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Abstract

What is the meaning of the terms experiment and experimental verification? Can they
be formalised mathematically? Consideration of an experiment as something exhaustively
specified by a single set X of (qualitative) elementary events and a single set Θ of (quan-
titative) parameters does not give any account for many aspects of experiments that are
implicitly assumed in their construction and application, and which are required for their
intersubjective reproducibility (validation). In particular, such definition does not provide
any description of the necessary and sufficient conditions that allow to consider various dif-
ferent experimental situations as instances of the same ‘experiment of a given type’. But
without such description the notion of an experiment is a useless abstraction.

As a replacement for this perspective, we propose a category theoretic framework for
definition of an ‘experiment of a given type’, as well as categorical description of relationship
between predictive theory and experiment. The latter can be understood either in terms of
restrictions on theoretical model construction that are introduced by the experiments of a
given type, or in terms of restrictions on the experiments of a given type that are imposed
by a given theoretical model.

1 Mathematical motivation

Aiming at a unified treatment of information theory in all regimes, including the non-commutative
infinite-dimensional case, we have abandoned the reliance on the notion of probability and the
spaces of probability measures on measurable spaces (X ,f(X )) in favour of the notion of in-
formation and the spaces M(N ) ⊆ N+

∗ of quantum information states on W ∗-algebras N .
As a consequence of this change, the Fisher–Kolmogorov [6, 9] definition of a probabilistic
model M(X ,f(X ), µ) as a subspace of the space P(X ,f(X ), µ) of all probability measures
on a countably additive algebra f(X ) of subsets of the “sample” set X dominated by a mea-
sure µ on f(X ), as well as related definition of a parametric probabilistic model as a subset
Θ×M(X ,f(X ), µ) ⊆ Rn×P(X ,f(X ), µ) are inapplicable. The reasons are purely mathemat-
ical: 1) in the commutative case there are many inequivalent spaces (X ,f(X )) that represent
the same mcb-algebra f and there are many inequivalent countably additive boolean algebras
f(X ) of subsets of X that can be associated with a given space X ; 2) in the non-commutative
case there is simply no X that could be associated either with some ω ∈ M(N ) ⊆ N+

∗ or with
M(N ) itself; 3) the infinite-dimensional models cannot be parametrised by Θ ⊆ Rn.

There is however an important aspect of the use of sample space X and the parameter space
Θ in commutative statistical theory (as well as in applications of Hilbert space based approach
to quantum theory) that should be incorporated into new framework: it is the relationship
between X , Θ and M that specifies the allowed range of variability of quantitative models
Θ×M imposed by the range of variability of qualitative objects X . For example, this can be
specified as invariance of Θ andM under particular group of transformations of X . In general,
the relationships between X , Θ, and M(X ,f(X ), µ) ⊆ L1(X ,f(X ), µ) serve as a main tool for
specification and control of construction of families of models M that are well-behaved under
some classes of transformations of the sample space and parameter space.

Actually, in the large part of applications of probability theory to statistical inference, the
sample space X and the parameter space Θ are used to define the particular experimental
situation under consideration, which is understood as an individual instance of an ‘experiment



of a given type’. The behaviour of relationship between X , Θ and M under the changes of
X and Θ represents the particular type of experimental situation under consideration, as well
as intended character of relationship between experiment of a given type and an associated
theoretical model. So, if we replace X , Θ, and M(X ,f(X ), µ) by some new mathematical
structure, then we have to specify how this structure defines the ‘experiment of a given type’ and
how it defines the predictive verifiability of the relationship between experiment and a theory.
In particular, the passage from finite-dimensional commutative normalised setting to infinite-
dimensional non-commutative finite-positive setting requires us to provide such replacement
for these relationships, which would preserve good behaviour of models arising in the new
construction and would also include the standard commutative approach as a special case.

