit.

The ternary Golay code GC11 is the quadratic residue code of length 11
over F3. The ternary Golay code GC12 is the code of length 12 over F3 ob-
tained by appending onto GC11 a zero-sum check digit.

The following result illustrate how the Matheiu groups arise in coding
theory.

Theorem 258. (a) There is a normal subgroup N of Aut(GC12) of order 2
such that Aut(GC12)/N is isomorphic to M12.

(b) Aut(GC24) = M24.
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Since the Mathieu groups are so large, this theorem above indicates that
the Golay codes GC12 and GC24 have a lot of symmetry.

It is a basic rule of thumb in mathematics that whenever you find some-
thing displaying a lot of symmetry then it will quite often have other inter-
esting properties. With this philosophy spurring us on, let us turn to some
of the other properties of these codes.

Lemma 259. Any two code words in GC24 differ by 8 bits. The code GC24

detects 4 errors (per 24 bits) and corrects 3 errors.

When you compare that with the correcting ability of bar-codes or ISBN
codes (which have a check-digit), GC24 is much better.

Lemma 260. If w is a code word in GC24 then wt(w) is either 0, 8, 12, 16, 24.

Definition 261. The code words of weight 12 in GC24 are called dodecads.

We may identify a code word w = (c0, c1, ..., c23) with the set of indices i
of the non-zero coordinates ci 6= 0.

Theorem 262. M12 is the stabilizer in M24 of a dodecad, regarded as a set
of indices.

13.6 M12 is crossing the rubicon

The result of this section was mentioned briefly in §12.3 above.
Let f1, f2, ..., f12 denote the basic moves (2π/5 degree turns of a ”pen-

tagon” about a vertex) of the Rubik isocahedron, regarded as elements of
SV , where V denotes the set of 12 vertices of the Rubik isocahedron (”rubi-
con”).

The following remarkable result is due to John Conway [CS].

Theorem 263. M12 =< x ∗ y−1 | x, y ∈ {f1, ..., f12} >.

In other words, the Mathieu group M12 is generated by the twist-untwist
moves of the Rubik isocahedron. If we call a ”twist-untwist” move of the
form x ∗ y−1 (with x, y as in the theorem above) a cross move then (with
apologies to Caeser) the theorem above says that M12 is generated by the
crosses of the rubicon.

In fact, C acts 5-transitively on the set of vertices of the rubicon (this is
implicit in [CS]).
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13.7 An aside: A pair of cute facts

It’s hard to resist stating some more interesting facts about the Mathieu
groups.

13.7.1 Hadamard matrices

Let A = (aij)1≤i,j≤n denote a real n×n matrix. The following question seems
quite natural in a course in advanced vector calulus or real analysis:

Question: What is the maximum value of | det(A)|, where the entries of
A range over all real numbers |aij| ≤ 1?

From vector calculus we know that the absolute value of the determinant
of a real square matrix equals the volume of the parallelpiped spanned by
the row (or column) vectors of the matrix. The volume of a parallelpiped
with sides of a fixed length depends on the angles the row vectors make with
each other. This volume is maximized when the row vectors are mutually
orthogonal, i.e., when the parallelpiped is a cube in Rn. Suppose now that
the row vectors of A are all orthogonal. The row vectors of A, |aij| ≤ 1,
are longest when each aij = ±1, which implies that the length of each row
vector is

√
n. Suppose, in addition, that the row vectors of A are all of

length
√
n. Such a matrix is called a Hadamard matrix of order n. Then

| det(A)| = (
√
n)n = nn/2, since the cube has n sides of length

√
n. Now, if

A is any matrix as in the above question then we must have | det(A)| ≤ nn/2.
This inequality is called Hadamard’s inequality.

What is shocking at first (at least to me) is that, there does not always
exist a Hadamard matrix. For example, there is a 2 × 2 Hadamard matrix
but not a 3× 3 one. What is perhaps even more suprising is that, in spite of
the fact that the above question (which is unsolved) arose from an analytic
perspective, Hadamard matrices are related more to coding theory, number
theory, and combinatorics [vLW]!
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Example 264. Let

A :=



1 1 1 1 1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 1 −1 1 1 1 −1 −1 −1 1
−1 1 −1 1 1 −1 1 1 1 −1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 1 −1 1 1 1 −1
−1 −1 −1 −1 1 −1 1 1 −1 1 1 1
−1 1 −1 −1 −1 1 −1 1 1 −1 1 1
−1 1 1 −1 −1 −1 1 −1 1 1 −1 1
−1 1 1 1 −1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 1 −1 −1 −1 1 −1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1


This is a Hadamard matric of order 12.

Exercise 13.7.1. Show that
(a) if you swap two rows or columns of a Hadamard matrix, you will get

another Hadamard matrix,
(b) if you multiply any row or column of a Hadamard matrix by −1, you

will get another Hadamard matrix,
(c) if you multiply any Hadamard matrix on the left by a signed permu-

tation matrix (that is, a matrix with exactly one ±1 per row and column)
then you will get another Hadamard matrix,

(d) if you multiply any Hadamard matrix on the left by a signed permu-
tation matrix (that is, a matrix with exactly one ±1 per row and column)
then you will get another Hadamard matrix.

Exercise 13.7.2. Let A,B be two Hadamard matrices of order n. Call A, B
left equivalent if there is an n × n signed permutation matrix P such that
A = PB. Show that this defines an equivalence relation on the set of all
Hadamard matrices of order n.

Exercise 13.7.3. Let A be a Hadamard matrix of order n. Let Aut(A) denote
the set of all n×n signed permutation matricesQ such thatA is left equivalent
to AQ. Show that Aut(A), called the automorphism group of A, is a group
under matrix multiplication.

The following result is yet another indication of the unique role of these
Mathieu groups in mathematics:
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Theorem 265. (M. Hall, Assmus-Mattson [AM]) Let A be the Hadamard
matrix of order 12 in the above example. Then Aut(A) ∼= M12.

13.7.2 5-transitivity

The following result exemplifies once more the unique role of these Mathieu
groups in group theory:

Theorem 266. If G is a subgroup of SX for some finite set X and if G acts
5-transitively on X then exactly one of the following must be true:

(a) G ∼= Sn, for some n > 4,
(b) G ∼= Am, for some m > 6,
(c) G ∼= M12,
(d) G ∼= M24.

