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Abstract

We construct a categorical framework for nonlinear postquantum inference, with embeddings of
convex closed sets of suitable reflexive Banach spaces as objects and pullbacks of Brègman quasi-
nonexpansive mappings (in particular, constrained maximisations of Brègman relative entropies)
as morphisms. It provides a nonlinear convex analytic analogue of Chencov’s programme of ge-
ometric study of categories of linear positive maps between spaces of states, a working model of
Mielnik’s nonlinear transmitters, and a setting for nonlinear resource theories (with monoids of
Brègman quasi-nonexpansive maps as free operations, their asymptotic fixed point sets as free
sets, and Brègman relative entropies as resource monotones). We construct a range of concrete
examples for semi-finite JBW-algebras and any W∗-algebras. Due to relative entropy’s asym-
metry, all constructions have left and right versions, with Legendre duality inducing categorical
equivalence between their well-defined restrictions. Inner groupoids of these categories imple-
ment the notion of statistical equivalence. The hom-sets of a subcategory of morphisms given
by entropic projections have the structure of partially ordered commutative monoids (so, they
are resource theories in Fritz’s sense). Further restriction of objects to affine sets turns Brègman
relative entropy into a functor. Finally, following Lawvere’s adjointness paradigm for deductive
logic, but with a semantic twist representing Jaynes’ and Chencov’s views on statistical infer-
ence, we introduce a category-theoretic multi-(co)agent setting for inductive inference theories,
implemented by families of monads and comonads. We show that the brègmanian approach
provides some special cases of this setting.

1 Introduction

This paper stems from the questions: 1) How to construct a theory of nonlinear (post)quantum op-
erations, valid also in continuously infinite dimensions, and exhibiting useful information-, resource-,
and category-theoretic structures? 2) How to formalise the logics of inductive (predictive, statisti-
cal) inference theory, in (some) analogy to category-theretic formalisations of the logics of deductive
inference?

Extension of the maximum entropy approach from model construction (objects) [73, 160, 100,
101, 102] to inductive inferences (morphisms) [155, 115, 35, 50, 90] allows to derive the Bayes–
Laplace and Jeffrey’s rules [177, 174, 46, 67], Lüders’ and quantum Jeffrey’s rules [89], partial trace
[141], and (preduals of) conditional expectations [114] as special cases of constrained maximisation of
the Kullback–Leibler/Umegaki relative entropy (left or right D1-projections). However, to establish
a full-fledged relative entropic (post)bayesian setting, two related problems have to be solved: 1)
choice of a sufficiently rich and well-behaved class of relative entropies; 2) identification of a family
of morphisms, which (roughly) could be for entropic projections what CPTP maps are for (preduals
of) conditional expectations. Brègman [35] introduced a class −DΨ of relative entropies satisfying a
generalisation of a pythagorean equation with respect to leftDΨ-projections (independently, Chencov
[50] discovered its right version for D1). The works [3, 6, 44, 45, 18, 19, 150] (among others)
established a successful Banach space generalisation of Brègman’s theory. Reich [147] introduced
a class of left strongly DΨ-quasi-nonexpansive maps, LSQ(Ψ), which is closed under composition,
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and (under some additional conditions [19, 148]) contains left DΨ-projections. Right versions of
these results also hold [131, 132]. Right and left DΨ-projections are generalisations of Hilbert
space metric projections, better behaved and weaker than Banach space metric projections [3, 4].
They are characterised by the corresponding pythagorean equations, while the criteria of convergence
defining LSQ(Ψ) and RSQ(Ψ) are, in essence, topological versions of these equations. However, good
behaviour of these maps requires some additional geometric properties of the underlying Banach
space X. These properties do not hold neither for generic base norm spaces nor for preduals of
JBW- and W∗-algebras. The missing link, provided by us in [113], is twofold: 1) introducing
Brègman ℓ-information Dℓ,Ψ by a bijective pullback (ℓ-embedding) of DΨ from geometrically well
behaved (e.g., reflexive) space X, constructed over not so well behaved (e.g., base norm) spaces (and
doing the same with ·SQ(Ψ) maps); 2) providing rich family of models (i.e., triples (X, ℓ,Ψ)), by:
2a) establishing characterisation of legendreness, and a sufficient condition for LSQ-adaptedness and

RSQ-composability, of a family Ψϕ :=
∫ ||·||X
0 dtϕ(t), where ϕ is a gauge function of a nonlinear duality

map DGΨϕ = jϕ : X → X⋆ [25, 11]; 2b) constructing a range of concrete models in nonassociative
and noncommutative settings.1 The resulting families LSQ(ℓ,Ψ) and RSQ(ℓ,Ψ) provide nonlinear
convex analytic analogues of linear CPTP maps, based on the geometry of generalised pythagorean
equation, as opposed to tensor products. While ℓ-embeddings of brègmanian structures solve a
mathematical problem, they introduce a conceptual one: the basic objects (information state spaces)
of a theory are ℓ-closed ℓ-convex sets, which, as opposed to compact convex sets, do not rely on
base norm/order unit semantics (allowing for “information theory without probability” (c.f. [97]) on
objects and hom-sets of categories which do not admit any (generalised) probabilistic structure).2

This relativisation of the type of optimal/ideal experimental data with respect to the choice of the
system of inductive inference (c.f. [66]) requires to be coherently addressed. For this purpose, in
§8 we propose a categorical approach to adjointness between theoretical model construction and
predictive verification, modeled after Lawvere’s approach to categorical deductive logic [119], yet
with a twist, taking into account Chencov’s and Jaynes’ approaches to mathematical and conceptual
foundations of statistical inference. We show that, under some conditions, it forms a resource theory
of intersubjective knowledge (with agency of free operations and coagency of selection of referential
experimental designs).

2 Brègman projections and quasi-nonexpansive maps

In terminological (resp., mathematical) agreement with [175, 149, 170, 33] (resp., [71, 58]), we
define: an information on a set Z as a map D : Z × Z → [0,∞] such that D(x, y) = 0 ⇐⇒
x = y; a relative entropy as −D. Given a function f : Y →] − ∞,∞] on a real Banach space
Y with efd(f) := {x ∈ Y | f(x) 6= ∞} 6= ∅, fF will denote a Fenchel dual of f with respect to
a bilinear duality map [[x, y]] := y(x) ∈ R ∀(x, y) ∈ Y × Y ⋆, where Y ⋆ denotes the Banach dual

1In §2 we recall basic notions of convex nonlinear analysis and brègmanian theory in reflexive Banach spaces,
discussed in details, with further references, in [31, 154, 113]. As for §3, the notions of Brègman ℓ-information
and ℓ-projection were introduced (abstractly) in [112] (with ℓ-embeddings generalising earlier ideas of [134, 105]
and [142, 111, 179, 81, 80, 145, 104]), and are studied (concretely, with the corresponding DΨ-quasi-nonexpansive
ℓ-operations, including the examples of §4, as well as an extension to nonreflexive case, left and right DΨ-Chebyshëv
sets, continuity of DΨ-projections, limitations of Legendre duality, etc) in [113]. The rest of this paper is new, and
can be seen as a category-theoretic counterpart to [113].

2Our focus on categories of inductive inference morphisms, instead of axiomatisation of probability spaces, follows
the insights: «Many physicists take it for granted that their theories can be either refuted or verified by comparison
with experimental data. In order to evaluate such data, however, one must employ statistical estimation and inference
methods which, unfortunately, always involve an ad hoc proposition. (...) no verification is possible unless the relevant
inference method is an integral part of the theory» [162] (c.f. also [82]), «the motion creates the form» [137] (c.f.
also [59]), and «[t]he main goal of statistician is to choose a priori reasonable families guaranteeing good rates of
convergence of loss functions» [52]. In addition, we see the passage from ‘linearity’ (in the sense of [135, 60, 83, 136])
to ‘nonlinearity’ (in our sense) along the lines of: «the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity» [152] (c.f. also [122]).