The similar conclusion can be drawn by analysing von Neumann’s approach to quantita-
tive specification of quantum theoretic models, which is based on spectral representation of
commutative subalgebras of algebra B(H) over some Hilbert space H in terms of functions of
L∞(X ,f(X ), µ) acting on some L2(X ,f(X ), µ) space. This approach assumes that experimen-
tal situations can be completely described in terms of orthogonal projections on H, and provides
no principles of specification of particular non-degenerate density matrices corresponding to a
given experimental situation. The semi-spectral approach to quantum measurement and estima-
tion theory showed that the choice of particular operators and density matrices (hence, spaces
N (H) ⊆ B(H) and M(H) ⊆ B(H)+

∗ ) over some suitable Hilbert space H depends crucially on
the detailed qualitative and quantitative description of a particular experimental setting under
consideration, and it might be ambiguous and ill-defined if such description is not provided (see
[2, 7, 4, 3, 5] for details). In order to encompass the complexity of operational description of
experimental situation, the description in terms of spectral measures is relaxed to description
in terms of semi-spectral measures, which are constructed by appealing to some operational
considerations. However, in general there is no bijection between semi-spectral measures and
self-adjoint operators. This undermines justification of the spectral theorem as an underlying
principle of construction of quantum theoretic models (as well as consideration of self-adjoint
operators in particular Hilbert space representation as ‘observables’), but does not provide new
mathematical framework. Moreover, the semi-spectral approach does not provide any general
principle of selecting a space of density matrices given a particular operational description of
experimental situation. Hence, this approach exposes the operational features underlying the
structure of quantum theory, but it lacks the necessary mathematical generality allowing to
express these features independently of Hilbert spaces, spectral theory, and commutative prob-
ability theory. Our approach to quantum theory, together with the new framework for definition
of experiments and their relationship with predictive theories, is aimed to provide a new solution
to these problems.

2 Conceptual motivations

In order to implement the above ideas, we will reformulate the McCullagh–Brøns [13, 1] cat-
egorical framework for experimentally sound statistical models. The detailed examples from
statistical theory that motivate the main definitions of this framework are given in the orig-
inal work of McCullagh [13]. However, McCullagh does not provide any detailed conceptual
justification of the specific choice of definitions he introduces. Moreover, one may ask to what
extent these examples may serve as a sufficient motivation for a setting aimed to cover also
quantum theory. By this reason, we will develop here the independent conceptual motivation,
that takes its roots in the theory of design and analysis of experiments as presented by the
book of Hinkelmann & Kempthorne [8] and in the earlier works of author on the intersubjective
bayesian interpretation [10, 12, 11].

The scientific inquiry can be divided into two layers: experimental and theoretical. The
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elementary notions used to describe the experimental layer are: observation unit, experimental
unit, treatment (called also intervention), and registration scale. An observation is defined
as an assignment of a registration scale to the observation unit. Observations are collected in
observation protocols and form a passive component of the experimental layer. An experimental
design (called ‘error-control design’ in [8]) is defined as an assignment of a treatment to an
experimental unit. A fact is defined as an assignment of a response scale to an experimental
design. Facts are collected in experimental protocols and form an active component of the
experimental layer. In what follows, we will simplify the discussion by assuming that the
experimental units and observation units can be identified. This assumption is implicit in the
McCullagh–Brøns approach.

According to the analysis of various possible meanings of the notion ‘causality’ when applied
at the experimental layer, this notion should be understood as dependence of facts upon active
choice of treatment (intervention) [8]. This allows to consider treatments as “causes” and to
consider the corresponding facts as “effects”. This consideration is independent of anything
that could be proposed at the theoretical layer.

In our opinion, the elementary notions used to describe the theoretical layer are theoret-
ical models (called also information models) and hypotheses. Hypotheses can be represented
as statements about relationships between theoretical source-and-response parameters (called
also input-and-output parameters), and may include also some additional control parameters.
The theory is defined as an assignment of hypotheses to a theoretical model. Hinkelmann &
Kempthorne consider theoretical model as a sort of ‘generalisation’ of observations. This allows
us to consider theoretical model as a passive component of theoretical layer. But what is then
the active component of this layer? It seems that the key element of this component is an
inductive inference procedure, which is a process of drawing (assigning) judgements from (to)
evidences. The evidence and the resulting judgements are specified inside the theoretical layer,
using theoretical source-and-response parameters. In principle, evidences and judgements are
just some hypotheses. However, the inductive inference procedure requires to use also some the-
oretical model, that is associated with hypotheses under consideration through a given theory.
As a result, one can define a predictive theory as a theory equipped with an inductive inference
procedure, and consider it as an active component of a theoretical layer. The hypotheses play
the role of the ‘user data interface’ for this active component, which is to some extent similar
to the role played by treatments at the experimental layer.