Furthermore, each of the groups in (a)-(d) acts 5-transitively on some finite
set.

For a proof of this, see [CS] and [R], ch 9.
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Chapter 14

Appendix: Some solution
strategies

”The emphasis on mathematical methods seems to be shifted
more towards combinatorics and set theory - and away from the
algorithm of diiferential equations which dominates mathematical
physics.”

J. von Neumann and O. Morganstern, THEORY OF GAMES
AND ECOMONIC BEHAVIOR, 1944

This chapter includes some strategies for solving the 3x3 Rubik’s cube,
the 4x4 Rubik’s cube, the masterball, the equator puzzle, the skewb, and the
pyraminx. For unexplained notation used in some of the sections below, see
chapter 4.

First (this is a mathematics course, after all!) we discuss some of the
mathematical ideas behind the computer algorithms used to study the Ru-
bik’s cube:

14.1 The subgroup method

One approach to solve the Rubik’s cube using a computer has been to con-
struct a certain sequence of subgroups

Gn = {1} < Gn−1 < ... < G1 < G0 = G,

247
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where G =< R,L, F,B, U,D > is the Rubik’s cube group, which allows the
following strategy to be implemented:

• represent a given position of the Rubik’s cube by an element g0 ∈ G,

• determine a complete set of coset representatives of Gk+1/Gk:

Gk+1/Gk = ∪rki=1gk+1,iGk+1, some rk > 1, ∀0 ≤ k < n

(note mn−1 = 1, gn,1 = 1),

• (step 1) if g0 ∈ g1,iG1 (where i ∈ {1, ..., n1}) then let g1 = g1,i and
g′1 = g−1

1 g0 (note g′1 ∈ G1),

• (inductive step) if g′k ∈ Gk has been defined and if g′k ∈ gk+1,jGk

(where j ∈ {1, ..., n1}) then let gk+1 = gk+1,j and g′k+1 = g−1
k+1g

′
k (note

g′k+1 ∈ Gk+1),

• putting all these together, we obtain 1 = g−1
n g−1

n−1g
−1
n−2...g

−1
1 g0, so

g0 = g1g2...gn−1gn.

The hope is to be able to choose the sequence of subgroups Gi in such a
way that the coset representatives are short, relatively simple moves on the
Rubik’s cube so that the ”solution” g0 = g1g2...gn−1gn is not too long.

14.1.1 Example: the corner-edge method

We now present an example - a fairly unsophisticated one but you will get
the idea.

Let G1 denote the subgroup which does not permute any corners, let G2

denote the subgroup which does not permute any corners or edges, let G3

denote the subgroup which does not permute any corners or edges and does
not reorient any corners, and let G4 = {1}:

G4 = {1} < G3 < G2 < G1 < G0 = G.

This choice of subgroups crudely models the ”corner-edge method” (see the
appendix) due to Singmaster [Si].

The idea is simple.
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1. Represent a given position of the Rubik’s cube by an element g0 ∈ G.

2. Let g1 denote the move which moves all the corners into the correct
positions (i.e., permutes them into the solved position and possibly
twists them), so g−1

1 g0 ∈ G1. Let g′1 = g−1
1 g0.

3. Let g2 denote the move which moves all the edges into the correct
positions (i.e., permutes them into the solved position and possibly
reorients corners and edges) and leaves all other pieces unpermuted, so
g−1
2 g′1 ∈ G2. Let g′2 = g−1

2 g′1.

4. Let g3 denote the move which ”solves” all the corners (i.e., twists them
all into the correct orientation and may flip some edges) but does not
permute any pieces, so g−1

3 g′2 ∈ G3. Let g′3 = g−1
3 g′2.

5. Let g4 denote the move which ”solves” all the edges (i.e., flips them all
into the correct orientation) and leaves all other facets along.

6. The ”solution” is g0 = g1g2g3g4.

14.1.2 Example: Thistlethwaite’s method

Morwen Thistlethwaite (a knot-theorist now at the Univ. of Tennessee)
developed one of the best subgroup methods for solving the cube [FS]. He
takes

G1 =< R,L, F,B, U2, D2 >, G2 =< R,L, F 2, B2, U2, D2 >,
G3 =< R2, L2, F 2, B2, U2, D2 >, G4 = {1}.

G2 is isomorphic to the ”Rubik’s 3 × 3 × 2-domino” group. It’s order is
(8!)2 · 12, according to [FS], §7.6. G3 is the ”squares” group. It’s order is
213 · 34, according to [FS], §7.6.

He has shown (using a computer to help with some of the work) that

• there is a complete set of coset representatives {g1,i | 1 ≤ i ≤ n1} of
G/G1 such that each g1,i is at most 7 moves long (and n1 = 2048),

• there is a complete set of coset representatives {g2,i | 1 ≤ i ≤ n2} of
G1/G2 such that each g2,i is at most 13 moves long (and n2 = 1082565),

• there is a complete set of coset representatives {g3,i | 1 ≤ i ≤ n3} of
G2/G3 such that each g3,i is at most 15 moves long (and n3 = 29400),
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• there is a complete set of coset representatives {g4,i | 1 ≤ i ≤ n4} of
G3/G4 such that each g4,i is at most 17 moves long (and n4 = 663552).

Therefore, the Rubik’s cube can be solved in at most 7 + 13 + 15 + 17 = 52
moves.

More recent improvement’s on this method have gotten this number down
to fourty-something in the “quater-turn metric” I think (see [Lo] for details
and recent updates).

14.2 3× 3 Rubik’s cube

Consider the group G =< R,L, U,D, F,B > of moves of the Rubik’s cube.
The size of the group generated by these permutations is 43252003274489856000 ∼=
4.3× 1019.

14.2.1 Strategy for solving the cube

Let xy = y−1 ∗ x ∗ y denote conjugation and [x, y] = x ∗ y ∗ x−1 ∗ y−1 denote
the commutator, for x, y group elements.

Let MR denote clockwise (with respect to right side) quarter turn of the
middle slice parallel to the right side.

The layer method solution strategy is composed of 3 stages:

Stage 1: Solve the top face and top edges.

Stage 2: Solve the middle edges (and bottom edges as best as possible).

Stage 3: Solve the bottom corners (and bottom edges if necessary).

