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Abstract

This paper is intended to: 1) show how the local smooth geometry of spaces of normal quantum states over
W˚-algebras (generalised spaces of density matrices) may be used to substantially enrich the description of
quantum dynamics in the algebraic and path integral approaches; 2) provide a framework for construction of
quantum information theories beyond quantum mechanics, such that quantum mechanical linearity holds only
locally, while the nonlocal multi-user dynamics exhibits some similarity with general relativity. In the algebraic
setting, we propose a method of incorporating nonlinear Poisson and relative entropic local dynamics, as well
as local gauge and local source structures, into an effective description of local temporal evolution of quantum
states by using fibrewise perturbations of liouvilleans in the fibre bundle of Hilbert spaces over the quantum
state manifold. We apply this method to construct an algebraic generalisation of Savvidou’s action operator.
In the path integral setting, motivated by the Savvidou–Anastopoulous analysis of the role of Kähler space
geometry in the Isham–Linden quantum histories, we propose to incorporate local geometry by means of a
generalisation of the Daubechies–Klauder coherent state phase space propagator formula. Finally, we discuss
the role of Brègman relative entropy in the Jaynes–Mitchell–Favretti renormalisation scheme. Using these tools
we show that: 1) the propagation of quantum particles (in Wigner’s sense) can be naturally explained as a free
fall along the trajectories locally minimising the quantum relative entropy; 2) the contribution of particular
trajectories to the global path integral is weighted by the local quantum entropic prior, measuring user’s lack
of information; 3) the presence of nonlinear quantum control variables results in the change of the curvature of
the global quantum state space; 4) the behaviour of zero-point energy under renormalisation of local entropic
dynamics is maintained by local redefinition of information mass (prior), which encodes the curvature change.
We conclude this work with a proposal of a new framework for nonequilibrium quantum statistical mechanics
based on quantum Orlicz spaces, quantum Brègman distances and Banach Lie algebras.
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1 Introduction
Like a brush in hand

To paint a picture
Of what we would like to see

C.M. Schuldiner

In this Section we will motivate the approach of this paper by discussing how it is related to the
structures and problems of Kähler geometric and C˚-algebraic approaches to quantum kinematics, as
well as hamiltonian and path integral approaches to quantum dynamics. Our goal is to overview and
explain the merits of the constructions that we pursue on the subsequent pages. The in-depth analysis
of an approach to foundations of quantum theory1 that we briefly postulate and use here is provided
in another paper [214].

1.1 Quantum information geometric foundations: global postulates

The basic kinematic postulates of our framework are:

∙ Postulate 1: The underlying spaces of inquiry are W˚-algebras 𝒩 , instead of sample spaces and
Hilbert spaces.

∙ Postulate 2: The state spaces of quantified knowledge are sets ℳp𝒩 q of positive normal states
on W˚-algebras, instead of probabilistic models and spaces of density matrices.

∙ Postulate 3: The observables are arbitrary real valued functions 𝑓 : ℳp𝒩 q Ñ R of normal
states, instead of arbitrary real valued functions on sample spaces and self-adjoint operators.

∙ Postulate 4: Given an experimental configuration space Θ, a method of model construction
defining a mapping Θ Q 𝜃 ÞÑ 𝜑p𝜃q P ℳp𝒩 q, and a choice of the set of functions 𝑓 : Θ Ñ R
that one is interested in, the set of observables that are relevant for a given problem is given by
t𝑓 : ℳp𝒩 q Ñ R | 𝑓 ˝ 𝜃 “ 𝑓u.

While C˚-algebras2 generalise algebras of complex continuous functions on compact topological
spaces, W˚-algebras generalise 𝐿8 spaces over localisable boolean algebras (or, equivalently, localis-
able measure spaces), so the problem of choice between them depends not only on the mathematical
properties of a specific application but also on the general interpretation assigned to the quantum
theoretic formalism. From the mathematical perspective of general integration theory (including inte-
gration on noncommutative W˚-algebras, on nonassociative Jordan algebras, and on spectral convex
sets), it is completely natural to extend considerations from the sets of density matrices to the sub-
sets of positive parts of Banach preduals of arbitrary W˚-algebras. The set of all (not necessarily
normalised) density matrices is characterised as a positive part ℓ1pBpℋqq` of a noncommutative ℓ1
space associated to the W˚-algebra Bpℋq of bounded linear operators on a Hilbert space ℋ (more
precisely, ℓ1pBpℋqq – G1pℋq, where G1pℋq is a Banach space of all trace class operators, equipped
with a trace norm), while the Banach preduals 𝒩‹ of arbitrary W˚-algebras 𝒩 are characterised as a
noncommutative 𝐿1 spaces associated to these algebras, and this association is functorial with respect
to W˚-isomorphisms [99]. Hence, if one considers quantum mechanics and probability theory as two
instances of a more general class of information theories, then the use of W˚-algebras 𝒩 and elements
of 𝐿1p𝒩 q` – 𝒩`

‹ for the mathematical foundations of quantum mechanics is a natural and exact gen-
eralisation of mathematical formulation of probability theory in terms of a normalised measure theory

1We distinguish between the quantum mechanics, understood as a framework defined in [361], and the quantum
theory, understood as a (currently unknown) framework that should be capable of providing mathematically exact
nonperturbative foundations for relativistic quantum field theory and nonequilibrium quantum statistical mechanics.

2A C˚-algebra is defined as an algebra 𝒞 over C, equipped with: an operation ˚ : 𝒞 Ñ 𝒞 that algebraically abstracts
the properties of a complex conjugation of complex numbers, and a norm ||¨|| : 𝒞 Ñ R` that turns 𝒞 into a Banach space
satisfying

ˇ

ˇ

ˇ

ˇ𝑥˚𝑥
ˇ

ˇ

ˇ

ˇ “ ||𝑥||2 @𝑥 P 𝒞. W˚-algebras are characterised as such C˚-algebras for which there exists a Banach
space, denoted 𝒞‹ and called a (Banach) predual, satisfying p𝒞‹q‹ – 𝒞. Given a Banach space 𝑋 over C, the operation
‹ : 𝑋 Ñ 𝑋‹ forms a Banach space of all continuous linear C-valued functionals, equipped with a supremum norm.
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(as proposed by Steinhaus [334] and developed by Kolmogorov [200]). This leads us: 1) to chose the
framework of W˚-algebras 𝒩 and normal positive states 𝜔 P 𝒩`

‹ instead the framework of C˚-algebras
𝒞 and positive states 𝜔 P 𝒞‹`; 2) to consider subsets ℳp𝒩 q Ď 𝒩`

‹ as spaces of quantum states that
are setting the arena for quantum kinematics. We view them as natural generalisation of probabilistic
models ℳp𝒳 ,fp𝒳 q, �̃�q Ď 𝐿1p𝒳 ,fp𝒳 q, �̃�q`. The observables in our framework are defined as arbitrary
real valued functions 𝑓 : ℳp𝒩 q Ñ R. The observables in the standard sense of quantum mechanics
are precisely determined as an affine subset of the observables in our sense:

𝑓𝑥p𝜑q :“ 𝜑p𝑥q @𝑥 P 𝒩 sa @𝜑 P 𝒩`
‹ . (1)

Postulates 1-4 do not yet determine how we are going to define specific kinematic and dynamic models.
Following Chencov’s geometric approach to foundations of statistical inference theory [53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 244] (developed later by Amari and others [4, 5, 6, 7, 8, 9]), Jaynes information
theoretic approach to foundations of statistical mechanics [166, 167, 168, 179, 169, 170, 172, 174, 175,
177] (developed later in the geometric direction by Ingarden and others [150, 156, 151, 152, 158, 153,
154, 155, 157]), and the program of smooth geometrisation of quantum mechanics [344, 236, 191, 69,
326, 68, 142, 264, 2, 10, 70, 111, 71, 147, 148, 299, 102, 103, 45, 21, 67, 46, 65, 29], we propose the
following

∙ Postulate 5: The construction of specific models of kinematics and dynamics is based upon the
geometric structures over state spaces, provided by quantum relative entropies and Banach Lie
algebras, instead of scalar product of Hilbert space.

In order to investigate the possible generalisations of quantum mechanical prescriptions of dynamics
we want first to understand the geometric structures on state spaces. For a given Hilbert space ℋ
equipped with a scalar product x¨, ¨yℋ : ℋˆℋÑ C, the projection P : ℋzt0u Q 𝜉 ÞÑ 𝜉

||𝜉||ℋ
P Pℋ induces

a manifold structure on Pℋ, with tangent spaces given by ℋ, riemannian metric gℋ and symplectic
form wℋ determined uniquely by a decomposition [1]

x¨, ¨yℋ “
1

2
gℋp¨, ¨q ` i

1

2
wℋp¨, ¨q, (2)

and complex structure defined by
@

¨, jℋp¨q
D

ℋ “ i x¨, ¨yℋ. The tangent bundle of ℋ over Pℋ can be
viewed as a principal 𝑈p1q-bundle equipped with a 𝑈p1q connection 1-form ∇P : ℋ ˆ ℋ Q p𝜉, 𝜁q ÞÑ
i x𝜉,d𝜁yℋ P C. In our case, the lack of a unique global Hilbert space implies the lack of unique specifi-
cation of riemannian metric and symplectic form derived from a scalar product. In order to facilitate
a well-defined generalisation of riemannian and symplectic structure, the sets ℳp𝒩 q can be equipped
with two different smooth real Banach manifold structures. On one hand, an information manifold
structure on the set 𝒩`

‹0 of all faithful (strictly positive) elements of 𝒩`
‹ is constructed by a choice

of a quantum relative entropy functional on 𝒩`
‹ , and has tangent spaces defined as noncommutative

Orlicz spaces that provide suitable convergence behaviour of neighbourhoods of states as measured by
constrained relative entropy minimisation (see Section 2.4). On the other hand, a Banach Lie–Poisson
manifold structure is constructed by the choice of a Banach Lie algebra (such as the real Banach Lie al-
gebra 𝒩 sa of all self-adjoint elements of a W˚-algebra 𝒩 ), and has tangent spaces defined as copies of a
predual of this algebra (see Section 2.1). Given the information distance manifold structure on ℳp𝒩 q,
the first two nonzero orders of Taylor expansion for a wide class of relative entropy functionals 𝐷p¨, ¨q
on ℳp𝒩 q give rise to the torsion-free smooth Norden–Sen geometries pℳp𝒩 q,g𝐷,∇𝐷, p∇𝐷q:q. The
Norden–Sen geometry is defined by the condition (102), which directly generalises the condition char-
acterising the Levi–Civita affine connection ∇g in riemannian geometries pℳ,gq. The Fubini–Study
riemannian metric gℋ becomes recovered as an extension to the boundary of pure states for a wide
class of geometries pℳp𝒩 q,g𝐷q [272]. On the other hand, given the choice of a Banach–Lie algebra
ℬ such that ℳp𝒩 q is a real Banach submanifold3 of ℬ‹ with T𝜑ℬ‹ – ℬ‹ @𝜑 P ℬ‹ (or, more generally,
ad‹𝑥pℬ‹q Ď ℬ‹ @𝑥 P ℬ), the coadjoint action of ℬ on ℬ‹ induces a Poisson structure on Fréchet smooth

3For a discussion why an injective immersion of ℳp𝒩 q into ℬ‹ is not sufficient, see [39].
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real valued functions on ℳp𝒩 q. If ℬ is a Lie algebra of a group 𝐺, then the Banach Lie–Poisson mani-
folds ℳp𝒩 q are symplectic if they are coadjoint orbits of 𝐺. In particular, if ℬ – 𝒩 sa, then 𝐺 – 𝒩 uni

(a group of all unitary elements of 𝒩 ), and ℬ‹ – 𝒩 sa
‹ :“ t𝜑 P 𝒩‹ | 𝜑p𝑥˚q “ 𝜑p𝑥q˚u – p𝒩 saq‹. The

example of such case is given by the orbit of a group of unitary operators of density matrices with
finite fixed number 𝑛 P N of nonzero eigenvalues [38]. For 𝑛 “ 1, one recovers precisely the symplectic
structure wℋ on a projective Hilbert space Pℋ that is induced from x¨, ¨yℋ on ℋ [36].

The resulting description of quantum geometry can be summarised as follows:

(a) In the general setting of W˚-algebras 𝒩 and quantum states defined as elements of 𝒩`
‹ the

smooth manifold structure required to implement the infinite-dimensional quantum generali-
sation of Poisson geometry does not match with the smooth manifold structure required to
implement the infinite-dimensional quantum generalisation of riemannian geometry (this issue
is discussed in more details in [214]). As a result, the geometry of a Hilbert space ℋ (consisting
of pure states), formulated in terms of riemannian metric gℋ and symplectic structure wℋ de-
fined over the same real Hilbert smooth manifold Pℋ, becomes generalised to the geometry of
spaces ℳp𝒩 q equipped with two different real Banach smooth manifold structures: of a Banach
Lie–Poisson manifold and of a quantum information geometric (relative entropic) manifold. The
former is determined by the choice of a Banach Lie algebra ℬ, and in the special cases reduces
to a symplectic space. The latter is determined by the choice of a relative entropy functional
𝐷 : ℳp𝒩 q ˆℳp𝒩 q Ñ r0,8s, and in the special cases reduces to a torsion free Norden–Sen
manifold, or just a riemannian space.

(b) Apart from the above two alternative systems of tangent, cotangent, and higher jet bundles,
one can also introduce a bundle of Hilbert spaces over ℳp𝒩 q Ď 𝒩`

‹ , that can serve as as an
ambient framework to represent different geometrical objects. A natural candidate is a Gel’fand–
Năımark–Segal bundle ℋℳp𝒩 q of Hilbert spaces [256]. Because the bundle ℋℳp𝒩 q is defined
by states of an underlying manifold (as opposed to a projection P), there is no ∇P connection
𝑈p1q action in fibers. However, for ℳp𝒩 q Ď 𝒩`

‹0, each fibre of ℋℳp𝒩 q bundle is equipped
with a strongly continuous 𝑈p1q action of a modular (Tomita–Takesaki) automorphism 𝜎𝜔 :
R Q 𝑡 ÞÑ Adp∆i𝑡

𝜔q P Autp𝜋𝜔p𝒩 qq. We will study the role of this automorphism in Section 4.5,
showing that it resembles some interesting similarities with ∇P when considered over a trajectory
R Ñ ℳp𝒩 q Ď 𝒩`

‹0. Yet, in Section 2.4.2 we will show that, for any ℳp𝒩 q Ď 𝒩`
‹0, the bundle

ℋℳp𝒩 q carries a natural connection structure, with parallel transport given by the standard
unitary transition operators 𝑉𝜑,𝜔 :“ 𝐽𝜑,𝜑𝐽𝜑,𝜔, where 𝐽𝜑,𝜔 is a relative modular conjugation
between two faithful normal GNS representations, while 𝐽𝜑,𝜑 is a Tomita modular conjugation.
We observe that this connection is Levi-Civita with respect to the Wigner–Yanase riemannian
metric, and its local geodesic free fall corresponds to constrained minimisation of the Hilbert
space norm (projective measurement).

(c) Because two manifold structures mentioned in (a) do not coincide, there seems to be no obvious
candidate for a ‘complex structure’ on a general quantum model ℳp𝒩 q. However, we notice that
the use of complex Hilbert spaces of dimension 𝑛 instead of real Hilbert spaces of dimension 2𝑛 is
crucially associated with the requirement that the generators of unitary transformations of these
spaces should be represented by self-adjoint operators (identified with observables). Observing
further that the standard quantum mechanical method of defining relevant observables proceeds
by representations of Lie algebra g of Lie group 𝐺 on the complex Hilbert space, we introduce
the structure of a principal 𝐺-bundle 𝐸 over ℳp𝒩 q, equipped with a family of representations of
an associated Lie algebra in the fibers of the GNS Hilbert space bundle ℋℳp𝒩 q. This leads to a
rise of a g-valued connection form on 𝐸, and a fiberwise family of its representations on the fibers
of ℋℳp𝒩 q. This structure exhibits some interesting features of the relationship between Berry
connection, complex structure of a Hilbert space, and construction of observables by means of
representations of Lie algebras. The bundle structures of 𝐸 and ℋℳp𝒩 q do not require ℳp𝒩 q
to be a Banach smooth manifold, but they require it to be a (Hausdorff and paracompact)
topological space. We do not assume any a priori relationship between the geometries of local
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causal dynamics, as provided by ℬ, and the transformations used to identify locally the relevant
observables, as provided by g, because we consider it to be a model-dependent feature.

(d) Using the g-valued connection ∇g, we can define a kinematic propagator (in Prugovečki sense)
of the particles (in Wigner sense) as the holonomy of ∇g along the geodesics of ∇𝐷 (or p∇𝐷q:

or ∇g𝐷) affine connection.

(e) In Section 2.4.4 we propose a construction of what we call the Morozova–Chencov–Petz Hilbert
space bundle ℋhℳp𝒩 q. Its purpose is to use the riemannian metrics g𝐷, associated with a class
𝐷f of quantum distances, in order to determine Hilbert spaces and corresponding representa-
tions that are different from the GNS construction, and include the information about the local
riemannian geometry of a model (this is inspired by the ideas of [346, 292, 291]). In principle,
it can be used as an alternative to ℋℳp𝒩 q (especially for the purpose of the tasks (c)-(d)),
however it is essentially harder to deal with mathematically. We consider this as an indication
that the natural framework for a simultaneous implementation of geometric and algebraic tools
used in this paper (entropic Norden–Sen geometries, Banach Lie–Poisson structure, perturba-
tions of liouvilleans) are Banach dual pairs of noncommutative Orlicz spaces, used as tangent
and cotangent spaces. However, the technical implementation of this idea requires one to develop
a standard construction of Orlicz spaces for any (countably finite) W˚-algebra, and for a large
class of quantum relative entropies, as well as to develop the theory of perturbations of “Orlicz
liouvilleans” (by an analogy to 𝐿𝑝-liouvilleans of Jakšić and Pillet [165]). While these tasks are
beyond the scope of this paper, it can be understood as a testing ground for them, so we will
discuss more precisely the above ideas in Sections 1.2.2 and 1.3.

With all these tools on the stage, we can approach the problem of construction of quantum dy-
namics.

∙ Postulate 6: The elementary form of causal dynamics is given by a Poisson flow generated by
a smooth observable on a state space, as opposed to a unitary evolution on a Hilbert space. The
elementary form of inferential dynamics is given by a (nonlinear) constrained quantum relative
entropy minimisation, as opposed to a (linear) projection in a Hilbert space or Lüders’ rule.

Unitary evolution is a special case of a hamiltonian evolution on the self-adjoint part of a predual
of a W˚-algebra, understood as a BLP space [36, 38, 253]. Derivation of Lüders’ rules (selective
and nonselective) as a special case of constrained quantum relative entropy minimisation4 (in short:
entropic projection) for 𝐷 given by the Umegaki–Araki distance (123) was provided in [139] and [211].5

Hence, the basic dynamical setting of quantum mechanical evolution of quantum states, which is a
unitary evolution followed by a projective measurement can be completely recovered as a special case
of a causal inference instrument given by the map6

ℳ1p𝒩 q Q 𝜑 ÞÑ P𝐷
𝒬 ˝ 𝑤

ℬ,ℎ
𝑡 p𝜑q Pℳ2p𝒩 q, (3)

where
P𝐷

𝒬p𝜓q :“ arg inf
𝜓P𝒬

t𝐷p𝜔, 𝜓qu (4)

4Technically, P𝐷
𝒬p𝜑q is a nonlinear projection in a positive cone of a noncommutative 𝐿1p𝒩 q space, constrained by

the data represented as a convex closed set 𝒬ϒ in a noncommutative Orlicz space 𝐿ϒp𝒩 q, associated by means of a
nonlinear bijective mapping ℓ : 𝐿1p𝒩 q Ñ 𝐿ϒp𝒩 q, so that 𝒬 “ ℓ´1

p𝒬ϒq forms a codomain of a projection. While in
general we are interested in entropic projections for a wide class of quantum distance functionals, the results cited in
this paragraph were proven for the most recognised example: the Umegaki–Araki noncommutative generalisation of the
Kullback–Leibler distance.

5Derivation of the nonselective Lüders’ rule from minimisation of the Hilbert–Schmidt norm distance was provided
much earlier in [141], while derivations of some special cases of the selective Lüders’ rule using some symmetric quantum
information distances were obtained in [131, 132, 81, 286]. See [211] for more discussion.

6The composition in the reverse order can also be studied.
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is an entropic projection onto constrained set 𝒬 for a quantum distance functional 𝐷, while 𝑤ℬ,ℎ
𝑡 is

a Poisson flow generated by a Banach Lie algebra ℬ and a hamiltonian function ℎ for a time range
r0, 𝑡s, corresponding uniquely to an integral line of a vector field

Xℎp𝜑q :“ ´ad‹
DF
𝜑ℎ
p𝜑q @𝜑 P ℬ‹, (5)

where DF
𝜑ℎ is a Fréchet derivative of ℎ at 𝜑, implementing the differential form dℎp𝜑q.

In [245] it was shown that partial trace is also a special case of entropic projection. Hence, all
linear completely positive maps can be considered as a special case of the maps formed by composition
of tensor products, Poisson flows, and entropic projections [215, 214]. This way the kinematic and
dynamic setting of quantum mechanics and nonrelativistic quantum information theory becomes fully
recovered as a special case of the framework specified by Postulates 1-6 above.

This leads us to:

∙ Open problem: Reconstruct (some aspects of) dynamics of quantum field theory and nonequi-
librium quantum statistical mechanics using the framework specified by Postulates 1-6.

Unlike in quantum mechanics, the dynamics of both these theories is sensitive to local geometric
features of the kinematic structure of a quantum model. In consequence, we are lead to investigate
how, and to what extent, the above geometric structures, and the corresponding nonlinear dynamical
maps, can give account of the local structures in QFT and NQSM.

1.2 Local quantum information dynamics in algebraic and path integral approaches

The main questions underlying the constructions carried on in this paper are: what if the correct
setting for bridging the gap between algebraic and path integral setting is to use quantum state spaces
and their geometry:

1) to define local evolution in the algebraic approach by means of locally defined and perturbed
liouvilleans?

2) instead of using phase space geometry in the continuous time coherent state path integral “quan-
tisation”?

3) to describe renormalisation as purely information theoretic procedure?

The discussion below is intended to show that the proposal of the geometric framework for locally
quantum information theories that we provide in Section 1.5 is remarkably grounded in the insights
coming from three very distinct theoretical frameworks: 1) a geometric extension of algebraic hamil-
tonian dynamics with local gauge and local sources by means of local perturbation of liouvilleans; 2)
a generalisation of the Daubechies–Klauder path integration to an algebraic setting; 3) a geometric
Jaynes–Mitchell–Favretti renormalisation, applicable in nonequilibrium quantum statistical mechanics.

The standard Haag–Kastler [128, 127] setting of an algebraic approach to quantum field the-
ory is widely considered as being unable to incorporate the local gauge principle7 (the global gauge
principle has been partially incorporated to an algebraic approach by means of the Doplicher–Haag–
Roberts theory [85, 86]). Apart from renormalisation techniques, this principle is a fundamental tool
in the construction of the predictively sound models in quantum field theory. Its maintenance by the
lagrangean/path-integral approach leads to an abandonment of the algebraic approach by most of the
practitioners of QFT, but this is provided at the price of replacing mathematically well-defined ob-
jects by symbolic (and usually perturbative) techniques of calculations. This makes QFT very different
from quantum mechanics, because the latter facilitates construction of predictive models without the
expense of mathematical precision. In this paper we intend to show that the consideration of geo-
metric structures on the spaces 𝒩`

‹ of normal states over W˚-algebras 𝒩 , as well as construction of
7E.g. «The Lagrangean and the Feynman path integral are at present indispensable tools in the characterization and

study of a specific theory. Together with the local gauge principle they pose questions which in the algebraic approach
are not understood and should be tackled.» [127].
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effective local dynamics by means of local perturbations of liouvilleans, may provide an extension of an
algebraic approach capable of dealing with the local gauge principle and the use of ‘external sources’,
typical in the path integral formalism. Our point of departure from the Haag–Kastler perspective is
to consider locality in the Prugovečki sense [281], being associated with the fiber at a given point of
an underlying space (so the Lorentz or Poincaré covariance condition is to be applied fiberwisely), as
opposed to a neighbourhood of this point (e.g. as given by the special relativistic diamond). This
allows to think of local GNS Hilbert space associated to the manifold of quantum states as (a model
of, or as a container of) local tangent space, corresponding to a local quantum mechanical description
provided by a single (quantum bayesian) user. Further extension from the bundle of (self-dual) Hilbert
spaces to the bundle of dual pairs of noncommutative Orlicz spaces is necessary to allow the geometry
of local quantum inference to be governed by a wide class of conventions of estimation, beyond the
Wigner–Yanase riemannian metric (so that the quantum nonequilibrium thermodynamic Kubo–Mori–
Bogolyubov metric, as well as the quantum estimation theoretic Helstrom–Uhlmann–Bures metric can
be included on the equivalent mathematical footing). The construction of an underlying manifold
structure commits to the principle of equivalence between local inference by means of constrained
maximisation of relative entropy, and the free fall along the geodesics of the dually flat local geometry,
derived from this entropy.

On the path integral side, our approach is directly inspired by the Daubechies–Klauder [77, 194,
195, 199, 35, 198] continuous-time regularised coherent state phase space approach to path integration,
and the closely related Anastopoulos–Savvidou [11, 12, 13] analysis of decoherence functional in the
Isham–Linden quantum histories approach. Both have shown that one can think of the underlying
dynamical objects of respective theories (path integrals and decoherence functionals) as consisting of
the hamiltonian evolution perturbed by the geometric structures on the space of quantum states. Our
goal here is to follow Klauder’s remark «If there is ever any hope to define path integrals rigorously
as path integrals over a set of paths (functions of time), then it is essential to give up the notion that
the paths involved are sharp value paths and replace that with another interpretation of which the
expectation value paths is a completely satisfactory example» [197] by extending these approaches
to the state spaces over W˚-algebras, and relating them with the local liouvillean approach to alge-
braic dynamics. The virtue of the Daubechies–Klauder approach is that it provides a mathematically
rigourous continuous time regularisation of the functional integral in a way that gives the same results
under arbitrary canonical transformations of the underlying phase space. This is not true for most
of other approaches to quantisation, not only path integral based. The restrictions on the class of
hamiltonians that are allowed in order to maintain this procedure to be well defined are quite mild.
The key ingredient of this approach is introducing a regulariser that represents a riemannian metric on
the phase space (corresponding to a Fubini–Study metric on coherent quantum states), and determines
a pinned Wiener measure of the Brownian process on the phase space.

The heuristic ideas underlying our treatment of quantum dynamics are: 1) Quantum kinematics
and dynamics should be defined without recourse to classical models and their quantisation; 2) Clas-
sical (phase space, but also space-time) geometry should be considered as a locally emergent feature
describing particular properties of the multi-agent information processing systems and not as a fun-
damental structure (background); 3) Local spatial (phase space or space-time) variables should arise
as epistemic (e.g. operational) parameters of information states (see e.g. [289, 90]). This heuristics is
in a disagreement with the perspectives of the orthodox algebraic and path integral approaches (yet,
there are some exceptions8), however we consider this disagreement as a virtue, because it allows us
to learn something new.9

The main mathematical tools used in what follows are: the Hilbert space bundle over 𝒩`
‹ arising

from the Gel’fand–Năımark–Segal representation, introduced recently by Odzijewicz and Sliżewska
8In particular, «the interpretation of the formal path integral (...) in terms of paths pp𝑡q and qp𝑡q for which the meaning

of the variables is that of expectation values is far more acceptable than the one in which the meaning is that of both
sharp position and sharp momentum (eigen)values. (...) One is almost tempted to assert that the usual interpretation
in terms of sharp eigenvalues is “wrong”, because it cannot be consistently maintained, while the interpretation in terms
of [expectation] values is “right”, because it can be consistently maintained» [196].