2



of Y . In what follows, X denotes a reflexive real Banach space, int denotes an interior in norm
topology of X, and Ψ : X →]−∞,∞] is Legendre [151, 18] (so, its Gateaux derivative is a bijection,
DGΨ : int(efd(Ψ)) → int(efd(ΨF)), with (DGΨ)−1 = DGΨF). A map DΨ : X × X → [0,∞],
DΨ(z, w) := Ψ(z) − Ψ(w) −

[[
z −w,DGΨ(w)

]]
= Ψ(z) + ΨF(DGΨ(w)) −

[[
z,DGΨ(w)

]]
for w ∈

int(efd(Ψ)) and∞ otherwise [42, 35, 109, 44], is an information [18], called Brègman information.
For y ∈ int(efd(Ψ)), C ⊆ X, and ∅ 6= C ∩ int(efd(Ψ)), if the set arg infx∈C {DΨ(x, y)} (resp.,

arg infx∈C {DΨ(y, x)}) is a singleton, then its element will be denoted
←−
P
DΨ
C (y) (resp.,

−→
P
DΨ
C (y)),

and called left (resp., right) DΨ-projection of y onto C. Both left and right DΨ-projections

are idempotent. If ∅ 6= C ⊆ int(efd(Ψ)) is convex and closed, then ∀y ∈ int(efd(Ψ)) ∃!
←−
P
DΨ
C (y)

[18]. Furthermore,
−→
P
DΨ
K = DGΨF ◦

←−
P
D

ΨF

DGΨ(K)
◦ DGΨ, and

−→
P
D

ΨF

DGΨ(M)
= DGΨ ◦

←−
P
DΨ
M ◦ DGΨF for

nonempty, closed, convex sets DGΨ(K) and M [23, 22, 131, 129]. If K is a closed affine subspace of

X, then the left pythagorean equation, DΨ(x, y) = DΨ(x,
←−
P
DΨ
K (y)) +DΨ(

←−
P
DΨ
K (y), y) ∀(x, y) ∈

K × int(efd(Ψ)), holds [35, 6, 5]. If DGΨ(K) is a closed affine subspace of X, then the right

pythagorean equation, DΨ(x, y) = DΨ(x,
−→
P
DΨ
K (x)) +DΨ(

−→
P
DΨ
K (x), y) ∀(x, y) ∈ int(efd(Ψ)) ×K,

holds [50, 131]. If K is convex instead of affine, then ‘=’ in these two equations turns into ‘≥’.
Given ∅ 6= M ⊆ int(efd(Ψ)) and a function T : M → int(efd(Ψ)), Fix(T ) := {x ∈ M |

T (x) = x} 6= ∅ is called a set of fixed points, while F̂ix(T ), called a set of asymptotic fixed
points consists of such x ∈ M that there exists a sequence {xn}n∈N ⊆ M weakly convergent
to x with limn→∞ ||xn − Txn||X = 0. In general, Fix(T ) ⊆ F̂ix(T ). T : M → int(efd(Ψ)) is
called: completely DΨ-nonexpansive (or CN(Ψ)) [45] iff DΨ(T (x), T (y)) ≤ DΨ(x, y) ∀x, y ∈M ;
left strongly DΨ-quasi-nonexpansive (or LSQ(Ψ)) [47, 147, 132] iff DΨ(x, T (y)) ≤ DΨ(x, y)

∀(x, y) ∈ F̂ix(T )×M and (p ∈ F̂ix(T ), {yn}n∈N is bounded, limn→∞(DΨ(p, yn) −DΨ(p, Tyn)) = 0)
⇒ limn→∞DΨ(Tyn, yn) = 0; right strongly DΨ-quasi-nonexpansive (or RSQ(Ψ)) [131] iff
DΨ(T (x), y) ≤ DΨ(x, y) ∀(x, y) ∈ M × F̂ix(T ) and (p ∈ F̂ix(T ), {yn}n∈N is bounded, limn→∞

(DΨ(yn, p)−DΨ(T (yn), p)) = 0) ⇒ limn→∞(yn, T (yn)) = 0. In general,
←−
P
DΨ
C is not CN(Ψ). If Ψ is

bounded, supercoercive, (uniformly Fréchet differentiable and totally convex) on bounded subsets of
X, ∅ 6= K ⊆ int(efd(Ψ)), {T1, . . . , Tn} are LSQ(Ψ) functions K → K such that F̂ :=

⋂n
i=1 F̂ix(Ti) 6=

∅ and T := Tn ◦ · · · ◦ T1, then F̂ix(T ) ⊆ F̂ , and if F̂ix(T ) 6= ∅ then T is LSQ(Ψ) [147, 154, 132].
Such Ψ will be called LSQ-compositional. If, additionally, efd(Ψ) = X, then we will call it LSQ-
adapted. If Ψ : X → R is (bounded, uniformly continuous, and totally convex) on bounded subsets
of X, ∅ 6= K ⊆ X, {T1, . . . , Tn} are RSQ(Ψ) functions K → K such that F̂ :=

⋂n
i=1 F̂ix(Ti) 6= ∅

and T := Tn ◦ · · · ◦ T1, then F̂ix(T ) ⊆ F̂ , and if F̂ix(T ) 6= ∅ then T is RSQ(Ψ) [132]. Such Ψ will
be called RSQ-compositional. If, additionally, Ψ is totally convex on X, ΨF is totally convex
on int(efd(ΨF)), and DGΨ is weakly sequentially continuous, then we will call Ψ RSQ-adapted.
The results of [19, 148, 131] imply [113]: (i) For any LSQ-adapted Ψ and nonempty closed convex

K ⊆ int(efd(Ψ)), F̂ix(
←−
P
DΨ
K ) = Fix(

←−
P
DΨ
K ) = K, hence

←−
P
DΨ
K is LSQ(Ψ); (ii) For any RSQ-adapted Ψ

and closed convex ∅ 6= M ⊆ int(efd(Ψ)), F̂ix(
−→
P
DΨ

DGΨF(M)
) = Fix(

−→
P
DΨ

DGΨF(M)
) = DGΨF(M), hence

−→
P
DΨ

DGΨF(M)
is RSQ(Ψ).

3 ℓ-operations and nonlinear resource theories of states

Given a set Z ⊆ int(efd(Ψ)), a set U , and a bijection ℓ : U → Z, we define the Brègman ℓ-
information on U as Dℓ,Ψ(φ,ψ) := DΨ(ℓ(φ), ℓ(ψ)) ∀φ,ψ ∈ U . The properties of DΨ can be
naturally extended to the properties of Dℓ,Ψ, by turning ℓ into a homeomorphism. Given C ⊆ U , if
ℓ(C) is convex (resp., affine; closed), then C will be called ℓ-convex (resp., ℓ-affine ; ℓ-closed). So,
the ℓ-closure of C ⊆ U is a closure of C in the topology induced by ℓ from the norm topology of X.
A left (resp., right) Dℓ,Ψ-projection is defined by

←−
P
Dℓ,Ψ

C (ψ) :=
←−
P
DΨ

ℓ(C)(ℓ(ψ)) (resp.,
−→
P
Dℓ,Ψ

C (ψ) :=
−→
P
DΨ

ℓ(C)(ℓ(ψ)) for any ℓ-closed ℓ-convex (resp., (DGΨ ◦ ℓ)-closed (DGΨ ◦ ℓ)-convex) set C and any
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ψ ∈ U . For ∅ 6= W ⊆ U and T : ℓ(W ) → Z, T ℓ : ℓ−1 ◦ T ◦ ℓ : W → U will be called an
ℓ-operation (or an ℓ-transmitter). The classes of DΨ-quasi-nonexpansive maps on X determine
the corresponding classes of ℓ-operations on U (i.e., (ℓ,Ψ)-transmitters), in particular: CN(ℓ,Ψ),
LSQ(ℓ,Ψ), and RSQ(ℓ,Ψ). We will denote F̂ix(T ℓ) := ℓ−1(F̂ix(T )). Each y ∈ int(efd(ΨF)) defines
an (ℓ,Ψ)-observable on U , given by y ◦ ℓ : U → R.3

Given a set U (of states), we define a resource theory of states (c.f., e.g., [94, 62, 54, 163]) as
a triple (P, S,R), where P is a submonoid of a monoid End(U) of endomorphisms of U , ∅ 6= S ⊆ U
satisfies P (S) ⊆ S, and R := {r : U → R

+ | (r ◦ p)(φ) ≤ r(φ) ∀φ ∈ U ∀p ∈ P}. The elements of P
(resp., S; R) are called free operations (resp., free states; resource monotones). For example,
in our setting, we have:

(iL/Rℓ,Ψ ) (T , ST , {D
L
ST
}) (resp., (T , ST , {DR

ST
})): if T is a submonoid of CN(ℓ,Ψ) with T (ST ) ⊆ ST ,

and ∅ 6= ST ⊆ U is ℓ-closed ℓ-convex (resp., (DGΨ ◦ ℓ)-closed (DGΨ ◦ ℓ)-convex), then
DL
ST