The corner-edge method solution strategy is composed of 2 stages:

Stage 1: Solve and then orient the corners.

(The move U ∗ F ∗ [R,U ]3 ∗ F−1 permutes (ubr,ufl)(uf,ul,ub,ur).)

Stage 2: Solve the and then orient the edges.

”clean” edge and corner moves:
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M2
R ∗ U−1 ∗M−1

R ∗ U2 ∗MR ∗ U−1 ∗M2
R edge 3-cycle (uf,ul,ur)

(MR ∗ U)3 ∗ U ∗ (M−1
R ∗ U)3 ∗ U flips the top edges uf, ub

(R2 ∗ U2)3 permutes (uf,ub)(fr,br)
(MR ∗ U)4 flips ub,ul and flips df,db

(r−1 ∗D2 ∗R ∗B−1 ∗ U2 ∗B)2 ufr+, bld++
[R,U ]3 permutes (ufr,dfr)(ubr,ubl)

F 2 ∗ L2 ∗ U2 ∗ (F 2 ∗ L2)3 ∗ U2 ∗ L2 ∗ F 2 permutes (uf,ub)(ur,ul)
(D2 ∗R2 ∗D2 ∗ (F 2 ∗R2)2 ∗ U)2 permutes (ufl,ubr)(dfr,dbl)

(M2
R ∗ U ∗M2

R ∗ U2)2 permutes (ufl,ubr)(ufr,ubl)
[R ∗D ∗R−1, U ] corner 3-cycle (brd,urb,ulb)

These moves were compiled with help from the books [Si], [B], [Sn], and
[Gap].

14.2.2 Catalog of 3× 3 Rubik’s ”supercube” moves

The supercube is the Rubik’s cube with each center facet marked with a
short line through it and an adjoining edge.

* (M2
R∗U−1∗M−1

R ∗U2∗MR∗U−1∗M2
R)2 is the top edge 3-cycle (uf,ur,ul),

* (R−1 ∗D2 ∗R ∗B−1 ∗ U2 ∗B)2 twists the ufr corner clockwise and the
bld corner counterclockwise (and does not twist any centers).

* M−1
R ∗M

−1
D ∗MR ∗ U−1 ∗M−1

R ∗MD ∗MR ∗ U is the center twist u+,
r- (for these last three moves, see [Si], [Sn])

14.3 4× 4 Rubik’s cube

The solution strategy is composed of 3 stages:
Stage 1: Solve the corners. For this moves for the 3× 3 Rubik’s cube.
Stage 2: ”Pair” the edges so that the neighboring facets on neighboring
middle edges have the same color. For this the following ”clean edge moves”
are useful:

• flipedge:

L2
2 ∗D2

1 ∗ U2 ∗ F 3
1 ∗ U3

2 ∗ F1 ∗D2
1 ∗ L2

2 ∗ L1 ∗ U1 ∗ L3
1 ∗ U3

2 ∗ L1 ∗ U3
1 ∗ L3

1

(due to J. Adams [A] who calls it ”move 8”). This flips and swaps the
two middle edge facets on the UF boundary. It affects some centers,
but no other edges or corners.
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• upedgeswap:

R2 ∗B2
1 ∗D2

1 ∗B3
1 ∗R3

2 ∗B1 ∗D2
1 ∗B3

1 ∗R2 ∗B3
1 ∗R2

2

(due to Thai [T], who calls it an ”11 gram”). This move affects some
centers but no corners and only 4 edge facets. It swaps and flips the
right-most UF edge cubie with the left-most (with respect to the B
face) UB edge subcube, sending the U facet of the right-most UF edge
subcube to the B facet of the left-most UB edge subcube.

• 3-cycle
(R2 ∗ U1)

3

is a 3 cycle on the edges: (R2uf,B2ur,B2ul). This doesn’t affect any
other edges and leaves all corners fixed.

Stage 3: Solve the edges. For this the ”clean edge moves” for the 3 × 3
Rubik’s cube.
Stage 4: If necessary, apply the flipedge move above,
Stage 5: Solve the centers. For this, use the following ”clean center move”:

center3cycle = R−1
1 ∗ F2 ∗R−1

2 ∗ F−1
2 ∗R1 ∗ F2 ∗R2 ∗ F−1

2

(also called ”move 9”, due to J. Adams). This move is a 3-cycle on centers
facets, affecting no edges, no corners, and no other center facets. It is the
3-cycle (15 19 18) in the above notation.

Some similar clean center moves:

center1 = B2
1 ∗R3

2 ∗ F2 ∗R2 ∗B2
1 ∗R3

2 ∗ F 3
2 ∗R2,

center2 = R2
2 ∗B2

1 ∗R3
2 ∗ F2 ∗R2 ∗B2

1 ∗R3
2 ∗ F 3

2 ∗R3
2

These aren’t really necessary since the the center3cycle can always be applied
after a suitable set-up move (i.e., in combination with a suitable conjugation).

The following move is occasionally useful:

centerswap = (R2
2 ∗ U2

2 )4

This affects only 6 center facets (on the front and back faces) and no others.
It is the product of two 3-cycles: (15 34 23)(27 14 22) in the above notation.

These moves were compiled with help from the books [A] and [T].
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14.4 Rainbow masterball

The solution strategy
Step 1: The idea is to first get all the middle bands aligned first, so you

get ball corresponding to a matrix of the form

* * * * * * * *

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

* * * * * * * *

Here, ∗ denotes any color. We have labeled the colors on the masterball as
1, 2, ..., 8 in order of occurrence.

We describe a method, which I call ”fishing”, for achieving this. (Mathe-
matically, this amounts to performing some carefully choosen commutators.)
Without too much trouble you can always assume that we have one column
aligned. You may need to flip or rotate the ball a little bit to do this. Call
this aligned column ”column 1” and call the color in column 1, ”color 1”.
We want to get the middle two entries in column 2 aligned. Call the color in
the (2,3)-entry ”color 2”.