9See [205, 206, 207, 208] for some wi(l)der heuristic ideas that have lead to the current work.
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[256], the Dereziński–Jakšić–Pillet theory [80] of unbounded perturbation of standard liouvilleans, the
Bóna–Odzijewicz–Ratiu construction [36, 37, 38, 253] of the Banach–Lie–Poisson manifold structure
on the self-adjoint part 𝒩 sa

‹ of the Banach predual of 𝒩 , Jenčová’s construction [184, 185] of real
Banach smooth manifold over the spaces 𝒩`

‹01 of normalised faithful (strictly positive) elements of 𝒩`
‹ ,

based on quantum relative entropic perturbations of states and noncommutative Orlicz spaces, the
Daubechies–Klauder continuous time regularised coherent state path integrals [77, 194, 196, 365, 198],
and Favretti’s geometrisation [100] of the Jaynes–Mitchell source theory [241, 173, 177, 118, 120].
Section 2 provides an introduction to most of these mathematical tools. More specifically, Section 2.1
is intended as an introduction to the Banach–Lie–Poisson structure of preduals of W˚-algebras. This
material is mostly based on papers [38, 253]. In Section 2.2 we review the construction of a standard
liouvillean (including standard representation and Haagerup’s theorem), some relative modular theory,
as well as the Odzijewicz–Sliżewska construction of the GNS bundle of Hilbert spaces. In Section 2.4 we
discuss some results from quantum information geometry which we will use in the subsequent sections,
including Jenčová’s construction of a smooth quantum manifold structure. The Daubechies–Klauder
approach is discussed in Section 4.4, while Favretti’s approach is discussed in Section 5.2.

1.2.1 Locally perturbed liouvilleans

Section 2.3 provides an elementary analysis of the relationship between W˚-dynamical systems, hamil-
tonian flows on BLP spaces, and standard liouvilleans of the W˚-dynamical systems p𝒩 ,R, 𝛼q. In
order to study the relationship of the BLP structure with the usual usage of standard liouvilleans10,
we begin with characterisation of the class of weakly-‹ continuous representations 𝛼 : R Ñ Autp𝒩 q
whose predualised actions on 𝒩 sa

‹ can be described as Poisson flows of some hamiltonian vector field.
Our main conclusion from this analysis is that the relationship between Poisson flows and standard

liouvilleans should be localised : instead of requiring a Poisson flow to globally agree with a family of
norm continuous isometries arising from a predetermined W˚-dynamical system, we can start from
a quantum Poisson system (defined as a set ℳp𝒩 q Ď 𝒩`

‹ equipped with some Banach Lie–Poisson
manifold structure, not necessarily determined by the coadjoint action of the Lie algebra of self-
adjoint elements of 𝒩 ), and determine a fiberwise family of local W˚-dynamical systems generated
by a 1-form corresponding to a hamiltonian vector field on the state space. This way we consider the
fiberwise family of local standard liouvilleans as a Hilbert space/algebraic counterpart of the smooth
manifold/geometric hamiltonian vector field of the Poisson flow.

The main technique used in Section 3 is: 1) to represent a (possibly, nonlinear) local Poisson flow
on the state space manifold in each fibre of the GNS Hilbert space bundle by constructing a local
standard liouvillean, generating unitary evolution uniquely corresponding to the hamiltonian vector
field of this flow, and then: 2) to perturb it using objects that represent additional geometric structures
on the state space. The resulting structure is shown to determine a nonlinear instrument on 𝒩`

‹ (in
the sense of [78]), which we call a local liouvillean instrument. It describes the temporal evolution of
quantum states determined by the postulated ‘internal’ dynamics (a W˚-dynamical system, a Poisson
flow, or a globally defined vector field) perturbed by the geometric structures on the quantum model.
In other words, the local liouvillean instrument encodes the effective dynamics, that takes into account
a nontrivial geometry of the space of quantum states. In addition, we discuss the possible expressions
for time dependent 𝑛-point correlation functions that can be constructed using the above structures.
Both local liouvillean instruments and correlation functions are understood as tools as quantification
of the effective dynamics.

Noticing that both the GNS bundle and the tangent bundle of the manifold of quantum states can
allow in principle for introduction of a nontrivial action of some Lie group 𝐺 on fibres, we propose
to consider a specific relationship between local gauge (principal 𝐺-bundle connection) structure and
the GNS bundle. We begin with incorporation of the (fiberwise representation of the) action of the
nontrivial gauge connection A (one-form valued in the Lie algebra g of 𝐺) into the perturbation of

10By the Haagerup theorem [130] for standard representations of W˚-algebras, for every pair of a W˚-dynamical
system p𝒩 ,R, 𝛼q and a standard representation pℋ, 𝜋, 𝐽,ℋ6q of a W˚-algebra 𝒩 , there exists a unique unitary evolution
on ℋ that represents 𝛼 leaving ℋ6 unchanged. Its generator is an unbounded operator, called the standard liouvillean.
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the local liouvillean, discussing also the possible relationship between affine connection on the tangent
bundle of the quantum manifold and propagation of quantum particles (in Wigner sense) in the GNS
fibre bundle.

Apart from the gauge connection, we study also the class of objects that, from the perspective
of the BLP structure, could be considered as nonlinear quantum fields. These are introduced as the
additional source/sink terms, representing the Lie algebra valued differential one-forms on the base
quantum manifold. (The idea of using source-based approach is inspired by Schwinger’s [309, 310] and
the Mitchell–Jaynes [241, 177] approaches.)

As a result, we construct a setting that allows to define various nonlinear quantum models equipped
with smooth geometric structures that can be represented directly in terms of the families of operators
acting locally on the fibres of the GNS bundle of Hilbert spaces over the model. It seems that this
framework covers quite well some of the components of the lagrangean framework (under nonorthodox
assumption that space-time/phase space geometry is emergent from the geometry of quantum state
spaces). The investigated correspondences between geometric and algebraic structures can be briefly
summarised as:

𝐶8-geometric GNS-bundle-algebraic
principal 𝐺-bundle sections gauge propagators

one-forms local quantum field source operators
Lie algebra valued one-forms local gauge quantum fields

global charges global source strengths

Under some additional conditions we can establish also some relationships between structures of tan-
gent and the GNS bundles:

𝐶8-geometric GNS-bundle-algebraic extra condition
hamiltonian vector fields standard liouvilleans (PC2)

geodesic trajectories gauge geodesic propagations (QP1)

There is also a correspondence between the local liouvillean instruments acting on ℳp𝒩 q and local
liouvillean operators acting on the fibres of the GNS bundle. These instruments might be nonsmooth.
Two main ideas regarding the local quantum dynamics contained in Section 3 can be summarised as:

local gauge dynamics “ local Poisson dynamics`A-propagation, (6)
local liouvillean dynamics “ local Poisson dynamics`A-propagation` action of sources. (7)

An especially interesting possibility for introducing an affine connection ∇ on a tangent bundle
Tℳp𝒩 q is a third order Taylor expansion of a quantum relative entropy functional 𝐷. In such case
the gauge geodesic propagation of quantum particles can be carried precisely along the lines of local
information flow, defined by a constrained maximisation of a relative entropy, and equivalent to the
local ∇𝐷-geodesic free fall. This particular application shows a virtue of using the Hilbert space bundle
combined with the technique of local perturbation of standard liouvilleans: it allows to accomodate
different smooth manifold structures on the space of quantum states into a single fiber-wise operator
formulation. See [214] for further discussion.

In Section 4.5 we provide another example of application of this technique, constructing an algebraic
generalisation of Savvidou’s action operator. It is specified by perturbation of a standard liouvillean
𝐿𝛼 of a weak-‹ continuous ˚-automorphism 𝛼 : R Ñ Autp𝒩 q of a W˚-algebra 𝒩 by the generator
𝐾𝜔 :“ ´ log ∆𝜔 of the Tomita–Takesaki modular automorphism 𝜎𝜔 : R Ñ Autp𝒩 q. This can be
tentatively interpreted as incorporation of an action of a 𝑈p1q-connection on a fibre bundle of Hilbert
spaces over a real line of a trajectory of 𝛼‹ on 𝒩`

‹ . For any W˚-algebra 𝒩 , the Falcone–Takesaki theory
[99] functorially associates a ‘core’ von Neumann algebra r𝒩 . If 𝒩 is equipped with a faithful normal
algebraic state 𝜔, then there exists a canonical unitary isomorphism r𝒩 – 𝒩 ¸𝜎𝜔 R with the crossed
product corresponding to a W˚-dynamical system p𝒩 ,R, 𝜎𝜔q formed by a modular ˚-automorphism
𝜎𝜔 of 𝒩 . This crossed product is a von Neumann algebra generated by the operators 𝜋𝜎𝜔p𝑥q and
𝑢Rp𝑡q “ e´i𝑡𝑉 acting on the space ℋ𝜔 b 𝐿2pR,d𝑡q by means of the equations (290) and (291). The

9



covariance equation (294), where a self-adjoint linear operator 𝐾𝜔 is equal to the Tomita–Takesaki
modular hamiltonian, turns the ‘Liouville’ (in Savvidou’s sense) action of e´i𝑡𝑉 on 𝐿2pR, d𝑡q into the
action of e´i𝑡𝐾𝜔 on the space ℋ𝜔. Hence, one can say that it ‘internalises the description of external
unitary kinematics’. The perturbed operator 𝐿𝛼`𝐾𝜔 “ 𝐿𝛼´log ∆𝜔 provides an algebraic replacement
of the quantum histories description of action operator given by equations (239) and (238).

1.2.2 Local information geometry in quantum histories

By analysis of the virtues and drawbacks of the above formulation of an algebraic action operator, we
come to a conclusion that the proper candidate for a description of the geometric perturbation of a
dynamics due to the local change of state in a projective measurement is not𝐾𝜔, but a standard unitary
transition operator 𝑉𝜑,𝜔 (which is not easily incorporable into the local liouvillean framework). It is a
parallel transport of the Levi-Civita connection ∇1{2 of the Wigner–Yanase metric g1{2, and projections
along its “free fall” geodesics are equal to the linear projections in a (standard representation) Hilbert
space. This observation leads us to revisit the use of a Fubini–Study metric gFS on the space of coherent
states (which coincides, up to a multiplicative scalar factor 4, with g1{2, when the latter is extended
to the boundary of the pure states) for the purposes of regulation of the propagator of a quantum
dynamics defined by means of functional integration. As a result, we propose a suitable generalisation
of the Daubechies–Klauder expression (283) for regularised continous time path integration, replacing
the coherent states over phase space by all states in the given quantum model ℳp𝒩 q Ď 𝒩`

‹0. In what
follows, we will discuss the conceptual aspects of the mathematical formulation that we provide.

Motivated by the Anastopoulos–Savvidou analysis of the term ei
ş

𝑝 9𝑞 in the Daubechies–Klauder
formula (283) as a holonomy of the Berry connection, we replace it by

exp

ˆ

i

ż

d𝑡
@

Ω𝜑p𝑡q,d∇1{2p𝜑p𝑡qqΩ𝜑p𝑡q

D

ℋ𝜑p𝑡q

˙

, (8)

where ℋ𝜑p𝑡q is the GNS Hilbert space associated with 𝜑p𝑡q P ℳp𝒩 q, Ω𝜑p𝑡q is its representing vector,
while d∇1{2 is a ∇1{2 connection 1-form. This is equivalent to a local integral of an infinitesimal
entropic projection generated by a quantum Brègman distance 𝐷1{2 on ℳp𝒩 q. While the necessary
mathematical background describing the relationship between entropic projections and geodesic free
falls is discussed in Section 2.4.1, let us briefly explain the conceptual perspective behind using it to
define the dynamics in quantum theory.

In general, the entropic projections P𝐷
𝒬 can be used to generate the global temporal evolution

of quantum models following the ideas of Jaynes [179, 241, 173, 177], promoted from an absolute to
relative entropy by Schlögl [300, 302, 301, 304, 303, 305, 306] and Hobson [145, 146] (see [118, 120, 341,
50] for the recent account on further developments of these approaches).11 Given a time dependent
set of constraints 𝒬p𝑠q, the map

𝜑0 ÞÑ P𝐷
𝒬p𝑠qp𝜑0q (9)

selects a unique trajectory of quantum states, if for each 𝑠 the set 𝒬p𝑠q is such that it gives a unique
solution to the corresponding minimisation problem (in order to recover the typical formulation of
dynamical problems, one may additionally require the map 𝑠 ÞÑ P𝐷

𝒬p𝑠qp𝜑0q to be continuous, and
P𝐷

𝒬p0qp𝜑0q “ 𝜑0).
However, this construction is not the same as local re-updating of the state in time 𝑠 to the state in

time 𝑠`𝛿𝑠 by the new data. While in principle it is nothing wrong with it (after all, the classical action
principle 𝛿𝑆 “ 0 is an inherently nonlocal construction), it is interesting to see whether a local entropic
dynamics can be proposed. The equivalence of entropic projections with geodesic projections for the
class of Brègman distances 𝐷Ψ provides such a possibility. In such case, instead of consideration of
subsequent stages of a relative entropy driven evolution that is nonlocally determined by an initial state
𝜑0, one can just follow the ∇𝐷Ψ-geodesics of the ∇𝐷Ψ-connection (derived from 𝐷Ψ, as a third order

11While the definition of
ş

𝜇𝑝 log 𝑝
𝑞

as well as its conceptualisation as a measure of relative information gain is due to
Kullback [219, 218], the use of this object for defining information dynamics can be credited to the above authors.
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Taylor expansion, by means of the Eguchi equations, see Section 2.4.1), maintaining the condition of
the p∇𝐷Ψq:-convexity and p∇𝐷Ψq:-affinity of the local constraints, as well as their pg𝐷Ψ ,∇𝐷Ψ , p∇𝐷Ψq:q-
orthogonality with respect to the local ∇𝐷Ψ-geodesic trajectory. This way the local user’s inference,
based on smooth reminimisation of an information distance (locally 𝐷Ψ-optimal learning process)
becomes equivalent with a free fall along ∇𝐷Ψ-geodesics. One can call it a local equivalence principle
of an “information gravity”. The restriction of an arbitrary 𝐷Ψ and ∇𝐷Ψ to 𝐷1{2 and ∇1{2, as expressed
by (8), is caused by two reasons: requirement of showing explicit backwards compatibility with the
Daubechies–Klauder path integrals, and also the structural restrictions of the GNS bundle.12 In order
to use other ∇𝐷Ψ connections, we would have to systematically apply noncommutative Orlicz spaces,
which is beyond the scope of this paper.

In addition, we replace an affine function ℎp𝑧p𝑡qq in the Daubechies–Klauder formula (282), which
is corresponding to a Killing hamiltonian vector field and is generated by a coherent state expectation
value of a self-adjoint hamiltonian operator, by any smooth function on ℳp𝒩 q, understood as a
hamiltonian function on a BLP manifold. This leads us to ask how one can relate local entropic and
local hamiltonian dynamics in the histories context.

Combined with the causal inference Ansatz (3), the principle (9) leads to a global evolution

𝜑p𝑡, 𝑠q “ P𝐷
𝒬p𝑠q ˝ 𝑤

ℬ,ℎ
𝑡 p𝜑0q. (10)

While one can chose 𝑡 P r𝑟0, 𝑟1s and 𝑠 P r𝑟1, 𝑟2s, 𝑟0, 𝑟1, 𝑟2 P R, there is no obligation to do so. In general,
𝑤ℬ,ℎ
𝑡 represents a causal evolution governed by the principle of a local conservation of absolute energy

(undestood as an element of the local space of quantitative effects, such as the self-adjoint observables
in quantum mechanics), while P𝐷

𝒬p𝑠q represents an inferential evolution governed by the principle of a
global growth of relative entropy (understood as a function on the global space of states). It was first
observed by Kępiński [192, 193] that each of those dynamical processes carries its own notion of time.
Our work grew out from consideration of this duality, and a priori independence of two associated
notions of time, as the fundamental principle of physical dynamics. In the context of the present
paper, as we discuss it below, we postulate that the ‘energetic’ time of causality and the ‘entropic’
time of inference are equal, but only infinitesimally.13 This forms the first principle of local information
dynamics. More precisely, we consider the local causal dynamics, governed by dℎℬ,14 and the local
inferential dynamics, governed by d∇𝐷Ψ , as two independent fundamental dynamical processes that
should be treated on the equal footing as components generating jointly an infinitesimal temporal
evolution in a single time. In other words, we postulate that the complete description of the local
dynamics should be governed by a differential 1-form

ℱ𝐷Ψ,ℎℬ :“ dℎℬ ` d∇𝐷Ψ . (11)

However, the existing constructions of a quantum information manifold use different tangent-
cotangent space structure than the quantum Poisson spaces, so, as a result, the addition operation
in (11) is precisely as meaningful, as is adding the element of the noncommutative Orlicz space to
the element of a Banach Lie subalgebra ℬ of 𝒩 sa (or of 𝒩 , if one wants to use some nonstandard

12Using Hasegawa [137] representation of a tangent space in terms of functions of density operator, we could generalise
the use of the GNS bundle at least to the case of ∇𝛾 connections derived from 𝐷𝛾 . However, this would be restricted to
the finite dimensional case. Moreover, we are interested here more in the search of an appropriate analytic setting for
the general theory than in the explicit calculations of special finite dimensional cases.

13Due to incoherence between the standard use of the word ‘local’ in physics and in mathematics, it is hard to propose
any universally optimal terminology for distinguishing between different regimes. In this paper we use the terms: global
to refer to objects acting on all space ℳ; local and (equivalently) infinitesimal to refer to objects acting at 𝜑 P ℳ;
nonlocal to refer to objects acting in some neighbourhood of 𝜑 P ℳ (maybe quasi-local would be a better term).
Within our setting, the local regime corresponds to a single user system, defined by the states-and-effects kinematics
equipped with the causal-inferential dynamics, global regime corresponds to a multi-user framework, while nonlocality
corresponds to the issues of construction of effective multi-user kinematics and dynamics, based on the choice of specific
criteria of synchronisation between individual user’s systems, at the expense of some individual properties being no
longer maintained at the effective level. See Sections 1.4 and 1.5 for more discussion.

14The notation dℎt¨,¨uℬ would be completely precise, and symmetric with the notation d∇𝐷Ψ , but also quite expensive
visually.
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possibilities). The best solution to this problem would be to represent the action of ℬ on the cotangent
space, given by the noncommutative Orlicz space 𝐿ϒp𝒩 q. Yet, even in the simple case, when ℬ is a
Lie algebra of a group of unitaries 𝒩 uni, a corresponding functional analytic study requires to prove
the analogue of the Haagerup theorem [130] for the noncommutative Orlicz spaces, resulting in the
𝐿ϒ-liouvillean (a generalisation of the Jakšić–Pillet 𝐿1{𝛾-liouvilleans [165]). This is beyond the scope
of this paper. As a result, the natural functional analytic representation of the above differential
geometric framework is not yet available, and we need to carry our investigations by means of a bit
less canonical tools, as reviewed in Section 1.1. The analysis of local perturbations of standard (i.e.,
𝐿1{2-) liouvilleans associated with the GNS Hilbert bundle, carried in Section 3 and briefly reviewed in
Section 1.2.1, is intended to be a warm-up investigation preceding the (currently unavailable) theory
of local perturbations of 𝐿ϒ-liouvilleans, associated with the tangent and cotangent spaces of quantum
information manifolds based on quantum Brègman distances. In this sense, the current paper can be
considered as an investigation of the mathematical framework for the local Ansatz (11), as well as a
family of related dynamical problems.15

1.3 Effective local quantum dynamics

Comparing the path integral propagator (312) with the local liouvillean propagator (189), we can see
that both consist essentially of the subtraction of the local free fall along ∇1{2 geodesics from the
local hamiltonian flow. This free fall corresponds to the local 𝐷1{2-projection, which can be in turn
interpreted as a continuous projective measurement. This leads us to revisit the problem of analytical
implementation of the postulate that the local geometric dynamics should be generated by the 1-form
(10). In particular, applying the infinitesimal approximation 𝜑 “ 𝜔 ` 𝛿𝜔 in the local liouvillean
propagator (189) results in the generator 𝜋𝜔pDF

𝜔ℎq ´ logp𝐽𝜔`𝛿𝜔𝐽𝜔`𝛿𝜔,𝜔q , which can be considered as
an implementation of (11).

As a warm-up, consider the case 𝒩 – Bpℋq, ℬ – Bpℋqsa, ℳp𝒩 q “ G1pℋq`1 . Combining the
insights of Bóna [37, 38] and Grandy [119, 120], one can propose the following generalisation of the
von Neumann equation,

i
d

d𝑡
𝜌p𝑡q “ rdℎp𝜌p𝑡qq, 𝜌p𝑡qs ´

B

B𝑡
𝜌p𝑡q, (12)

where
B

B𝑡
𝜌p𝑡q “

ÿ

𝑖P𝐼

𝑃𝑖
B

B𝑡
𝑝𝑖p𝑡q (13)

is determined by the nonhamiltonian change of probabilities t𝑝1p𝑡q, . . . , 𝑝𝑛p𝑡q, . . .u that determine 𝜌p𝑡q
by means of 𝜌p𝑡q “

ř

𝑖P𝐼 𝑃𝑖𝑝𝑖p𝑡q, given
ř

𝑖P𝐼 𝑃𝑖 “ I, 𝑃𝑖𝑃𝑗 “ 𝛿𝑖𝑗𝑃𝑖 “ 𝛿𝑖𝑗𝑃𝑗 , and 𝑃𝑖 P ProjpBpℋqq
@𝑖 P 𝐼. Grandy, following Jaynes [179, 172, 175], proposes to use maximum absolute relative entropy
to construct the evolution 𝑝p𝑡q. As compared to Jaynes’ approach, we propose to replace the use of
absolute entropy on probability densities by the use of relative quantum entropies on quantum states.
The resulting geometrisation of a contribution B

B𝑡𝜌p𝑡q by means of a connection 1-form d∇1{2p𝜑p𝑡qq can
be provided by a choice of a frame (ordered list of vector fields) 𝜉p𝑡q :“ p𝜉1p𝑡q, . . . , 𝜉𝑛p𝑡q, . . .q P ℋ𝜌p𝑡q,
such that |𝜉𝑖p𝑡q|2 “ 𝑝𝑖p𝑡q @𝑖 P 𝐼, and evaluation

pd∇1{2q
𝑗
𝑖p𝜌p𝑡qq “

ÿ

𝑘

pΓ∇1{2
q
𝑗
𝑘𝑖p𝜉p𝑡qq𝑃

𝑘. (14)

Contracting the missing indices with 𝜉𝑖p𝑡q, we derive the explicit representation of (8) as

exp

˜

i

ż

d𝑡 𝜉𝑗p𝑡q
ÿ

𝑘

pΓ∇1{2
q
𝑗
𝑘𝑖p𝜉p𝑡qq𝑃

𝑘𝜉𝑖p𝑡q

¸

. (15)

Hence, if one implements the principle (10) as a formal equation

9𝜌p𝑡q “ ´i
“

ℱℎ,∇1{2p𝜌p𝑡qq, 𝜌p𝑡q
‰

, (16)
15In future work, we will also consider a replacement of dℎℬ by the connection 1-form of the quantum relative free

energy, as generated by the Fenchel–Legendre conjugate of a relative entropy.
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then the latter can be represented in the above situation as

i
d

d𝑡
𝜌 “ rdℎp𝜌p𝑡qq, 𝜌p𝑡qs ´

ÿ

𝑘,𝑖

pΓ∇1{2
q
𝑗
𝑘𝑖p𝜉p𝑡qq𝑃

𝑘p𝑃 𝑖 ´ 𝐽𝜌p𝑡q𝑃
𝑖𝐽𝜌p𝑡qq, (17)

where the modular conjugations 𝐽𝜌p𝑡q arise from a commutator of d∇1{2 with 𝜌p𝑡q.
Alternatively, taking into account our earlier observation that the standard transition unitary

𝑉𝜔,𝜑 “ 𝐽𝜑𝐽𝜑,𝜔 is exactly a parallel transport of ∇1{2, we can begin from the ∇1{2-parallel transport
equation of a vector 𝑣𝑎 along the trajectory 𝜌p𝑡q,

d

d𝑡
𝑣𝑎p𝑡q “ ´

ÿ

𝑏,𝑐

pΓ∇1{2
q𝑎𝑏𝑐p𝜌p𝑡qq𝑣

𝑏p𝑡q

ˆ

d

d𝑡
𝜌p𝑡q

˙𝑐

. (18)

Substituting 𝑣 “ 9𝜌p𝑡q, and integrating out, we get

i
d

d𝑡
𝜌p𝑡q “ ´

ż 𝑡

´8

d𝑡
ÿ

𝑏,𝑐

pΓ∇1{2
q𝑎𝑏𝑐p𝜌p𝑡qq

ˆ

d

d𝑡
𝜌p𝑡q

˙𝑏ˆ d

d𝑡
𝜌p𝑡q

˙𝑐

. (19)

This equation, describes the equation of motion of the free fall along the ∇1{2-geodesic trajectory 𝜌p𝑡q,
when represented in the GNS Hilbert space bundle by means of ℋ𝜌p𝑡q – G2pℋq.

An infinitesimal transformation 𝜌 ÞÑ 𝜌` ð𝜌 can be decomposed as [137]

ð𝜌 :“ rð𝜌` r𝜌,𝑊 s “
𝑛
ÿ

𝑖“1

ˆ

B𝜌p𝜃q

B𝜃𝑖
` r𝜌,𝑊𝑖s

˙

d𝜃𝑖, (20)

where rð𝜌 “
ř𝑛
𝑖“1

B𝜌p𝜃q
B𝜃𝑖

d𝜃𝑖 is defined by rrð𝜌, 𝜌s “ 0, and𝑊 “
ř𝑛
𝑖“1𝑊𝑖d𝜃

𝑖 is an antiself-adjoint operator
(hence, 𝑘˚𝑖 “ 𝑘𝑖 :“ i𝑊𝑖). The mappings ð, rð and r ¨ ,𝑊 s are derivations on Bpℋq. This determines
a decomposition of tangent space at 𝜌 into the direct product of the corresponding subspaces. An
explicit representation of the tangent space in terms of G2pℋq space by means of finite dimensional
coordinate parametrisation R𝑛 Ľ Θ Q 𝜃 ÞÑ 𝜌p𝜃q P G1pℋq` reads [137]

T𝜌ℓ1{2p𝑢q “
𝑛
ÿ

𝑖“1

𝑢𝑖
ˆ

?
𝜌
B𝜌

B𝜃𝑖
` 2r

?
𝜌,𝑊𝑖s

˙

. (21)

As a result of these considerations, if we interpret the principle (10) as a statement that the effective
local dynamics is generated by the sum of vectors 9𝜌p𝑡q arising independently from the hamiltonian
flow and the geodesic free fall (19), then we should use the equation

i
d

d𝑡
𝜌p𝑡q “ rdℎp𝜌p𝑡qq, 𝜌p𝑡qs (22)

´

ż 𝑡

´8

d𝑡
ÿ

𝑏,𝑐

pΓ∇1{2
q𝑎𝑏𝑐p𝜌p𝑡qq

˜

ÿ

𝑖

𝑢𝑖
ˆ

?
𝜌
B𝜌

B𝜃𝑖
` 2 r

?
𝜌, 𝑘𝑖s

˙

¸𝑏˜
ÿ

𝑖

𝑢𝑖
ˆ

?
𝜌
B𝜌

B𝜃𝑖
` 2 r

?
𝜌, 𝑘𝑖s

˙

¸𝑐

.