If the elements of a theoretical model are interpreted as ‘states of information’, then the
hypotheses assigned by a theory provide a theory-dependent classification of the ‘states of in-
formation’. Usually, the inductive inference procedure is specified as a transformation between
collections of states of information of a theoretical model. The fixed choice of a theory pro-
vides than the required links with hypotheses that are interpreted as evidences and judgements
(inferences).

While the experimental notion of ‘causality’ is a relationship between treatments understood
as “causes” and facts understood as “effects”, the theoretical notion of ‘causality’ can be in prin-
ciple introduced in two different ways: either as a relationship between control parameters and
response parameters that form particular hypotheses, or as a relationship between hypotheses
(with evidences understood as “causes” and inferences understood as “effects”). These two
structures could be called, respectively, ‘kinematic causality’ and ‘dynamic causality’. From
Sections ?? and ?? we can see that in the case of our approach to quantum theory the former
candidate for a theoretic notion of ‘causality’ takes a form of the Legendre–Fenchel transform,
while the latter takes a form of the constrained maximisation of the relative entropy.

Observations, treatments, and facts belong to experimental layer only. Information mod-
els, hypotheses, and theories belong to theoretical layer only. Knowledge and experimentally
verifiable theories arise as a result of association of theories with facts through some additional
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interpretation (‘correspondence rules’, ‘association’), that consists of two independent com-
ponents: passive component, providing interpretation of observations in terms of information
(theoretic models), and active component, providing interpretation of treatments in terms of
hypotheses (source-and-response relations). This interpretation sets a ground for analysis of
the relationship of evidences and inferences to the experimental facts.

Let us recall that the main purpose of analysis of the design of experiments and its relation
with theoretical models is to specify the conditions under which the selected methods of induc-
tive inference can be regarded as ‘valid in face of’ a given experimental situation, where the
‘validity in face of’ can be also understood as ‘mutual consistency’ between the experimental
and theoretical layers. As Hinkelmann & Kempthorne write, “We cannot talk about a theory
being absolutely true. We can only talk about a theory being true in a given context of appli-
cation” [8]. The goal of the above specifications of concepts describing the experimental and
theoretical layers of the scientific inquiry is to enable formalisation of the above vague notions
of “contextual truth”, “validity in face of” or “mutual consistency” by a precise notion of an
experimentally verifiable predictive theory.

Note that due to identification of observation units with experimental units, every fact
contains ‘purely active’ part provided by treatment which is its “cause”, and ‘purely passive’
part provided by an associated observation. A theory will be called experimentally verifiable
with respect to a given collection of facts iff a hypothesis associated by an interpretation of the
treatment ‘underlying’ any fact from this collection is equal to the hypothesis that is associated
by a given theory to a result of an interpretation of the observation ‘underlying’ this fact. This
can be illustrated more clearly by the following diagram

facts (“effects”)

))tt
experimental designs

��

observations

‘passive’ corresp. rule

��

treatments (“causes”)

‘active’ corresp. rule
��

hypotheses theoretical model.
theory

oo

(2.1)

Whenever this diagram commutes the theory is experimentally verifiable with respect to the
given collection of facts (and under particular interpretation). A predictive theory is called
experimentally verifiable with respect to a given collection of facts iff the above condition holds
for those facts that correspond to evidences or inferences of the given inductive inference pro-
cedure. That is, non-commutativity of the diagram (2.1) for those facts which are translated to
hypotheses that are neither evidences nor inferences is irrelevant for experimental verifiability
of a predictive theory.

In the next sections we will develop a category theoretic setting that provides a mathematical
formalisation of the above concepts and their relationships. Yet, we need to justify such choice
of the setting. The use of categories is motivated by McCullagh by noticing that “unless the
model is embedded in a suitable structure that permits extrapolation, no useful inference is
possible” [13]. While this justifies introducing the language of categories at theoretical layer,
there remains a need for additional justification of the categorical description of experimental
layer. For this purpose, let us quote again Hinkelmann & Kempthorne,

“In science, a reaction to a portion of the world is an observation only if that reaction
can be recorded (...). To do this requires a language and description terms. It is

4



necessary that an observation can be described in terms that have some meaning to
others. (...) A descriptive term does not receive validation until it is agreed on and
can be confirmed by any observer who follows the prescribed protocol of observation
and has been educated in the use of the descriptive terms. (...) even if the process of
observation is quite unclear (as it is at the fundamental level), the world of science
is permeated with interpersonally validated observation.” [8]