:= infφ∈ST
{Dℓ,Ψ(φ, · )} (resp., DR

ST
:= infφ∈QT

{Dℓ,Ψ( · , φ)}) is a resource monotone; an
interesting example is given by ST = {φ ∈ U | ∀ψ ∈ U∃T ∈ T T (ψ) = φ} 6= ∅;

(iiL/Rℓ,Ψ ) (T , F̂ix(T ),
⋃
φ∈F̂ix(T )

{Dℓ,Ψ(φ, · )}) (resp., (T , F̂ix(T ),
⋃
φ∈F̂ix(T )

{Dℓ,Ψ( · , φ)})): if Ψ is LSQ-

(resp., RSQ-)compositional, ∅ 6= K ⊆ U , T ⊆ LSQ(ℓ,Ψ) (resp., T ⊆ RSQ(ℓ,Ψ)) is a monoid
such that T ℓ : K → K ∀T ℓ ∈ T ,

⋂n
i=1 F̂ix(Ti) 6= ∅ and F̂ix(T1 ◦ · · · ◦Tn) 6= ∅ ∀{T ℓ1 , . . . , T

ℓ
n} ⊆

T , then Dℓ,Ψ(φ, · ) (resp., Dℓ,Ψ( · , φ)) is a resource monotone for any φ ∈ F̂ix(T );

(iiiL/Rℓ,Ψ ) (T ,K,
⋃
φ∈K{Dℓ,Ψ(φ, · )}) (resp., (T ,K,

⋃
φ∈K{Dℓ,Ψ( · , φ)})): for any ℓ-closed ℓ-convex (resp.,

(DGΨ ◦ ℓ)-closed (DG ◦ ℓ)-convex) set ∅ 6= K ⊆ U , if T is given by the set of all
←−
P
Dℓ,Ψ

Q (resp.,
−→
P
Dℓ,Ψ

Q ) with ℓ-closed ℓ-convex (resp., (DGΨ◦ ℓ)-closed (DGΨ◦ ℓ)-convex) Q such that K ⊆ Q,

equipped with the composition
←−
P
Dℓ,Ψ

Q1
⋄
←−
P
Dℓ,Ψ

Q2
:=
←−
P
Dℓ,Ψ

Q1∩Q2
(resp.,

−→
P
Dℓ,Ψ

Q1
⋄
−→
P
Dℓ,Ψ

Q2
:=
−→
P
Dℓ,Ψ

Q1∩Q2
).

In these examples Dℓ,Ψ plays three different roles: it provides resource monotones, controls the
behaviour of free operations, and participates in the construction of a space of free states. If Ψ
is LSQ-adapted (resp., RSQ-adapted), then (iiiLℓ,Ψ) (resp., (iiiRℓ,Ψ)) is a special case of (iiLℓ,Ψ) (resp.,

(iiRℓ,Ψ)). Limited structural benefits of CN(Ψ) maps4 allow to consider: F̂ix(T ) as a generic notion
of a free state space in brègmanian resource theories; elements of LSQ(ℓ,Ψ) \ T and RSQ(ℓ,Ψ) \ T
as the generic nonfree operations. The (linear) witnesses of S are defines as the elements of
{y ∈ int(efd(ΨF)) | [[x, y]] ≥ 0∀x ∈ S}. Using [132], we observe that any set {T1, . . . ,Tm}, m ∈ N, of
resource theories of the type (iiRℓ,Ψ) admits a convex envelope co(T1, . . . ,Tm) := {T

ℓ ∈ RSQ(ℓ,Ψ) |

T :=
∑n

i=1 wiTi,
∑n

i=1 wi = 1, {T ℓ1 , . . . , T
ℓ
n} ∈ T1 ∪ · · · ∪ Tm, (w1, . . . , wn) ∈]0, 1[

n}, satisfying
Dℓ,Ψ(T

ℓ(ψ), φ) ≤
∑n

i=1wiDℓ,Ψ(T
ℓ
i (ψ), φ) ∀ψ, φ ∈ K. So, while co(T1, . . . ,Tm) may be not a monoid

3If W is a convex set, then an ℓ-operation is belongs to Mielnik’s nonlinear transmitters [135, 136]. In our
case, ℓ-convexity of W is more fundamental property then convexity, so T plays the role of a nonlinear transmitter,
with (X,X⋆) linearly representing (states/sources/resources, observables/sinks/witnesses), while T ℓ is its nonlinear
representation. The monoids of ℓ-operations can be seen as analogues of Mielnik’s semigroups of mobility [137], while
(ℓ, ·)-observables provide an instance of Mielnik’s observables [136]. So, (iiL,R

ℓ,Ψ ) provide a weakened version of Mielnik’s
nonlinear generalised quantum theory. (Mielnik identifies observables with any maps f : U → R, if U is convex. In
our case one may consider such f as an ‘intersubjective’ observable, which is sampled in terms of ‘subjective’ (ℓ,Ψ)-
observables; the same goes for nonlinear transmitters as well as U itself. §8.Ex.2 provides further development of this
dialectics.)

4«This generalization does not satisfy any of the properties that the classical nonexpansive operators do» [154].
However, see §4.Ex.2(b) and its consequence in §5, providing a nontrivial intersection of (ℓ,Ψ)-transmitters T ℓ with
CPTP maps (on preduals of any W∗-algebras N ). This shall be considered in parallel to a characterisation of (preduals
of) conditional expectations on (finite dimensional) N as right D1-projections [114], which, combined with §4.Ex.4,
turns submonoids of (preduals of) conditional expectations into special cases of the type (iiiRℓ,Ψ) resource theory.
Taking into account Chencov’s geometric approach [51] to Wald’s statistical decision theory [172, 173] (see §8), and
Holevo’s approach [92, 93] to selection of POVM as a minimiser of a quantum statistical decision rule, one can view
T ℓ can as an analogue of a statistical decision rule.
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(hence, not a resource theory of states), it provides a setting of a multi-resource theory of states,
with its elements understood as (generally, nonfree) operations, decomposable (“tomographable”)
into weighted mixtures of free operations from different individual resource theories. See [43] for
further brègmanian resource theoretic discussion.

4 Examples of Dℓ,Ψ

Ex.1. (a) For any Banach space X, a duality map is defined as jϕ : X ∋ x 7→ {y ∈ X⋆ | [[x, y]] =
||x||X ||y||X⋆ , ||y||X⋆ = ϕ(||x||X)} ⊆ X [25], where ϕ : R+ → R

+, called a gauge, is strictly increasing,

continuous, with ϕ(0) = 0 and limt→∞ ϕ(t) = ∞. For any gauge ϕ, Ψϕ :=
∫ ||·||X
0 dtϕ(t) : X → R

+

is continuous, convex, and increasing [11, 180]. If X is Gateaux differentiable, then jϕ = {DGΨϕ}

[11]. E.g., Ψϕ = β||·||
1/β
X (resp., ||·||X) for ϕ(t) = t

1
β
−1 (resp., 1

β t
1
β
−1) with β ∈ ]0, 1[. In [113],

using and extending the results of [180, 45, 18, 181, 150], we prove: 1) Ψϕ is Legendre iff X is
Gateaux differentiable and strictly convex; 2) Ψϕ is LSQ-adapted and RSQ-compositional (and
←−
PDΨϕ is norm-to-norm continuous [150]) if X is locally uniformly convex and uniformly Fréchet
differentiable.5 (b) For any base norm space Y , it is reflexive iff its base is weakly compact (see,
e.g., [7]). In such case, some results of brègmanian theory apply directly, under weakening of DGΨ
to right Gateaux derivative (so, Legendre duality is lost), and with ℓ = idY (more generally, ℓ be
taken to be any automorphism of Y ). This holds, in particular, for any finite dimensional Y , for
type I2 JBW-factors [168] (which are exactly the spin factors H ⊕ R, where H is a Hilbert space
with dimH ≥ 2 [159]), as well as for state spaces of orthomodular posets satisfying Jordan–Hahn
decomposition property [76]. (c) Given any base norm space Y , if U is a generating positive cone
of Y and ℓ is a map from U (or Y ) into a geometrically well-behaved Banach space X, then DΨ

determines Dℓ,Ψ on U (or Y ) and thus also on the base of Y . Ex.2 and Ex.3 provide the special
cases of this situation, with X implementing Ex.1(a) (for any W∗-algebra N , using the uniquness
of a polar decomposition, we extend the bijective embedding to the whole predual space N⋆, under
replacement of [[·, ·]] by re [[·, ·]] in all formulas), calling for further investigation of convexity and
differentiability of Banach spaces of integrals over general base norm spaces [165, 166, 167].