This equation describes the effective local dynamics, including causality and inference effects on the
equal footing (thus, paralelly processing them). Comparing the nonhamiltonian parts of the equations
(17) and (22), we see that the equation (17) can be at best some sort of approximation of (22). We
interpret it as an indication of the weakness of the implementation (16), as compared with (22).

The interpretation of (11) an infinitesimal analogue (but not a generator) of the “entropic inference
following causal Poisson evolution” global W˚-geometric dynamics (3), and the fact that the latter
allows to reconstruct CPTP maps as a special case [215, 214], suggests to intepret (22) as a nonlinear
geometric analogue of the Lindblad–Gorini–Kossakowski–Sudarshan equation [230, 117].
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1.4 Curvature measures desynchronisation in the multi-user inference

In this Section we will consider the problem of the effective nonlocal quantum information dynamics.
As opposed to effective local dynamics, which provides the infinitesimal description of causality and
inference from the perspective of a single user (thus, allowing for an immediate subjective bayesian
interpretation), nonlocality is intended to describe the multi-user (intersubjective) conventions of re-
lating causal and inferential dynamics of individual users. In our opinion the geometric space is an
emergent property of the specific intersubjective conventions of information (causal and inferential)
dynamics, which is, in turn, relative to a specific choice of (class of) users. In this text we are focused
on an analysis of a specific example, rooted in quantum information geometry. More foundational
discussion will be postponed to another paper [214].

In principle, given two or more different users, each with his/her own method of providing infer-
ences and evaluating causal evolution, nothing can be said about how their information dynamics is
related. If only the inferential aspect of information dynamics is taken into account, then such situa-
tion can be understood as incommensurability of inferences provided by different subjective bayesians
with their arbitrary choices of respective priors and of methods of updating. In order to relate these
different instances of local information dynamics, one needs to introduce some method of translation
between the respective evolutions, as well as their initial assumptions. Each such method represents a
specific intersubjective convention, which allows to translate between individual instances of informa-
tion dynamics at the expense of constraining its possible forms to such that are subjectible to a given
convention. In particular, for inferential part of the information dynamics, there should be a way of
identification of a given state of information as ‘the same’ state for all users under consideration. Note
that there is no need for a such identification being made globally for all possible users: it is sufficient
if one can do it for different sets of users that are under the scope of interest.

The general setting for these considerations can be defined as follows. Given an abstract set ℳ
of users, with a single user represented as a point 𝜑 Pℳ equipped with a vector space of local states
𝑉 p𝜑q and a Banach dual vector space 𝑉 dp𝜑q of local effects (one can think of them in terms somewhat
similar to [232], but the duality does not have to be carried by Banach space structure, but e.g. by
convenient vector space structure).16 In order to model causality and inference, each user can chose
locally his/her own ‘causal’ Banach Lie algebra ℬ acting on 𝑉 dp𝜑q, as well as its own ‘inferential’
Brègman functional �̃�Ψ on 𝑉 p𝜑q, the latter determined by the duality between 𝑉 p𝜑q and 𝑉 dp𝜑q and
the choice of a function Ψ : 𝑉 p𝜑q Ñ R. Given a set 𝑈p𝜑q Ďℳ of users, such that 𝜑 P 𝑈p𝜑q, a choice
of a function ℓ𝜑 : 𝑈p𝜑q Ñ 𝑉 p𝜑q allows to use the Brègman functional �̃�Ψ : 𝑉 p𝜑q ˆ 𝑉 p𝜑q Ñ r0,8s in
order to construct the Brègman distance 𝐷Ψ : 𝑈p𝜑q ˆ 𝑈p𝜑q Ñ r0,8s by means of

𝐷Ψp𝜔, 𝜓q :“ �̃�Ψpℓ𝜑p𝜔q, ℓ𝜑p𝜓qq (23)

Thus, the choice of the function ℓ𝜑 defines how the local user interprets ‘inferentially’ the subset
𝑈p𝜑q of the set ℳ, while the choice of a hamiltonian function ℎp𝜑q defines how he/she interprets
it ‘causally’. The forms dℎℬp𝜑q and d∇𝐷Ψ p𝜑q, constructed as elements of 𝑉 dp𝜑q, are encoding the
corresponding infinitesimal dynamics.17 The translation between different users in the set 𝒬 Ď ℳ
requires, within this model, to specify relationship between ℓ𝜑 and ℓ𝜓, as well as ℎp𝜑q and ℎp𝜓q, for
all elements 𝜑, 𝜓 P 𝒬.

The local state-effect kinematics is completely described using the pair p𝑉 p𝜑q, 𝑉 dp𝜑qq at a given
point 𝜑 Pℳ, while the resulting local causal-inferential dynamics is generated by (11). This leads to
a question to what extent, and at what expense, this dynamics can be extended to a larger nonlocal
area of ℳ, for example allowing to interconnect the dual pairs of vector spaces of different users by
means of the (not necessarily global) sheaf of tangent and cotangent spaces. On the conceptual level,
this corresponds to the question how the local (individual) state-and-effect dual pairs of different users

16By the reasons discussed above and below, we postulate that if ℳ is given by ℳp𝒩 q, then 𝑉 p𝜑q should be specified
as 𝐿ϒp𝜑qp𝒩 q. However, in order to distinguish the conceptual and the representational aspects of our approach, we state
it in more general terms.

17On the level of implementation, it is sufficient to model 𝑉 p𝜑q and 𝑉 d
p𝜑q as convenient vector spaces in order to

guarantee that the infinitesimal calculus is well defined.
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𝜑 P ℳ can be mutually related, how their respective causal and inferential local dynamics can be
synchronised, and what is the price to pay for it? For example, even if all users p𝜑, 𝑉 p𝜑q, 𝑉 dp𝜑qq agree
to use the same generating objects for their respective local system of causality (e.g., a Banach Lie
algebra ℬ) and local system of inference (e.g., a discrimination function Ψ), their individual choices
of functions ℎℬp𝜑q and ℓ𝜑 may be not extendible to a set ℳ, resulting in sheaves of different effective
local dynamics (11). The problem of conditions for integrability of (11) is thus directly related to the
issue of nonlocal (multi-user) synchronisation of local systems of causality and inference about local
states and effects.

In general, the convention defining emergent multi-user inference can be arbitrarily different from
the convention defining the emergent multi-user causality, and they both can differ from any of the local
instances of inference and causality that are amalgamated into the emergent structure. As a result,
the emergence of a nonlocal spatio-temporal causal-inferential dynamics is be provided at the expense
of its departure from the local causal-inferential dynamics. In the context of the structures analysed
in this paper, it is represented by the appearance of the system of local entropic priors associated with
a specific integral line of a vector field on a model ℳ. (From the closely related point of view, one
can notice that the postulate of Section 1.2.2 identifies the local inferential time with local causal time
for each individual user separately, but it does not say anything about mutual relationships of those
time parameters for different users. In principle, one could also study theories for which the local
causal and inferential time of each user would not be identified, yet the multi-user synchronisation of
those two temporal structures would be considered. We find this perspective very attractive, but it is
beyond the scope of the current paper.)

On the technical level, we observe that the Fubini–Study riemannian metric, used in the regularising
term in the Daubechies–Klauder and the Anastopoulos–Savvidou approaches, can be replaced by the
second order Taylor expansion g1{2 of a quantum relative entropy 𝐷1{2. This leads us to postulate to
use a quantum entropic prior localised to a neighbourhood of a given state as a general geometric form
of the regulariser (see Section 4.7 for a discussion of the notion of an entropic prior in the commutative
case). Integration of a local entropic prior along a given trajectory on a state manifold constructs a
regularised weight for this trajectory.

On the conceptual level, we interpret the appearance of local entropic prior as a measure of (im-
possibility of) synchronisation of the causal-inferential dynamics of the subsequent local users at a
given spatio-temporal trajectory. More specifically, the choice of a single nonlocal (multi-agent) time
trajectory sets up the nonlocal vector field, corresponding to a specific system of synchronisation
(= nonlocal/noninertial observation frame) for the local forms ℱ𝐷Ψ,ℎℬ . This choice is arbitrary, but
with each such choice, the passage from point to point on the corresponding nonlocal trajectory of a
single spatialised time adds an additional term to an effective dynamics along this trajectory. Only
some specific conventions of the multi-user inference avoid the path-dependence of the synchronisation
of the inference: in the example that we study here they are given by such models pℳp𝒩 q, 𝐷Ψq for
which the scalar curvature 𝜅p∇gΨ

q is constant over ℳp𝒩 q.
One can wonder why this phenomenon of “breaking of symmetry” between causality and inference

results in an entropic (hence inferential), as opposed to a hamiltonian (hence causal) contribution. If
all users along the trajectory (as well as in the neighbourhood of this trajectory, in order to have a
situation that is more canonical than that of a 1-dimensional manifold) agree to have the same choice
of ℬ and Ψ, then in principle they should share the same nontrivial inferential and causal geometry,
so there is yet no reason for “breaking of the symmetry”. However, the Carathéodory–Jacobi–Lie
theorem (which generalises the Darboux theorem) implies that for any symplectic manifold with a
hamiltonian function ℎ, the function ℎ is a conserved quantity in an open neighbourhood for any 𝜑
for which dℎp𝜑q ‰ 0. An analogous statement is not true in riemannian geometry, as measured by the
curvature. The generalisation from symplectic to Poisson geometry and from riemannian to Norden–
Sen geometry does not change qualitatively this difference. Thus, the passage from infinitesimal/local
(jets) to neighbourhood/nonlocal (germs) is trivial for causality, but not for inference. So, while it is
possible to nonlocally synchronise the local causal structure along a trajectory of users (whenever it
is modelled by the Poisson geometry), it is impossible to do this with the local inferential structure
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(whenever it is modelled by the Norden–Sen geometry). It is a very interesting phenomenon, which
may be interpreted by saying that while the global synchronisation of local systems of causality is
a trivial consequence of choice of the same system of locally conserved quantities for each user, the
global synchronisation of local systems of inference is impossible, with the system of local entropic
priors measuring the scale of this impossibility for each of the local users along the trajectory. The local
entropic priors could be in principle replaced by any other local priors. Each of such choices represents
a different initial system of assumptions that are used by local users for the purposes to measure the
desynchronisation between their local/jet inferences, as provided by means of �̃�Ψ on 𝑉 p𝜑q, and their
nonlocal/germ inferences, as provided by means of 𝐷Ψ on ℳ. The local priors are just measures on
the local neighbourhoods in the model ℳ, and they have to be postulated independently from the
choice of ℱ𝐷Ψ,ℎℬ .18

Thus, while the equation ℱ𝐷Ψ,ℎℬ “ 0 (whenever valid) can be understood as a causal-inferential
analogue of Einstein’s version of Newton’s first law of motion (for a single user, from his/her own
perspective), the local priors are somewhat similar to the second law of thermodynamics or to the uni-
versality of the gravitation: the globalisation of inferences is provided at the expense of inevitability
of making those inferences dependent on additional arbitrary assumptions, that are in principle dif-
ferent for each user, and are nonobservable in the infinitesimal causal-inferential reference frame. The
shadow of dependence of the multi-userr inferences, as well as of the effective nonlocal causal-inferential
dynamics, on arbitrary additional assumptions (attributed to other users by the user residing at the
end point of the integrated trajectory) is a price paid for a requirement of global spatialisation of the
inferential dynamics. The lack of the similar effect in the case of causal dynamics is in essence a result
of a local linearity of the Banach Lie–Poisson spaces. If other mathematical structure would be chosen
to model causality, the similar dialectics may occur. For example, one could model causal dynamics
by means of extremum of quantum relative free energies, defined as the Legendre–Fenchel conjugates
of quantum information distances. The nonlocal trivialisation of the causal structure by means of the
CJL theorem would not be applicable in such case. As a result, the dual, local relative free energy
priors, should be also included, as an additional regularising term, into integration giving rise to an
effective dynamics. In general, we propose to consider the priors on the model ℳ as an information
theoretic analogue of the notion of mass, so the local prior at the neighbourhood 𝑈p𝜑q of 𝜑 Pℳ can
be interpreted as an information theoretic analogue of the mass of the user 𝜑 distributed over the set
𝑈p𝜑q of users. The special case in which the integration against the local relative free energy priors
would cancel the contribution arising from the local entropic priors can be then considered to be an
analogue of Einstein’s principle of equivalence of gravitational (inferential) and inertial (causal) mass.

As observed in [235, 3, 365], if the riemannian geometries of the phase space used for the Wiener
measure regularisation have nonconstant scalar curvature, then the weighting of the phase space paths
is nonuniform, corresponding to the phase space point dependency of the zero-point energy. On the
other hand, in a completely different context, Jaynes has argued [166, 171, 176] that the zero-point
energy should be interpreted not as an ontic feature of the system, but as observer’s measure of
uncertainty regarding his/her own prediction of the value of energy, as based on his/her own prior
information. Quite independently from these considerations, Rodríguez has developed the theory of
entropic priors [288] interpreting them as the «statistical representation of the vacuum of information
in a given hypothesis space» [289]. Our formulation recombines the above insights, integrating them
into a single statement: zero-point energy’s point-dependence is a manifestation of a dependence of
nonlocal integrability of local inferential structure on the local geometry of user’s prior knowledge (or,
equivalently, prior ignorance).19

18While a detailed discussion of this phenomenon is beyond the scope of the current paper, we want to note that
a somewhat similar situation (roughly speaking, a necessity of using additional geometric structures on the pre-state
spaces in order to select a specific sheaf of states) was discovered by Bostelmann [42] in the Haag–Ojima approach [129]
to construction of germs of algebraic states corresponding to a choice of a specific predictive dynamical theory in the
algebraic approach.

19This gives also some justice to an otherwise quite cryptic remark of Jaynes on the book [277] on functional integration:
«A useful start on understanding of these phenomena, but still lacking any coherent theoretical basis – which we think
is supplied only by the principle of maximum entropy as a method of reasoning.» [178].
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However, while our proposal is well founded on the geometric side, and has also an interesting in-
formation theoretic interpretation, it has to be regarded as heuristic from the perspective of stochastic
process based foundations for path integration. More specifically, the Daubechies–Klauder formula-
tion relies on the interpretation of

ş

d𝑡𝑝 9𝑞 “
ş

𝑝d𝑞 as the Stratonovich integral (so d𝑞 is considered as
a Stratonovich differential dS𝑞), and on the interpretation of (roughly)

ş

𝒟𝑝𝒟𝑞e´
1
2𝜐

ş

d𝑡p 9𝑝2` 9𝑞2q as the
pinned Wiener measure (see [35] for a systematic mathematical treatment of these objects in terms
of the Berezin–Toeplitz operators). The generalisation to a wide class of connections ∇𝐷Ψ and local
entropic priors (even if kept at the second order riemannian level of g𝐷) asks for a systematic develop-
ment of a technique of stochastic integration of random walks X on R𝑛 associated with the Brownian
motions on smooth manifolds ℳ, dimℳ “ 𝑛, that could systematically address the functional in-
tegration of the above geometric structures beyond the level of heuristic treatment that is standard
for physicists. In particular, following [149, 190], let us consider the system of stochastic differential
equations

dSX “ edSB, (24)
dSe “ 𝐻edSX, (25)

where dS are Stratonovich differentials, B is an euclidean brownian motion on R𝑛, frame e is a map from
R𝑛 to the tangent space of ℳ, and 𝐻 is a horizontal lift of a tangent space at X to the tangent space
at e, dependent on the choice of an affine connection ∇ on ℳ. If this connection is not Levi-Civita,
then the process X will be not markovian. Furthermore, a suitable riemannian metric reproducing
the Laplace–Beltrami operator can be uniquely constructed by an appropriate choice of an elliptic
diffusion. Hence, the exact mathematical foundation for our generalisation of the Daubechies–Klauder
formula is possible at least for the second order Taylor expansion of the entropic prior and for different
connections ∇𝐷Ψ . While we consider the task of a systematic treatment of this topic to be of high
importance, it will be left beyond the scope of this paper.

The issue of renormalisation cannot be omitted in any foundational discussion of local quantum
dynamics. Section 5 is dedicated to the study how the tools of quantum information geometry can be
used in order to deal with the tasks of renormalisation. In Sections 5.1 and 5.2 we briefly review the
Jaynes–Mitchell source theory [241, 173, 177, 118, 120] and its geometric generalisation by Favretti
[100], respectively. This approach provides a geometric implementation of the idea of renormalisation of
dynamics by reduction of dimensionality of the model by fixing the control parameter, which is specified
as a constraint on the space of information states (as opposed to the space of functions or operators).
We observe that the Jaynes–Mitchell–Favretti approach is canonically related to the use of Brègman
distances, and that it can be used to provide a local description of entropic information dynamics
and multiparameter nonlinear quantum control problems on an arbitrary quantum manifold. The key
insight of this approach can be summarised as: renormalisation of the action of control parameters
(sources) leads to departure of the geometry of a model ℳ from a dually flat one. Hence, the
appearance of nonzero curvature is an indicator of a nontrivial constraints for information dynamics.
Moreover, the nonconstancy of this curvature indicated local dependence of these constraints. From
the perspective of our approach to the Daubechies–Klauder path integrals, we postulate that the
renormalised description of dynamics should use renormalised riemannian metric g̃ instead of g𝐷 in
the regulariser. This corresponds to replacement of a “vacuum of information” by the “vacuum of
information storing the shadow of the knowledge about the sources that were renormalised out”.

We also introduce another type of information geometric renormalisation of inferential dynamics
of quantum states, which describes situations where none of specific control (covariate) parameter is
fixed, but the quantum model is subjected to the action of completely positive maps. This procedure is
based on the use of 𝐷f distances as well as associated contraction coefficients, introduced by Ruskai et
al [72, 64, 293, 227]. For an alternative (and essentially more developed) approach to renormalisation
based on 𝐷f on 𝒩`

‹ , see [30, 31, 32] (c.f. [79] for a pedagogical introduction).
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1.5 Locally quantum multi-user information relativity

The discussion in this paper is aimed at the construction of the framework of the multi-user (in-
tersubjective) information relativity with emergent spaces. While most of discussion is kept in the
framework build upon the W˚-algebras, it is more a useful testing ground (and a verifying constraint
for backwards compatibility), then a desired property of the framework. In other words, our intention
is to get rid of the Postulate 1 of Section 1.1 by a suitable reformulation of the Postulate 5 and 6. We
propose to consider the following tentative structure:

1) Consider arbitrary set ℳ of users.

2) each user 𝜑 Pℳ is equipped with his/her own vector space 𝑉 p𝜑q containing his/her descripton
of ‘states’ (‘configurations’, ‘preparations’, ‘inputs’) and a dual vector space 𝑉 dp𝜑q, containing
his/her description of ‘effects’ (‘registrations’, ‘results’, ‘outputs’).

3) User’s notion of inference (respectively, causality) is modelled by a choice of set of of endomor-
phisms of 𝑉 p𝜑q (respectively, 𝑉 dp𝜑q).

4) In particular, inferences on 𝑉 p𝜑q can be provided by means of the Brègman functional �̃�Ψ,𝜑 :
𝑉 p𝜑q ˆ 𝑉 p𝜑q Ñ r0,8s, while the causality on 𝑉 dp𝜑q can be provided either by the Legendre–
Fenchel conjugate of �̃�Ψ,𝜑, or by a representation of some Lie algebra.

5) More specifically, if one wants to do statistical inference, it is necessary to make clear how the
behaviour of finite data sets is associated with the specific idealisations used in the theoretic
framework, as represented by the ‘ideal’ theoretical states and effects. In order to assert such
relation, it is necessary to admit some statistical tools that are representing the control over
a ‘convergence to an ideal form of a data set’, for any given nonideal form of a real data set.
Large number estimation and asymptotic estimation are two typical tools (on the geometric
level, they correspond, respectively to relative entropy maximisation, and the local linearity).
If a user introduces a discrimination function (information potential, absolute entropy) Ψ𝜑 :
𝑉 p𝜑q Ñ s ´ 8,`8s, then he/she is able to quantify the rates of convergence of sequences of
data. The key property of the Brègman functional is that it allows for a generalised pythagorean
theorem (144), which is a nonlinear generalisation of the fundamental property of euclidean and
Hilbert spaces. Yet, it is doing it without necessity of assuming that 𝑉 p𝜑q is normed, or even
metrisable. As a result, user’s local inferences on 𝑉 p𝜑q based on entropic projections P�̃�Ψ,𝜑

allow to decompose the information distance to an ‘ideal inference’ (�̃�Ψ,𝜑p𝑥, 𝑦q) into a sum of
a distance to an effective solution (satisfying given constraints and minimising the distance)
and an uncertainty within the constrained space. (By the Legendre–Fenchel duality, completely
parallel considerations are applicable to causality on 𝑉 dp𝜑q determined by the relative free energy
�̃�ΨL,𝜑 : 𝑉 dp𝜑q ˆ 𝑉 dp𝜑q Ñ r0,8s.)

6) The geometric structures on the set ℳ are introduced as quantitative means of relating (syn-
chronising) inferences and causality of different users.

7) Each user 𝜑 provides his/her own mappings from ℳ into 𝑉 p𝜑q, given by bijective embeddings
ℓ𝜑 : 𝑈p𝜑q Ñ 𝑉 p𝜑q, where 𝑈p𝜑q Ď ℳ is the subset of users in ℳ that a user 𝜑 considers as
representable in terms of his/her ‘configuration’ space 𝑉 p𝜑q.

8) Using the embeddings ℓ𝜑, each user can relate his/her individual inferences on 𝑉 p𝜑q with other
users using (a part of) the same set 𝑈 . In particular, the relative Brègman entropy 𝐷Ψ on ℳ is
induced by

�̃�Ψ,𝜑pℓ𝜑p𝜔1q, ℓ𝜑p𝜔2qq “ 𝐷Ψ,𝑈p𝜑qX𝑈p𝜓qp𝜔1, 𝜔2q “ �̃�Ψ,𝜓pℓ𝜓p𝜔1q, ℓ𝜓p𝜔2qq @𝜔1, 𝜔2 P 𝑈p𝜑q X 𝑈p𝜓q.
(26)

This provides the means to relate the large number inferential dynamics of different users (such
as in Sanov’s theorem).

18



8) The local smooth manifold structure induced by 𝐷Ψ on ℳ provides the means to relate asymp-
totic inferential dynamics of different users. In particular, the equivalence of local geodesic
projection and local 𝐷Ψ projections can be understood as a method of locally linear synchroni-
sation of inferences of different users. In such case the curvature of the manifold ℳ measures
impossibility of ideal synchronisation of inferences between different users. The relationships
with the notions of causality, effective dynamics, and renormalisation were discussed in the pre-
vious Section. They are dependent only on the notion of Brègman distance on an arbitrary
set ℳ, and Eguchi equations on an arbirary smooth manifold ℳ, hence they hold in general,
without assuming that ℳ is a subset of 𝒩`

‹ for some W˚-algebra 𝒩 .

9) The reconstruction of the special case, when ℳ is equal to the set ℳp𝒩 q of states over a
globally defined W˚-algebra 𝒩 is an open problem. Our conjecture is that quantum mechanics
can be characterised as a set ℳ equipped with an induced structure of the riemannian manifold
pℳ,g𝐷Ψq and a Poisson manifold such that the set of extremal points of the convex hull of ℳ
admits an induced metric and induced symplectic structure that determine a Kähler manifold
satisfying the standard properties of the quantum mechanical Kähler manifolds.

In principle, the above scheme is applicable to a wide class of postquantum information theoretical
settings, such as general probabilistic theories. In what follows, having in mind the possible applications
in nonequilibrium quantum statistical mechanics, we will focus on its implementation in the context
of W˚-algebras and the associated functional analytic spaces.

While (313) considers only the case of local ∇1{2/𝐷1{2-projections, [139, 211, 215] consider only
the case of global 𝐷0-projections. Yet, we think that the natural geometric objects for construction of
local and nonlocal quantum kinematics and dynamics are arbitrary Banach Lie algebras (to describe
causality) and arbitrary quantum Brègman distances (to describe inference), connected together via
dual pairs of noncommutative Orlicz spaces. More specifically, following a discussion in Section 1.2.2 we
think that the problems considered in this paper should be readdressed in a more general foundational
framework, based on the following principles:

1) The use of GNS Hilbert bundle should be replaced by a suitable bundle of noncommutative
Orlicz spaces 𝐿ϒp𝜑qp𝒩 q playing the role of tangent spaces T𝜑ℳp𝒩 q, understood as the spaces

of local ‘configurations’ (e.g. 𝜑p𝜃q ÞÑ 𝜃 ÞÑ
´

B
B𝜃𝑖

¯

), with their Banach duals 𝐿ϒp𝜑qp𝒩 q‹ playing

the role of cotangent spaces Tz
𝜑ℳp𝒩 q, understood as the spaces of local ‘effects’ (𝑓p𝜑q ÞÑ d𝑓 ÞÑ

pd𝑓𝑖q). Somewhat similar ideas were considered earlier in [341, 233], but only in a global context,
restricted to a single ‘tangent’ and ‘cotangent’ space.

2) There should be provided a canonical construction of a quantum Brègman distance𝐷Ψ associated
with a Banach dual pair p𝐿ϒp𝜑qp𝒩 q, 𝐿ϒp𝜑qp𝒩 q‹q, a function Ψ : 𝐿ϒp𝜑qp𝒩 q Ñ R, and a family
of embeddings ℓ𝜑 : 𝒩`

‹ Ñ 𝐿ϒp𝜑qp𝒩 q, such that the second order Gâteaux derivative of 𝐷Ψ

determines a map
g𝐷Ψ
𝜑 : 𝐿ϒp𝜑qp𝒩 q ˆ 𝐿ϒp𝜑qp𝒩 q‹ Ñ r0,8s, (27)

while the third order Gâteaux derivatives determine the connections ∇𝐷Ψ and p∇𝐷Ψq:, with the
respective parallel transports equal to the isometric transition operators

t∇
𝐷Ψ

𝜑,𝜔 : T𝜑ℳp𝒩 q Ñ T𝜔ℳp𝒩 q, (28)

t
p∇𝐷Ψ q:

𝜑,𝜔 : Tz
𝜑ℳp𝒩 q Ñ Tz

𝜔ℳp𝒩 q, (29)

and satisfying the generalised Norden–Sen duality

g𝐷Ψ
𝜑 pt∇

𝐷Ψ

𝜑,𝜔 p𝑥q, t
p∇𝐷Ψ q:

𝜑,𝜔 p𝑦qq “ g𝐷Ψ
𝜔 p𝑥, 𝑦q. (30)

This is intended to implement the principle discussed in Section 2.4.3: the local structure of an
information manifold should implement the local equivalence of an entropic projection (user’s
inference) and a geodesic free fall (an absence of geometric ‘gravity’).
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3) Lie algebras g and Banach Lie algebras ℬ should be represented on 𝐿ϒp𝜑qp𝒩 q‹, the latter giving
rise to a Banach Lie–Poisson manifold structure on ℳp𝒩 q determined by the action of ℬ‹ on
𝐿ϒp𝜑qp𝒩 q.