We want to get color 2 in the (2,2)-entry. The remaining large color 2
tile is what we will ”fish” for. Hold the ball in front of you in such a way
that column 2 is slightly to the left of center and column 3 is slightly to the
right of center. There are 4 facets in the right upper middle band, 4 facets
in the left upper middle band, 4 facets in the right lower middle band and 4
facets in the left lower middle band. A flip about the center on the right half
(i.e., perform f2) exchanges these. We may assume that color 2 is on one of
the four facets in the right lower middle band. (If it isn’t you need to apply
f2 first). Now perform r−1

2 ∗ f−1
2 ∗ r2 ∗ f2: first perform r−1

2 (this is ”baiting
the hook”), then f−1

2 (”putting the hook in the water”), then r2 (”setting
the hook”), and finally f2 (”reeling in the hook”). You may or may not have
color 2 in the (2,2) place like you want but the color 1 stripe is intact. If
necessary, try again. After at most 4 tries you’ll be successful.

Step 2: Repeat this ”crab fishing” strategy to get color 2 in the (1,2)
position (using r−1

1 ∗ f−1
2 ∗ r1 ∗ f2 in place of r−1

2 ∗ f−1
2 ∗ r2 ∗ f2). Now, by

turning the ball over if necessary, repeat this idea to get color 2 in the (4,2)
position. Now you have two ”aligned” stripes on your ball - color 1 in column
1 and color 2 in column 2. We say, in this case, that columns 1 and 2 have
been ”solved”.
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Step 3: Repeat this for columns 3 and 4.

Step 4: Use the moves in the ”catalog” below to finish the puzzle.
(I believe the only moves needed are the “equator2swap36” and the “po-
lar2swap36” below, along with suitable cleverly choosen “set-up moves”.)

14.4.1 A catalog of rainbow moves

Column moves

We number the columns as 1,...,8. We will use a signed cycle notation to
denote an action of a move on the columns of the masterball.

Example 267. A move which switches the 1st and 3rd column but flips both
of them over will be denoted by (1 3)−.

A move which sends the 4th column to the 6th column, the 6th column
to the 5th column, and switches the 2nd and 3rd column but flips both of
them over will be denoted by (2 3)−(6 5 4).

move cycle
f1 (1, 4) (2, 3)
f2 (2, 5) (3, 4)
f3 (3, 6) (4, 5)
f4 (4, 7) (5, 6)
f5 (5, 8) (6, 7)
f6 (1, 6) (7, 8)
f7 (2, 7) (1, 8)
f8 (3, 8) (1, 2)

f1 ∗ f2 ∗ f1 (1, 2) (3, 5)
f1 ∗ f2 ∗ f1 ∗ f2 (5, 4, 3, 2, 1)
f1 ∗ f3 ∗ f1 (1, 5)(2, 6)
f2 ∗ f3 ∗ f2 (2, 3) (6, 5, 4)
f1 ∗ f4 ∗ f1 (1, 7)(5, 6)
f1 ∗ f5 ∗ f1 (5, 8) (6, 7)
f1 ∗ f8 ∗ f1 (2, 8)(3, 4)
f8 ∗ f1 ∗ f8 (1, 8) (4, 3, 2)
f2 ∗ f1 ∗ f2 (1, 3)(4, 5)
f3 ∗ f1 ∗ f3 (1, 3)(4, 8)
f8 ∗ f1 ∗ f2 (1, 4) (2, 3, 8, 5)
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Finally, (f1 ∗ f2 ∗ f3 ∗ f4)
2 ∗ r1 ∗ r2 ∗ r3 ∗ r4 swaps the 7,8 columns and leaves

all the others fixed but flipped over.

Some products of 2-cycles on the facets

These are all based on an idea of Andrew Southern. The polar2swap and
equator2swap were obtained by trying variations of some of Andrew’s moves
on a MAPLE implementation of the masterball [J].

We number the facets in the i-th column, north-to-south, as i1, i2, i3, i4
(where i = 1, 2, ..., 8).

move cycle
x = r1 ∗ f4 ∗ r−1

1 ∗ r4 ∗ f4 ∗ r−1
4 (41, 84)(44, 81)

x ∗ r4
1 ∗ x ∗ r4

4 (41, 81)(44, 84)
f1 ∗ r1 ∗ f4 ∗ r−1

1 ∗ r4 ∗ f4 ∗ r−1
4 ∗ f1 (14, 84)(11, 81)

polar2swap36 (11, 14)(31, 61)
polar2swap18 (61, 64)(11, 81)

equator2swap36 (12, 13)(32, 62)
equator2swap18 (62, 63)(12, 82)

where

polar2swap36 = f1∗r−1
3 ∗r−1

4 ∗f1∗f2∗r1∗r−1
4 ∗f2∗r4

4∗f2∗r−1
1 ∗r4∗f2∗r4

4∗f1∗r3∗r4∗f1

(moreover, if you replace r3 by r2 both times in this move you get the same
effect),

polar2swap18 = f1∗r−1
3 ∗r−1

4 ∗f3∗f4∗r1∗r−1
4 ∗f4∗r4

4∗f4∗r−1
1 ∗r4∗f4∗r4

4∗f3∗r3∗r4∗f1

equator2swap36 = f1∗r−1
4 ∗r−1

3 ∗f1∗f2∗r2∗r−1
3 ∗f2∗r4

3∗f2∗r−1
2 ∗r3∗f2∗r4

3∗f1∗r4∗r3∗f1

equator2swap18 = f1∗r−1
4 ∗r−1

3 ∗f3∗f4∗r2∗r−1
3 ∗f4∗r4

3∗f4∗r−1
2 ∗r3∗f4∗r4

3∗f3∗r4∗r3∗f1

For further details on the rainbow puzzle, see [JS], [J].

14.5 Equator puzzle

Solution strategy, in brief:
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• First, ignore the orientation of the pieces. Just try to get the pieces in
their correct position. One of the most remarkable properties of this
puzzle is that GAP [Gap] is, in practice, very efficient at solving this
part of the solution. (This is remarkable in view of the fact that GAP
is not very good at solving the corresponding problem for the Rubik’s
cube, for example, so there is no reason to expect it to be good at
solving this problem.)

• Second, once the pieces are in the correct position, they must be cor-
rectly oriented by a catalog of ”node” moves designed for that purpose.
Some ”node” moves are included below.

Some notation: if x, y, and z are moves, let

[x, y, z] = x−1 ∗ y−1 ∗ z−1 ∗ x ∗ y ∗ z.