Ex.2. (a) If A is a semi-finite JBW-algebra with a faithful normal semi-finite trace τ : A+ →

[0,∞], then the nonassociative L1/γ spaces, γ ∈ ]0, 1], defined by (L1/γ(A, τ) := Aτ
||·||1/γ , ||x||1/γ :=

(τ(|x|1/γ))γ), where Aτ := span{x ∈ A+ | τ(x) <∞} [1, 2, 98], are uniformly convex and uniformly

Frèchet differentiable for γ ∈ ]0, 1[ [99]. Hence, for any gauge ϕ, Ψϕ,γ :=
∫ ||·||1/γ
0 dtϕ(t) is LSQ-

adapted and RSQ-compositional. By means of φ = τ(hφ◦·), the nonassociative Mazur map ℓγ : A⋆ ∋
φ 7→ sign(hφ)|hφ|

γ ∈ L1/γ(A, τ) determines Dγ,ϕ := Dℓγ ,Ψϕ,γ : A⋆ × A⋆ → [0,∞]. Due to isometric
isomorphism of L1/γ(A, τ) for different τ [12], Dγ,ϕ do not depend on τ . For (β, γ) ∈ ]0, 1[2 and ω, φ ∈

A+
⋆ , ϕ(t) = t1/β−1/β yields Dγ,β(ω, φ) = (τ(hω))

γ/β+ 1
1−β (τ(hφ))

γ/β− 1
β (τ(hφ))

γ/β−1τ(hγω ◦h
1−γ
φ ) for

ω ≪ φ and ∞ otherwise. (b) The same (including the formula for Dγ,β) holds for any W∗-algebra
N and γ ∈]0, 1[, due to uniform convexity and uniform Fréchet differentiability of (L1/γ(N ), ||·||1/γ)

spaces [164, 133, 110], under replacement of φ = τ(hφ ◦ ·) by φ =
∫
φ · , and with ℓγ : N⋆ ∋ φ 7→

uφ|φ|
γ ∈ L1/γ(N ), where φ = |φ|(·uφ) is a polar decomposition, while

∫
and |φ|γ are defined as in [75].

For ϕ(t) = t(1−γ)/γ/(γ(1−γ)) =: ϕγ(t) we obtain Dγ(ω, φ) = (γ(1−γ))−1
∫
(γω+(1−γ)φ−ωγφ1/γ)

whenever ω ≪ φ and∞ otherwise, introduced in [104, 112], and unifying Dγ of [127, 87]. All CPTP
maps are completely Dγ-nonexpansive [104], so, the resource theories (iL,Rℓγ ,Ψϕγ

) are valid submonoids

(hence, resource theories) of CPTP maps.
Ex.3. Given a semi-finite W∗-algebra N with a faithful normal semi-finite trace τ : N+ →

[0,∞], let M (N , τ) denote the topological ∗-algebra of τ -measurable operators affiliated with N .
For any Orlicz function Υ, a noncommutative Orlicz space (LΥ(N , τ) := {x ∈ M (N , τ) | ∃λ >

5RSQ-adaptedness of Ψϕ requires weak sequential continuity of jϕ = DGΨϕ, which is an underinvestigated property,
yet known to hold for ϕ(t) = t1/β−1 on l1/β sequence spaces with β ∈ ]0, 1[ [38] and on Hilbert spaces for β = 1

2
[178].
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0 τ(Υ(λ|x|)) < ∞}, ||·||Υ := inf{λ > 0 | τ(Υ(λ−1|x|))}) [116], is uniformly convex and uniformly
Fréchet differentiable iff [113] ((N is of type II∞ and Υ,ΥY ∈ UC(R)∩△2) or (N is of type II1 and
Υ,ΥY ∈ UC∞∩△∞2 ∩SC(R)) or (N is of type I and Φ ∈ △0

2∩UC([0,Φ
−1(12)]) ∀Φ ∈ {Υ,Υ

Y})), where

ΥY(y) := sup{x|y| − Υ(x) | x ≥ 0}.6 So, Ψϕ,Υ :=
∫ ||·||Υ
0 dtϕ(t) : LΥ(N , τ) → R

+ is LSQ-adapted
and RSQ-compositional. Introducing noncommutative Kaczmarz map ℓΥ : N+

⋆ ∋ φ 7→ Υ−1(hφ) ∈
LΥ(N , τ)

+, where φ = τ(hφ · ), we obtain the family DΥ,ϕ := DℓΥ,Ψϕ,Υ
. Due to [13], it is independent

of τ . For N = L∞(X , µ), τ =
∫
X µ, Υ′(t) > 0 ∀t > 0 (Υ′ := dΥ

dt ), ||ω||1 = ||φ||1 = 1, ϕ(t) = t1/β−1/β,
β ∈]0, 1[, and Ῡ(ω, φ) :=

∫
X µΥ

−1(ω)Υ′(Υ−1(φ)), this gives DΥ,β(ω, φ) =
1
β −

1
β Ῡ(ω, φ)/Ῡ(ϕ,ϕ).

Ex.4. For a Hilbert spaceH, dimH =: n <∞, Umegaki’s informationD1(ρ, φ) := trH(hρ(log hρ−
log hφ)−hρ−hφ) [170] equals Dℓ=id,Ψ=Φ◦λ(ρ, φ), where ψ = trH(hψ·) ∈ B(H)+⋆ , λ is a nonincreasing
rearrangement of eigenvalues, while Φ(x) :=

∑n
i=1(xi log(xi) − xi) for x ≥ 0 and ∞ otherwise [17].

(This extends to a separable dimH = ∞ case via [29].) So, Lüders’ and quantum Jeffrey’s rules

[89], partial trace [141], and (preduals of) conditional expectations [114], as special cases of
−→
PD1 ,

belong to
−→
PDℓ,Ψ.

5 Categories

In what follows, Z = int(efd(Ψ)). We define the category lCvx(ℓ,Ψ) (resp., lAff(ℓ,Ψ)), with ob-
jects given by ℓ-closed ℓ-convex (resp., ℓ-closed ℓ-affine) subsets of U , including an ∅, morphisms
given by left Dℓ,Ψ-projections onto ℓ-closed ℓ-convex (resp., ℓ-closed ℓ-affine) subsets of these sub-

sets (i.e., HomlCvx(ℓ,Ψ)(·, C) consists of
←−
P
Dℓ,Ψ

K with K varying over all ℓ-closed ℓ-convex subsets of
C), including ∅ (resulting in empty arrows, e.g., ∅ ∈ HomlCvx(ℓ,Ψ)(C1, C2)), and composition given

by
←−
P
Dℓ,Ψ

Q1
⋄
←−
P
Dℓ,Ψ

Q2
:=
←−
P
Dℓ,Ψ

Q1∩Q2
.7 Legendre transform allows us to define the categories rCvx(ℓ,Ψ)

(resp., rAff(ℓ,Ψ)), with objects given by (DGΨ◦ℓ)-closed (DGΨ◦ℓ)-convex (resp., (DGΨ◦ℓ)-closed
(DGΨ◦ℓ)-affine) subsets of U, including ∅, morphisms given by right DΨ-projections onto (DGΨ◦ℓ)-
closed (DGΨ◦ℓ)-convex (resp., (DGΨ◦ℓ)-closed (DGΨ◦ℓ)-affine) subsets of these subsets, including

∅, and composition given by
−→
P
D̃Ψ
K2
⋄
−→
P
D̃Ψ
K1

:= ℓ−1◦DGΨF ◦
(←−
P
D

ΨF

(DGΨ◦ℓ)(K2)
⋄
←−
P
D

ΨF

(DGΨ◦ℓ)(K1)

)
◦DGΨ◦ℓ.

6Let I ⊆ R be an interval. We call Υ : R → R to be Orlicz iff it is convex, with Υ(0) = 0, Υ 6≡ 0, and Υ(−u) =

Υ(u). An Orlicz Υ belongs to: △2 iff supu>0
Υ(2u)
Υ(u)

< ∞; △∞
2 iff lim supu→∞

Υ(2u)
Υ(u)

< ∞; △0
2 iff limu→0

Υ(2u)
Υ(u)

< ∞;

UC(I) iff ∀a ∈]0, 1[ ∃δ(a) ∈]0, 1[ ∀u ∈ I f(u+av
2

) ≤ 1
2
(1− δ(a))(f(u) + f(v)); UC0 (resp., UC∞) iff ∃u0 > 0 such that

Υ ∈ UC([0, u0]) (resp., Υ ∈ UC([u0,∞[)); SC(I) iff Υ is strictly convex on I .
7The composition rule ⋄ for left DΨ-projections is well defined and stable also in the computational sense. Its

quantitative evaluation can be performed by means of an algorithm given in [20] (valid for any countable family
{Ki}i∈I and any Ψ that is totally convex on bounded sets, hence, in particular, for any LSQ-adapted Ψ), or by means of
[21, 36, 65] (valid for dimX <∞, a finite family {Ki}i∈{1,...,n}, and Legendre Ψ satisfying some additional conditions).