4) As a result, both d∇𝐷Ψ p𝜑q and dℎℬp𝜑q become the elements of the same operator space 𝐿ϒp𝜑qp𝒩 q‹,
so the local effective dynamics can be formulated in terms of a 1-form ℱ “ dℎℬ`d∇𝐷Ψ , treating
local causality and local inference on an equal footing. Note that, in face of the discussion in Sec-
tions 1.2.1, 1.2.2, and 2.4.3, the condition ℱ “ 0 can be understood as an information-theoretic
analogue of Einstein’s version of Newton’s first law of motion: a rest in a local causal-inference
frame (provided by user’s choice of generators ℬ for causal dynamics in a cotangent space of
effects, and a discrimination function Ψ for inferential dynamics in a tangent space of states).

5) The local tangent BLP hamiltonian vector field, generating a local W˚-dynamical system associ-
ated with a local fiber of a GNS Hilbert bundle, should be represented in terms of 𝐿ϒ-liouvillean,
acting on the 𝐿ϒp𝜑qp𝒩 q tangent space. The incorporation of the contribution of the local free fall
along ∇𝐷Ψ-connection geodesics should be provided by the perturbation of this 𝐿ϒ-liouvillean,
defined in an analogy with the Jakšić–Pillet 𝐿1{𝛾-liouvillean [165].

6) The local entropic prior should be constructed using𝐷 and g𝐷 representing the effective geometry
of a model ℳp𝒩 q, after the renormalisation of all contributions from control sources. One can
interpret the local entropic prior at a point 𝜑 Pℳ as an information theoretic analogue of the
(inferential) mass of the user at 𝜑. This interpretation gives a particularly neat meaning to
the observation [235, 3], discussed in Section 1.2, that the regularising term in the Daubechies–
Klauder formula leads to a point-dependence of a zero-point energy iff the curvature of the
Fubini–Study metric is nonconstant. From our point of view, it means: the curvature 𝜅∇𝐷 of
a quantum model is a measure of desynchronisation of the ideal multi-user inference (as given
locally by ∇𝐷Ψ-geodesics, or, equivalently, d∇𝐷Ψ ), reflected in the influence of a local mass on
the local zero-point energy. The case of information model with a constant curvature is an
inferential analogue of the Carathéodory–Jacobi–Lie theorem for symplectic manifold, allowing
for a global trivial synchronisation of local causality systems.

7) Given these constructions, the dynamical Ansatz (313) should be generalised by means of the
replacement of the GNS Hilbert bundle by a corresponding dual bundle of noncommutative
Orlicz spaces.

8) In principle, every quantum Brègman functional �̃�Ψ on 𝐿ϒp𝜑qp𝒩 q determines the Legendre–
Fenchel conjugate functional �̃�L

Ψ on 𝐿ϒp𝜑qp𝒩 q, which can be naturally interpreted as a relative
free energy. If one would replace the use of the (nonlocally trivially synchronisable) 1-form dℎℬ
by the form d

∇𝐷
L
Ψ
, then it would be necessary to introduce a corresponding local entropic prior

(causal mass), measuring the influence of desynchronisation of local systems of causality, along
the spatial trajectory on ℳ, on the effective quantitative nonlocal evolution. The postulate
of the local cancellation of effects of those two (inferential and causal) priors, when integrated
together, would be an information theoretic analogue of the postulate of equality of gravitational
and inertial mass.

9) In the JMF source theoretic approach the local departure of riemannian metric from the hessian
geometry is described by the equation (382). Applying the change of geometry g𝐷Ψ ÞÑ g̃ to a
definition of a prior exp

´

´𝑘 𝜖
2

2

ş

𝛾 d𝑡g𝑎𝑏p𝜑q 9𝜑𝑎 9𝜑𝑏
¯

a

detpgp𝜑qq, we can see that the change of the
scalar curvature 𝜅p𝜑q of the model is reflected in the redefinition of the local prior (information
mass) 𝑃 . This leads to a more general problem. Given any neighbourhood 𝑈 Ď ℳ of a user
𝜑 P ℳ, one can ask how to determine the departure of a prior 𝑃 on 𝑈 (from the originally
postulated one) that is caused by the changes of curvature 𝜅 of a model ℳ associated with
a given system of inference, when the transformation of geometry of a model ℳ (e.g., due to
the Jaynes–Mitchell renormalisation) is considered. The analogy with general relativity that we
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were pursuing in this paper, as well as an observation [365] that the uniform weighting of the
trajectories requires constant scalar curvature, leads us to conjecture that

𝛿

ż

𝑈
𝑃 “ 𝛿

ż

𝑈
𝜅. (31)

We hope that this mathematical framework will allow for a unified treatment of the foundations of
nonequilibrium quantum statistical mechanics, as discussed from different perspectives in [120], [341],
and [165] (see also [50]). More generally, we consider it to be a testing ground for a construction of a
predictive dynamical theory that would unify several concepts of general relativity with quantum in-
formation theory into a single framework of multi-agent (post)quantum information relativity. Maybe
this sounds a bit like a fountain of conjectures and high hopes, but we believe that the science fiction
of today is just an advanced propagator of a scientific research of tomorrow.

2 Quantum geometry & global dynamics

Sections 2.1, 2.2, 2.4.1, 2.4.2 do not contain new results or constructions, except of the definition of
the quantum Poisson system.

2.1 Quantum Banach Lie–Poisson spaces

2.1.1 Banach–Lie–Poisson spaces

Let K P tR,Cu. A vector space 𝑋 over K is called a Lie algebra iff it is equipped with a function
r¨, ¨s : 𝑋 ˆ𝑋 Ñ 𝑋 such that for all 𝑓1, 𝑓2, 𝑓3 P 𝑋 and for all 𝜆 P K

1) r𝑓1, 𝑓2s “ ´r𝑓2, 𝑓1s (antisymmetry),

2) r𝑓1, 𝑓2 ` 𝜆𝑓3s “ r𝑓1, 𝑓2s ` 𝜆r𝑓1, 𝑓3s (linearity),

3) r𝑓1, r𝑓2, 𝑓3ss ` r𝑓3, r𝑓1, 𝑓2ss ` r𝑓2, r𝑓3, 𝑓1ss “ 0 (Jacobi identity).

The function r¨, ¨s is called the Lie bracket. If p𝑋, r¨, ¨sq satisfies also the Leibniz’s rule

4) t𝑓1, 𝑓2𝑓3u “ t𝑓1, 𝑓2u𝑓3 ` 𝑓2t𝑓1, 𝑓3u @𝑓1, 𝑓2, 𝑓3 P 𝑋,

then r¨, ¨s is called the Lie–Poisson bracket [229], while p𝑋, r¨, ¨sq is called a Lie–Poisson algebra.
If 𝐺 is a Lie group, then a Lie algebra of its generators will be denoted Liep𝐺q. A vector space 𝑋
over K is called a Banach Lie algebra iff it is a Banach space with a norm ||¨||, a Lie algebra, and
its Lie bracket r¨, ¨s : 𝑋 ˆ𝑋 Ñ 𝑋 is bilinear and continuous in the topology of ||¨||. If g is a Banach
Lie algebra, then the adjoint map ad𝑥 : g Q 𝑦 ÞÑ r𝑥, 𝑦s P g and coadjoint map ad‹𝑥 : g‹ Ñ g‹,

rr𝑦, ad‹𝑥p𝑧qssgˆg‹ :“ rrad𝑥p𝑦q, 𝑧ssgˆg‹ @𝑧 P g‹, (32)

are norm continuous for each 𝑥 P g.
Let 𝑀 be a real Banach smooth manifold, and C8F p𝑀 ;Rq denotes the space of all infinitely Fréchet

differentiable R-valued functions on 𝑀 . Then a real Poisson structure on 𝑀 is defined as a function
t¨, ¨u : C8F p𝑀 ;Rq ˆ C8F p𝑀 ;Rq Ñ C8F p𝑀 ;Rq such that pC8F p𝑀 ;Rq, t¨, ¨uq is a Lie algebra [229]. If 𝑀
above is finite dimensional, then p𝑀, t¨, ¨uq is called a real Poisson manifold [228, 367, 354, 368]. If𝑀
is a real Banach smooth manifold, then the cotangent space at 𝑥 can be defined by Tz

𝑥𝑀 :“ pT𝑥𝑀q
‹,

and each element of Tz
𝑥𝑀 has a form

d𝑓p𝑥q ” d𝑥𝑓 : T𝑥𝑀 Q 𝑣 ÞÑ d𝑥𝑓p𝑣q :“ 𝑣p𝑓q P R (33)

for some 𝑓 P C8F p𝑀 ;Rq. Let Tzz𝑀 :“
Ť

𝑥P𝑀 Tz
𝑥
z𝑀 , where Tz

𝑥
z𝑀 :“ pTz

𝑥𝑀q
‹ “ pT𝑥𝑀q

‹‹.
If p𝑀, t¨, ¨uq is a real Poisson manifold, then every 𝑘 P C8F p𝑀 ;Rq determines a unique vector field
X𝑘 P T𝑀 by

X𝑘p𝑓q :“
ď

𝑥P𝑀

!

𝑥 ÞÑ rrX𝑘p𝑥q,d𝑓p𝑥qssT𝑥𝑀ˆTz
𝑥𝑀

)

“ t𝑓, 𝑘u @𝑓 P C8F p𝑀 ;Rq. (34)
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Such X𝑘 is called a hamiltonian vector field, while the corresponding 𝑘 is called the Hamilton
function. If𝑀 is infinite dimensional, then the value of t¨, ¨u at 𝑥 P𝑀 depends only on the differentials
d𝑓p𝑥q,d𝑘p𝑥q P Tz

𝑥𝑀 . Hence, there exists a section 𝜛 of the vector bundle
Ź2Tzz𝑀 such that

t𝑓, 𝑘u “ 𝜛pd𝑓,d𝑘q. (35)

Let 𝜛 be a smooth section, meaning that for each 𝑥 P𝑀 there exists a continuous bilinear antisymmet-
ric function𝜛𝑥 : Tz

𝑥𝑀ˆT
z
𝑥𝑀 Ñ R such that 𝑥 ÞÑ 𝜛𝑥 is smooth. Let the function 6 : Tz𝑀 Ñ Tzz𝑀

be the bundle map covering identity, isometric on fibres, and satisfying

6𝑥pd𝑓p𝑥qq :“ 𝜛𝑥p¨,d𝑓q, (36)

which means that
p6𝑥pd𝑓p𝑥qqqpd𝑘p𝑥qq “ t𝑘, 𝑓up𝑥q @𝑓, 𝑘 P C8F p𝑀 ;Rq. (37)

Then
X𝑘 :“ 𝜛p¨,d𝑘q “ 6pd𝑘q “ t¨, 𝑘u (38)

is a smooth section of Tzz𝑀 , but may not be a vector field on 𝑀 , because T𝑀 Ď Tzz𝑀 and
T𝑀 – Tzz𝑀 in general. In order to solve this problem, Odzijewicz and Ratiu [253] proposed (see
also further discussion and results in [254, 27, 28, 255, 351, 287, 252]) to define a real Banach Poisson
manifold as a pair p𝑀, t¨, ¨uq of a real Banach smooth manifold 𝑀 and a Poisson structure t¨, ¨u on
it such that the function 6 : Tz𝑀 Ñ Tzz𝑀 defined above satisfies 6pTz𝑀q Ď T𝑀 .

If p𝑀, t¨, ¨uq is a real Banach Poisson manifold, then every 𝑘 P C8F p𝑀 ;Rq determines a unique
vector field X𝑘 P T𝑀 defined by (38), and called a hamiltonian vector field. Such 𝑘 is then
called the Hamilton function. Every real Poisson manifold is a real Banach Poisson manifold, so
this terminology is consistent. Odzijewicz and Ratiu [253] define also a holomorphic Banach Poisson
manifold which provides an analogous setting for K “ C, but we will not use its specific properties
here, so we omit its definition. If a Banach space 𝑋 over K is equipped with a Poisson structure t¨, ¨u
that turns it into a (real or holomorphic) Banach Poisson manifold, then 𝑋‹ Ď C8F p𝑋;Kq. Moreover,
t¨, ¨u is linear on C8F p𝑋;Kq if t𝑋‹, 𝑋‹u Ď 𝑋‹.

A Banach–Lie–Poisson space is defined [253] as a pair p𝑋, t¨, ¨uq such that

1) 𝑋 is a Banach space over K,

2) p𝑋, t¨, ¨uq is a real (if K “ R) or holomorphic (if K “ C) Banach Poisson manifold,

3) 𝑋‹ Ď C8F p𝑋;Kq is a Banach Lie algebra with respect to t¨, ¨u.

In such case, the restriction of t¨, ¨u on C8F p𝑋;Kq to 𝑋‹ will be denoted by r¨, ¨s. As proved in [253],
the Banach space 𝑋 is a BLP space p𝑋, t¨, ¨uq iff 𝑋‹ is a Banach Lie algebra p𝑋‹, r¨, ¨sq satisfying

ad‹𝑥p𝑋q Ď 𝑋 Ď 𝑋‹‹ @𝑥 P 𝑋‹, (39)

and in such case t¨, ¨u is given by

t𝑓, 𝑘up𝑧q “
““

𝑧, rDF
𝑧 𝑓,D

F
𝑧 𝑘s

‰‰

𝑋ˆ𝑋‹
@𝑓, 𝑘 P C8F p𝑋;Kq @𝑧 P 𝑋. (40)

Moreover, under those conditions the hamiltonian vector field associated to any 𝑘 P C8F p𝑋;Kq reads

X𝑘p𝑧q “ ´ad‹DF
𝑧 𝑘
p𝑧q @𝑧 P 𝑋. (41)

If p𝑋, t¨, ¨uq is a BLP space, and if 𝑋 – T𝑥𝑋 @𝑥 P 𝑋, then Tz
𝑥𝑋 – pT𝑥𝑋q

‹ – 𝑋‹, so if 𝑓 P 𝑋‹,
then one can identify d𝑥𝑓 P T

z
𝑥𝑋 with DF

𝑥𝑓 P 𝑋
‹. As a result, for any 𝑧 P 𝑋 and 𝑦 P 𝑋‹ the linearity

of 𝑦 gives DF
𝑧 𝑦 “ 𝑦, and for every 𝑥 P 𝑋 one has [38, 253]

rr𝑦, ad‹𝑥p𝑧qss𝑋‹ˆ𝑋‹‹ “ rr𝑧, r𝑥, 𝑦sss𝑋ˆ𝑋‹ “ t𝑥, 𝑦up𝑧q “ ´t𝑦, 𝑥up𝑧q (42)

“ pX𝑥p𝑦qqp𝑧q “
““

DF
𝑧 𝑦,X𝑥p𝑧q

‰‰

𝑋‹ˆ𝑋‹‹
“ ´rr𝑦,X𝑥p𝑧qss𝑋‹ˆ𝑋‹‹ . (43)
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Hence,
X𝑥p𝑧q “ ´ad‹𝑥p𝑧q @𝑧 P 𝑋 @𝑥 P 𝑋‹. (44)

The notion of the BLP space can be viewed as a suitable generalisation of the important properties
of strong symplectic manifold to infinite dimensional situation which need not admit decomposition
into symplectic leaves. If p𝑀1, t¨, ¨u1q and p𝑀2, t¨, ¨u2q are BLP spaces, then a smooth function 𝑤 :
𝑀1 Ñ𝑀2 is called a Poisson map iff

t𝑓 ˝ 𝑤, 𝑘 ˝ 𝑤u1 “ t𝑓, 𝑘u2 ˝ 𝑤 @𝑓, 𝑘 P C8F p𝑀2;Kq. (45)

As shown in [237], the condition iii) above makes (45) equivalent to

X𝑘 ˝ 𝑤 “ T𝑤 ˝ X𝑘˝𝑤 @𝑘 P C8F p𝑀2;Kq. (46)

If p𝑀, t¨, ¨uq is a BLP space and ℎ P C8F p𝑀 ;Kq, then the Hamilton equation

d

d𝑡
𝑓p𝑤ℎ𝑡 p𝑥qq “ tℎ, 𝑓p𝑤

ℎ
𝑡 qup𝑥q @𝑓 P C8F p𝑀 ;Kq @𝑡 P R @𝑥 P𝑀 (47)

determines a unique local map 𝑤ℎ𝑡 : 𝑀 Ñ 𝑀 , called a hamiltonian flow of ℎ, which is a Poisson
map. The solutions of the equation 𝑥p𝑡q “ 𝑤ℎ𝑡 p𝑥q with 𝑥p0q “ 𝑥 need not exist globally, that is, for all
𝑡 P R and all 𝑥 P𝑀 . If they exist globally, then the hamiltonian vector field t¨, ℎu is called complete.

2.1.2 W˚-algebra predual as a BLP space

If 𝑀 is a Banach space, and a Banach smooth manifold modelled on itself by means of an identity
mapping then for each 𝑥 P𝑀 there is a Banach space isomorphism T𝑥𝑀 –𝑀 . If 𝒩 is a W˚-algebra,
then the Banach Lie algebra structure of p𝒩‹q‹ – 𝒩 is given by its commutator r𝑥, 𝑦s :“ 𝑥𝑦 ´ 𝑦𝑥,
while ad𝑥 :“ r𝑥, ¨ s “ L𝑥 ´R𝑥 and ad‹𝑥 “ L‹𝑥 ´R‹𝑥 are defined by weakly-‹ continuous maps L𝑥 : 𝒩 Q

𝑦 ÞÑ 𝑥𝑦 P 𝒩 , R𝑥 : 𝒩 Q 𝑦 ÞÑ 𝑦𝑥 P 𝒩 . The condition ad‹𝑥p𝒩‹q Ď 𝒩‹ holds for all 𝑥 P 𝒩 , so 𝒩‹ is a
BLP space that is a holomorphic Banach Poisson manifold (modelled on itself by the atlas consisting
of one chart, an identity mapping id𝒩‹) with the Poisson structure given by (40),

t𝑓, 𝑘up𝜑q “ 𝜑prDF
𝜑𝑓,D

F
𝜑𝑘sq @𝑓, 𝑘 P C8F p𝒩‹;Cq @𝜑 P 𝒩‹. (48)

As a result, the hamiltonian vector field associated to every 𝑘 P C8F p𝒩‹;Cq by means of (41) takes a
form

X𝑓 p𝜑q “ ´ad‹
DF
𝜑𝑓
p𝜑q “ L‹

DF
𝜑𝑓
p𝜑q ´R‹

DF
𝜑𝑓
p𝜑q @𝜑 P 𝒩‹. (49)

These results, including the BLP space structure of 𝒩‹, were discovered by Bóna [36, 37, 38] in the
𝒩‹ “ G1pℋq “ Bpℋq‹ case, and were generalised to arbitrary W˚-algebras by Odzijewicz and Ratiu
[253]. We will call (49) the Bóna–Odzijewicz–Ratiu equation. If 𝒩 “ Bpℋq then 𝒩‹ – G1pℋq
and for every 𝜌 P G1pℋq and every 𝑥, 𝑦 P Bpℋq

rr𝑦,´ad‹𝑥p𝜌qssBpℋqˆBpℋq‹ “ ´rrr𝑥, 𝑦s, 𝜌ssBpℋqˆBpℋq‹ “ ´trℋpr𝑥, 𝑦s𝜌q “ rrr𝑥, 𝜌s, 𝑦ssG1pℋqˆBpℋq , (50)

which follows from the fact that G1pℋq is an ideal in Bpℋq. As a result,

´ad‹𝑥p𝜌q “ r𝑥, 𝜌s, (51)

and the BOR equation (49) turns to the Lax equation [224]

X𝑓 p𝜌q “ rD
F
𝜌 𝑓, 𝜌s @𝜌 P G1pℋq. (52)

In particular, a choice of the Hamilton function ℎp𝜌q :“ trℋp𝐻𝜌q, where 𝐻 P Bpℋq but is not
necessarily self-adjoint, turns (47) to

d

d𝑡
𝜌p𝑡q “ ´ad‹DF

𝜌ℎ
p𝜌q “ r𝐻, 𝜌s. (53)
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2.1.3 Quantum Poisson systems

The above equation is derived for a Poisson structure on 𝒩‹ “ G1pℋq viewed as a holomorphic Banach
Poisson manifold. However, the standard construction of unitary dynamics in quantum mechanics
makes us to be more interested in the real Banach Poisson manifold 𝒩 sa

‹ (and submanifolds of it
that are also subsets of 𝒩`

‹ ), equipped with the Poisson structure coinduced by the action of the Lie
algebra 𝒩 asa of anti-selfadjoint elements of 𝒩 . More precisely, the set 𝒩 uni of all unitary elements of
a W˚-algebra 𝒩 is a real Banach Lie group and has a real Lie Banach algebra Liep𝒩 uniq “ 𝒩 asa :“
t𝑥 P 𝒩 | 𝑥 “ ´𝑥˚u with r𝑥, 𝑦s :“ 𝑥𝑦 ´ 𝑦𝑥 [43]. The elements of the Banach Lie algebra 𝒩 asa can
be represented by 𝑥 P 𝒩 sa “ i𝒩 asa, using the Lie bracket 𝒩 sa ˆ𝒩 sa Q p𝑥, 𝑦q ÞÑ ir𝑥, 𝑦s P 𝒩 sa, which
corresponds to the commutator ri𝑥, i𝑦s “ i𝑧 in 𝒩 asa. This algebra has a unique Banach predual, given
by 𝒩 sa

‹ – 𝐿1p𝒩 qsa :“ t𝜑 P 𝐿1p𝒩 q | 𝜑 “ 𝜑˚u, with an isomorphism p𝒩 sa
‹ q

‹ – 𝒩 sa defined by duality

𝒩 sa
‹ ˆ𝒩 sa Q p𝜑, 𝑥q ÞÑ rr𝜑, 𝑥ss𝒩 sa

‹ ˆ𝒩 sa :“ 𝜑p𝑥q P R. (54)

The adjoint representation Adp𝒩 uniq of a Banach Lie group 𝒩 uni on Liep𝒩 uniq “ i𝒩 sa “ 𝒩 asa,

Adp𝑢q𝑥 :“ 𝑢𝑥𝑢˚ @𝑢 P 𝒩 uni @𝑥 P 𝒩 sa (55)

determine the coadjoint representation Ad‹p𝒩 uniq on p𝒩 ‹qsa,

rr𝑥,Ad‹p𝑢q𝜑ss𝒩 saˆp𝒩 ‹qsa :“
““

Adp𝑢´1q𝑥, 𝜑
‰‰

𝒩 saˆp𝒩 ‹qsa
@𝑥 P 𝒩 sa @𝜑 P p𝒩 ‹qsa. (56)

Using these properties, one can show that [38, 253]

ad‹𝑥p𝒩 sa
‹ q Ď 𝒩 sa

‹ Ď p𝒩 asaq‹ @𝑥 P 𝒩 asa. (57)

The space 𝒩 sa
‹ can be equipped with a real Banach smooth manifold structure modelled on itself by

the atlas consisting of one chart, which is determined by the identity mapping on 𝒩 sa
‹ . As a result,

T𝜑p𝒩 sa
‹ q – 𝒩 sa

‹ @𝜑 P 𝒩 sa
‹ . So, it is possible to use (40) and (54) to define the BLP structure on 𝒩 sa

‹

by
t𝑓, 𝑘up𝜑q :“ i𝜑prDF

𝜑𝑓,D
F
𝜑𝑘sq @𝑓, 𝑘 P C8F p𝒩 sa

‹ ;Rq @𝜑 P 𝒩 sa
‹ . (58)

As a result, the Hamilton equation (47) for ℎ P C8F p𝒩 sa
‹ ;Rq reads

d

d𝑡
𝑓p𝜑p𝑡qq “ tℎ, 𝑓up𝜑p𝑡qq “ ip𝜑p𝑡qq

´

rDF
𝜑p𝑡qℎ,D

F
𝜑p𝑡q𝑓 s

¯

. (59)

The spaces 𝒩`
‹1, 𝒩`

‹ and p𝒩 sa
‹ , t¨, ¨u𝒩 sa

‹
q are subsets of p𝒩 ‹qsa that are invariant with respect to

Ad‹p𝒩 uniq. As shown in [27], they decompose into union of orbits of Ad‹p𝒩 uniq, which in turn are
weak symplectic manifolds, which provides the symplectic foliation of the BLP space p𝒩 sa

‹ , t¨, ¨u𝒩 sa
‹
q.

Similarly, p𝒩‹, t¨, ¨u𝒩‹q is invariant with respect to the action of the Banach Lie group 𝒩 inv of all
invertible elements of 𝒩 . If 𝒩 “ Bpℋq and 𝜌 P G1pℋqsa, then the calculation analogous to (50) gives

ad‹𝑥p𝜌q “ r𝜌, 𝑥s @𝑥 P Bpℋq
asa
@𝜌 P G1pℋqsa. (60)

As a result, the BOR equation (49) on 𝒩 sa
‹ “ G1pℋqsa takes the form

X𝑓 p𝜌q “ r𝜌,D
F
𝜌 𝑓 s @𝜌 P G1pℋq, (61)

while the Hamilton equation (59) becomes [38]

d

d𝑡
𝑓p𝜌p𝑡qq “ i trℋ

´

r𝜌p𝑡q,DF
𝜌p𝑡qℎsD

F
𝜌p𝑡q𝑓

¯

. (62)

Because of the identity
d

d𝑡
𝑓p𝜌p𝑡qq “ trℋ

ˆ

pDF
𝜌p𝑡q𝑓q

d

d𝑡
𝜌p𝑡q

˙

, (63)
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the equation (62) is equivalent to the Bóna equation [36, 187, 38],

i
d

d𝑡
𝜌p𝑡q “ rDF

𝜌p𝑡qℎ, 𝜌p𝑡qs. (64)

The solutions of (64) are state-dependent unitary operators 𝑈p𝜌, 𝑡q. They do not form a group, but
satisfy a cocycle relationship:

𝑈p𝜌, 𝑡` 𝑠q “ 𝑈ppAdp𝑈p𝜌, 𝑡qqqp𝜌q, 𝑠q𝑈p𝜌, 𝑡q @𝑡, 𝑠 P R. (65)

In the special case, when ℎp𝜌q “ trℋp𝜌𝐻q for 𝐻 P Bpℋqsa “ iBpℋqasa, (64) turns to the von
Neumann equation

i
d

d𝑡
𝜌p𝑡q “ r𝐻, 𝜌p𝑡qs. (66)

So far we have followed the Bóna–Odzijewicz–Ratiu approach, hence our main object of interest
was the real Banach manifold 𝒩 sa

‹ , equipped with the BLP space structure coinduced by the Banach–
Lie algebra 𝒩 asa via 𝒩 sa, corresponding to the group 𝒩 uni of unitary elements of 𝒩 . However, in
principle, a geometric setting for nonlinear dynamics of quantum models can be generated by an
arbitrary Banach Lie algebra ℬ over R such that:

(i) its Banach predual space ℬ‹ exists, is unique, and is a real Banach Poisson manifold,

(ii) ad‹𝑥pℬ‹q Ď ℬ‹ Ď ℬ‹ @𝑥 P ℬ,

(iii) there exists a nonempty set ℳp𝒩 ,ℬq Ď 𝒩`
‹ that is a real BLP submanifold of ℬ‹.