Example 268. Some moves discovered using GAP:

• [r−3
1 , r−3

2 , r−3
3 ] will swap the NP and SP, while rotating the NP by 90 de-

grees in a counter clockwise direction. Moreover, it will fix the position
of the piece labeled as 20 but will rotate it by 90 degrees clockwise.

• To send 1 (the NP) to 4, 4 to 7 (the SP), 7 to 10, and 10 to 1:

(1, 4, 7, 10) = (r−1
2 ∗ r−1

3 ∗ r2
1 ∗ r2

3 ∗ (r−1
3 ∗ r−1

1 )2 ∗ r3 ∗ r2 ∗ r−3
1 )2 ∗ r5

1

• The square of the previous move is easier to do:

(1, 7)(4, 10) = r3
1 ∗ r6

2 ∗ r−3
1 ∗ r−6

2

• a 3-cycle about the NP and then a 3-cycle about the SP:

(2, 22, 12)(6, 8, 17) = r1 ∗ r2 ∗ r−1
1 ∗ r−1

2 ∗ r2 ∗ r−1
1 ∗ r−1

2 ∗ r1

• if rot90 denotes a 90o solid rotation,

rot90 = (2, 13, 12, 22)(3, 14, 11, 21)(5, 16, 9, 19)(6, 17, 8, 18) ∗ r−1
3 ,

then the following move will exchange two pairs of facets neighboring
the NP and two pairs of facets neighboring the SP:

(2, 12)(6, 8)(13, 22)(17, 18) = (r1∗r2∗r−1
1 ∗r−1

2 ∗r2∗r−1
1 ∗r−1

2 ∗r1)∗rot90∗

∗(r1 ∗ r2 ∗ r−1
1 ∗ r−1

2 ∗ r2 ∗ r−1
1 ∗ r−1

2 ∗ r1) ∗ rot−1
90
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• A single 2-cycle or 3-cycle cannot be achieved in the group generated
by r1, r2, r3.

We call a move of the form [r3k
1 , r

3m
2 , r3n

3 ] a node move since it only affects
the nodes (where the circles intersect). The table below records where each
node goes as well as its effect on the orientation. The position entry in a
block is the position the piece moves to. The angle entry, if any is the angle
the piece gets rotated by. No angle entry means, of course, that the piece
is not rotated. No position entry means that the piece was not moved (but
may have been rotated). If a move has no effect on the position or the angle
then we fill in the block with a ”-”.

In the following table, NP, SP have been denoted by 1,7, resp., for brevity.

move,piece 1 7 4 10 15 20
m123 7,90ccw 1,90cw 10,180 4,180 90ccw 90cw
m132 7,180 1,180 90ccw 90cw 20,90cw 15,90ccw
m231 7,180 1,180 90cw 90ccw 20,90cw 15,90ccw
m213 90cw 90ccw 10,90cw 4,90ccw 20 15
m312 90ccw 90cw 10,90cw 4,90ccw 20 15
m321 7,90ccw 1,90cw 10,180 4,180 90cw 90ccw

A 180 180 180 180 - -
m3212 - - - - 180 180

B - - 180 180 - -
n123 1,90ccw 7,90cw 10 4 20,90ccw 15,90cw

D - - 90cw 90ccw 90cw 90ccw
where

m123 = [r−3
1 , r−3

2 , r−3
3 ],

m132 = [r−3
1 , r−3

3 , r−3
2 ],

m231 = [r−3
2 , r−3

3 , r−3
1 ],

m213 = [r−3
2 , r−3

1 , r−3
3 ],

A = m123 ∗m132 ∗m213,
B = C ∗m3212 ∗ C−1, C = (1 4)(7 10) = r3

1,
n123 = [r−3

1 , r−3
2 , r3

3],
D = [r−3

1 , r−3
2 , r3

3].

Remark 26. Let G denote the subgroup of S30 generated by r1, r2, r3. Ac-
cording to GAP [Gap],

|G| = 21424936845312000 = 15! · 214 = (2.14...) · 1016.
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The largest normal subgroup of G which is a power of 2 is of order 214.
Furthermore, G appears to act transitively on the following 15 pairs of facets:

B = {[1, 7], [2, 8], [13, 18], [3, 9], [14, 19], [4, 10], [15, 20], [5, 11],

[23, 27], [16, 21], [25, 29], [6, 12], [24, 28], [17, 22], [26, 30]}.

Possibly G is isomorphic to a semidirect product of SB ∼= S15 acting on C14
2 .

14.6 The skewb

14.6.1 Strategy

The goal here is to collect enough moves to support the following solution
strategy: fix the centers and solve the corners using ”clean corner moves”
(i.e., moves which do not effect the centers).

The basic moves are twists by 120 degrees clockwise about each of the
six corners FRU,FLU,BRU,BLU,BDR,BDL,DFR,DFL.

14.6.2 A catalog of skewb moves

Thanks to J. Montague and G. Gomes for comments and corrections for the
descriptions below, which were discovered with the help of a simulation of
the skewb written for MAPLE [Jwww].

1. FRU ∗BLU ∗ FRU−1 is order 3.

2. [FRU ∗FLU ]3 twists 6 corners clockwise by 120 degrees. The 2 corners
not twisted are those opposite the FRU, FLU corners: the BDR, BDL
corners. The centers are all fixed. (FRU ∗ FLU)3 = (FLU ∗ FRU)3

rotates all the corners except for the bd corners. It does not permute
any facets.

3. The move, [FRU ∗ BLU ]5, fixes all the centers and the 2 ”opposite”
corners: DFL, BDR. It twists the 3 corners FLU, BLU, and FRU. On
the remaining 3 corners, it acts as the permutation (DFR,BRU,BDL).

4. FRU = BDL (actually, they are only equal up to a rotation of the entire
cube). In general, a corner move is equal to the opposite corner move
up to a rotation of the entire cube.
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5. (FRU ∗ FLU)3 ∗ (BDL ∗BDR)6 rotates all the corners except for the
bu and the df corners. The uf corners are rotated clockwise and the
bd corners counterclockwise. It does not permute any facets. (FRU ∗
FLU)6 ∗ (BDL ∗BDR)3 is the same move, but rotates in the opposite
direction.

6. (FRU ∗ FLU)6 ∗ (BDL ∗BDR)6 rotates the corners as follows:

• the uf corners counterclockwise,

• the db corners counterclockwise,

• the df corners clockwise,

• the ub corners clockwise.