For X given by the Hilbert space H and Ψ1/2 = 1
2
||·||2H, the former algorithm turns to Haugazeau’s [88] algorithm, while

the latter turns to Dykstra’s algorithm [69, 32, 86] (valid also for dimH = ∞, and extendable to countable families

{Ki}i∈I [96]). Under further restriction of {Ki} to a finite family of closed linear subspaces of H,
←−
P

DΨ
1/2

Ki
turn into

orthogonal projection operators PKi : H → Ki, while Dykstra’s algorithm turns into Halperin’s theorem [85] on strong
convergence of a cyclic repetition of PKn · · ·PK1

to PK1∩...∩Kn , i.e., limk→∞

∣

∣

∣

∣

(

(PKn · · ·PK1
)k − PK1∩...∩Kn

)

ξ
∣

∣

∣

∣

H
= 0

∀ξ ∈ H. When only two projections are considered, corresponding to a composition
←−
P

DΨ
1/2

K1
⋄
←−
P

DΨ
1/2

K2
for linear

subspaces K1 and K2, this becomes the von Neumann–Kakutani theorem [171, 108]. All these algorithms provide

evaluation of the (finite or countable) left DΨ-projection
←−
P

DΨ

K1∩...∩Ki
(x) in terms of a norm convergence of a cyclic

sequence of algorithmic steps to the unique limit point. The differences in definitions of those algorithms correspond
to different ranges of generality. In particular, while the direct extension on the von Neumann–Kakutani algorithm
to closed convex sets converges weakly to an element in the nonempty intersection of K1 and K2 [34] (Kaczmarz’s
algorithm [106] is a special case of this extension, obtained for hyperplanes and dimH < ∞), the limit point may
be not equal to a projection onto K1 ∩K2 [57] and the norm convergence generally does not hold [95], although the
latter holds always for dimH < ∞, and can be guaranteed under additional conditions for dimH = ∞ [84]. On the
other hand, the direct extension of Halperin’s theorem to linear projections, of norm equal to 1, onto subspaces of
uniformly convex Banach space is norm convergent and returns a projection, of norm equal to 1, onto an intersection
[41]. For noncyclic algorithms, see [37, 143, 9, 40, 96, 17, 20].
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Following Jaynes [102, 103], we consider an empty (resp., identity) arrow as an inference correspond-
ing to overdetermination (resp., underdetermination) of constraints. K1 ∩ K2 = K2 ∩ K1 implies
commutativity of ⋄. Under restriction of composition by the condition K2 ⊆ K1, the infinitary algo-
rithmic aspect of computation of ⋄ can be dropped, defining the convenient categories lCvx⊆(ℓ,Ψ),
lAff⊆(ℓ,Ψ), rCvx⊆(ℓ,Ψ), rAff⊆(ℓ,Ψ). On the other hand, by dropping down ℓ-embeddings every-
where (i.e., moving to DΨ-projections on X), we obtain the categories lCvx(Ψ), lAff(Ψ), rCvx(Ψ),
rAff(Ψ), as well as their ⊆-subcategories.8

Composability of LSQ(Ψ) (resp., RSQ(Ψ)) maps allows to define the category LSQ(Ψ) (resp.,
RSQ(Ψ)) of subsets of int(efd(Ψ)), with elements of LSQ(Ψ) (resp., RSQ(Ψ)) as arrows between
them, including empty set as object and empty arrows as morphisms (via ℓ-embedding, this gives
LSQ(ℓ,Ψ) (resp., RSQ(ℓ,Ψ))). In general, the composition in LSQ(Ψ), LSQ(ℓ,Ψ), RSQ(Ψ) and RSQ(ℓ,Ψ)
is not commutative, and their objects are not convex in any sense. Restriction of LSQ(Ψ) (resp.,
LSQ(ℓ,Ψ); RSQ(Ψ); RSQ(ℓ,Ψ)) to objects given by the closed convex (resp., ℓ-closed ℓ-convex; DGΨ-
closed DGΨ-convex; (DGΨ ◦ ℓ)-closed (DGΨ ◦ ℓ)-convex) sets determines a subcategory LSQcvx(Ψ)
(resp., LSQcvx(ℓ,Ψ); RSQcvx(Ψ); RSQcvx(ℓ,Ψ)). Taking subsets of X as objects and elements of CN(Ψ)
as arrows defines CN(Ψ) (and CN(ℓ,Ψ), via ℓ). If X is a real Hilbert space and Ψ = 1

2 ||·||
2
X , then CN(Ψ)

coincides with the category HilbR(X) of real Hilbert subspaces ofX and completely ||·||-nonexpansive
maps. From §4.Ex.2(b) it follows that CN(ℓ1/γ ,Ψϕγ ), γ ∈]0, 1[, coincides with the category of all
CPTP maps on N⋆.

In analogy to Chencov’s approach [49, 51, 139] (generalising Blackwell’s [28] statistical equiva-
lence), we will call the subsets M1 and M2 of ℓ−1(int(efd(Ψ))) to be left equivalent iff ∃T1, T2 ∈
Arr(LSQ(ℓ,Ψ)) such that T1(M1) =M2 and T2(M2) =M1. Hence, the families of left equivalent sub-
sets of U coincide with the groupoids inside LSQ(ℓ,Ψ). Let LSQ(Θ, ℓ,Ψ) be a subcategory of LSQ(ℓ,Ψ)
such that each of its objects is bijectively parametrised by a set Θ. Given M1,M2 ⊆ U , and a set Θ,
assume that there exist bijections θ1 : Θ→M1 and θ2 : Θ→M2. Adapting linear positive construc-
tions of [123, 144], we define: a left (ǫ,Dℓ,Ψ)-deficiency of M2 with respect to M1 as existence
of such T ∈ HomLSQ(Θ,ℓ,Ψ)(M1, · ) that supθ∈ΘDℓ,Ψ(θ2(θ), T (θ1(θ))) ≤ ǫ; a left Dℓ,Ψ-deficiency
of M2 with respect to M1 as δDℓ,Ψ

(M2,M1) := infT∈H supθ∈ΘDℓ,Ψ(θ2(θ), T (θ1(θ))), where H :=
HomLSQ(Θ,ℓ,Ψ)(M1, · ); a mutual left Dℓ,Ψ-deficiency of M1 and M2 as δ̄Dℓ,Ψ

(M1,M2) := max{
δDℓ,Ψ

(M2,M1), δDℓ,Ψ
(M1,M2)} (by definition, it is symmetric). GivenM1,M2,M3 ∈ Ob(LSQ(Θ, ℓ,Ψ)),

if HomLSQ(Θ,ℓ,Ψ)(M1,M2) 6= ∅ then δDℓ,Ψ
(M3,M2) ≤ δDℓ,Ψ

(M3,M1). If M1 and M2 are left equiva-
lent, then δ̄Dℓ,Ψ

(M1,M2) = 0. Hence, all objects of a single groupoid in LSQ(Θ, ℓ,Ψ) have zero mutual
left Dℓ,Ψ-deficiency, yet the latter is nonzero between any elements of two distinct groupoids.9 All
of these constructions have their right versions.

The existence and uniqueness of
←−
P
DΨ
Q (y) does not require norm boundedness (and thus weak

8If X is separable, then lAff(Ψ) has objects given by the countable sets of polynomial equations as data types, and
morphisms given by programs (algorithms) that translate them (their solutions). More generally, if X is a separable
Banach space, then every convex closed subset C ⊆ X is the intersection of the countable number of its supporting
closed half-spaces [26], i.e., it is a (countable) polyhedron, which is the set of solutions for a countable system of
linear inequalities (see [30] for a discussion of the nonseparable case). Hence, also lCvx(Ψ), at least in the separable
case, can be represented as a category of specific data types and computations between them. The resource theory
(iiiLℓ,Ψ) from §3 can be recast as a subcategory lCvxK(ℓ,Ψ) of lCvx(ℓ,Ψ), determined by the choice of its terminal
object to be given by K (so the left Dℓ,Ψ-projections onto subsets of K are not considered). In such case, the free
sets of every object A in lCvxK(ℓ,Ψ) correspond to the set HomlCvxK(ℓ,Ψ)(K,A), which can be seen as an analogue
of the fact that HomBanR

(R, Z) is equal to the unit ball of a real Banach space Z [55], where R is a terminal (and also
initial, hence zero) object in the category BanR of real Banach spaces and completely ||·||-nonexpansive maps [157].
Each K ∈ Ob(lAff(Ψ)) with codim(K) = 1 determines a hyperplane in X, which can be seen as a resource witness.