Thus, there is a need for formalisation of the language used for intersubjective description
of experiments. The use of category theory as a setting for this language allows to solve a
specific problem: defining the conditions for intersubjective reproducibility of experiments (“in-
terpersonal validation of observations”). The categories of experimental units, treatments and
registration scales (as well as derived categories of experimental designs, observations and facts)
allow to precisely specify the range of allowed variability of individual experimental situations
that are considered as various instances of the same experiment of a given type. This variability
is provided by the morphisms of the respective categories. Moreover, the categorical formulation
allows to express the ‘conceptual’ diagram (2.1) as the mathematical diagram (4.1) that asserts
certain property of functors between experimental and theoretical categories. As a result, the
category theoretic setting for intersubjectivity of experiments and for predictive theories allows
also to define the notion of an intersubjective experimental verifiability of a predictive theory.
This does not solve the meta-physical problem “how the intersubjective agreement is possible?”,
but it allows to solve the practical (physical, predictive) problem “how to express necessary and
sufficient conditions required for an intersubjective agreement?”. In this sense, ‘intersubjectiv-
ity’ of scientific inquiry amounts to controlled variation of particular context of experimental
and theoretical layers of scientific inquiry over the various individual instances of experimental
situation, which preserves the particular form of relationship between these two layers.

The above conceptual setting provides a ground for the formalisation of the relationship
between experiment and theory carried in the next sections. Apart from a mathematical goal of
developing a framework which is independent of the notions of sample space, measure space, and
relative frequency, its aim is to resolve at least some of the interpretational problems of quantum
theory. In particular, the problem of various incompatible meanings assigned to the notion of
quantum “measurement”, as well as the problem of the “intersubjective” character of quantum
theoretic inferences. Our approach replaces the notion of “measurement” (that suggests a sort of
passive learning about preexisting properties) by an analysis of the experimental and theoretical
structures associated with the notions of “intervention” and “observation”. It also allows to
maintain intersubjectivity without appealing to relative frequencies of outcomes, while carrying
definite links between theory and experiment (which is not the case in the personalistic approach
to quantum theory, see [14]).

3 Experimental universes and theories

Consider three categories: Subj of subjects of experimental inquiry (“things subjected to
treatment and observation”, “objects under experimental consideration”, “experimental units”,
“statistical units”), Config of experimental treatments (“interventions”, “(actively chosen)
configurations”, “settings”, “experimental inputs”, “experimental causes”), and Scale of re-
sponse scales (“spaces of possible outcomes”, “registration scales”, “spaces of registration
states of measuring device”). We consider these categories as ‘qualitative’, which means that
they need not be equipped with any evaluation to some number field. Their role is to provide
mathematical formalism allowing to express the operational definition (description, concept) of
the ‘experiment of a given type’. These categories are required to be equipped with the functors
mapping to some common ‘reference’ category Eex,

USubj : Subj→ Eex, UConfig : Config→ Eex, UScale : Scale→ Eex.
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For example, if Eex = Set, then the above functors can be given by forgetful functors, allowing
to consider subjects of inquiry, treatments, and response scales as sets. The role of category
Eex is to provide an underlying mathematical universe which fixes an environment allowing to
construct various relations between objects of Subj, Config, and Scale ‘as if’ they were some
“elementary objects” of Eex. By this reason, Eex might be given also by some suitable topos.

Consideration of these categories instead of single objects is aimed to encode the criteria of
intersubjective reproducibility of an experiment of a given type under the possible changes of
construction of individual instances of this experiment (its subject, scale, and treatment).

Given O ∈ Ob(Subj), C ∈ Ob(Config), S ∈ Ob(Scale), the morphism

x : USubj(O)→ UConfig(C) (3.1)

will be called experimental design , while the morphism

q : USubj(O)→ UScale(S) (3.2)

will be called an observation (“experimental response”, “elementary event”, “experimental
sample”, “elementary observation”).