It does not permute any facets.

7. Let bottomspin = (FRU ∗ FLU)6 ∗ (BDL ∗BDR)3 ∗ (DFR ∗DFL)3.
This move rotates the 4 bottom corners (the df corners clockwise and
the db counterclockwise). It does not permute any facets.

8. (BRU ∗FLU)9 is a 5 cycle on the center facets (F,R,B, U, L). It fixes
the bottom and does not affect any corners. (BLU ∗ FRU)9 is a 5
cycle on the center facets. It fixes the bottom and does not affect any
corners.

9. (BLU ∗FRU)9 ∗ (BRU ∗FLU)9 is a product of 2 transpositions on the
center facets, swapping front/back and up/right. It fixes the bottom
and does not affect any corners.

10. Let U denote the clockwise (with respect to the up face) rotation of
entire cube by 90 degrees. Then bottomspin ∗ U ∗ bottomspin rotates
but does not swap 2 corners (the DFR and BDL) and does not affect
any other corners or faces.

14.7 The pyraminx

Assume that the tetrahedron is lying on a flat surface in front of you, with
the triangle base pointing away from you. The corners are denoted L (left),
R (right), U (up), and B (back).

Basic Moves: Let
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• L denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the left corner,

• R denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the right corner,

• U denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the up corner,

• B denote the 120 degree clockwise rotation of the 2-level subtetrahedron
containing the back corner.

First, get the ”center” facets solved, then twist the corner tips to solve
them and the center facets. Finally, to solve the edge facets, use the following
moves (given in [EK]):

• [R,U−1] is a 3-cycle of edge pieces on the URL face,

• [R,U−1] ∗ [R−1, L] is a flip of two edges (UR edge and UL edge) on the
URL face.

14.8 The megaminx

The strategy here is the same as for the 3x3 Rubik’s cube:

• place the corners correctly first (ignoring correct corner orientation),

• place the edges correctly first (ignoring correct edge orientation),

• twist the corners if necesary,

• flip the edges if necessary.

Moves useful for carrying out these steps are included in the following
catalog.
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14.8.1 Catalog of moves

First, some notation. We label the faces f1, f2, ..., f6 on top and label the
bottom faces f7, f8, ..., f12 as in chapter 4. The same notation is used to indi-
cate the move of the megaminx given by rotating that face of the megaminx
by 72 degrees clockwise.

• f−1
1 ∗f−1

2 ∗f1 ∗f2 ∗f−1
1 ∗f−1

2 ∗f1 ∗f2 ∗f−1
1 ∗f−1

2 ∗f1 ∗f2 = [f1, f2]
3 swaps

the f1.f3 and the f2.f6 corners: (f1.f2.f3, f1.f3.f4)(f1.f2.f6, f2.f6.f7)

• m = f3∗f−1
6 ∗f4∗f−1

2 ∗f5∗f−1
3 ∗f6∗f−1

4 ∗f2∗f−1
5 ; f6∗f1∗m6∗f−1

1 ∗f−1
6 swaps

2 pairs of corners on the f1 face: (f1.f2.f6, f1.f3.f4)(f1.f2.f3, f1.f5.f6)

• f1 ∗ f6 ∗ f−1
1 ∗ f2 ∗ f1 ∗ f−1

6 ∗ f−1
1 ∗ f−1

2 3 cycle on corners and 3-cycle on
edges (f1.f2.f6, f11.f7.f6, f2.f6.f7)(f1.f2, f6.f7, f2.f6)

• M2 = f6 ∗ f2 ∗ f1 ∗ f−1
2 ∗ f−1

1 ∗ f−1
6 ∗ f−1

3 ∗ f−1
1 ∗ f−1

2 ∗ f1 ∗ f2 ∗ f3 (Mark
Longridge) edge 3-cycle (f1.f2, f2.f3, f2.f6)

• (f−1
6 ∗ f−1

2 ∗ f−1
3 ∗ f6 ∗ f2 ∗ f3)

6 - triple corner twister, ccw twists of
f1.f2.f3, f1.f2.f6, f1.f5.f6

• M3 = f
(
3− 2)∗ f 2

6 ∗ f2 ∗ f−1
1 ∗ f6 ∗ f1 ∗ f 2

3 ∗ f 2
6 ∗ f1 ∗ f−2

6 ∗ f−2
3 ∗ f−1

1 ∗ f−1
6 ∗

f1 ∗ f−1
2 ∗ f−2

6 ∗ f 2
3 ∗ f−1

1 (Mark Longridge) edge 2-flip of f1.f2, f1.f6

• M3a = f−1
6 ∗ f−1

2 ∗ f1 ∗ f−1
3 ∗ f−1

1 ∗ f3 ∗ f2 ∗ f6 ∗ f3 ∗ f2 ∗ f−1
1 ∗ f6 ∗ f1 ∗

f−1
6 ∗ f−1

2 ∗ f−1
3 (Mark Longridge) edge 2-flip of f1.f2, f1.f3

For further details, see the internet sites [J] or [Lo].



262 CHAPTER 14. APPENDIX: SOME SOLUTION STRATEGIES



Bibliography

[A] J. Adams, HOW TO SOLVE RUBIK’S REVENGE, Dial Press, NY,
1982

[Are] Andrew Arensburger, Square 1. http://www.cfar.umd.edu/

~arensb/Square1/

[Ar] M. Artin, ALGEBRA, Prentice-Hall, 1991

[AM] E. Assmus, Jr. and H. Mattson, “On the auotmorphism groups of
Paley-Hadamard matrices”, in COMBINATORIAL MATHEMAT-
ICS AND ITS APPLICATIONS, ed. R. Bose, T. Dowling, Univ of
North Carolina Press, Chapel Hill, 1969

[Ba] J. Baez, “Some thoughts on the number 6”, internet newsgroup
sci.math article, posted May 22, 1992, http://math.ucr.edu/home/
baez/README.html

[B] C. Bandelow, INSIDE RUBIK’S CUBE AND BEYOND, Birkhauser
Boston, 1980

[BCG] Berlekamp, J. Conway, R. Guy, WINNING WAYS, II, Academic
Press,

[BH] R. Banerji and D. Hecker, “The slice group in Rubik’s cube”, Math.
Mag. 58(1985) 211–218