In what follows, we will call such Banach Lie algebras ℬ to be well-adapted. For any choice of
ℎ P C8F pℳp𝒩 ,ℬq;Rq, the pair pℳp𝒩 ,ℬq, ℎq will be called a quantum Poisson system whenever

𝑤ℎ𝑡 p𝜑q Pℳp𝒩 ,ℬq @𝜑 Pℳp𝒩 ,ℬq @𝑡 P R. (67)

Hence, each quantum Poisson system is determined by a choice of: a space of quantum states ℳp𝒩 q Ď
𝒩`
‹ , a Banach Lie algebra ℬ, a tangent bundle (real Banach manifold) structure on ℳp𝒩 q, and a real

Fréchet smooth function on ℳp𝒩 q, satisfying the conditions (i), (ii), (iii), and (67). The assumptions
ℬ – 𝒩 sa and T𝜑𝒩 sa

‹ :“ 𝒩 sa
‹ @𝜑 P 𝒩 sa

‹ recover the BOR setting completely. Note that a general
quantum Poisson system pℳp𝒩 ,ℬq, ℎq does not have to be related to any group, so in particular to
a group of unitary operators 𝒩 uni. The only shared property (securing the backwards compatibility
with quantum mechanical setting) is implementation of the Poisson flow on the predual by means of
a coinduced action of a Banach–Lie algebra.

2.2 Relative modular operators, standard liouvilleans and the GNS bundle

A weight on a W˚-algebra 𝒩 is defined as a function 𝜔 : 𝒩` Ñ r0,`8s such that 𝜔p0q “ 0,
𝜔p𝑥 ` 𝑦q “ 𝜔p𝑥q ` 𝜔p𝑦q, and 𝜆 ě 0 ñ 𝜔p𝜆𝑥q “ 𝜆𝜔p𝑥q, with the convention 0 ¨ p`8q “ 0. A weight
is called: faithful iff 𝜔p𝑥q “ 0 ñ 𝑥 “ 0; finite iff 𝜔pIq ă 8; semi-finite iff a left ideal in 𝒩 given
by n𝜑 :“ t𝑥 P 𝒩 | 𝜑p𝑥˚𝑥q ă 8u is weakly-‹ dense in 𝒩 ; normal iff 𝜔psupt𝑥𝜄uq “ supt𝜔p𝑥𝜄qu for
any uniformly bounded increasing net t𝑥𝜄u Ď 𝒩`. A space of all normal semi-finite weights on a
W˚-algebra 𝒩 is denoted 𝒲p𝒩 q, while the subset of all faithful elements of 𝒲p𝒩 q is denoted 𝒲0p𝒩 q.
Hence, 𝒩`

‹ Ă𝒲p𝒩 q and 𝒩`
‹0 Ă𝒲0p𝒩 q. For 𝜓 P𝒲p𝒩 q, suppp𝜓q “ I´supt𝑃 P Projp𝒩 q | 𝜓p𝑃 q “ 0u.

An element 𝜔 P 𝒩`
‹ is faithful iff suppp𝜔q “ I.

A representation of a W˚-algebra 𝒩 is defined as a pair pℋ, 𝜋q of a Hilbert space ℋ and a
˚-homomorphism 𝜋 : 𝒩 Ñ Bpℋq. A representation 𝜋 : 𝒩 Ñ Bpℋq is called: nondegenerate iff
t𝜋p𝑥q𝜉 | p𝑥, 𝜉q P 𝒩 ˆ ℋu is dense in ℋ; normal iff it is continuous with respect to the weak-‹
topologies of 𝒩 and Bpℋq; faithful iff kerp𝜋q “ t0u. An element 𝜉 P ℋ is called cyclic for a W˚-
algebra 𝒩 Ď Bpℋq iff 𝒩 𝜉 :“

Ť

𝑥P𝒩 t𝑥𝜉u is norm dense in Bpℋq. A representation 𝜋 : 𝒩 Ñ Bpℋq
is called cyclic iff there exists Ω P ℋ that is cyclic for 𝜋p𝒩 q. According to the Gel’fand–Năımark–
Segal theorem [106, 311] for every pair p𝒩 , 𝜔q of a W˚-algebra 𝒩 and 𝜔 P 𝒩 ‹` there exists a triple
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pℋ𝜔, 𝜋𝜔,Ω𝜔q of a Hilbert space ℋ𝜔 and a cyclic representation 𝜋𝜔 : 𝒩 Ñ Bpℋq with a cyclic vector
Ω𝜔 P ℋ𝜔, and this triple is unique up to unitary equivalence. An analogue of this theorem for weights
follows the similar construction, but lacks cyclicity. If 𝜔 is a weight on a W˚-algebra 𝒩 , then there
exists the Hilbert space ℋ𝜔, defined as the completion of n𝜔{ kerp𝜔q in the topology of a norm generated
by the scalar product x¨, ¨y𝜔 : n𝜔 ˆ n𝜔 Q p𝑥, 𝑦q ÞÑ 𝜔p𝑥˚𝑦q P C,

ℋ𝜔 :“ n𝜔{ kerp𝜔q “ t𝑥 P 𝒩 | 𝜔p𝑥˚𝑥q ă 8u{t𝑥 P 𝒩 | 𝜔p𝑥˚𝑥q “ 0u “ n𝜔{ℐ𝜔, (68)

and there exist the maps

r¨s𝜔 : n𝜔 Q 𝑥 ÞÑ r𝑥s𝜔 P ℋ𝜔, (69)
𝜋𝜔 : 𝒩 Q 𝑥 ÞÑ pr𝑦s𝜔 ÞÑ r𝑥𝑦s𝜔q P Bpℋ𝜔q, (70)

such that r¨s𝜔 is linear, ranpr¨s𝜔q is dense in ℋ𝜔, and pℋ𝜔, 𝜋𝜔q is a representation of 𝒩 . If 𝜔 P𝒲p𝒩 q
then pℋ𝜔, 𝜋𝜔q is nondegenerate and normal. It is also faithful if 𝜔 P𝒲0p𝒩 q.

A standard representation [130] of a W˚-algebra 𝒩 is defined as a quadruple pℋ, 𝜋, 𝐽,ℋ6q of a
Hilbert space ℋ, a nondegenerate faithful weakly-‹ continuous representation 𝜋 : 𝒩 Ñ Bpℋq, a
conjugation 𝐽 : ℋÑ ℋ, and a self-polar cone20 ℋ6 Ď ℋ, satisfying the conditions

𝐽𝜋p𝒩 q𝐽 “ 𝜋p𝒩 q‚, 𝜉 P ℋ6 ñ 𝐽𝜉 “ 𝜉, 𝜋p𝑥q𝐽𝜋p𝑥qℋ6 Ď ℋ6, 𝑦 P Zp𝜋p𝒩 qq ñ 𝐽𝑦𝐽 “ 𝑦˚. (71)

For any standard representation

@𝜑 P 𝒩`
‹ D!𝜁𝜋p𝜑q P ℋ6 @𝑥 P 𝒩 𝜑p𝑥q “ x𝜁𝜋p𝜑q, 𝜋p𝑥q𝜁𝜋p𝜑qyℋ . (72)

The map 𝜁𝜋 : 𝒩`
‹ Ñ ℋ6 is order preserving. Moreover, 𝜁6𝜋 : ℋ6 Ñ 𝒩`

‹ , defined by p𝜁6𝜋p𝜉qqp𝑥q “
x𝜉, 𝜋p𝑥q𝜉yℋ @𝑥 P 𝒩 , is a bijective norm continuous homomorphism with p𝜁6𝜋q´1 “ 𝜁𝜋. For any
two standard representations pℋ1, 𝜋1, 𝐽1,ℋ61q and pℋ2, 𝜋2, 𝐽2,ℋ62q of a W˚-algebra 𝒩 and a given ˚-
isomorphism 𝜍 : 𝜋1p𝒩 q Ñ 𝜋2p𝒩 q, there exists a unique unitary 𝑢𝜍 : ℋ1 Ñ ℋ2 such that 𝜍p𝑥q “ 𝑢𝜍𝑥𝑢

˚
𝜍

@𝑥 P 𝜋1p𝒩 q, 𝐽2 “ 𝑢𝜍𝐽1𝑢
˚
𝜍 , ℋ62 “ 𝑢𝜍ℋ61. Such 𝑢𝜍 will be called a standard unitary equivalence. If

𝜑 P 𝒩`
‹0 then, by means of the Tomita–Takesaki theory [350, 347], the GNS representation associated

with 𝜑 determines a unique conjugation 𝐽𝜑, and a weakly-‹ continuous group homomorphism 𝜎𝜔 :
RÑ Autp𝒩 q. An associated ℋ6 is given by [73, 18]

ℋ6𝜑 :“
ď

𝑥Pn𝜑Xn
˚
𝜑

t𝜋𝜑p𝑥q𝐽𝜑𝜋𝜑p𝑥q𝐽𝜑Ω𝜑u
ℋ𝜑

. (73)

If 𝒩 – Bp𝒦q for some Hilbert space 𝒦 and 𝜑 P𝒲0p𝒩 q is given by tr𝒦, then the corresponding GNS
Hilbert space ℋ𝜑 is given by the space of all Hilbert–Schmidt operators,

G2p𝒦q :“ t𝑥 P Bp𝒦q | ptr𝒦p𝑥˚𝑥qq1{2 ă 8u “ ntr𝒦 , (74)

equipped with a scalar product x𝑥, 𝑦yG2p𝒦q :“ tr𝒦p𝑥
˚𝑦q, so that G2p𝒦q – 𝒦 b 𝒦‹ as Hilbert spaces.

Moreover, ℋ6𝜑 “ G2p𝒦q`, 𝜋𝜑p𝑥q “ L𝑥 (which denotes left multiplication by 𝑥), while 𝜁𝜋 : G1p𝒦q` Q
𝜌 ÞÑ 𝜌1{2 P G2p𝒦q`. For a given W˚-algebra 𝒩 , 𝜑 P𝒲p𝒩 q, and 𝜔 P𝒲0p𝒩 q the map

𝑅𝜑,𝜔 : r𝑥s𝜔 ÞÑ r𝑥˚s𝜑 @𝑥 P n𝜔 X n˚𝜑 (75)

is a densely defined, closable antilinear operator. Its closure admits a unique polar decomposition

𝑅𝜑,𝜔 “ 𝐽𝜑,𝜔∆
1{2
𝜑,𝜔, (76)

20A subspace 𝒟 of a Hilbert space ℋ is called a self-polar cone iff 𝜆𝜉 P 𝒟 @𝜉 P 𝒟 @𝜆 ě 0 and 𝒟 “ t𝜁 P ℋ | x𝜉, 𝜁yℋ ě
0 @𝜉 P 𝒟u.
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where 𝐽𝜑,𝜔 is a conjugation operator, called relative modular conjugation, while ∆𝜑,𝜔 is a positive
self-adjoint operator on domp∆𝜑,𝜔q Ď ℋ𝜔 with suppp∆𝜑,𝜔q “ suppp𝜑qℋ𝜔, called a relative modular
operator [17, 73, 82]. Given 𝜔 P𝒲0p𝒩 q, ∆𝜔,𝜔 “: ∆𝜔 implements the action of the Tomita–Takesaki
(modular) automorphism 𝜎𝜔 by

𝜋𝜔p𝜎
𝜔
𝑡 p𝑥qq “ ∆i𝑡

𝜔𝜋𝜔p𝑥q∆
´i𝑡
𝜔 . (77)

If 𝒩 – Bpℋq, 𝜑 “ trℋp𝜌𝜑 ¨q, 𝜔 “ trℋp𝜌𝜔 ¨q, and R𝑥 denotes right multiplication by 𝑥 P Bpℋq, then
∆𝜑,𝜔 “ L𝜌𝜑R𝜌´1

𝜔
.

For every 𝜑, 𝜔 P𝒲0p𝒩 q the relative modular conjugation 𝐽𝜑,𝜔 determines a unique unitary operator
𝐽𝜑,𝜑𝐽𝜑,𝜔 “: 𝑉𝜑,𝜔 : ℋ𝜔 Ñ ℋ𝜑, such that

𝜋𝜑p𝑥q “ 𝑉𝜑,𝜔𝜋𝜔p𝑥q𝑉
˚
𝜑,𝜔, (78)

𝑉𝜑,𝜔pℋ6𝜔q “ ℋ6𝜑, (79)

𝑉𝜑,𝜔𝐽𝜔,𝜔 “ 𝐽𝜑,𝜑𝑉𝜑,𝜔. (80)

We will call 𝑉𝜑,𝜔 standard unitary transition between ℋ𝜔 and ℋ𝜑. It is a standard unitary
equivalence of a ˚-isomorphism 𝜍𝜑,𝜔 : 𝜋𝜔p𝒩 q Ñ 𝜋𝜑p𝒩 q determined by the condition 𝜍𝜑,𝜔 ˝ 𝜋𝜔 “ 𝜋𝜑.
Thus, if 𝜑, 𝜔 P 𝒩`

‹0, then 𝑉𝜑,𝜔 provides a default unitary mapping between the corresponding GNS
Hilbert spaces and representations.

Given any group 𝐺, a representation of 𝐺 in the group Autp𝒩 q of ˚-automorphisms of a W˚-
algebra 𝒩 is a map 𝛼 : 𝐺 Q 𝑔 ÞÑ 𝛼p𝑔q “: 𝛼𝑔 P Autp𝒩 q which is a group homomorphism, that
is,

1) 𝛼p𝑒q “ id𝒩 ,

2) 𝛼p𝑔1q ˝ 𝛼p𝑔2q “ 𝛼p𝑔1 ˝ 𝑔2q @𝑔1, 𝑔2 P 𝐺,

where 𝑒 denotes the neutral element of 𝐺. A group 𝐺 is called: topological iff it is also a topological
space and a map 𝐺 ˆ 𝐺 Q p𝑔1, 𝑔2q ÞÑ 𝑔1 ˝ 𝑔

´1
2 P 𝐺 is continuous for all 𝑔1, 𝑔2 P 𝐺; locally compact

iff it is topological and 𝑒 P 𝐺 has a compact topological neighbourhood. For any W˚-algebra 𝒩 ,
Autp𝒩 q is a topological group with respect to weak-‹ topology on Autp𝒩 q, defined by the collection
of neighbourhoods [348]

𝑁t𝜔𝑖up𝛼q :“ t𝜍 P Autp𝒩 q | ||𝜔𝑖 ˝ 𝛼´ 𝜔𝑖 ˝ 𝜍||𝒩‹ ă 1,
ˇ

ˇ

ˇ

ˇ𝜔𝑖 ˝ 𝛼
´1 ´ 𝜔𝑖 ˝ 𝜍

´1
ˇ

ˇ

ˇ

ˇ

𝒩‹ ă 1u, (81)

where t𝜔𝑖u Ď 𝒩‹, 𝑖 P t1, . . . , 𝑛u, 𝑛 P N. A triple p𝒩 , 𝐺, 𝛼q of a W˚-algebra, locally compact group
𝐺, and a representation 𝛼 : 𝐺 Ñ Autp𝒩 q is called a W˚-dynamical system (or a W˚-covariant
system) iff 𝛼 is continuous in the weak-‹ topology of Autp𝒩 q. This condition is equivalent to the
continuity of the map 𝐺 Q 𝑔 ÞÑ 𝛼𝑔p𝑥q P 𝒩 in the weak-‹ topology of 𝒩 for any 𝑥 P 𝒩 , that is, to

𝐺 Q 𝑔 ÞÑ 𝜑p𝛼𝑔p𝑥qq P C is a continuous function @𝑥 P 𝒩 , (82)

and such 𝛼 is called a weakly-‹ continuous representation. Uniqueness of a predual of a W˚-algebra
𝒩 allows to define isometries 𝛼‹ of 𝒩‹ that uniquely correspond to the elements 𝛼 P Autp𝒩 q, and to
define the isometries of 𝒩‹ uniquely corresponding to representations 𝛼 : 𝐺Ñ Autp𝒩 q:

rrp𝛼𝑔q‹p𝜑q, 𝑥ss𝒩‹ˆ𝒩 “ rr𝜑, 𝛼𝑔p𝑥qss𝒩‹ˆ𝒩 “ 𝜑p𝛼𝑔p𝑥qq @𝑥 P 𝒩 @𝜑 P 𝒩‹. (83)

The above equivalence can be shown (see e.g. [295]) by proving that (82) implies continuity of 𝛼‹ in
the norm of 𝒩‹,

lim
𝑔Ñ𝑒

||p𝛼𝑔q‹p𝜑q ´ 𝜑||𝒩‹ “ 0 @𝜑 P 𝒩‹ @𝑔 P 𝐺. (84)

A unitary implementation of a representation 𝛼 : 𝐺 Ñ Autp𝒩 q in a given representation
𝜋 : 𝒩 Ñ Bpℋq is defined as a map 𝑢 : 𝐺 Q 𝑔 ÞÑ 𝑢p𝑔q P Bpℋquni that determines a family t𝑢p𝑔q | 𝑔 P 𝐺u
of unitary operators satisfying the covariance equation

𝜋p𝛼𝑔p𝑥qq “ 𝑢p𝑔q𝜋p𝑥q𝑢p𝑔q˚ @𝑥 P 𝒩 @𝑔 P 𝐺. (85)
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The condition (85) alone does not determine t𝑢p𝑔q | 𝑔 P 𝐺u uniquely. The setting of W˚-algebras
admits a remarkable solution to this problem: every pair of a W˚-dynamical system p𝒩 ,R, 𝛼q and
a standard representation pℋ, 𝜋, 𝐽,ℋ6q determines uniquely a corresponding unitary implementation
together with a unique self-adjoint generator of this family of unitaries. This generator is called a
standard liouvillean21. It is not called ‘hamiltonian’, because in general its spectrum may be not
bounded from any side, while the notion of ‘hamiltonian’ is usually understood as referring to a self-
adjoint operator that generates a strongly continuous group of unitary operators and has a nonnegative
(or at least bounded from below) spectrum22. Moreover, as opposed to hamiltonian, the construction
of standard liouvillean for a given W˚-dynamical system does not require any additional analytic
conditions that constrain derivation to an ‘integrable’ infinitesimal generator. This way the W˚-
algebraic approach makes the notion of a hamiltonian less relevant than the notion of a liouvillean.

For any W˚-algebra 𝒩 , the unique predualisation of action of 𝛼 P Autp𝒩 q can be connected with
the uniqueness property of representation of elements of 𝒩`

‹ in terms of a standard cone of a standard
representation pℋ, 𝜋, 𝐽,ℋ6q of 𝒩 : any 𝛼 P Autp𝒩 q defines a unique map 𝑢 : ℋ6 Ñ ℋ6 by

𝑢𝜁𝜋p𝜑q :“ 𝜁𝜋p𝛼‹p𝜑qq @𝜑 P 𝒩`
‹ . (86)

This map is linear, can be extended to a unitary operator on all ℋ, and satisfies

𝑢𝜋p𝑥q𝑢˚ “ 𝜋p𝛼p𝑥qq @𝑥 P 𝒩 . (87)

This leads to a question, whether it is possible to generate this way a standard unitary implementation
of a given representation 𝛼 : 𝐺 Ñ Autp𝒩 q. The answer is in the affirmative, and was established by
Haagerup [130] (the special cases of this result were obtained earlier in [188, 189, 140, 133, 267]).
If pℋ, 𝜋, 𝐽,ℋ6q is a standard representation of a W˚-algebra 𝒩 , then there exists a unique strongly
continuous unitary implementation 𝑉𝛼p𝑔q of 𝛼 satisfying

𝑉𝛼p𝑔qℋ6 “ ℋ6, (88)
𝐽𝑉𝛼p𝑔q “ 𝑉𝛼p𝑔q𝐽. (89)

Such family t𝑉𝛼p𝑔q | 𝑔 P 𝐺u is called a standard unitary implementation of 𝛼.
Thus, if p𝒩 ,R, 𝛼q is a W˚-dynamical system with 𝒩 in standard form pℋ, 𝜋p𝒩 q, 𝐽,ℋ6q, then from

the theorems of Haagerup and Stone [335, 336, 362] it follows that there exists a unique strongly
continuous group of unitaries t𝑉𝛼p𝑡q | 𝑡 P Ru Ď Bpℋquni, and a unique self-adjoint operator 𝐾𝛼 on ℋ,
called standard liouvillean, such that 𝑉𝛼p𝑡q is a strongly continuous unitary implementation of 𝛼
and for every 𝑡 P R

i) 𝑉𝛼p𝑡q “ e´i𝑡𝐾
𝛼 ,

ii) e´i𝑡𝐾
𝛼ℋ6 “ ℋ6,

iii) 𝐽𝐾𝛼 `𝐾𝛼𝐽 “ 0.

The definition of a standard liouvillean 𝐾𝛼 does not depend on any choice of 𝜔 P 𝒩`
‹ or 𝜔 P𝒲p𝒩 q: it

depends only on a W˚-dynamical system and a standard representation of W˚-algebra. If 𝒩 is semi-
finite, pℋ, 𝜋, 𝐽,ℋ6q is its standard representation, p𝒩 ,R, 𝛼q is a W˚-dynamical system, 𝐻 P 𝜋p𝒩 qsa,
and t𝑈p𝑡q :“ e´i𝑡𝐻 P 𝜋p𝒩 q | 𝑡 P Ru is a strongly continuous group of unitary operators such that

ei𝑡𝐻𝜋p𝑥qe´i𝑡𝐻 “ 𝜋p𝛼𝑡p𝑥qq @𝑥 P 𝒩 @𝑡 P R, (90)

then the standard liouvillean reads [44, 165]

𝐾𝛼 “ 𝐻 ´ 𝐽𝐻𝐽 “ r𝐻, ¨ s. (91)
21It would be however more precise to call it quantum koopmanian, because in the commutative setting (of statistical

mechanics and probability measures) the ‘liouvillean operator’ (defined by the Poisson bracket) acts on elements of
𝐿1p𝒳 ,fp𝒳 q, �̃�q, while it is the ‘koopmanian operator’ [201, 363, 364] that acts on the positive cone of 𝐿1p𝒳 ,fp𝒳 q, �̃�q.

22E.g., «one of the most important principles of quantum field theory, ensuring the stability, demands that the energy
should have a lower bound» [127].
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Following Odzijewicz and Sliżewska [256], consider a bundle e : 𝑉 Ñ 𝒩`
‹ , where

𝑉 :“ tp𝑥, 𝜔q P 𝒩 ˆ𝒩`
‹ | 𝑥 suppp𝜔q “ 𝑥u, (92)

and the bundle projection e is given by a restriction of the cartesian product projection 𝒩ˆ𝒩`
‹ Ñ 𝒩`

‹

to 𝑉 . Because 𝑉𝜔 :“ e´1p𝜔q “ 𝒩 suppp𝜔q @𝜔 P 𝒩`
‹ , the scalar product

𝑉𝜔 ˆ 𝑉𝜔 Q p𝑥, 𝑦q ÞÑ x𝑥, 𝑦y𝜔 :“ rr𝜔, 𝑥˚𝑦ss𝒩‹ˆ𝒩 P C (93)

is nondegenerate. Moreover, x𝑥, 𝑥y𝜔 “ 0 ðñ 𝑥 P 𝒩 pI´suppp𝜔qq. The completion 𝑉𝜔 of 𝑉𝜔 under the
norm generated by x¨, ¨y𝜔 determines a bundle ℋ𝒩`

‹ :“ 𝑉 Ñ 𝒩`
‹ of Hilbert spaces, which the authors

of [256] call the Gel’fand–Năımark–Segal bundle (the notion of the GNS bundle was earlier alluded
in [164, 66]).

While (73) secures that the GNS representation is a standard representation whenever 𝜑 P 𝒩`
‹0, it

doesn’t have to be in more general case. Thus, in order to be sure that our use of GNS bundle coincides
with the necessary conditions for Haagerup’s theorem, we will restrict our discussion in multiple places
of this paper to subsets and submanifolds of 𝒩`

‹0. We consider this restriction to be nonoptimal, but
in order to work it out in larger generality, we would have to work with a different bundle of Hilbert
spaces. Restriction to 𝒩`

‹0 allows us to use standard unitary transitions 𝑉𝜑,𝜔 to map between Hilbert
spaces, at the expense of consideration of unitarily equivalent representations only. Whenever the
assumption of restriction to 𝒩`

‹0 is made, it implies restriction of considerations to countably finite
W˚-algebras, because only for them 𝒩`

‹0 ‰ ∅.

2.3 Case study: Algebraic hamiltonian vector fields

The BLP structure of 𝒩‹ and 𝒩 sa
‹ allows to introduce and analyse the temporal evolution on 𝒩`

‹

by means of the hamiltonian vector field and the Hamilton equation. On the other hand, for any
W˚-dynamical system p𝒩 ,R, 𝛼q one can predualise the representation 𝛼 : R Q 𝑡 ÞÑ 𝛼𝑡 P Autp𝒩 q
obtaining the family t𝛼𝑡‹ | 𝑡 P Ru of norm continuous isometries 𝛼𝑡‹ :“ p𝛼𝑡q‹ : 𝒩‹ Ñ 𝒩‹, which in turn
can be analysed by means of a unique self-adjoint standard liouvillean operator 𝐾𝛼 that generates
a unitary evolution in 𝐿2p𝒩 q leaving 𝐿2p𝒩 q` invariant. The virtue of a geometric description in
terms of hamiltonian vector field is that it allows for an analysis of the local differential structure of
temporal evolution in terms of a local Poisson flow and tangent space. However, it does not guarantee
the existence of global flow. On the other hand, an algebraic description in terms of a predualised
representation 𝛼‹ and an associated standard liouvillean 𝐾𝛼 guarantees the existence of a global flow
on 𝒩`

‹ , but it is not necessarily a Poisson flow and it is not related to a tangent space, thus it does
not allow (in general) for a refined smooth geometric description. This leads us to single out the class
of evolutions on 𝒩 sa

‹ (and 𝒩`
‹ ) that satisfy both conditions.