According to the definition (3.1), the experimental design is a function between two sets.
However, the category of experimental designs should preserve the knowledge about the cate-
gorical structure of subjects of inquiry and treatments. For this reason, it is defined as a comma
category USubj ↓ UConfig. For convenience of notation, we will denote it as Subj ↓Eex Config
or just as Subj ↓ Config. By definition, its objects are given by all designs (3.1), while its
morphisms are given by such pairs of arrows

(f, g) ∈ Mor(Subj)×Mor(Config), f : O → O′, g : C → C ′,

that for any design x′ : USubj(O
′)→ UConfig(C ′) the diagram

USubj(O)
x //

USubj(f)

��

UConfig(C)

UConfig(g)

��
USubj(O

′)
x′
// UConfig(C ′)

(3.3)

commutes [15, 13, 1].
In ordinary statistical estimation, an elementary event (observation) is considered to be

an element of a sample space X . In general, the sample space can be defined, using (3.2),
as a hom-set HomEex(USubj(O), UScale(S)), but this object lacks important information about
the variability (categorical structure) of Subj and Scale. For this reason, the category of
observations is defined as a product category Scale×Subjop, with objects given by responses
(S,O) and morphisms given by arrows (S,O) → (S′, O′) for any pair of arrows h : O′ → O in
Subj and j : S → S′ in Scale. The objects of category Scale× Subjop implement the notion
of an ‘observation protocol’ from Section 2. The morphism of hom-sets

HomEex(USubj(O), UScale(S))→ HomEex(USubj(O
′), UScale(S′))

generalises the transformation X → X ′ of sample spaces.
The above constructions can be joined together, forming a categorical description of an
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experimental setup (of a given type):

Scale× (Subj ↓ Config)op

(·)op◦Π(Subj↓Config)op

tt

idScale×ΠSubjop

**
(Subj ↓ Config)

ΠConfig

��

Scale× Subjop

Config

(3.4)

The projection Π(Subj↓Config)op is a canonical projection of the cartesian product of categories,
while the projections ΠSubjop and ΠConfigop are the canonical projection functors of comma
category,

Subj Subj ↓ Config
ΠConfig //

ΠSubjoo Config, (3.5)

applied to an opposite category. We will call Scale × (Subj ↓ Config)op an experimental
universe . The objects of this category implement the notion of an ‘experimental protocol’
from Section 2. The elements of these objects will be called experimental facts.

An experimental universe defines the meaning of an “experimental setup of a given type”.
However, the notion of an “experiment of a given type” requires to specify also the relation-
ship of an experimental setup with some particular theory that is subjected to verification in
terms of this setup. In order to introduce a categorical description of such theory, let us first
observe that the category Scale×Subjop of elementary events represents the passive aspect of
an experiment, while the category Config of treatments represents the active aspect of an ex-
periment. In the role of theoretic counterparts of these categories, let us introduce the category
InfoMod of theoretical models (“information models”) and the category Hypo of hypothe-
ses (“theoretical parametrisations”, “information data”). The category InfoMod represents
passive aspect of a theory, and consists of spaces of information states as objects and their
transformations as morphisms. Examples of this category include cartesian closed categories
and various categories of non-linear spaces (e.g., C∞-manifolds). The main motivating example
from probability theory is the category of probabilistic models M(X ,f(X ), µ) equipped with
suitable morphisms as arrows (e.g., dual Markov maps). Category Hypo represents active
aspect of a theory, and consists of spaces of hypotheses (usually expressed in terms of some
source-and-response parameters) as objects and their transformations as morphisms. Examples
of this category include symmetric monoidal categories and various categories of linear spaces
(e.g., dualised vector spaces). The main motivating example from probability theory is the
category of parameter spaces Θ equipped with suitable morphisms as arrows (e.g., a category
with a single object ∗, representing the set Θ ⊂ Rn, and morphisms given by actions of elements
of a group G on Θ).

We define a theory (“classification of information by hypotheses”, “parametric representa-
tion”) as a covariant functor

Th : InfoMod→ Hypo. (3.6)

The natural transformation between two theories will be called their intertwinner . The func-
tor category HypoInfoMod is a category of all theories as objects, and all intertwiners as arrows.
Thus, in principle, this category can be considered as a theoretical universe . But note that
some additional conditions imposed on the theories Th might restrict the notion of theoretical
universe to some subcategory of HypoInfoMod that is selected by these conditions.
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4 Knowledge universes and experimental verification