9While the cyclic algorithms mentioned in §5 exhibit norm convergence in X, one still may need either to have a
refined quantification of the exactness of intermediate steps, or to quantify the convergence of algorithms with worse
convergence behaviours. In such cases left (ǫ, Dℓ,Ψ)-deficiency can be used to quantify the approximate exactness of a
k-th cycle of computation of a left Dℓ,Ψ-projection onto (finite or countable) intersection M2 = K1∩ . . .∩Ki, or, more
generally, any cyclic convergence algorithm, given k ∈ N, with T := Sk, where S ∈ LSQ(Ψ) with S : M1 → int(efd(Ψ)).
This illustrates a key property of DΨ that underlies the flexibility of its applications: it allows to quantify both
algorithmic and structural aspects of the suitable category of spaces, serving as a control interface between arithmetic
and geometric layers of a theory.

7



compactness) of Q, due to coercivity of DΨ(·, y) (c.f. Remark 2.13 in 4th ed. of [15] and Lemma
7.3.(v) in [18]). Nevertheless, we can consider a subcategory lCmpCvx(Ψ) of lCvx(Ψ), consisting of
norm bounded, norm closed, convex (equivalently: convex and weakly compact) subsets of X as
objects and left DΨ-projections onto their subobjects as arrows (including empty set and empty
arrows). The corresponding r-, ℓ-, and ⊆- versions of this category are defined analogously as for
lCvx(Ψ). For every K ∈ Ob(lCmpCvx(ℓ,Ψ)) we can canonically associate an order unit Banach
space A(K) of all continuous real valued affine functions on K [107], as well as a base norm space
(A(K))⋆, together with an affine homeomorphism of K onto the base of (A(K))⋆ (extending to a
linear isomorphism of

⋃∞
n=1 nco(K ∪ −K) onto (A(K))⋆) [70], as well as a canonical embedding of

A(K) into an order unit Banach space (A(K))⋆⋆ [72] (the latter is equal to the space of all bounded
real valued affine functions on K with the supremum norm). Hence, each K ∈ Ob(lCmpCvx(ℓ,Ψ))
determines a convex operational model in the sense of [60] (which is a special case [83] of Mielnik’s
theory of linear transmitters [135, 136]). In consequence, lCmpCvx(ℓ,Ψ) provides a specific nonlinear
analogue of the category of convex operational models and positive linear maps with positive duals
considered in [16].

6 Functors

We assume int(efd(Ψ)) = X. From above definitions it follows that every ℓ determines a (family of)
functor(s), acting by K → ℓ(K) on objects and T 7→ T ℓ on arrows, which, together with the functor
ℓ−1, establishes the equivalences of corresponding categories. If Ψ is LSQ-adapted (resp., RSQ-
adapted), then an embedding functor ιLΨ : lCvx(Ψ) →֒ LSQcvx(Ψ) (resp., ιRΨ : rCvx(Ψ) →֒ RSQcvx(Ψ))
and an induced functor ιLℓ,Ψ := ℓ−1 ◦ ιLΨ : lCvx(ℓ,Ψ) →֒ LSQcvx(ℓ,Ψ) (resp., ιRℓ,Ψ := ℓ−1 ◦ ιRΨ :

rCvx(ℓ,Ψ) →֒ RSQcvx(ℓ,Ψ)) are well defined, due to Fix(
←−
P
DΨ
Q1
⋄
←−
P
DΨ
Q2

) = Fix(
←−
P
DΨ
Q1

) ∩ Fix(
←−
P
DΨ
Q2

) =
Q1 ∩ Q2. Given any set Y , let Pow(Y ) denote the category of all subsets of Y with functions

between them as morphisms. Consider a map coLΨ(·)
w
: Ob(Pow(X)) → Ob(Pow(X)), assigning to

each subset Y of a Banach space X the closure of a convex hull co(Y ) of Y in the weak topology

of X (it coincides with the norm closure of co(Y )). Let coLΨ(·)
w

: Arr(Pow(X)) → Arr(Pow(X))

be a map that assigns to each function f : Y1 → Y2 a map
←−
P
DΨ
Q : coLΨ(Y1)

w
→ coΨ(Y2)

w
, where

Q = coLΨ(f(Y1))
w
. Then coLΨ(·)

w
: Pow(X) → lCvx(Ψ) is a functor. Let coRΨ(·)

w
be a functor

assigning: to each Y ∈ Ob(Pow(X)) an image of DGΨF of the weak closure of the convex hull of

DGΨ(Y ); to each f : Y1 → Y2 a map
−→
P
DΨ
Q : coRΨ(Y1)

w
→ coRΨ(Y2)

w
, where Q = coRΨ(f(Y1))

w
. With

a forgetful functor FrgSet : lCvx(Ψ) → Pow(X) (resp., lCvx(Ψ) → Pow(X)), defined by forgetting

convex and topological structure, we obtain an adjunction coLΨ(·)
w
⊣ FrgSet (resp., coRΨ(·)

w
⊣ FrgSet).

If Ψ is LSQ-adapted, then a mapping FixLΨ, defined by identity on objects of LSQcvx(Ψ) and assigning

T 7→
←−
P
DΨ

Fix(T ) to each T ∈ Arr(LSQcvx(Ψ)), is a functor LSQcvx(Ψ)→ lCvx(Ψ), satisfying ιLΨ ⊣ FixLΨ.

By composition, we obtain ιLΨ ◦ co
L
Ψ(·)

w
⊣ FrgSet ◦ Fix

L
Ψ. By composition with ℓ, we obtain the

functors coLℓ,Ψ(·)
ℓ
: Pow(U) → lCvx(ℓ,Ψ), ιLℓ,Ψ : lCvx(ℓ,Ψ) → LSQcvx(ℓ,Ψ), FixLℓ,Ψ : LSQcvx(ℓ,Ψ) →

lCvx(ℓ,Ψ), FrgSet : lCvx(ℓ,Ψ)→ Pow(U), and the respective adjunctions. If Ψ is RSQ-adapted, then

a mapping FixRΨ, defined by identity on objects of RSQcvx(Ψ) and assigning T 7→
−→
P
DΨ

Fix(T ) to each

T ∈ Arr(RSQcvx(Ψ)), is a functor RSQcvx(Ψ)→ rCvx(Ψ), satisfying ιRΨ ⊣ FixRΨ. By composition with

ℓ, we obtain the functor FixRℓ,Ψ, and the adjunction ιRℓ,Ψ ⊣ FixRℓ,Ψ. The endofunctors FrgSet ◦ co
L
ℓ,Ψ(·)

ℓ

and FrgSet ◦ co
R
ℓ,Ψ(·)

ℓ
are monads on Pow(U), while FixLℓ,Ψ ◦ ι

L
ℓ,Ψ and FixRℓ,Ψ ◦ ι

R
ℓ,Ψ are monads on

lCvx(ℓ,Ψ) and rCvx(ℓ,Ψ), respectively (see §8 for further discussion). If Ψ is such that both LSQ(Ψ)
and RSQ(Ψ) are well defined, and assuming additionally [132] that DGΨ and DGΨF are (bounded and
uniformly continuous) on bounded sets of int(efd(Ψ)) and int(efd(ΨF)), respectively, the Legendre
maps determine an equivalence of categories, given by a pair of functors: (·)Ψ : RSQ(Ψ) → LSQ(Ψ)

and (·)Ψ
F

: LSQ(Ψ) → RSQ(Ψ), acting by C 7→ DGΨ(C) and K 7→ DGΨF(K) on objects, and by
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conjugations T 7→ TΨ and T 7→ TΨF