The isometries 𝛼𝑡‹ of 𝒩‹ that are also the Poisson flows leaving 𝒩 sa
‹ invariant are characterised as

solutions of the equation (45)

t𝑓 ˝ 𝛼𝑡‹, 𝑘 ˝ 𝛼
𝑡
‹u𝒩 sa

‹
“ t𝑓, 𝑘u𝒩 sa

‹
˝ 𝛼𝑡‹ @𝑓, 𝑘 P C8F p𝒩 sa

‹ ;Rq @𝑡 P R, (94)

which gives, by (58),

𝜑prDF
𝜑p𝑓 ˝ 𝛼

𝑡
‹q,D

F
𝜑p𝑘 ˝ 𝛼

𝑡
‹qsq “ p𝛼

𝑡
‹p𝜑qqprD

F
𝛼𝑡‹p𝜑q

,DF
𝛼𝑡‹p𝜑q

𝑘sq, (95)

0 “ 𝜑prDF
𝜑p𝑓 ˝ 𝛼

𝑡
‹q,D

F
𝜑p𝑘 ˝ 𝛼

𝑡
‹qs ´ 𝛼𝑡prD

F
𝛼𝑡‹p𝜑q

𝑓,DF
𝛼𝑡‹p𝜑q

𝑘sqq. (96)

Hence, the predualisation 𝛼‹ of a weakly-‹ continuous representation 𝛼 : R Ñ Autp𝒩 q is a Poisson
flow on p𝒩 sa

‹ , t¨, ¨uq iff 𝛼 satisfies

𝜑ppid𝒩 ´ 𝛼𝑡qprD
F
𝛼𝑡‹p𝜑q

𝑓,DF
𝛼𝑡‹p𝜑q

𝑘sqq “ 0 @𝜑 P 𝒩 sa
‹ @𝑓, 𝑘 P C8F p𝒩 sa

‹ ;Rq @𝑡 P R. (97)

We will call (97) the Poisson compatibility condition (PC1). Let p𝒩 ,R, 𝛼q be a W˚-dynamical
system satisfying the Poisson compatibility condition. Then the Poisson flow 𝛼‹|𝒩 sa

‹
is generated by

the Hamilton function ℎ𝛼 P C8F p𝒩 sa
‹ ;Rq according to (47),

d

d𝑡
𝑓𝑡 “ tℎ

𝛼, 𝑓𝑡u, 𝑓𝑡p𝑥q :“ 𝑓p𝛼𝑡‹p𝑥qq @𝑡 P R @𝑥 P 𝒩‹ @𝑓 P C8F p𝒩 sa
‹ ;Rq, (98)
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which determines the corresponding unique hamiltonian vector field Xℎ𝛼 P T𝒩 sa
‹ by means of the

BOR equation (49),

Xℎ𝛼p𝜑q “ ´ad‹
DF
𝜑ℎ

𝛼p𝜑q “ L‹
DF
𝜑ℎ

𝛼p𝜑q ´R‹
DF
𝜑ℎ

𝛼p𝜑q @𝜑 P 𝒩 sa
‹ . (99)

We will call Xℎ𝛼 an algebraic hamiltonian vector field.
Now, let us recall from Section 2.2 that, by the Haagerup theorem, each pair of a W˚-dynamical

system p𝒩 ,R, 𝛼q and a standard representation pℋ, 𝜋, 𝐽,ℋ6q of 𝒩 determines a unique self-adjoint
generator 𝐾𝛼 of a unitary implementation of 𝛼 in Bpℋq satisfying the condition e´i𝑡𝐾

𝛼ℋ6 Ď ℋ6. By
means of (72), this condition expresses the requirement that 𝛼‹p𝒩`

‹ q Ď 𝒩`
‹ (if formulated in terms

of Kosaki’s canonical representation, for which ℋ6 “ 𝐿2p𝒩 q`, this condition is just an 𝐿2p𝒩 q version
of 𝐿1p𝒩 q` “ 𝒩`

‹ invariance under 𝛼). If 𝜔 P 𝒩`
‹0, then the GNS representation, pℋ𝜔, 𝜋𝜔,Ω𝜔q is

also a standard representation pℋ𝜔, 𝜋𝜔, 𝐽𝜔,ℋ`𝜔 q, so we can apply Haagerup’s theorem to the fibres of
the GNS bundle ℋ𝒩`

‹ restricted to the submanifold 𝒩`
‹0, e : ℋ𝒩`

‹0 Ñ 𝒩`
‹0. Because suppp𝜔q “ I

for each 𝜔 P 𝒩`
‹0, the bundle projection e reduces in this case to a cartesian product projection.

Orbits of any Poisson flow leave 𝒩`
‹0 Ď 𝒩 sa

‹ invariant [38, 27, 287], while 𝛼𝑡‹ is norm preserving, so
the restrictions of Poisson compatible isometries 𝛼𝑡‹ to 𝒩`

‹0 are automorphisms of this space. As a
result, we obtain a remarkable geometric correspondence: every weakly-‹ continuous representation
𝛼 : R Q 𝑡 ÞÑ 𝛼𝑡 P Autp𝒩 q satisfying the Poisson compatibility condition (97) determines a unique
globally integrable hamiltonian vector field Xℎ𝛼 P T𝒩 sa

‹ and a family of standard liouvillean operators
𝒩`
‹0 Q 𝜔 ÞÑ 𝐾𝛼

𝜔 P pLinpℋ𝜔qq
sa acting pointwise on the GNS bundle of Hilbert spaces. In other words,

the family t𝛼𝑡 P Autp𝒩 q | 𝑡 P Ru of Poisson compatible, weakly-‹ continuous automorphisms of a
W˚-algebra 𝒩 is uniquely represented in the tangent vector bundle T𝒩 sa

‹ Ñ 𝒩 sa
‹ (and, by linearity,

also in T𝒩`
‹ Ñ 𝒩`

‹ ), as well as on the GNS Hilbert bundle ℋ𝒩`
‹0 Ñ 𝒩`

‹0.
Due to uniqueness property (72) of the embedding 𝜁𝜋 : 𝒩`

‹ Q 𝜔 ÞÑ 𝜁𝜋p𝜔q P ℋ6 of any standard
representation pℋ, 𝜋, 𝐽,ℋ6q, this means that the embedding of a trajectory generated by 𝛼𝑡‹ on 𝒩`

‹0 to
ℋ𝜑 for any 𝜑 P 𝒩`

‹0 coincides with the evolution in ℋ`𝜑 generated by e´i𝑡𝐾
𝛼
𝜑 . Hence, the hamiltonian

flow 𝑤ℎ
𝛼

𝑡 of Xℎ𝛼 on 𝒩`
‹0 from 𝜑p0q to 𝜑p𝑡q can be always represented as liouvillean evolution

e
´i𝑡𝐾𝛼

𝜑p𝑡q𝜁𝜑p𝑡qp𝜑p0qq “ 𝜁𝜑p𝑡qp𝜑p𝑡qq “: Ω𝜑p𝑡q, (100)

where by 𝜁𝜓p𝜔q we denote the standard representative of 𝜔 P 𝒩`
‹ in the positive cone ℋ`𝜓 of the GNS

representation Hilbert space of 𝜓 P 𝒩`
‹0.

If 𝒩 “ Bpℋq, 𝜌 P G1pℋq`0 , and the weakly-‹ continuous representation 𝛼 : R Ñ AutpBpℋqq is
unitary (that is, 𝛼𝑡 “ Adp𝑢p𝑡qq with 𝑢p𝑡q P Bpℋquni @𝑡 P R), then the algebraic hamiltonian vector
field can be expressed by the von Neumann equation (66), while the corresponding liouvillean evolution
𝜌p𝑡q “ e´i𝑡𝐾

𝛼
𝜌p0q in G2pℋq – ℋbℋ‹ is a solution of the equation

d

d𝑡
𝜌p𝑡q “ ´i𝐾𝛼𝜌p𝑡q, (101)

which gives (91). In this sense, the Poisson compatibility condition (97) extends the equivalence be-
tween the algebraic (liouvillean operator) and geometric (hamiltonian vector) descriptions of temporal
evolution of quantum states to the general W˚-dynamical systems. In the next Section we will inves-
tigate how standard liouvilleans can be used to encode the perturbation of Poisson flow by additional
geometric structures over state space, beyond the realms of W˚-dynamical systems.

2.4 Relative entropy, Norden–Sen geometry, and noncommutative Orlicz spaces

2.4.1 Distances, Norden–Sen geometries, and geodesic free falls as entropic projections

A pair p∇,∇:q of two affine connections over a smooth manifold ℳ will be called Norden–Sen dual
with respect to a riemannian metric g on ℳ, iff [313, 314, 315, 249, 250, 251]

gp∇𝑢𝑣, 𝑤q ` gp𝑣,∇:𝑢𝑤q “ 𝑢pgp𝑣, 𝑤qq @𝑢, 𝑣, 𝑤 P Tℳ, (102)
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which is equivalent to
gpt∇𝑐 𝑢, t

∇:
𝑐 𝑣q “ gp𝑢, 𝑣q (103)

for all 𝑢, 𝑣 P Tℳ and for all curves 𝑐 : R Ą r𝑟1, 𝑟2s Ñℳ (the symbol t∇𝑐 denotes a parallel transport
along 𝑐 that is determined by an affine connection ∇). The quadruple pℳ,g,∇,∇:q is called a
Norden–Sen geometry. A riemannian geometry is characterised as a Norden–Sen geometry with
∇ “ ∇:.

Given a set𝑀 , we define a distance on𝑀 as a function𝐷 : 𝑀ˆ𝑀 Ñ r0,8s such that𝐷p𝜑, 𝜔q “ 0
ðñ 𝜔 “ 𝜑. Eguchi [94, 95, 96] showed that for any smooth manifold ℳ and any smooth distance 𝐷
on ℳ that satisfies

DG
𝑣 |𝑝D

G
𝑣 |𝑝𝐷p𝑝, 𝑞q|𝑞“𝑝 P s0,8r @𝑝 Pℳ @𝑣 P T𝑝ℳzt0u, (104)

where DG
𝑣 |𝑝 denotes here the Gâteaux derivative at 𝑝 Pℳ in the direction 𝑣 P T𝑝ℳ, the distance 𝐷

determines a riemannian metric g and a pair of affine connections p∇,∇:q on ℳ, given by the Eguchi
equations

g𝜑p𝑢, 𝑣q :“ ´DG
𝑢 |𝜑D

G
𝑣 |𝜔𝐷p𝜑, 𝜔q|𝜔“𝜑, (105)

g𝜑pp∇𝑢q𝜑𝑣, 𝑤q :“ ´DG
𝑢 |𝜑D

G
𝑣 |𝜑D

G
𝑤 |𝜔𝐷p𝜑, 𝜔q|𝜔“𝜑, (106)

g𝜑p𝑣, p∇:𝑢q𝜑𝑤q :“ ´DG
𝑢 |𝜔D

G
𝑤 |𝜔D

G
𝑣 |𝜑𝐷p𝜑, 𝜔q|𝜔“𝜑. (107)

Every quadruple pℳ,g,∇,∇:q determined in this way is a Norden–Sen geometry such that both ∇ and
∇: are torsion-free. A torsion-free Norden–Sen geometry will be called an Eguchi geometry. While
in riemannian geometry the affine connection is determined by the riemannian metric, in the Eguchi
geometry the triple of riemannian metric and two Norden–Sen dual affine connections are determined
by the distance. The Levi-Civita connection ∇̄ of an associated riemannian geometry pℳ,gq satisfies
∇̄ “ p∇`∇:q{2. In this sense, the Eguchi geometry (based on the nonsymmetric distance) provides
a generalisation of a riemannian geometry and cartesian geometry, including all of their main notions:
distance, length, parallelity and orthogonality. Generalisation of the cartesian distance is provided
by the distance 𝐷, the induced riemannian metric g provides the generalisation of orthogonality and
length, while the induced torsion-free Norden–Sen dual connections p∇,∇:q provide a generalisation of
parallelity.23 The invariance of length under parallel transport that characterises riemannian geometry
is weakened to covariance in the sense of (103).

If both affine connections of a Norden–Sen geometry are flat and torsion-free, then it is called a
dually flat geometry [246, 7, 9]. If dimℳ “: 𝑛 ă 8, then every dually flat geometry pℳ,g,∇,∇:q
determines a unique pair of affine immersions Ψ : ℳÑ R and ΨL : ℳÑ R such that

g𝑖𝑗p𝜌p𝜃qq “
B2Ψp𝜌p𝜃qq

B𝜃𝑖B𝜃𝑗
, (108)

g𝑖𝑗p𝜌p𝜂qq “
B2ΨLp𝜌p𝜂qq

B𝜂𝑖B𝜂𝑗
, (109)

where t𝜃𝑖u is a coordinate system such that Γ∇
𝑖𝑗𝑘p𝜌p𝜃qq “ 0 @𝜌 P ℳ and Γ∇:

𝑖𝑗𝑘p𝜌p𝜂qq “ 0 @𝜌 P ℳ
[83, 221, 222, 240]. Conversely [7], if there exists a convex function Ψ such that its hessian (matrix of
second derivatives) determines pointwise a riemannian metric, then there exists a pair of coordinate
systems t𝜃𝑖u and t𝜂𝑖u and a convex function ΨL : ℳ Ñ R satisfying the above properties. The dual
flatness of a pair p𝜃, 𝜂q of coordinate systems is equivalent to the orthogonality of their tangent vectors
at 𝑞 with respect to the riemannian metric g at 𝑞,

g𝑞

ˆ

pT𝑞𝜃q
´1

ˆ

B

B𝜃𝑖

˙

, pT𝑞𝜂q
´1

ˆ

B

B𝜂𝑗

˙˙

“ 𝛿𝑗𝑖 @𝑞 Pℳ. (110)

23The idea that 𝐷 should be considered as generalisation of the cartesian distance, while the connection ∇ associated
to a projection by means of 𝐷 should be considered as a proper generalisation of parallelity (at least in the setting of
statistical manifolds) is due to Chencov [53, 57].
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The transition between these two formulations in the real finite dimensional case is provided by means
of bijective Legendre transformation LΨ : Θ Ñ Ξ, which acts between suitable open subsets Θ Ă R𝑛
and Ξ Ă R𝑛, and is given by the gradient,

LΨ : Θ Q 𝜃 ÞÑ 𝜂 :“ gradΨp𝜃q P Ξ. (111)

In the coordinate-dependent form this reads

𝜂𝑖 “ pLΨp𝜃qq𝑖 :“
BΨp𝜃q

B𝜃𝑖
, (112)

𝜃𝑖 “ pL´1Ψ p𝜂qq
𝑖 :“

BΨLp𝜂q

B𝜂𝑖
, (113)

whenever the duality pairing is given by

rr¨, ¨ssR𝑛ˆR𝑛 : R𝑛 ˆ R𝑛 Q p𝜃, 𝜂q ÞÑ 𝜃 ¨ 𝜂J :“
𝑛
ÿ

𝑖“1

𝜃𝑖𝜂𝑖 P R. (114)

The Eguchi equations applied to the distance

𝐷Ψp𝜌, 𝜎q :“ Ψp𝜌q `ΨLp𝜎q ´
𝑛
ÿ

𝑖“1

𝜃𝑖p𝜌q𝜂𝑖p𝜎q (115)

yield pℳ,g𝐷Ψ ,∇Ψ,∇Ψ:q “ pℳ,g,∇,∇:q. We will call such 𝐷Ψ a canonical Brègman distance of a
dually flat geometry pℳ,g,∇,∇:q. A riemannian metric g on an affine manifold pℳ,∇q with flat
∇ is said to be hessian, and denoted gΨ, iff there exists a smooth function Ψ : ℳ Ñ R such that
[319, 320, 63]

gp𝑢, 𝑣q “ p∇𝑢dΨqp𝑣q @𝑢, 𝑣 P Tℳ. (116)

Such triple pℳ,g,∇q will be called a hessian geometry [322] (see also [216, 359, 91]). The function
Ψ in (116) is the same as in the representation of g𝑖𝑗p𝜌p𝜃qq above, and

gp𝑢, 𝑣q “ p∇:𝑢dΨLqp𝑣q @𝑢, 𝑣 P Tℳ. (117)

Hence, given a riemannian manifold pℳ,gq and an affine connection ∇ on ℳ the following conditions
are equivalent [321, 323, 322]: (1) pℳ,g,∇q is a hessian geometry; (2) pℳ,g,∇, 2∇̄´∇q is a dually
flat geometry.

Let pℳ,g,∇,∇:q be a dually flat geometry, and let 𝒬 Ď ℳ be ∇:-affine (i.e., there exists a
coordinate system t𝜂𝑖u on 𝒬 such that Γ∇:

𝑖𝑗𝑘p𝜌p𝜂qq “ 0 @𝜌 P 𝒬) and ∇:-convex (i.e. @𝜌1, 𝜌2 P 𝒬 D!

∇:-geodesics in 𝒬 connecting them). Then there exists a unique entropic projection

ℳ P 𝜌 ÞÑ P𝐷Ψ
𝒬 p𝜌q :“ arg inf

𝜎P𝒬
t𝐷Ψp𝜎, 𝜌qu P 𝒬, (118)

and it is equal to a unique projection 𝜌𝒬 of 𝜌 onto 𝒬 along a ∇-geodesic that is pg,∇,∇:q-orthogonal
at 𝒬 [7, 9]. More precisely, the projection 𝜌𝒬 is defined as such element of 𝒬 that

g𝜌𝒬p 9𝑐∇p𝑡q, 9𝑐∇
:

p𝑠qq “ 0 @𝑐∇
:

, (119)

where 𝑐∇p𝑡q is a ∇-geodesic connecting 𝜌 and 𝜌𝒬, while 𝑐∇: varies over all ∇:-geodesics intersecting
𝜌𝒬 and entirely included in 𝒬.
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Picture 1. ∇-geodesic projection onto ∇:-affine ∇:-convex set 𝒬.

Hence, for dually flat geometries, projections onto ∇:-affine ∇:-convex sets along ∇-geodesics coincide
with the entropic projections of the associated Brègman relative entropies. In consequence, one can
consider a local ∇-geodesic flow to be an infinitesimal version of information dynamics defined by
constrained relative entropy minimisation.

2.4.2 Quantum information geometries

Given a standard representation pℋ, 𝜋, 𝐽,ℋ6q of a W˚-algebra 𝒩 , consider a family of distances 𝐷f :
𝒩`
‹ ˆ𝒩`

‹ Ñ r0,8s defined by [204, 270]

𝐷fp𝜔, 𝜑q :“ x𝜁𝜋p𝜑q, fp∆𝜔,𝜑q𝜁𝜋p𝜑qyℋ (120)

if suppp𝜔q ď suppp𝜑q and 𝐷fp𝜔, 𝜑q :“ `8 otherwise, where f : R` Ñ R is any operator convex
function (i.e. fp𝑡𝑥` p1´ 𝑡q𝑦q ď 𝑡fp𝑥q ` p1´ 𝑡qfp𝑦q @𝑥, 𝑦 P 𝒩` @𝑡 P r0, 1s [217]) satisfying fp0q ď 0 and
fp1q “ 0. As proved in [270, 349], all 𝐷f satisfy the condition

𝐷p𝜔, 𝜑q ě 𝐷p𝑇‹p𝜔q, 𝑇‹p𝜑qq@𝜔, 𝜑 Pℳp𝒩 q @𝑇‹ : 𝒩`
‹ Ñ 𝒩`

‹ , (121)

where 𝑇‹ denotes a Banach predualisation of a weakly-‹ continuous unital completely positive map
𝑇 : 𝒩 Ñ 𝒩 , and ℳp𝒩 q Ď 𝒩`

‹ is arbitrary. Moreover, the equality is attained iff 𝑇‹ is an isomorphism
[143].

For

f𝛾p𝑡q :“

$

&

%

1
𝛾 `

1
1´𝛾 𝑡´

1
𝛾p1´𝛾q 𝑡

𝛾 : 𝛾 P Rzt0, 1u
𝑡 log 𝑡´ p𝑡´ 1q : 𝛾 “ 1
´ log 𝑡` p𝑡´ 1q : 𝛾 “ 0,

(122)

the restriction to 𝛾 “ 1 and ℳp𝒩 q Ď 𝒩`
‹1 gives [19, 20]

𝐷1|𝒩`
‹1
p𝜔, 𝜑q “ x𝜁𝜋p𝜑q, logp∆𝜔,𝜑q𝜁𝜋p𝜑qyℋ , (123)

which, for 𝒩 – Bpℋq, turns to [352, 353]

𝐷1|G1pℋq`1
p𝜔, 𝜑q “ trℋp𝜌𝜔 logp𝜌𝜔q ´ 𝜌𝜔 logp𝜌𝜑qq. (124)

Jenčová [184, 185] proposed to consider a (Young) function

Υ𝜑 : 𝒩 sa Q ℎ ÞÑ
1

2
pĂ𝜑ℎpIq ` Ą𝜑´ℎpIqq ´ 1 P R`, (125)
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where 𝒩 is an arbitrary W˚-algebra, and

Ă𝜑ℎpIq :“ sup
𝜔P𝒩`

‹

t´𝐷1|𝒩`
‹1
p𝜔, 𝜑q ` 𝜔pℎq ` 𝜔pIqu (126)

With this function, she defined a noncommutative Orlicz24 space 𝐿ϒ𝜑p𝒩 q as a completion of t𝑥 P
𝒩 sa | D𝜆 ą 0 Υ𝜑p𝜆𝑥q ă 8u in the norm ||𝑥||ϒ𝜑 :“ inft𝜆 ą 0 | Υ𝜑p𝜆

´1𝑥q ď 1u. This space satisfies

𝒩 sa Ď 𝐿ϒ𝜑p𝒩 q :“ 𝒩 sa||¨||ϒ𝜑 . (127)

Given the choice of a Hilbert space ℋ with dimℋ “: 𝑛 ă 8 and a smooth bijective parametrisation
Θ Q 𝜃 ÞÑ 𝜌p𝜃q P G1pℋq`0 by the elements of an open set Θ Ď R𝑚, 𝑚 P N, the parametric quantum
manifold is defined as a quantum model

ℳpℋq “
 

𝜌p𝜃q P G1pℋq`0 | 𝜃 P Θ Ď R𝑚
(

Ď G1pC𝑛q`0 – M𝑛pCq`0 . (128)

Usually, the additional condition trℋp𝜌p𝜃qq “ 1 is imposed on the elements of ℳpℋq. A tangent space
T𝜌M𝑛pCq`0 is the real vector space of all Fréchet derivatives in the directions of smooth curves in
M𝑛pCq`0 that pass through 𝜌, so it can be identified with a restriction of M𝑛pCqsa. A restriction of
𝜌 to M𝑛pCq`01 implies a restriction of the tangent vectors to the space t𝑥 P M𝑛pCqsa | trC𝑛p𝑥q “ 0u.
A Banach smooth manifold structure on 𝒩`

‹01 for an arbitrary countably finite25 W˚-algebra 𝒩 was
introduced by Jenčová [184, 185]. She proved that the quantum model 𝒩`

‹01 can be equipped with the
smooth Banach manifold structure modeled on a family of Banach spaces

𝐿0
ϒ𝜑
p𝒩 q :“ t𝑥 P 𝐿ϒ𝜑p𝒩 q | 𝜑p𝑥q “ 0u “ t𝑥 P 𝒩 sa | 𝜑p𝑥q “ 0u

||¨||ϒ𝜑 . (129)

This structure is introduced by means of the smooth atlas tp𝑤´1𝜑 p𝑈p𝜑qq, 𝑤𝜑q | 𝜑 P 𝒩`
‹01u, where

𝑈p𝜑q :“ t𝑥 P 𝐿0
ϒ𝜑
p𝒩 q | ||𝑥||ϒ𝜑 ă 1u and

𝑤´1𝜑 : 𝐿0
ϒ𝜑
p𝒩 q Ě 𝑈p𝜑q Q ℎ ÞÑ 𝜑ℎ P 𝒩`

‹01 (130)

is a diffeomorphism. If 𝒩 – 𝐿8p𝒳 ,fp𝒳 q, �̃�q, then this construction reduces to a smooth Banach
manifold structure on 𝐿1p𝒳 ,fp𝒳 q, �̃�q`01 introduced in [274, 122].26 We conjecture that (analogously to
the extension of this smooth manifold structure from 𝐿1p𝒳 ,fp𝒳 q, �̃�q`‹01 to 𝐿1p𝒳 ,fp𝒳 q, �̃�q`‹0, provided
in [22]) Jenčová’s construction can be extended to 𝒩`

‹0. Under this conjecture, we define a nonpara-
metric quantum manifold as a quantum model ℳp𝒩 q Ď 𝒩`

‹0 equipped with a Banach smooth
manifold structure induced from 𝒩`

‹0, by replacing 𝐿0
ϒ𝜑
p𝒩 q with 𝐿ϒ𝜑p𝒩 q.

Given any countably finite W˚-algebra 𝒩 , a finite dimensional quantum model ℳp𝒩 q Ď 𝒩`
‹ that is

a Banach smooth submanifold of 𝒩`
‹0, and a quantum distance𝐷 on ℳp𝒩 q that is smooth and satisfies

(104), one can derive the corresponding quantum Norden–Sen geometry pℳp𝒩 q,g𝐷,∇𝐷,∇𝐷:q. In
particular, given any distance𝐷f, for 𝒩 “ Bpℋq and ℳpℋq “ G1pℋq`01, the corresponding riemannian
metric g𝐷f takes the form [243, 271, 227]

g
𝐷f
𝜌 p𝑢, 𝑣q “

A

𝑢,
`

hfpL𝜌R
´1
𝜌 qR𝜌

˘´1
p𝑣q

E

G2pℋq
, (131)

where 𝑢, 𝑣 P t𝑥 P Bpℋq | trℋp𝑥q “ 0u, while hf : r0,8rÑ r0,8r is an operator monotone increasing
function27 defined by

hfp𝜆q :“
p𝜆´ 1q2

fp𝜆q ´ 𝜆fp 1𝜆q
. (132)

24More precisely, it is a noncommutative analogue of a Morse–Transue–Krasnosel’skĭı–Rutickĭı space, see [210] for
details.

25The W˚-algebras 𝒩 which are not countably finite do not allow faithful quantum states: 𝒩`
‹0 “ ∅.

26A closely related approach to construction of smooth information manifold, utilising Orlicz spaces of unbounded
operators/functions instead of the MTKR spaces of bounded elements, was developed in [275] for 𝐿1p𝒳 ,fp𝒳 q, �̃�q`01 and
in [337, 339, 340, 341, 342] for (a subspace of) G1pℋq01.

27A function h : R` Ñ R is called operator monotone increasing iff 0 ď 𝑥 ď 𝑦 ñ hp𝑥q ď hp𝑦q @𝑥, 𝑦 P Bpℋq [231].
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This implies that several different f lead to the same hf. Hence, for any riemannian metric given by
(131) there is a family of distances 𝐷f that have it as its second order Taylor term.

Using an integral representation

fp𝜆q “ 𝑐1p𝜆´ 1q ` 𝑐2p𝜆´ 1q2 ` 𝑐3
p𝜆´ 1q2

𝜆
`

ż 8

0
�̃�p𝑡qp𝜆´ 1q2

1` 𝑡

𝜆` 𝑡
, (133)

where 𝑐2, 𝑐3 ě 0, 𝑐1 P R, and �̃� : s0,8rÑ R` is a measure satisfying
ş8

0 �̃�p𝑡q P R [227], Jenčová [182]
showed that the f-connections, defined by the Eguchi equation (106) applied to 𝐷f distance, have
the form

g
𝐷f
𝜌 p∇

𝐷f
𝑥 𝑦, 𝑧q “ 2

ż 8

0
�̃�p𝜆qre p r𝐶p𝜆, 𝑧, 𝑥, 𝑦qq´2

ż 8

0
�̃�p𝜆´1q

´

re p r𝐶p𝜆, 𝑦, 𝑥, 𝑧q ` re p r𝐶p𝜆, 𝑦, 𝑥, 𝑧qq
¯

, (134)

where
r𝐶p𝜆, 𝑥, 𝑦, 𝑧q :“ p1` 𝜆qtr

ˆ

𝑥
1

𝜆R𝜌 ` L𝜌
p𝑦q

1

R𝜌 ` 𝜆L𝜌
p𝑧q

˙

. (135)

The connections ∇𝐷f are torsion-free. Moreover, the family of quantum Norden–Sen smooth geometries
pM𝑛pCq`0 ,g𝐷𝛾 ,∇𝐷𝛾 , p∇𝐷𝛾 q:q for 𝛾 P r´1, 2s is characterised as the dually flat Eguchi geometry arising
from the 𝐷f distances [181, 182]. This result corresponds to the class 𝐷f𝛾 of quantum distances
determined by (122) belonging to both families: 𝐷Ψ and 𝐷f [183, 210]. The relationships between
various information geometric objects on quantum state spaces ℳp𝒩 q can be summarised in the
following diagram:

Picture 2. Relationships between different quantum geometries. 𝐸 denotes an application of the Eguchi
equations. 𝑐Ψ denotes the construction of an associated canonical Brègman distance.