With these categories at hand, we can define the relationship between experiment and the-
ory in the category theoretic terms. Consider two covariant functors: R : Config → Hypo
and G : Scale × Subjop → InfoMod. The functor R provides a (active) theoretic inter-
pretation (active correspondence rule , “association”, “generalisation”, “idealisation”) of
experimental treatments (configurations) in terms of theoretic hypotheses (relations of source-
and-response parameters), while the functor G provides a passive theoretic interpretation
(passive correspondence rule , “association”, “generalisation”, “idealisation”) of experimen-
tal observations in terms of information models. This way the active aspect of a relationship of
a theory with experiment is encoded by the interpretation functor R, while its passive aspect
is contained in the interpretation functor G. The quadruple

(Scale× (Subj ↓ Config)op,HypoInfoMod,G,R)

will be referred to as an knowledge universe . It consists of the experimental universe, the-
oretical universe, and functors that interpret the active and passive elements of an experiment
in terms of active and passive elements of a theory, respectively. The reason for such termi-
nology is following. By a state of information we understand any element of a theoretical
model. (Examples of states of information are given by the finite positive integrals on mcb- or
W ∗-algebras.) As opposed to it, a state of knowledge is a state of information together with
an assignment of this state to some observation. We can also define a state of factual knowl-
edge , as a state of information together with an assignment of this state to some experimental
fact. This expresses the idea that information is just a quantitative evaluation without any fixed
semantic background (such as provided by experimental/operational layer), while—as opposed
to it—knowledge is a quantitative and theoretic evaluation that is always provided in reference
to particular terms of its operational specification and communication (such as allowed subjects
of experimental inquiry, allowed experimental treatments, and allowed scales of experimental
response).

Following this idea, it is natural to select such theories that are not only theories of informa-
tion, but also theories of knowledge, compatible with the allowed transformations of semantic
terms of operational specification and communication of this information. This condition may
not be satisfied by some of theories. We will say that the theory Th : InfoMod → Hypo is
strongly verifiable in a given experimental universe Scale× (Subj ↓ Config)op iff there exist
covariant functors (theoretic interpretations) R : Config → Hypo and G : Scale× Subjop →
InfoMod such that the following diagram commutes:

Scale× (Subj ↓ Config)op

(·)op◦Π(Subj↓Config)op

tt

idScale×ΠSubjop

**
(Subj ↓ Config)

ΠConfig

��

Scale× Subjop

G

��

Config

R
��

Hypo InfoMod,
Thoo

(4.1)

that is,
Th ◦ G ◦ idScale ×ΠSubjop = R ◦ΠConfig ◦ (·)op ◦Π(Subj↓Config)op ,

where equality holds for each pair of allowed experimental scale S and allowed experimental
design x, and for each joint morphism of allowed scale and allowed design. Given a knowledge
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universe, we will call any of its verifiable theories a strong information representation . We
define also the weak information representation (and corresponding weak verifiability of a
theory) as such covariant functor Th : InfoMod → Hypo that the diagram (4.1) commutes
weakly (up to a natural transformation). More precisely, Th will be called a weak information
representation iff there exists a natural transformation N1 given by

Scale× (Subj ↓ Config)op

R◦(·)op◦ΠConfig◦Π(Subj↓Config)op

((

Th ◦ G ◦ idScale×ΠSubjop

66HypoN1

��

(4.2)

By [what? ], such N1 is equivalent to a functor

N1 : Scale× (Subj ↓ Config)op → (idHypo ↓ Th). (4.3)

To summarise, given particular knowledge universe, the (strong or weak) commutativity of
diagram (4.1) imposes a non-trivial requirement on theories Th : InfoMod→ Hypo, restricting
them to the class which is compatible with the allowed quantitative transformations of subjects,
treatments and scales. This compatibility is understood as experimental verification of a theory.
By this reason, any triple

(Scale× (Subj ↓ Config)op,R,G)

will be called an (experimental and interpretational) context of verification .
Due to ‘intersubjective’ interpretation that is associated with the above categorical scheme,

we can identify ‘subjective/personal’ perspectives on the verifiable theory Th by fixing the choice
of the object in the experimental universe Scale× (Subj ↓ Config)op. This object is a certain
collection of facts (and it can possess its own internal mathematical structure). Recalling the
discussion of experimental and theoretical notions of ‘causality’ in Section 2, we see that each
‘stage’ of a diagram (4.1) there is associated its own set of experimental causes and effects, as
well as its own division of the hypothesis space into kinematic and dynamic causes and effects.
We will call the choice of some ‘stage’ of the diagram (4.1) a personalisation . From this it
follows that experimental and theoretical cause-and-effect relationships may vary between two
different personalisations of the same intersubjective experimentally verifiable theory.