on morphisms, respectively. The same definition of (·)Ψ and
(·)Ψ

F

, without extra conditions on Ψ, gives an equivalence of lCvx(Ψ) and rCvx(Ψ).10

7 Natural transformations and Hom-monoids

Let [0,∞] denote a category consisting of one object •, with morphisms given by the elements of the
set R+∪{∞}, and their composition defined by addition [121]. Let 2 denote the category consisting
of two objects, one arrow between them, and the identity arrows on each of the objects. The
category [0,∞]2 has morphisms of [0,∞] as objects, commutative squares in [0,∞] as morphisms, and
commutative compositions of these squares as compositions. Let K1,K2,K3,K,L ∈ Ob(lAff⊆Q(Ψ)),
K ⊆ K2 and L ⊆ K3. For each φ ∈ Q, left pythagorean equation implies the commutativity
of the diagram (1). This defines a contravariant functor DΨ(φ, ·) : lAff⊆Q(Ψ) → [0,∞]2, which

naturally extends to a functor DΨ(φ, ·) : lAff⊆(Ψ) ↓ Q → [0,∞]2, where lAff⊆(Ψ) ↓ Q denotes
a slice category of lAff⊆(Ψ) over Q. For any two categories C and D, cartesian closedness of the
category Cat of all small categories (with natural transformations as morphisms) implies that any
functor C→ D2 corresponds to a natural transformation in DC. Hence, Q parametrises the family of
natural transformations DΨ(φ, ·) in the category of functors lAff⊆(Ψ) ↓ Q→ [0,∞]. Dependence of
DΨ(φ, ·) on Q can be factored out by reducing considerations to singletons Q = {φ} (understood as
0-dimensional closed affine spaces). In (some) analogy to [14, 79]. this allows us to state a problem
of characterisation of DΨ as a natural transformation DΨ(φ, ·).

x ✤ //
❴

←−
P

DΨ
K��

(
• DΨ(φ,x)

// • )

←−
P
DΨ
K (x) ✤ //
❴

←−
P

DΨ
L��

( •

0

OO

DΨ(φ,
←−
P

DΨ
K (x))

// • )

DΨ(
←−
P

DΨ
K (x),x)

OO

←−
P
DΨ
L ⋄

←−
P
DΨ
K (x) ✤ // ( •

0

OO

DΨ(φ,
←−
P

DΨ
L ⋄
←−
P

DΨ
K (x))

// • ) .

DΨ(
←−
P

DΨ
L ⋄
←−
P

DΨ
K (x),

←−
P

DΨ
K (x))

OO

(1)

Given any Q ∈ Ob(lCvx(Ψ)), HomlCvx(Ψ)(·, Q) can be equipped with the structure of a commutative

partially ordered monoid [74], with
←−
P
DΨ
Q1
⋄
←−
P
DΨ
Q2

:=
←−
P
DΨ
Q1∩Q2

,
←−
P
DΨ
Q1
≤
←−
P
DΨ
Q2

:= Q1 ⊆ Q2, and a

distinguished zero object, given by
←−
P
DΨ
Q . (Examples of computation of ⋄ given in §5 apply here as

well.) Hence, each HomlCvx(ℓ,Ψ)(·, Q) forms a resource theory in the sense of [78] (which generalises,
in particular, the approaches of [126] and [64]). Viewing the order of extended positive reals as
a feature distinct from their composition by addition turns [0,∞] into a commutative partially
ordered monoid (with x+∞ =∞ =∞+ x ∀x 6=∞). Thus, each functor DΨ(φ, ·) can be seen as a
morphism Hom

lAff
⊆
Q(Ψ)

(·, Q)→ [0,∞] inside the category of commutative partially ordered monoids.

(By Legendre duality, right pythagorean equation, and ℓ−1, the above applies also to categories of
−→
PDΨ,

←−
PDℓ,Ψ, and

−→
PDℓ,Ψ .)

10This equivalence may seem trivial, as built into the definition of rCvx(Ψ). Yet, we see it is as a top of an iceberg:
there exist right DΨ-projections which are not Legendre transforms of the left DΨ-projections [22], the equivalence
between LSQ(Ψ) and RSQ(Ψ) classes holds only under special conditions [132], and there is an important difference

between availability of LSQ- vs RSQ-adaptedness in models. Furthermore, while
←−
PDΨ correspond to Sanov-type

theorems [155, 27, 125],
−→
PDΨ correspond to minimum contrast (e.g., maximum likelihood) estimation [50, 51, 71, 8].

In general, the dichotomy between
←−
PDΨ and

−→
PDΨ can be seen as DΨ-version of a left/right split of a characteristic

property 〈y − PCx, x− PCx〉H ≤ 0 ∀(x, y) ∈ H×C [10] of metric (= DΨ1/2
-) projections PC onto convex closed subsets

C in Hilbert space H under a passage from H to Banach spaces (left characterising metric projections [63, 153, 128],
right characterising completely ||·||-nonexpansive sunny retractions [39, 146]). This leads us to conjecture that the
Legendre transform in brègmanian setting, under a suitable choice of categories (e.g., left and right DΨ-Chebyshëv
sets with some additional properties, guaranteeing the composability of respective DΨ-projections), is an adjunction,
with the above equivalence as a special case. Could it be approached via a nucleus of profunctor, as in [176]?

9



8 Epistemic (co)monads and epistemic resource theories

Lawvere [119] proposed to consider deductive theories of mathematical structures as categories,
with their models given by functors. If C and D are categories, while F : C → D and G : D → C

are functors, such that F ⊣ G, then one can view [120] (c.f. [117, 91]): C as a category of (type
theoretic) axiomatisations, with objects given by logical formulas and morphisms given by proofs
(deductions), D as a category of (geometric) structures modeling these axioms, F as the semantics
(meaning) of C in D, and G as the syntax (formalisation) of D in C. Interpreting syntax as a minimal
axiomatisation, F can be viewed as the most efficient solution to the problem posed by G, while G
can be seen as posing the most difficult problem that F solves. On the other hand, Lawvere [118],
Chencov [49], and Morse and Sacksteder [140] introduced the category of statistical inferences, with
sets of probability densities (probabilistic models) as objects and positive norm-preserving linear
maps as arrows. Chencov’s approach (viewing the objects as «figures» [48, 50] and their morphisms
(statistical decision rules) as «movements» [49, 51], with statistical equivalence understood as inner
groupoids) was focused at relationships between categorical and geometric structures of statistical
models and inferences. In his view, the choice of a particular class of morphisms requires justification
(he referred to Wald’s [172, 173] decision theory), providing a selection of the preferred class of
maps with respect to a presumed criteria of optimality (given by the Bayes risk). Parallelly, Jaynes
[102, 103] stressed that: 1) probabilities are states of knowledge, which is conditioned upon in the
criteria of intersubjective experimental reproducibility (thus, not completely subjective/personal); 2)
the mathematical structure of a theory of inductive inference should be derived from (determined by)
the criteria (requirements) guaranteeing optimality with respect to a particular logic of experimental
designs/types of testable data (c.f. [169]): for each specific method of inductive inference, there are
different experimental designs that can be optimally analysed with it (e.g., χ2 test makes no sense
for a small sample size, the Bayes–Laplace rule is inapplicable to data given by arithmetic means
identifiable with average values, etc).

Our conclusion from these insights, taking into account the large body of evidence on double-
sidedness of relationships between ‘experimental facts’ and ‘intersubjective beliefs’ [68, 158, 77],
is to: 1) consider pairs of: 1a) inductive inference categories, with geometric structures encod-
ing/determining specific prescriptions of optimal/ideal models and inferences, 1b) experimental de-
sign categories, seen as logical (type theoretic), and encoding admissible/ideal types of experimental
data and their (experimental) transformations; 2) use adjointness, with syntax given by predictive
verification (involving frequentist asymptotics and quantitative control of convergence of algorithmic
evaluation) and semantics given by model construction (involving infinitary geometric idealisations
of finite data sets).