[Bu] G. Butler, FUNDAMENTAL ALGORITHMS FOR PERMUTA-
TION GROUPS, Springer-Verlag, Lecture Notes in Computer Sci-
ence, 559, 1991

[Car] R. Carter, SIMPLE GROUPS OF LIE TYPE, Wiley, 1972

263

http://www.cfar.umd.edu/~arensb/Square1/
http://www.cfar.umd.edu/~arensb/Square1/
http://math.ucr.edu/home/baez/README.html
http://math.ucr.edu/home/baez/README.html


264 BIBLIOGRAPHY

[CD] M. Conrady and M. Dunivan, “The Cross Group of the Rubik’s
Cube”, SM485C project, April,1997

[CS] J. Conway and N. Sloane, SPHERE PACKINGS, LATTICES, AND
GROUPS, Springer-Verlag, 1993

[CFS] G. Cooperman, L. Finkelstein and N. Sarawagi, “Applications of Cay-
ley graphs”, in APPLIED ALGEBRA ..., Springer-Verlag, Lecture
Notes in Computer Science, 508, 1990

[C] J. Crossley, et al, WHAT IS MATHEMATICAL LOGIC?, Dover,
1972

[CL] ftp archives of the “cube-lovers” list at ftp://ftp.ai.mit.edu/pub/
cube-lovers/

[CG] S. Curran and J. Gallian, “Hamiltonian cycles and paths in Cayley
graphs and diagraphs - survey”, Discrete Math. 156(1996) 1–18

[DM] J. Davies and A. O. Morris, “The schur multiplier of the generalized
symmetric group”, J. London Math. Soc. 8(1974) 615–620

[DL] M. Dunbar and A. Luers, “The Group Structure of the 2x2 Rubik’s
Cube”, SM485 term paper, Fall 1996

[EK] J. Ewing and C. Kosniowski, PUZZLE IT OUT, CUBES, GROUPS,
AND PUZZLES, Cambridge Univ Press, 1982

[FH] W. Fulton and J. Harris, REPRESENTATION THEORY, Springer-
verlag, 1991

[FS] A. Frey and D. Singmaster, HANDBOOK OF CUBIK MATH, En-
slow Pub., 1982

[G] A. Gaglione, AN INTRODUCTION TO GROUP THEORY, NRL,
1992

[Gap] Martin Schönert et al, GAP MANUAL, Lehrstuhl D für Mathematik,
RWTH Aachen

[GJ] M. Garey and D. Johnson, COMPUTERS AND INTRACTIBILITY,
W. H. Freeman, New York, 1979

ftp://ftp.ai.mit.edu/pub/cube-lovers/
ftp://ftp.ai.mit.edu/pub/cube-lovers/


BIBLIOGRAPHY 265

[Gar1] M. Gardner, “Combinatorial card problems” in TIME TRAVEL AND
OTHER MATHEMATICAL BEWILDERMENTS, W. H. Freeman,
New York, 1988

[Gar2] M. Gardner, MY BEST MATHEMATICAL AND LOGIC PUZZLES,
Dover, New York, 1994

[GT] K. Gold, E. Turner, “Rubik’s group”, Amer. Math. Monthly, 92(1985)
617–629

[GM] G. Gomes and J. Montague, “The skewb group”, SM485C project,
April,1997

[HR] G. Hardy and S. Ramanujan, “Asymptotic formulae in combinatory
analysis”, Proc. London Math. Soc. 17(1918)75–115

[H] D. Hofstadler, METAMATHEMATICAL THEMAS, Basics Books,
1985 (Mostly a collection of Scientific American columns he wrote; the
articles referred to here were also published in Scientific American,
March 1981, July 1982)

[Hum] J. Humphreys, REFLECTION GROUPS AND COXETER
GROUPS, Cambridge Univ Press, 1990

[I] J. Isbell, “The Gordon game of a finite group”, Amer. Math. Monthly
99(1992)567–569

[J] D. Joyner, “Rainbow masterball page”, internet www page http:

//www.nadn.navy.mil/MathDept/wdj/mball/rainbow.html

[Jwww] D. Joyner, “Permutation puzzle page”, internet www page http:

//www.nadn.navy.mil/MathDept/wdj/rubik.html

[JM] D. Joyner and J. McShea, “The homology group of the square 1
puzzle”, preprint

[JN] D. Joyner and G. Nakos, LINEAR ALGEBRA AND APPLICA-
TIONS, to be published (PW+S, 1998?)

[JS] D. Joyner and A. Southern, “The masterball puzzle”, preprint

http://www.nadn.navy.mil/MathDept/wdj/mball/rainbow.html
http://www.nadn.navy.mil/MathDept/wdj/mball/rainbow.html
http://www.nadn.navy.mil/MathDept/wdj/rubik.html
http://www.nadn.navy.mil/MathDept/wdj/rubik.html


266 BIBLIOGRAPHY

[Ki] A. Kirillov, ELEMENTS OF THE THEORY OF REPRESENTA-
TIONS, Springer-Verlag, 1976

[K] B. Kostant, “The graph of the truncated icosahedron and the last
letter of Galois”, Notices of the A.M.S. 42(1995)959–968

[L] M. E. Larsen, “Rubik’s revenge: the group theoretical solution”,
Amer. Math. Monthly, 92(1985)381–390

[Lo] M. Longridge, “God’s Algorithm Calculations for Rubik’s Cube, Ru-
bik’s Subgroups, and Related Puzzles”, http://web.idirect.com/

~cubeman/

[Lu] A. Luers, “The group structure of the pyraminx and the dodecahedral
faces of M12”, USNA Honors thesis, 1997 (Advisor W. D. Joyner)
http://web.usna.navy.mil/~wdj/m_12.htm

[Ma] G. Mackey, UNITARY GROUP REPRESENTATIONS IN
PHYSICS, PROBABILITY, AND NUMBER THEORY, Math
Lecture Notes Series, Benjamin/Cummins, 1978

[MKS] W. Magnus, A. Karrus and D. Solitar, Combinatorial Group Theory,
2nd ed, Dover, 1976

[Mc] J. McShea, “The 14-15 Puzzle, and Why It Can’t Be Solved”, SM485
term paper, Fall 1996