5 Comparison with the McCullagh–Brøns approach

Our definitions of the categories and functors forming the experimental universe amount to
conceptually refined restatement of the McCullagh–Brøns formalism [13, 1]. The remaining
part of the above construction differs from the McCullagh–Brøns formalism in several impor-
tant aspects. In particular, having in mind the requirements of quantum theory, we do not
require that InfoMod be defined in terms of measures or probability measures. We also do not
require the use of set-theoretic representations of Hypo and InfoMod. Moreover, we consider
information model as an entity on its own right and of equal importance as parameter space,
which leads us to consider the commutativity of the diagram (4.1) as a condition on allowed
parametric representations of the model and not as a condition on models themselves.

The original McCullagh–Brøns formulation defines a probabilistic model as a natural trans-
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formation N2,

Scale× (Subj ↓ Config)op

G̃◦idScale×ΠSubjop

**

R◦(·)op◦ΠConfigop◦Π(Subj↓Config)op

uu
Hypo

UHypo ))

MeasSp

P
tt

Set.

N2 +3

(5.1)

Here MeasSp is a category of measurable spaces (X ,f(X )) with some suitable (but undefined)
morphisms, UHypo is a forgetful functor, G̃ : Scale × Subjop → MeasSp is a contravariant
functor that assigns a measurable space (X ,f(X )) to each “sample space” X ∈ Ob(Scale ×
Subjop), and P : MeasSp→ Set assigns to each measure space (X ,f(X )) the set P(X ,f(X ))
of all probability measures on (X ,f(X )). This definition has three key drawbacks: (i) it does
not extend to non-commutative case; (ii) it is too restrictive in commutative case (but does not
exclude possible pathological behaviour of P ◦ G̃); (iii) it makes the definition of information
models dependent of the particular parametrisation.

Regarding (iii), the non-parametric geometric structures can be introduced and studied
on information models, making the point of view specified by (5.1) too restrictive even in
commutative case. Regarding (ii), one has to note that construction of probabilistic model by
an assignment P◦G̃ : X → (X ,f(X ))→ P(X ,f(X )) equipped with selection ofM(X ,f(X )) ⊆
P(X ,f(X )) through UHypo ◦ R and (weak) commutativity of (5.1) is a highly restrictive,
representation-dependent procedure. Let us recall from Section ?? that for every mcb-algebra f
there exists a unique family Lp(f) of abstract Lp spaces associated to f, and a plenty of different
representations (X ,f(X )) of f. Nevertheless, for any representation (X ,f(X )) of f, the spaces
Lp(X ,f(X )) and Lp(f) are equivalent (isometrically isomorphic). In general, the statistical
model is a subspace M(f) ⊆ L1(f)+ of an abstract commutative L1 space. Hence, it does not
depend neither on the choice of a sample space X nor on the choice of a particular representation
X → f(X ) of f. Thus, the definition of a non-parametric probabilistic or statistical model
M(f) is essentially independent of the choice of (X ,f(X )). The same holds for quantum
modelsM(N ) ⊆ N+

∗ . In this sense, the McCullagh–Brøns approach is too restrictive. However,
it is also too general at the same time, because it does not exclude non-localisable measure
spaces. For non-localisable measure spaces the Steinhaus–Nikodým duality L1(X ,f(X ), µ)B ∼=
L∞(X ,f(X ), µ) does not hold, and the standard consideration of a probabilistic modelM as a
space of Radon–Nikodým derivatives (densities) with respect to a measure µ breaks down. (This
pathological situation can be removed by restricting considerations from the category MeasSp
only to its subcategory LocMeasSp of localisable measure spaces.) Finally, the definition
provided by (5.1) does not extend to non-commutative case, because tensor products in the
category Set are given by cartesian products and Set is a cartesian closed category, while the
monoidal structure of non-commutative W ∗-algebras (or Hilbert spaces) is not cartesian closed.

As a result, we conclude that the commutativity of (5.1) should be interpreted only as
a condition on representation of a model, and not on the model itself. The above problems
motivate our proposition to replace (5.1) by (4.1). As we will see below, this replacement is
required also for the compatibility with the categorical structures that arise from quantum
information geometry.
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