Any category C with object X ∈ Ob(C) interpreted as a type of knowledge and morphism
f ∈ Arr(C) interpreted as its transformation will be called an epistemic universe. Consider two
epistemic universes: ExpDes of experimental designs (with objects given, e.g., by the sets of
experimental configuration settings, morphisms given by the sets of parameters of the experimen-
tal operations that transform between these settings, and composition of morphisms h = g ◦ f
representing experimental identification of ‘performing operation h’ with ‘sequential performing of
operations f and g’) and IndInf of theoretical designs (with quantified knowledge/information
state spaces as objects and inductive inferences/information processings as morphisms). A functor
I : ExpDes → IndInf will be called a model construction (or interpretation) while a functor
P : IndInf→ ExpDes will be called a predictive verification. In scientific inductive inference, as
opposed to mathematical deductive inference, the codomain of semantics is given by the category
of inferences (and thus the syntax is provided by predictive verification), so “∀ data ∃ inference
that models it” (or: “whatever is measurable, it has to be made thinkable”). On the other hand,
the formula “∀ inferences ∃ data that models it” (or: “whatever is thinkable, it has to be made
measurable”) is characteristic to magical thinking. In consequence, a predictive verification P will
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be called scientific (resp., magic) iff P is right (resp., left) adjoint to I.11 Thus, in scientific
inductive inference, IndInf plays a role of a geometric category (answering to a question «Whose
information?» [102]), while ExpDes plays a role of a type theoretic category (answering to «Informa-
tion about what?» [24]). However: 1) given the fixed choice of two categories, there can be various
adjoint pairs of functors between them; 2) the experimental design (‘facts’) of some family of agents
can be a theoretical design (‘beliefs’) for some other family of agents, and so on. These issues can
be (partially) addressed by moving to (co)monads. A choice of a monad (dually: a comonad) on
epistemic universe C determines the class of epistemic universes D and corresponding adjoint pairs
I ⊣ P that make C (resp., D) to be ExpDes (resp., IndInf) (dually: IndInf (resp., ExpDes)). We will
call them epistemic (co)monads.12

Given a choice of a category IndInf of inductive inferences, an agent (resp., coagent) is iden-
tified with a monad J (resp., a comonad E) on IndInf, encoding the range of available/allowed
individual actions/free operations (resp., individually accepted/constructed ‘facts’). A pair (E, J)
of an agent J and coagent E on IndInf will be called a subject (or a user). We define: an epistemic
inference theory as a triple (IndInf, E, J); a multi-(co)agent epistemic inference theory as
U := (IndInf, {Ei | i ∈ I}, {Jj | j ∈ J }) (so, U becomes multi-user iff there is a fixed bijection
I ∼= J ). Given a choice of a particular (nonunique) adjoint pair I ⊣ P representing the epistemic
comonad E, the epistemic monad J = (J, µ, η) can be functorially mapped along P , resulting in a
monad J̃ = (J̃ , µ̃, η̃) over ExpDes, provided there exists a natural transformation α : J̃P ⇒ PJ such
that α◦ η̃P = Pη and α◦ µ̃P = Pµ◦αJ ◦ J̃α [161].13 In this context, a toy model of a “collective con-
struction of (a system of) scientific facts” (in the sense of [158, 77]) is: given U , the admitted range of
possible experimental design categories is limited by the requirement that a single category ExpDes

has to admit a collection of adjoint pairs Ii ⊣ Pi ∀i ∈ I , implementing the whole corresponding fam-
ily {Ei | i ∈ I} of comonads of U . Given subjects (Ei, Ji) on Ci, i ∈ {1, 2}, and p, q ∈ {lax, colax}, we
define a (p,q)-strategy a pair ((FE , αE), (FJ , αJ )) of p morphism (FE , αE) : (C1, E)→ (C2, Ẽ) and
q morphism (FJ , αJ ) : (C1, J)→ (C2, J̃). Intersubjectivity amounts to relating different subjects in a
given theory U . Categorifying Chencov’s groupoids of statistical equivalence, we define intersubjec-
tive commensurability of (lax,lax)-strategies as an inner groupoid in 2-category InterSubjlax,lax
of subjects of U as 0-cells, pairs of (lax,lax)-strategies as 1-cells, and pairs of natural transformations
(κE , κJ ) : (FE , FJ ) → (F̄E , F̄J ), such that (ᾱE , ᾱJ) ◦ (E2, J2)(κE , κJ ) = (κE , κJ)(E1, J1) ◦ (αE , αJ )
as 2-cells ((FE , αE), (FJ , αJ))⇒ ((ḠE , ᾱE), (ḠJ , ᾱJ )). The corresponding (lax,colax)-, (colax,lax)-,
and (colax,colax)- intersubjective categories and their inner commensurabilities (as well as further
special cases, given by specialisation of natural transformations α to be weak or strong) are defined
analogously.

11«Now, if it comes to making truth, magic can do it far more quickly and brillantly than science. Magic is an
experiment in omnipotence; it thinks to create facts by invoking them, as Absolute Will thinks to create truths by
assuming them; so after all we need not be surprised that Faust finds magic the best key to the universe» [156]. An
adjoint triple Pm ⊣ I ⊣ Ps determines a pair I ◦ Pm ⊣ I ◦ Ps of monad and comonad on IndInf and a dual pair
Pm ◦ I ⊣ Ps ◦ I of comonad and monad on ExpDes, allowing for further interpretation along these lines.

12So, an epistemic comonad on C limits the possible universes of intersubjective experimental knowledge (together
with the corresponding model construction and predictive verification criteria) that are allowed to be built upon C

understood as IndInf. Dually, an epistemic monad on C limits the possible theoretical design categories (“optimal
models and inferences”), and their relationship with C understood as ExpDes. This leads to the concept of epistemic

strategies for a given epistemic universe C, understood as either choosing the specifically crafted monad and comonad
(if they are not already given) or utilising the range of available adjunctions equivalent to the given monad and
comonad. For example, aiming at maximisation of syntactic power of C as ExpDes, given a fixed monad on it, one
would use the largest possible (i.e., the Eilenberg–Moore) category. Dually, aiming at minimisation of semantic power
of C as IndInf, given a fixed comonad on it, one would use coKleisli category.

13A map (P, α) is called a lax morphism (and: strict iff α is an identity; weak iff α is an isomorphism), while
the inversion of direction of α defines a colax morphism [161, 124]. Lax (resp., colax) morphism induces a functor
between corresponding Eilenberg–More (resp., Kleisli) categories, so the choice among them encodes the choice of an
epistemic strategy. Dually, given a representation of an epistemic monad, one can subject an epistemic comonad to a
(co)lax morphism along this representation, resulting in a “doubly epistemic” comonad, encoding (some information
about this) in what sense IndInf, now viewed as an experimental design category, was a theoretical design for even
more deeper layer of experimental design.
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Every monad (T, µ, η) on a category C gives rise to a monoid MT := (Nat(idC, T ), µ(· ◦ ·), η).
Hence, if IndInf has a terminal object 1, then, given an agent J on IndInf, one can consider the
objects of IndInf as resource spaces, with: free resources given by the objects in {σ1(1) ∈
Ob(IndInf) | σ ∈ Nat(idIndInf, J)}, free operations given by MJ , operations given by all
natural transformations from idIndInf to any agent/monad on IndInf, and resource monotones
given by the maps r : Ob(IndInf) → [0,∞] such that r ◦ σA(A) ≤ σA(A) ∀σ ∈ Nat(idIndInf, J)
∀A ∈ Ob(IndInf). Thus, in presence of 1 and of at least one nontrivial resource monotone, every
(multi-agent) epistemic inference theory becomes a (multi-agent) resource theory. As opposed to
set-theoretic case of §3, the collection of all operations may be not a monoid itself (lacking a corre-
sponding agent). Hence, although inspired by [62, 61] and [53], the above setting does not reduce
to theirs.14 On the other hand, the monoidal category (CC, ◦, idC) is not symmetric, so the above
setting cannot be recast in terms of [56].

Ex.1. From §6 we obtain an epistemic inference theory (lCvx(ℓ,Ψ), coLℓ,Ψ(·)
ℓ
◦FrgSet,Fix

L
ℓ,Ψ◦ι

L
ℓ,Ψ).

Each pair (ℓ,Ψ) implements a specific convention of intersubjective knowledge construction and its
evaluation, that extracts a particular layer of data from the subsets of U , and enriches it with a
particular idealisation, corresponding to the chosen quantitative criteria of optimal inference.

Ex.2. (Pow(N⋆), id, {FrgSet ◦ co
L
ℓΥ,Ψϕ

(·)
ℓ
}), with Υ and ϕ varying as in §4.Ex.3, is a multi-agent

epistemic inference theory. Kaczmarz map LΥ1(N , τ) ∋ x = ux|x| 7→ uxΥ
−1
2 (Υ1(|x|)) ∈ LΥ2(N , τ)

is a homemorphism [113], seting up categorical equivalences between lCvx(ℓΥ,Ψϕ) for varying
Υ and fixed ϕ, implying strict intersubjective commensurability of corresponding monads/agents
on Pow(N⋆). Each agent corresponds to a family of resource theories of states of type (iiiLℓΥ,Ψϕ

),

parametrised by ℓΥ-closed ℓΥ-convex sets of free states.15 On the other hand, Pow(N⋆) has a termi-
nal object, allowing to ask: what are the nontrivial resource monotones turning this example in a
multi-agent resource theory?
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