2.4.3 Orlicz spaces and Brègman projections

As a consequence of the above results, if ℳp𝒩 q is a dually flat manifold with respect to the triple
pg𝐷𝛾 ,∇𝐷𝛾 , p∇𝐷𝛾 q:q, then 𝐷𝛾-entropic projections onto p∇𝐷𝛾 q:-affine-and-convex subsets are locally
equivalent to ∇𝐷𝛾 -geodesic “free fall”. The construction of families of ∇𝐷𝛾 -connections in infinite

35



dimensional noncommutative case was provided in [113, 122, 338, 183, 184] using the linear structure
of noncommutative 𝐿1{𝛾p𝒩 q spaces, and in such case this statement also holds [183].

More generally (going a bit beyond the scope of the current paper), the quantum Brègman distance
𝐷Ψ is defined via nonlinear embeddings pℓ𝐿ϒp𝒩 qp𝜑q, ℓp𝐿ϒp𝒩 qq‹p𝜑qq into noncommutative Orlicz spaces
𝐿ϒp𝒩 q and p𝐿ϒp𝒩 qq‹, respectively. These spaces play the role of a tangent space ‘of states’ and
the cotangent space ‘of effects’, respectively (and similarly to the commutative case of [115, 113]).
The ∇𝐷Ψ

:-affinity and ∇𝐷Ψ
:-convexity are defined as linear affinity and linear convexity in the Orlicz

space p𝐿ϒp𝒩 qq‹ of effects. Thus, the global flatness of the connection on 𝐿ϒp𝒩 q understood as a
tangent space T𝜑ℳp𝒩 q corresponds to its parallel transport being given by a family of isomorphisms
𝑈𝜑,𝜔 : T𝜑ℳp𝒩 q Ñ T𝜔ℳp𝒩 q satisfying 𝑈𝜑,𝜑 “ idT𝜑ℳp𝒩 q and 𝑈𝜑,𝜔𝑈𝜔,𝜓 “ 𝑈𝜑,𝜓 [183]. From this point
of view, the standard unitary transitions 𝑉𝜑,𝜔 : ℋ𝜔 Ñ ℋ𝜑 can be understood as parallel transports of
the connection defined naturally by the linear structure of the fibers in the GNS Hilbert bundle. This
allows us to understand 𝑉𝜑,𝜔 as a “free fall” along the geodesics of the Levi-Civita connection of g𝛾

for 𝛾 “ 1
2 , known as the Wigner–Yanase metric [377]. The riemannian distance of g1{2 for 𝒩 – Bpℋq

reads [114]
𝑑g1{2p𝜌1, 𝜌2q “ 2 arccos ptrℋp

?
𝜌1
?
𝜌2qq . (136)

On the boundary of pure spaces g1{2 reduces to the Fubini–Study metric gFS (269) multiplied by the
scalar factor 4 [272], hence (136) divided by 2 reduces to (271). A generalisation of g1{2 to countably
additive W˚-algebras was provided by Connes and Størmer [74]. For a given standard representation
pℋ, 𝜋, 𝐽,ℋ6q, it reads

g
1{2
𝜑 p𝑥, 𝑦q “

1

2
||p𝐽𝜋p𝑥˚q𝐽 ´ 𝜋p𝑦qq𝜁𝜋p𝜑q||

2
ℋ. (137)

For any ℳp𝒩 q Ď 𝒩`
‹0, the GNS construction equipped with the Tomita–Takesaki theory defines a

corresponding standard representation pℋ𝜑, 𝜋𝜑, 𝐽𝜑,ℋ6𝜑q. In such case, a direct calculation based on

the properties (78)-(80), using 𝑉𝜑,𝜔 in the role of t∇1{2

𝜑,𝜔 applied with respect to (137), shows that these
objects satisfy the Levi-Civita version of the equation (103). The corresponding relative entropy is
[183]

𝐷1{2p𝜑, 𝜓q “ 2||𝑢𝜑𝜁𝜋p𝜑q ´ 𝑢𝜓𝜁𝜋p𝜓q||
2
ℋ, (138)

where 𝑢𝜑 and 𝑢𝜓 are unique unitary operators arising from the polar decomposition of relative mod-
ular operators ∆𝜑,𝜔 and ∆𝜓,𝜔, respectively, where 𝜔 P 𝒩`

‹0 is arbitrary. When expressed as a Brèg-
man distance on the standard representation Hilbert space ℋ, this relative entropy takes the form
𝐷1{2p𝑥, 𝑦q “

1
2 ||𝑥´ 𝑦||

2
ℋ [183]. Hence, the local (infinitesimal) action of the operators 𝑉𝜑,𝜔 can be un-

derstood as a geodesic free fall that is locally equivalent to the minimisation of the Hilbert space norm,
which in turn corresponds to a continuous linear projection operator onto a convex closed subset. In
what follows, we will use the GNS Hilbert bundle having in mind the above observations.

In face of presence of other approaches to construction of smooth manifold structure on the space
𝐿1p𝒳 ,fp𝒳 q, �̃�q`01 [48, 22, 248], one may ask for the specific motivation of the Orlicz space based ap-
proach. The main reason is to guarantee that the local neighbourhoods of an information state (which
are identified with the tangent space) are accessible by means of entropic projection. More precisely,
each tangent vector is identified as an equivalence class of one dimensional exponential models (i.e.,
𝑝 expp𝜆𝑓 ´ log𝑍p𝑝, 𝜆𝑓qq in the neighbourhood of 𝑝 P 𝐿1p𝒳 ,fp𝒳 q, �̃�q`01 and 𝜑𝜆ℎ in the neighbourhood
of 𝜑 P 𝒩`

‹01). This can be viewed as a localised version of Jaynes’ maximum entropy principle [166, 172]
(cf. [343]) of model construction. We consider it as a step that is conceptually similar to localisation
of Minkowski space in the passage from special to general relativity theory: instead of working with
information models that are globally exponential, we assume only that they are locally (infinitesimally)
exponential. This leads to a question whether one can postulate local approximation by means of some
other models (corresponding to minimisation of some different information distance functional), and
construct smooth information manifold structure out of this postulate. In the commutative case this
question has been answered in the affirmative by the recent work [357, 356, 358], who have generalised
the construction of [275] to a large family of Orlicz (more precisely, Musielak–Orlicz) spaces. The
Young functions that define these spaces define the corresponding Brègman distances. We conjecture
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that the similar construction can be carried out in the noncommutative case. In the case when the
information distance used for the construction of the smooth information manifold belongs to the
Brègman class, the resulting information manifold is no longer locally exponential, but it is locally
dually flat (locally hessian). Because dually flat manifolds can be thought of as a generalisation of
cartesian space, this construction strengthens analogy to relationship between Minkowski space-time
and general lorentzian manifold. From the perspective of applications of entropic projections, one can
say that the generalisation of Jenčová’s construction of a manifold structure from one based on 𝐷1 to
one based on Brègman distances 𝐷Ψ would allow for local representations of entropic 𝐷-projections in
terms of projections along ∇𝐷-geodesics. If entropic projections are regarded as a form of information
dynamics, then one can say that such construction of the smooth information manifold facilitates
the possibility of introducing local (infinitesimal) representation of entropic information dynamics.
Turning it to a slogan: introducing the structure of quantum information manifold based on a Young
function Ψ and a corresponding Brègman distance 𝐷Ψ amounts to postulating that information flows
locally along ∇𝐷Ψ-geodesics.

In principle, one can construct smooth information manifold structure of ℳp𝒩 q using some dis-
tance 𝐷, and then consider the geometric structures and information dynamics on ℳp𝒩 q using some
other distance �̃�, or even using some class of distances, t�̃�𝑖 | 𝑖 P 𝐼u. However, using the same distance
on both levels allows for stronger optimality results (concerning, for example, asymptotic estimation).
More specifically, the same asymptotic results (up to third order) will be obtained for any r𝐷 that
locally generates a dually flat geometry that agrees with a dually flat geometry of a Brègman distance
𝐷Ψ. Hence, the above slogan can be equipped with a user’s notice: a local Norden–Sen geometry and
information dynamics of such manifold can be described by an arbitrary distance 𝐷 that has the same
Taylor expansion, up to third order, as 𝐷Ψ. Given an arbitrary quantum model ℳp𝒩 q and a distance
𝐷 on ℳp𝒩 q, the pair pℳp𝒩 q, 𝐷q can be called dually flat localisable quantum geometry iff ℳp𝒩 q can
be equipped with a smooth manifold structure based on some Brègman distance 𝐷Ψ that agrees with
𝐷 up to third order. Such quantum geometry can be considered as a proper information geometric
analogue of a lorentzian manifold: while global geometry (and dynamics) of ℳp𝒩 q is described in
terms of 𝐷, locally it is equivalent with the description in terms of 𝐷Ψ, which is equivalent with the
description in terms of a dually flat geometry. See Section 5.3 for an application of these considerations
for the problem of geometric nonperturbative renormalisation in quantum nonequilibrium statistical
mechanics.

Let W˚-algebra 𝒩 admit a trace 𝜏 P𝒲0p𝒩 q. A closed densely defined linear operator 𝑥 : domp𝑥q Ñ
ℋ is called 𝜏-measurable [312, 247] iff

D𝜆 ą 0 𝜏p𝑃 |𝑥|ps𝜆,`8sqq ă 8. (139)

Let M p𝒩 , 𝜏q denote the space of all 𝜏 -measurable operators affiliated with 𝜋𝜏 p𝒩 q. Let Υ : r0,8rÑ
r0,8s be an Orlicz function, i.e. convex, continuous, nondecreasing, Υp0q “ 0, 𝜆 ą 0 ñ Υp𝜆q ą 0,
and lim𝜆Ñ`8Υp0q “ `8. A noncommutative Orlicz space over 𝒩 associated with Υ is defined as
[220]

𝐿ϒp𝒩 , 𝜏q :“ spanCt𝑥 P M p𝒩 , 𝜏q | 𝜏pΥp|𝑥|qq ď 1u, (140)

equipped with a norm

||¨||ϒ : M p𝒩 , 𝜏q Q 𝑥 ÞÑ inft𝜆 ą 0 | 𝜏pΥp𝜆´1|𝑥|qq ď 1u (141)

which turn it into a Banach space. It follows that

𝐿ϒp𝒩 , 𝜏q “ t𝑥 P M p𝒩 , 𝜏q | D𝜆 ą 0 𝜏pΥp𝜆|𝑥|qq ă 8u. (142)

An issue of canonical generalisation of the notion of a noncommutative Orlicz space to an arbitrary
W˚-algebra is a matter of a current research, see [212] for a discussion.

The construction of a general notion of a quantum Brègman distance for arbitrary spaces 𝒩`
‹

is an open problem. Let 𝑋 be a reflexive Banach space, let Ψ : 𝑋 Ñs ´ 8,`8s be convex, lower
semi-continuous, and Legendre (see [26] for a definition). Let 𝐶 Ď 𝑋 be nonempty and convex,
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𝐶 X intpefdpΨqq ‰ ∅, where efdpΨq :“ t𝑥 P 𝑋 | Ψp𝑥q ‰ `8u, and let 𝑦 P intpefdpΨqq. Then the
Brègman functional on 𝑋, defined by

r𝐷Ψp𝑥, 𝑦q :“ Ψp𝑥q ´Ψp𝑦q ´
““

𝑥´ 𝑦,DG
𝑦 Ψp𝑦q

‰‰

𝑋ˆ𝑋‹
(143)

for 𝑦 P intpefdpΨqq, and r𝐷Ψp𝑥, 𝑦q “ `8 otherwise, satisfies [26]:

1) r𝐷Ψp¨, 𝑦q is convex and lower semi-continuous,

2) efdp r𝐷Ψp¨, 𝑦qq “ efdpΨq,

3) r𝐷Ψp𝑥, 𝑦q “ 0 ðñ 𝑥 “ 𝑦,

4) P
r𝐷Ψ
𝐶 p𝑦q “ t˚u P intpefdpΨqq,

5) P
r𝐷Ψ
𝐶 ˝P

r𝐷Ψ
𝐶 p𝑦q “ P

r𝐷Ψ
𝐶 p𝑦q,

6) if 𝐾 is a vector subspace of 𝑋, then Chencov’s generalised pythagorean theorem [57, 59] holds:

r𝐷Ψp𝑥, 𝑦q “ r𝐷Ψp𝑥,P
r𝐷Ψ
𝐾 p𝑦qq ` r𝐷ΨpP

r𝐷Ψ
𝐾 p𝑦q, 𝑦q @p𝑥, 𝑦q P 𝐾 ˆ𝑋. (144)

Let 𝑋 – 𝐿ϒp𝒩 q, and consider a map ℓ𝐿ϒp𝒩 q : 𝒩‹ Ñ 𝐿ϒp𝒩 q satisfying ℓ𝐿ϒp𝒩 qp𝒩
`
‹ q Ď p𝐿ϒp𝒩 qq`,

ℓ𝐿ϒp𝒩 qp𝒩‹q Ď intpefdpΨqq, and bijective on its codomain. Then the quantum Brègman distance is
defined as [213]

𝐷Ψp𝜑, 𝜓q :“ r𝐷Ψpℓ𝐿ϒp𝒩 qp𝜑q, ℓ𝐿ϒp𝒩 qp𝜓qq @p𝜑, 𝜓q P 𝒩
`
‹ ˆ𝒩`

‹ . (145)

The nontrivial open problem consists of finding the minimal additional conditions on Ψ and ℓ𝐿ϒp𝒩 q that
are necessary and sufficient to prove that 𝐷Ψp𝜑, 𝜓q is smooth (or at least triple Gâteaux differentiable)
and satisfies the infinite dimensional analogue of the property (103) as well as an equivalence of 𝐷Ψ-
projections onto linear convex closed subspaces 𝒬 of 𝐿ϒp𝒩 q with pg𝐷Ψ ,∇𝐷Ψ , p∇𝐷Ψq:q-orthogonal
projections along ∇𝐷Ψ-geodesics onto 𝒬. These conditions will necessarily intertwine the properties
of Ψ, Υ, and ℓ𝐿ϒp𝒩 q. See [213] for an additional discussion.

2.4.4 Conjecture: a Morozova–Chencov–Petz bundle

Let pℋ𝜑, 𝜋𝜑,Ω𝜑q be a GNS representation of a W˚-algebra 𝒩 for 𝜑 P 𝒩`
‹0. Consider a scalar product

on ℋ𝜔, defined by

xr𝑥s𝜑, r𝑦s𝜑yh,𝜑 :“
A

r𝑥˚s𝜑, J
h
𝜑,𝜑pr𝑦s𝜑q

E

𝜑
, (146)

Jh𝜑,𝜓 :“
1

hp∆𝜑,𝜓q
Rp𝜓q´1, (147)

where Rp𝜓q is a right multiplication by 𝜓 P 𝒩`
‹0 [318], while h : R` Ñ R` is an operator monotone

increasing function satisfying [271] hp𝜆q “ 𝜆hp𝜆´1q @𝜆 ą 0 (all functions hf given by (132) satisfy this
property). We conjecture that:

1) the completion of the vector space 𝜋𝜑p𝒩 q{ kerpJh𝜑q in the scalar product (146) is a Hilbert space
(denoted below as ℋh,𝜑, with elements denoted by r𝑥sh,𝜑 for any 𝑥 P n𝜑),

2) 𝜋h,𝜑p𝑥q : r𝑦sh,𝜑 ÞÑ r𝑥𝑦sh,𝜑 defines a nondegenerate faithful normal representation 𝒩 Ñ Bpℋh,𝜑q,

3) a unique extension of the antilinear isometry 𝐽h,𝜑 : r𝑥sh,𝜑 ÞÑ r𝑥˚sh,𝜑 @𝑥 P n𝜑 determines a
conjugation on ℋh,𝜑, turning a quadruple

¨

˝ℋh,𝜑, 𝜋h,𝜑, 𝐽h,𝜑,
ď

𝑥Pn𝜑Xn
˚
𝜑

t𝜋h,𝜑p𝑥q𝐽h,𝜑r𝑥sh,𝜑u
ℋh,𝜑

˛

‚ (148)

to a standard representation.
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If this conjecture holds, then the above construction determines a bundle of Hilbert spaces over any
topological space ℳp𝒩 q Ď 𝒩`

‹0. We will refer to it as a Morozova–Chencov–Petz bundle (it could be
defined equivalently using the Morozova–Chencov functions 𝑐 instead of Petz’s functions h, see e.g.
[213]). Clearly, it provides an alternative to the GNS bundle. A virtue of the MCP bundle is that it
encodes the local riemannian geometry of the state space in the variability of changes of the scalar
product. Yet, it remains an open problem whether the above conjecture is true.

2.5 Local gauge and geodesic propagation

If g is a Banach Lie algebra with a Lie bracket r¨, ¨s, then a representation of g on a dense subset
𝒟 Ď ℋ of a Hilbert space ℋ is defined as a linear function a mapping each 𝑥 P g to an anti-selfadjoint
operator ap𝑥q : 𝒟 Ñ ℋ such that

apr𝑥, 𝑦sq “ ap𝑥qap𝑦q ´ ap𝑦qap𝑥q @𝑥, 𝑦 P g. (149)

Hence, for a given representation a of g on 𝒟 Ď ℋ, every 𝑥 P g determines a unique self-adjoint, and
generally unbounded, operator iap𝑥q. By definition, 𝒟 “ dompiap𝑥qq.

Let 𝐺 be a Lie group, and let ℳp𝒩 q Ď 𝒩`
‹ be equipped with a principal 𝐺-bundle 𝐸 Ñℳp𝒩 q,

and a g-valued connection one-form A on 𝐸, where g is a Lie algebra of 𝐺. Moreover, assume that
the GNS bundle ℋℳp𝒩 q is equipped with the family a of the representations of the Lie algebra g,28

a :“ ta𝜔 : gÑ pLinpℋ𝜔qq
asa | 𝜔 Pℳp𝒩 qu. (150)

The triple pℳp𝒩 q,A, aq satisfying the above conditions will be called a local gauge model, while
the pair pA, aq will be called a local gauge structure on ℳp𝒩 q.29 In principle, a given manifold
ℳp𝒩 q can admit various different local gauge structures.

If the model ℳp𝒩 q is equipped with the local gauge structure, then any curve 𝑐 : R Q 𝑡 ÞÑ
𝜑p𝑡q Pℳp𝒩 q corresponds also to a specific choice of a section of the principal 𝐺-bundle 𝐸 along this
trajectory, which can be expressed by means of integral of a g-valued connection 1-form A.

If a is determined by setting ia𝜔pgq to be equal to the generators of the irreducible unitary repre-
sentation of an action of 𝐺 on ℋ𝜔, then one can apply Wigner’s theorem [376] to each fibre of ℋℳp𝒩 q
separately, classifying the elements of ℋ𝜔 into subsets by means of their transformation properties.
According to Wigner’s interpretation of this mathematical property (which became widely accepted
afterwards), an element of ℋ𝜔 transforming under the above representation of 𝐺 shall be understood
as a pure state of a ‘quantum particle’, where pure state means a vector in a Hilbert space.

Our framework allows to enrich this interpretation by considering a propagation of a ‘quantum
particle’ state over the trajectory on the manifold ℳp𝒩 q, using the g-valued connection one-form A.
As discussed in Section 2.2, if ℳp𝒩 q Ď 𝒩`

‹0, then every two standard representations determine a
unique standard unitary transition between them that preserves the standard cone. Hence, one can
map uniquely between the elements of the fibres ℋ𝜑1 and ℋ𝜑2 , whenever 𝜑1, 𝜑2 P 𝒩`

‹0, by means of the
standard unitary transition operator 𝑉𝜑1,𝜑2 . Let ℳp𝒩 q Ď 𝒩`

‹ , let 𝑐 : r0, 𝑡s Ñℳp𝒩 q be a curve with
𝑐p0q “ 𝜔 and 𝑐p𝑡q “ 𝜑, let 𝜉 P ℋ𝜔 and 𝜁 P ℋ𝜑. Then 𝜁 will be called an A-propagation of 𝜉 along 𝑐
iff ia𝜑p

ş

𝑐Aq ´ i𝐽𝜑a𝜑p
ş

𝑐Aq𝐽𝜑 is essentially self-adjoint on dompia𝜑p
ş

𝑐Aqq X dompi𝐽𝜑a𝜑p
ş

𝑐Aq𝐽𝜑q and

𝜁 “ 𝑈A
𝑐,𝜑p𝑡q𝑉𝜑,𝜔𝜉 :“ e

´i𝑡pia𝜑p
ş

𝑐p𝑡qAq`i𝐽𝜑a𝜑p
ş

𝑐p𝑡qAq𝐽𝜑q𝑉𝜑,𝜔𝜉 “ e
𝑡prpa𝜑p

ş

𝑐p𝑡qAqq, ¨ sq𝑉𝜑,𝜔𝜉. (151)

The operator 𝑉𝜑,𝜔 is a parallel transport associated with the natural connection in the GNS Hilbert
bundle determined by the linear structure of the Hilbert space. Hence, the equation (151) can be

28This definition covers also the representations of g in the well-adapted Banach–Lie subalgebras ℬ Ď e´1
p𝜔q (thus,

within the fibers of ℋℳp𝒩 q) as the special case.
29The term gauge means the section of a principal 𝐺-bundle [369, 370]. The local gauge means the local section,

while the global gauge means the global section. A particularly interesting example of a local gauge structure is
provided by the choice of a locally compact and connected Lie group 𝐺 “ SOÒp1, 3q ˙ R4, known as ortochronous
Poincaré group.
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understood as an updating map 𝜉 ÞÑ 𝜁 along the trajectory 𝑐p𝑡q that takes into account both A and
∇g1{2 connections.

The above construction suggests introducing more tight relationship between the connection struc-
tures of Tℳp𝒩 q and ℋℳp𝒩 q for any local gauge model pℳp𝒩 q,A, aq such that ℳp𝒩 q can be
equipped with a smooth manifold structure, and with ℳp𝒩 q Ď 𝒩`

‹0. Two quite intriguing possibilities
are:

(QP1) introduce an affine connection ∇ on Tℳp𝒩 q and define gauge geodesic propagation as an
A-propagation along ∇-geodesic in ℳp𝒩 q;

(QP2) introduce: i) an action of 𝐺 on Tℳp𝒩 q turning it to a tangent 𝐺-bundle, ii) a g-valued connec-
tion 1-form Ag

T on Tℳp𝒩 q, and iii) a g-valued connection 1-form Ag
ℋ on ℋℳp𝒩 q, such that

the Ag
ℋ-parallel transports along Ag

T-geodesics in ℳp𝒩 q are equal to 𝑈A
𝑐,𝜑p𝑡q𝑉𝜑,𝜔 or 𝑉𝜑,𝜔𝑈A

𝑐,𝜔p𝑡q

(where 𝑡 is an affine parameter of an Ag
T-geodesic 𝑐p𝑡q P ℳp𝒩 q), and define gauge geodesic

propagation as a horizontal lift of an Ag
T-geodesic in ℳp𝒩 q with respect to Ag

ℋ. These gauge
geodesic propagations are precisely the A-propagations along Ag

T-geodesics in ℳp𝒩 q. So, this
what we gain by such definition is an additional structure on ℋℳp𝒩 q that allows for further
study of a relationship between p𝐺, g,Ag

¨ q-structures of Tℳp𝒩 q and ℋℳp𝒩 q. On the other
hand, the price paid is the requirement that the Ag

ℋ-parallel transport along Ag
T-geodesic de-

pends only on its endpoint, which holds if ℳp𝒩 q is simply connected and Ag
ℋ is flat.

If the definition (QP1) is used, and 𝐺 and a are chosen as for Wigner’s ‘quantum particle’ classification
discussed above, then the gauge geodesic propagation has a direct interpretation as an A-propagation
of a ‘quantum particle’ due to “free fall” along ∇-geodesic. Note that (despite ‘dynamical’ feeling
associated with the word ‘fall’) this propagation has no ‘dynamical’ (causal) content: it is an extension
of the description of gauge transformation properties of a ‘quantum particle’ state from a single Hilbert
space to a Hilbert space fibre bundle over a quantum model equipped with a local gauge structure.
In such approach, a ‘quantum particle’ becomes identified with a (not necessarily global) section of a
fibre 𝐺-bundle represented in terms of the fibre bundle of the GNS Hilbert spaces, so one can discuss
its quantum propagation between some ‘source model’ and some ‘sink model’, defined as suitable
submanifolds of ℳp𝒩 q. Under the choice of a definition (QP1), we will define a gauge geodesic
propagation model as a local gauge model pℳp𝒩 q,A, aq equipped with an affine connection ∇.

The motivation and interpretation of these definitions echoes Einstein’s postulate [98, 97] of iden-
tification of geodesic lines with the «world-lines of freely moving point-particles», but generalised from
the pseudo-riemannian geometry, for which the geodesics of the Levi-Civita connection coincide with
the curves of extreme distance of a pseudo-riemannian metric, to the setting of general affine con-
nections [307] (see e.g. [294, 234] and references therein for a comparative discussion of these two
approaches). The above construction of geodesic propagation of ‘quantum particles’ is partially influ-
enced by the works of Drechsler [87, 88, 89] and Prugovečki [278, 279, 280, 281, 282, 283, 285, 284]
(see also [123, 124]). As opposed to them, we do not require any pseudo-riemannian metric on the
base manifold, so we do not introduce soldered Poincaré frame bundles, and we also consider the
GNS Hilbert spaces (which may be unitarily inequivalent, if 𝜔 R 𝒩`

‹0) varying over the base manifold
instead of pasting fibre bundle from identical copies of a single Hilbert space. Moreover, our man-
ifold is a space of quantum states over W˚-algebras, as opposed to a priori postulated background
space-time. On the other hand, similarly to Prugovečki (see [281, 283, 284]), and as opposed to the
approaches of Wightman [371, 372, 373, 374] and Haag–Kastler [126, 128], we impose the requirement
of Poincaré covariance not on the topological subsets of the base manifold and on the (presheaves of)
algebras of operators associated (functorially [47]) to those subsets, but on the fibres of geometric
fibre bundle and on the fibre bundle of Hilbert spaces over this manifold. (Note that, in addition,
one can also introduce an independent group covariance requirement on the elements of an underlying
W˚-algebra, determining this way their transformation properties at each fibre by means of the GNS
representation.)

If ℳp𝒩 q is equipped with the structure of quantum information manifold, and with a quan-
tum information distance 𝐷f, then (at least in the finite dimensional case) ∇ can be chosen to be
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given by ∇𝐷f , p∇𝐷fq:, or p∇𝐷f ` p∇𝐷fq:q{2 (the latter is a Levi–Civita of the riemannian geometry
pℳp𝒩 q,g𝐷fq). Moreover, if ℳp𝒩 q is flat with respect to ∇𝐷f and p∇𝐷fq:, then one can identify the
entropic projection of the associated Brègman distance 𝐷Ψ with the geodesic projection by ∇𝐷f . If
f “ f𝛾 , then 𝐷f is also a Brègman distance. In such case, an assumption (QP1) and identification of
∇ with ∇𝐷𝛾 , allows to state that the propagation of a ‘quantum particles’ is due to the geodesic “free
fall” along the (local) information dynamics, determined by a constrained minimisation of a relative
entropy.