[M] R. E. Moritz, MEMORABILIA MATHEMATICA, MacMillan Co,
NY, 1914

[NST] P. Neumann, G. Stoy and E. Thompson, GROUPS AND GEOME-
TRY, Oxford Univ. Press, 1994

[OR] J. O’Connor, E. F. Robertson MacTutor History of Mathe-
matics archive, http://www-groups.dcs.st-and.ac.uk/~history/
Information.html

[Rob] S. Robinson, “The Mathematics of Bell Ringing”, capstone paper
(Advisor W. D. Joyner)

[R] J. J. Rotman, AN INTRODUCTION TO THE THEORY OF
GROUPS, 4th ed, Springer-Verlag, Grad Texts in Math 148, 1995

http://web.idirect.com/~cubeman/
http://web.idirect.com/~cubeman/
http://web.usna.navy.mil/~wdj/m_12.htm
http://www-groups.dcs.st-and.ac.uk/~history/Information.html
http://www-groups.dcs.st-and.ac.uk/~history/Information.html


BIBLIOGRAPHY 267

[Ru] E. Rubik, et al, RUBIK’S CUBIC COMPENDIUM, Oxford Univ
Press, 1987

[S] R. Schmalz, OUT OF THE MOUTHS OF MATHEMATICIANS,
Math. Assoc. Amer., 1993

[Se] J.-P. Serre, LINEAR REPRESENTATIONS OF FINITE GROUPS,
Springer-Verlag, 1977

[Ser] J.-P. Serre, TREES, Springer-Verlag, 1980

[Si] D. Singmaster, NOTES ON RUBIK’S MAGIC CUBE, Enslow, 1981

[Sn] R. Snyder, GET CUBED

[Sn2] R. Snyder, TURN TO SQUARE 1, 1993

[St] R. Stoll, SET THEORY AND LOGIC, Dover, 1963

[TW] A. D. Thomas and G. V. Wood, GROUP TABLES, Shiva Publishing
Ltd, Kent, UK, 1980

[T] Thai, “The winning solution to Rubik’s Revenge”, Banbury Books,
1982

[vLW] J. van Lint and R. M. Wilson, A COURSE IN COMBINATORICS,
Cambridge Univ. Press, 1992

[Wa] H. B. Walters, CHURCH BELLS OF ENGLAND, Oxford Univ Press,
1912

[Wh] White, Arthur, “Fabian Stedman: The First Group Theorist?”,
American Mathematical Monthly, Nov. 1996, pp. 771–8.

[W] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group”,
J. of Combin. Theory, 16 (1974) 86–96


	Introduction 
	Logic and sets
	Logic
	Expressing an everyday sentence symbolically

	Sets

	Functions, matrices, relations and counting
	Functions
	Functions on vectors
	History
	33 matrices
	Matrix multiplication, inverses
	Muliplication and inverses

	Relations
	Counting

	Permutations
	Inverses
	Cycle notation
	An algorithm to list all the permutations

	Permutation Puzzles
	15 puzzle
	Devil's circles (or Hungarian rings)
	Equator puzzle
	Rainbow Masterball
	Rubik's cubes
	22 Rubik's cube
	33 Rubik's cube
	44 Rubik's cube
	nn Rubik's cube

	Skewb
	Pyraminx
	Megaminx
	Other permutation puzzles

	Groups, I
	The symmetric group
	General definitions
	The Gordon game

	Subgroups
	Examples of groups
	The dihedral group
	Example: The two squares group

	Commutators
	Conjugation
	Orbits and actions
	Cosets
	Dimino's Algorithm
	Permutations and campanology

	Graphs and "God's algorithm"
	Cayley graphs
	God's algorithm
	The Icosian game

	The graph of the 15 puzzle
	General definitions

	Remarks on applications, NP-completeness

	Symmetry groups of the Platonic solids
	Descriptions
	Background on symmetries in 3-space
	Symmetries of the tetrahedron
	Symmetries of the cube
	Symmetries of the dodecahedron
	Appendix: Symmetries of the icosahedron and S6

	Groups, II
	Homomorphisms
	Homomorphisms arising from group actions
	Examples of isomorphisms
	Conjugation in Sn
	Aside: Automorphisms of Sn

	Kernels and normal subgroups
	Quotient subgroups
	Direct products
	Examples
	The twists and flips of the Rubik's cube
	The slice group of the Rubik's cube

	Semi-direct products
	Wreath products
	Application to order of elements in Cmwr Sn


	The Rubik's cube and the word problem
	Background on free groups
	Length
	Trees

	The word problem
	Generators, relations, and Plutonian robots
	Generators, relations for groups of order <26
	The presentation problem
	A presentation for Cmn  >--Sn+1
	Proof


	The 33 Rubik's cube group
	Mathematical description of the 33 cube moves
	Notation
	Corner orientations
	Edge orientations
	The semi-direct product

	Second fundamental theorem of cube theory
	Some consequences

	The homology group of the square 1 puzzle
	The main result
	Proof of the theorem


	Other Rubik-like puzzle groups
	On the group structure of the skewb
	Mathematical description of the 22 cube moves
	On the group structure of the pyraminx
	Orientations
	Center pieces
	The group structure

	A uniform approach
	General remarks
	Parity conditions


	Interesting subgroups of the cube group
	The squares subgroup
	PGL(2,F5) and two faces of the cube
	Finite fields
	Möbius transformations
	The main isomorphism
	The labeling
	Proof of the second theorem

	The cross groups
	PSL(2,F7) and crossing the cube
	Klein's 4-group and crossing the pyraminx


	Crossing the Rubicon
	Doing the Mongean shuffle
	Background on PSL2
	Galois' last dream
	The M12 generation
	Coding the Golay way
	M12 is crossing the rubicon
	An aside: A pair of cute facts
	Hadamard matrices
	5-transitivity


	Appendix: Some solution strategies
	The subgroup method
	Example: the corner-edge method
	Example: Thistlethwaite's method

	3 3 Rubik's cube
	Strategy for solving the cube
	Catalog of 33 Rubik's "supercube" moves

	44 Rubik's cube
	Rainbow masterball
	A catalog of rainbow moves

	Equator puzzle
	The skewb
	Strategy
	A catalog of skewb moves

	The pyraminx
	The megaminx
	Catalog of moves