3 Locally perturbed liouvilleans

In this Section we will use the approach to unbounded ‘perturbations’ of liouvilleans, developed by
the Dereziński, Jakšić and Pillet in [80], and based on earlier results of Araki [17, 16]. According to
[80], if

1. 𝒞 Ď Bpℋq is a von Neumann algebra,

2. p𝒞,R, 𝜍q is a W˚-dynamical system with a standard liouvillean 𝐾𝜍 associated with a standard
form pℋ, 𝒞, 𝐽,ℋ6q of 𝒞,

3. 𝑄 is a self-adjoint linear operator affiliated to 𝒞,

4. 𝐾𝜍 `𝑄 is an essentially self-adjoint linear operator on domp𝐾𝜍q X domp𝑄q Ď ℋ,

then for
𝜍𝑄𝑡 p𝑥q :“ ei𝑡p𝐾

𝜍`𝑄q𝑥e´i𝑡p𝐾
𝜍`𝑄q @𝑥 P 𝒞 @𝑡 P R (152)

the following statements are true:

1. p𝒞,R, 𝜍𝑄q is a W˚-dynamical system.

2. the operator
𝐸𝜍,𝑄p𝑡q :“ ei𝑡p𝐾

𝜍`𝑄qe´i𝑡𝐾
𝜍
P 𝒞, (153)

called an expansional, is unitary and for all 𝑡, 𝑡1, 𝑡2 P R and all 𝑥 P 𝒞 it satisfies the following
cocycle conditions:

𝜍𝑄𝑡 p𝑥q “ 𝐸𝜍,𝑄p𝑡q𝜍𝑡p𝑥q𝐸𝜍,𝑄p𝑡q
´1, (154)

𝐸𝜍,𝑄p𝑡q
´1 “ 𝐸𝜍,𝑄p𝑡q

˚ “ 𝜍𝑡p𝐸𝜍,𝑄p´𝑡qq, (155)
𝐸𝜍,𝑄p𝑡1 ` 𝑡2q “ 𝐸𝜍,𝑄p𝑡1q𝜍𝑡1p𝐸𝜍,𝑄p𝑡2qq. (156)

3. if
𝐾𝜍,𝑄 :“ 𝐾𝜍 `𝑄´ 𝐽𝑄𝐽 (157)

is an essentially self-adjoint linear operator on domp𝐾𝜍q X domp𝑄q X domp𝐽𝑄𝐽q, then a unique
self-adjoint extension of 𝐾𝜍,𝑄, denoted (with an abuse of notation) by the same symbol, is a
standard liouvillean of 𝜍𝑄 in pℋ, 𝒞, 𝐽,ℋ6q. We will call 𝐾𝜍,𝑄 and 𝜍𝑄 a Dereziński–Jakšić–
Pillet perturbation of 𝐾𝜍 and 𝜍, respectively.

4. if 𝑄 is bounded, then, for any 𝑥 P 𝒞 and 𝑡 P R, the Dyson–Feynman–Fujiwara–Araki perturbative
expansions [92, 101, 105, 15],

𝜍𝑄𝑡 p𝑥q “
8
ÿ

𝑛“0

i𝑛
ż

0ď𝑡𝑛ď¨¨¨ď𝑡1ď𝑡

d𝑡1 ¨ ¨ ¨ d𝑡𝑛r𝜍𝑡𝑛p𝑄q, r. . . , r𝜍𝑡1p𝑄q, 𝜍𝑡p𝑥qs . . .ss, (158)

𝐸𝜍,𝑄p𝑡q “
8
ÿ

𝑛“0

i𝑛
ż

0ď𝑡𝑛ď¨¨¨ď𝑡1ď𝑡

d𝑡1 ¨ ¨ ¨ d𝑡𝑛𝜍𝑡𝑛p𝑄q ¨ ¨ ¨ 𝜍𝑡1p𝑄q. (159)
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are convergent in weak-‹ topology and define a norm convergent series of bounded operators.
Moreover, the associated generators ð of 𝜍 and ð𝑄 of 𝜍𝑄 have in such case the same domain, and
are related by

ð𝜍𝑄p𝑥q “ ð𝜍p𝑥q ` ir𝑄, 𝑥s @𝑥 P dompð𝜍q. (160)

3.1 Local gauge liouvilleans

In Section 2.3 we have observed that the Poisson flow of an algebraic hamiltonian vector field on 𝒩`
‹0

can be always represented by a unitary evolution in a fibre of the GNS bundle ℋ𝒩`
‹0 Ñ 𝒩`

‹0, generated
by a standard liouvillean operator on this fibre. In what follows, we will abstract this relationship,
replacing tangent bundle by a principal 𝐺-bundle and replacing the procedure of restriction of a global
algebraic evolution, by the procedure of extension of a local algebraic evolution in order to incorporate
geometric structure as an additional component of an effective dynamics.

If one assumes that the principal 𝐺-bundle structure participates in an effective form of a temporal
evolution, then this evolution shall be represented not by the standard liouvillean on ℋ𝜑p𝑡q alone, but
by the standard liouvillean perturbed by the ‘gauge connection’ operator ia𝜑p𝑡qpAq, which represents
the change of vectors in the fibres ℋ𝜑p𝑡q caused by the fibrewise action of the group 𝐺 and the choice of
an A-section of a principal 𝐺-bundle 𝐸. (When the trajectory along the curve 𝑐 : r0, 𝑡s Ñℳp𝒩 q with
𝑐p0q “ 𝜑p0q and 𝑐p𝑡q “ 𝜑p𝑡q is investigated as a source of memory effects, then A should be replaced
by

ş𝜑p𝑡q
𝜑p0qA.)
For this purpose, we will use DJP perturbation approach, setting 𝜔 P ℳp𝒩 q Ď 𝒩`

‹0, ℋ :“ ℋ𝜔,
𝒞 :“ 𝜋𝜔p𝒩 q, 𝑄 :“ ia𝜔pAq. We can define 𝜍 in two different ways. If 𝒩 is equipped with a W˚-
dynamical system structure p𝒩 ,R, 𝛼q, then one can define 𝜍 globally in each fiber of the GNS bundle
by means of

𝜍𝑡p𝜋𝜔p𝑥qq :“ 𝜋𝜔p𝛼𝑡p𝑥qq @𝑥 P 𝒩 @𝑡 P R @𝜔 Pℳp𝒩 q. (161)

Alternatively, if 𝒩 is equipped with a quantum Poisson system pℳp𝒩 ,ℬq, ℎq such that DF
𝜔ℎ P 𝒩 sa

@𝜔 Pℳp𝒩 ,ℬq and ℳp𝒩 ,ℬq “ℳp𝒩 q, then one can define 𝜍 pointwisely in each fiber by means of

𝜍𝑡p𝜋𝜔p𝑥qq :“ ei𝑡𝜋𝜔pD
F
𝜔ℎq𝜋𝜔p𝑥qe

´i𝑡𝜋𝜔pDF
𝜔ℎq @𝑥 P 𝒩 @𝑡 P R @𝜔 Pℳp𝒩 q. (162)

We will call these assuptions a generalised Poisson compatibility condition (PC2). If ℬ “ 𝒩 sa,
ℳp𝒩 ,𝒩 saq is a submanifold of 𝒩 sa

‹ , and the pair pℎ, 𝛼q satisfies (97), then the above two definitions of
𝜍 agree. The difference between (162) and (161) (the latter corresponding to the covariance equation
(85)) indicates our approach to quantum dynamics, as being defined locally by the differential geometric
properties of state space, instead of a global automorphism of an underlying algebraic structure.
Alternatively, if ℳp𝒩 q Ď 𝒩`

‹0 is equipped with a quantum information manifold structure and a
global vector field Xℎ P Tℳp𝒩 q such that Xℎp𝜑q P 𝒩 sa @𝜑 Pℳp𝒩 q, then 𝜍 can be defined by

𝜍𝑡p𝜋𝜔p𝑥qq :“ ei𝑡𝜋𝜔pXℎp𝜔qq𝜋𝜔p𝑥qe
´i𝑡𝜋𝜔pXℎp𝜔qq @𝑥 P 𝒩 @𝑡 P R @𝜔 Pℳp𝒩 q. (163)

Thus, under some relatively weak conditions (affiliation of ia𝜔pAq with 𝜋𝜔p𝒩 q Ď Bpℋ𝜔q and
essential self-adjointness of sums 𝐾𝜍

𝜔 ` ia𝜔pAq and 𝐾𝜍
𝜔 ` ia𝜔pAq ´ i𝐽𝜔a𝜔pAq𝐽𝜔 on the intersection of

domains of their components), the local gauge structure can be incorporated in the redefinition of the
standard liouvillean. If

𝐾𝜍,iapAq
𝜔 “ 𝐾𝜍

𝜔 ` ia𝜔 pAq ´ i𝐽𝜔a𝜔 pAq 𝐽𝜔 (164)

satisfies the above conditions, then we will call it a local gauge liouvillean at 𝜔.
Let pℳp𝒩 q,A, aq be a local gauge model with ℳp𝒩 q Ď 𝒩`

‹0 and let 𝜍 be defined as above, either
by a quantum Poisson system pℳp𝒩 ,ℬq, ℎq with DF

𝜔ℎ P 𝒩 sa @𝜔 Pℳp𝒩 ,ℬq and ℳp𝒩 ,ℬq “ℳp𝒩 q,
or by a W˚-dynamical system p𝒩 ,R, 𝛼q with 𝛼𝑡‹pℳp𝒩 qq Ď ℳp𝒩 q @𝑡 P R. Let 𝜌‹ denote 𝑤ℎ or 𝛼‹,
respectively. If for every 𝜔 Pℳp𝒩 q there exists a family of local gauge liouvilleans

𝐾𝜍
𝜔 ` ia𝜔 pAq ´ i𝐽𝜔a𝜔 pAq 𝐽𝜔, (165)
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parametrised by 𝑡 P R, then the quadruple pℳp𝒩 q, 𝜍,A, aq will be called a local gauge liouvillean
model. From the above construction we see that the W˚-dynamical system p𝜋𝜔p𝒩 q,R, 𝜍 iapAqq may
not correspond to any W˚-dynamical system on 𝒩 . The description of temporal evolution in terms of
𝜍 iapAq is ‘local’ in the sense that it is provided inside of each fibre of the GNS bundle independently.

3.2 Local source liouvilleans

In principle, apart from the ‘internal’ dynamics (implemented by the evolution 𝜍𝑡) and the kinematic
local gauge structure, the effective dynamics can also depend on some controlled ‘external’ constraints.
We will assume that these constraints can be specified in terms of external ‘sources’, which can generally
be represented by the variations 𝛿p𝜑p𝑥qq of expectation values. These variations can be decomposed
into two parts: the variations p𝛿𝜑qp𝑥q of states, and the variations 𝜑p𝛿𝑥q of operators. The constraints
on changes 𝛿𝜑 can be handled by restricting the form of the model ℳp𝒩 q (for a geometric approach,
see [241, 177, 100, 209]). On the other hand, note that 𝛿𝑥 can be in principle arbitrary, so it can also
depend on 𝜑, and it may not arise as an infinitesimal change generated by a global automorphism of
𝒩 (thus, it cannot be described by the setting of derivations of C˚-algebras). We will implement the
perturbations 𝛿𝑥 of elements 𝑥 of (a local GNS representation of) a W˚-algebra 𝒩 by means of state
dependent perturbations of liouvilleans. In this sense, the constraints on changes of operators will be
handled by local (state dependent) additional terms modifying liouvillean evolution.

For this purpose, apart from local gauge structure on ℳp𝒩 q Ď 𝒩`
‹ , we introduce also local source

term, defined as a fibrewise family of operators

p𝜆,𝐻q : ℳp𝒩 q Q 𝜔 ÞÑ 𝜆p𝜔q𝐻p𝜔q P pLinpℋ𝜔qq
sa, (166)

with 𝜆p𝜔q P R called local source strength and 𝐻p𝜔q P pLinpℋ𝜔qq
sa called local source operator.

If 𝜆p𝜔q is independent of 𝜔, then it will be called global source strength. The p2𝑛` 1q-tuple

pℳp𝒩 q, p𝜆1, 𝐻1q, . . . , p𝜆𝑛, 𝐻𝑛qq (167)

will be called local source model iff p𝜆𝑖, 𝐻𝑖q is a local source term for each 𝑖 P t1, . . . , 𝑛u. If (167)
is a local source model, ℳp𝒩 q Ď 𝒩`

‹0, 𝜍 is defined as in Section 3.1, and for 𝜔 P ℳp𝒩 q the DJP
perturbation of 𝐾𝜍

𝜔 by 𝜆1p𝜔q𝐻1p𝜔q ` . . .` 𝜆𝑛p𝜔q𝐻𝑛p𝜔q exists, then a unique self-adjoint extension of
an essentially self-adjoint operator

𝐾𝜍,𝜆1𝐻1,...,𝜆𝑛𝐻𝑛
𝜔 “ 𝐾𝜍

𝜔`𝜆1p𝜔q𝐻1p𝜔q`. . .`𝜆𝑛p𝜔q𝐻𝑛p𝜔q´𝐽𝜔p𝜆1p𝜔q𝐻1p𝜔q`. . .`𝜆𝑛p𝜔q𝐻𝑛p𝜔qq𝐽𝜔 (168)

will be called local source liouvillean at 𝜔. If a local source liouvillean exists for each 𝜔 Pℳp𝒩 q,
then the 2p𝑛` 1q-tuple pℳp𝒩 q, 𝜍, 𝜆1, 𝐻1, . . . , 𝜆𝑛, 𝐻𝑛q will be called local source liouvillean model.

Let us note that a local source 𝜆𝑖p𝜔q𝐻𝑖p𝜔q at 𝜔 should be understood not as the 𝑖-th type “interac-
tion source” localised at 𝜔, but as a strength-and-action of the 𝑖-th type “interaction source” perceived
at location 𝜔.

Let pℳp𝒩 q,A, aq be local gauge model. Let pℳp𝒩 q, 𝜆1, 𝐻1, . . . , 𝜆𝑛, 𝐻𝑛q be local source model.
Let 𝜍 be such as defined in Section 3.1. If, for a given 𝑡 P R and 𝜔 P ℳp𝒩 q, there exists a DJP
perturbation of a standard liouvillean 𝐾𝜍

𝜔, given by the unique self-adjoint extension of an essentially
self-adjoint operator

ℒp𝜔, 𝑡q :“ 𝐾𝜍
𝜔 ` ia𝜔 pAq ´ i𝐽𝜔a𝜔 pAq 𝐽𝜔 `

𝑛
ÿ

𝑖“1

p𝜆𝑖p𝜔q𝐻𝑖p𝜔q ´ 𝐽𝜔𝜆𝑖p𝜔q𝐻𝑖p𝜔q𝐽𝜔q , (169)

then ℒp𝜔, 𝑡q will be called a local liouvillean operator at p𝜔, 𝑡q. If ℒp𝜔, 𝑡q exists for all 𝑡 P R and all
𝜔 Pℳp𝒩 q, then the p4` 2𝑛q-tuple

pℳp𝒩 q, 𝜍,A, a, 𝜆1, 𝐻1, . . . , 𝜆𝑛, 𝐻𝑛q (170)

will be called an local liouvillean model. In the special case, all of operators 𝐻1, . . . ,𝐻𝑛 can be
determined by the elements ℎ1, . . . , ℎ𝑛 of a W˚-algebra 𝒩 , with

𝐻𝑖pℎ𝑖q : ℳp𝒩 q Q 𝜔 ÞÑ 𝐻𝑖p𝜔q :“ 𝜋𝜔pℎ𝑖q P Bpℋqsa. (171)
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This allows, in particular, for a fibrewise representation of a ‘global gauge’ action 𝐺0 Ñ Autp𝒩 q
of some Lie group 𝐺0 (not necessarily related to 𝐺), whenever tℎ𝑖u Ď 𝒩 are the generators of the
representation of 𝐺0 in Autp𝒩 q. This observation can be generalised to 𝑙 subsets of tℎ1, . . . , ℎ𝑛u
playing the role of generators of 𝑙 representations of 𝑙 Lie groups 𝐺𝑙 Ñ Autp𝒩 q.

3.3 Case study: The BLP perspective on nonlinear quantum fields

Restriction of considerations from topological spaces ℳp𝒩 q to BLP manifolds ℳp𝒩 ,ℬq allows us to
equip the operator algebraic approach with an additional differential geometric content, using Fréchet
derivatives of smooth functions on ℬ‹ in the role of differential forms. In this Section we will investigate
the possibility of interpretation of these forms as nonlinear quantum fields (understood in quite formal
sense).

If 𝑓 P C8F pℬ‹;Rq and 𝜑 Pℳp𝒩 ,ℬq, then DF
𝜑𝑓 “ d𝜑𝑓 ” d𝑓p𝜑q P Tz

𝜑ℳp𝒩 ,ℬq. Thus, if ℳp𝒩 ,ℬq Ď
𝒩`
‹0, 𝑓 P C8F pℳp𝒩 ,ℬq;Rq satisfies DF

𝜔𝑓 P 𝒩 sa @𝜔 Pℳp𝒩 ,ℬq, and 𝜍 is defined as in the previous two
Sections, then one can consider local source liouvilleans determined by the perturbation

𝐾𝜍
𝜔 ` 𝜆p𝜔q

`

𝜋𝜔pD
F
𝜔𝑓q ´ 𝐽𝜔𝜋𝜔pD

F
𝜔𝑓q𝐽𝜔

˘

, (172)

for some family 𝜆p𝜔q P R @𝜔 Pℳp𝒩 ,ℬq. As opposed to a function used for definition of 𝜍 and 𝐾𝜍
𝜔, 𝑓

is not considered as a generator of a Poisson flow, and it is allowed to be arbitrary rescaled by 𝜆p𝜔q
at each point.

Every 𝑥 P ℬ can be represented again as a smooth function on ℬ‹ by means of ℬ‹ Q 𝜔 ÞÑ 𝜔p𝑥q P R,
allowing to consider elements of ℬ arising from multiple Fréchet differentiation,

DF
𝜔𝑛p𝜑𝑛´1pD

F
𝜔𝑛´1

p¨ ¨ ¨ p𝜑1pD
F
𝜔1
𝑓qqqqq P ℬ, (173)

for 𝜔1, . . . , 𝜔𝑛, 𝜑1, . . . , 𝜑𝑛´1 P ℬ. These derivatives can be added and multiplied as elements of ℬ, and
any of the resulting elements of ℬ can be subjected to a representation in the GNS bundle as a local
source operator. However, despite multiple application of Fréchet differentiation, objects of type (173)
are (just) elements of Tz

𝜔𝑛ℬ‹. This leads us to ask whether it is possible to introduce higher order
tensors on ℬ‹, which could be used as source terms acting on the GNS bundle. The natural candidates
for this purpose are p𝑛,𝑚q-tensor fields over ℬ‹, defined pointwisely as

X𝑘1p𝜑qb ¨ ¨ ¨b X𝑘𝑛p𝜑qb d𝑓1p𝜑qb ¨ ¨ ¨b d𝑓𝑚p𝜑q, (174)

which are the elements of
ˆ 𝑛
ò

T𝜑ℬ‹
˙

b

ˆ 𝑚
ò

Tz
𝜑ℬ

˙

–

ˆ 𝑛
ò

ℬ‹
˙

b

ˆ 𝑚
ò

ℬ
˙

, (175)

where b denotes the tensor product considered in an algebraic sense (that is, without taking topological
completion) and the dependence on 𝜑 is assumed to be smooth. The contraction at 𝜑 of an p𝑛,𝑚´1q-
tensor field with an p𝑛,𝑚q-tensor field by means of the componentwise application of the duality
rr¨, ¨ssℬ‹ˆℬ gives a one-form at 𝜑, which belongs to ℬ:

rrd𝑙1p𝜑qb ¨ ¨ ¨b d𝑙𝑛p𝜑qb Xℎ1p𝜑qb ¨ ¨ ¨b p¨q𝑖 b ¨ ¨ ¨Xℎ𝑚p𝜑q,X𝑘1p𝜑qb ¨ ¨ ¨b X𝑘𝑛p𝜑qb d𝑓1p𝜑qb ¨ ¨ ¨b d𝑓𝑚p𝜑qss

“ rrX𝑘1p𝜑q,d𝑙1p𝜑qss ¨ ¨ ¨ rrX𝑘𝑛p𝜑q,d𝑙𝑛p𝜑qss rrXℎ1p𝜑q,d𝑓1p𝜑qss
““

Xℎ𝑖´1
p𝜑q,d𝑓𝑖´1p𝜑q

‰‰ ““

Xℎ𝑖`1
p𝜑q,d𝑓𝑖`1p𝜑q

‰‰

¨ ¨ ¨ rrXℎ𝑚p𝜑q,d𝑓𝑚p𝜑qss ¨ d𝑓𝑖p𝜑q “: 𝜆p𝜑qd𝑓𝑖p𝜑q. (176)

When subjected to representation as a source term, 𝜆p𝜑q is a natural candidate for a local source
strength of a local source operator 𝜋𝜑pd𝑓𝑖p𝜑qq. We will (tentatively) call the local source operators
of this type quantum fields. One can also introduce the antisymmetric wedge product on vectors
and covectors (one forms) and define the corresponding contraction to 1-form and its source term
representation in an analogous way. In particular, for ℬ – 𝒩 sa, a vector field X𝑘 P Tℳp𝒩 ,ℬq can be
represented in terms of a GNS fibre bundle ℋℳp𝒩 ,ℬq as a family

ℳp𝒩 ,ℬq Q 𝜑 ÞÑ 𝜔X𝑘p𝜑q P Bpℋ𝜑q
sa
‹ – G1pℋ𝜑q

sa (177)
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determined by

rrX𝑘p𝜑q,d𝑓p𝜑qssT𝜑𝒩 sa
‹ ˆT

z
𝜑𝒩 sa

‹
“: rr𝜔X𝑘p𝜑q, 𝜋𝜑pd𝑓p𝜑qqssBpℋ𝜑q

sa
‹ ˆBpℋ𝜑q

sa @𝜑 Pℳp𝒩 q @𝑓 P C8F p𝒩 sa
‹ ;Rq.

(178)
The GNS representation of p0, 𝑛q-tensor fields with 𝑛 ą 1 is also possible, however it can be provided
in different ways. For example, given a p0, 2q-tensor field pd𝑓 bd𝑘qp𝜑q, it is possible to represent it as:

𝜋𝜑pd𝑓p𝜑qq b 𝜋𝜑pd𝑘p𝜑qq P Bpℋ𝜑q bBpℋ𝜑q, (179)
𝜋𝜑pd𝑓p𝜑qq b 𝜋𝜑pd𝑘p𝜑qq P Bpℋ𝜑 bℋ𝜑q, (180)

𝜋𝜑b𝜑ppd𝑓 b d𝑘qp𝜑qq P Bpℋ𝜑b𝜑q, (181)

where pℋ𝜑b𝜑, 𝜋𝜑b𝜑,Ω𝜑b𝜑q is the GNS representation of 𝒩 b𝒩 in the state 𝜑b𝜑 P p𝒩 b𝒩 q`‹ . It seems
that the representation (181) preserves most precisely the geometric content of p0, 2q-tensor field, so
we feel tempted to consider it as a preferred construction. However, this leads us to construction of a
whole family of fibre bundles of Hilbert spaces over the manifold ℳp𝒩 ,ℬq. It is unclear at this stage
whether this phenomenon should be considered as a virtue or as a failure. For 𝑛-ary tensor product
𝜑 b ¨ ¨ ¨ b 𝜑 the corresponding fibre bundle of ℋ𝜑b¨¨¨b𝜑 spaces, with 𝜑 varying over ℳp𝒩 ,ℬq, will be
called a

Â𝑛-GNS bundle, and denoted p
Â𝑛ℋqℳp𝒩 ,ℬq. For any p0, 𝑛q-tensor field d𝑓1 b ¨ ¨ ¨bd𝑓𝑛

on ℳp𝒩 ,ℬq with 𝑛 ď dimℳp𝒩 ,ℬq there exists a unique representation

𝜋𝜑b¨¨¨b𝜑 ppd𝑓1 b ¨ ¨ ¨b d𝑓𝑛qp𝜑qq P Bpℋ𝜑b¨¨¨b𝜑q. (182)

The same is true for any 𝑛-form field, defined as a section of the fibre bundle of an antisymmet-
ric wedge product

Ź𝑛Tzℬ‹, because
Ź𝑛Tz

𝜑ℬ‹ Ă
Ò

Tz
𝜑ℬ‹. As a result, each smooth section of

Ź𝑛Tzℳp𝒩 ,ℬq can be represented as a family of bounded operators,

𝜋𝜑b¨¨¨b𝜑 :
𝑛
ľ

Tz
𝜑ℬ‹ Q 𝑥 ÞÑ 𝜋𝜑b¨¨¨b𝜑p𝑥q P Bpℋ𝜑b¨¨¨b𝜑q, (183)

acting fibrewise over the
Â𝑛-GNS bundle p

Â𝑛ℋqℳp𝒩 ,ℬq. We will call such family a quantum
𝑛-form field over ℳp𝒩 ,ℬq.

The constant function on 𝒩 sa
‹ , �̂� : 𝒩 sa

‹ Q 𝜔 ÞÑ �̂�p𝜔q :“ 𝜆 P R, is a geometric representation of
an algebraic element of a center of 𝒩 , 𝜆I P Z𝒩 Ď 𝒩 , in terms of an element of a smooth algebra,
�̂� P C8F p𝒩 sa

‹ ;Rq. Such function on 𝒩 sa
‹ will be called a global charge. From this it follows that,

provided ℬ – 𝒩 sa, each globally constrained source strength is a global charge.
The set of quantum field one-forms in Tzℬ‹, considered under its restriction to some quantum

model ℳp𝒩 ,ℬq Ď 𝒩`
‹ , can be equipped with the additional structure of a Lie algebra h, determined

by the structure constants 𝜖𝑎𝑏𝑐h of its adjoint representation by means of

rpd𝜑𝑓q
𝑎, pd𝜑𝑘q

𝑏sh “
ÿ

𝑐

𝜖𝑎𝑏𝑐h p𝜑qpd𝜑ℎq
𝑐 @𝜑 Pℳp𝒩 ,ℬq. (184)

Here pd𝜑𝑓q𝑎 denotes a Lie algebra representation map hÑ pTzℬ‹q at 𝜑 Pℳp𝒩 ,ℬq. Representation
of these forms on the fibres of the GNS bundle gives

r𝜋𝜑ppd𝜑𝑓q
𝑎q, 𝜋𝜑ppd𝜑𝑘q

𝑏qsh “
ÿ

𝑐

𝜖𝑎𝑏𝑐h p𝜑q𝜋𝜑ppd𝜑ℎq
𝑐q @𝜑 Pℳp𝒩 ,ℬq. (185)

Note that the Lie algebra structure given by (185) is a priori independent of any possible principal
𝐺-bundle structure of ℋℳp𝒩 ,ℬq or a principal 𝐺-bundle 𝐸 Ñ ℳp𝒩 ,ℬq represented in terms on
ℋℳp𝒩 ,ℬq by means of a local gauge liouvillean. In order to keep the same relationship between source
terms 𝜆𝑖p𝜑q𝜋𝜑ppd𝜑𝑓𝑖q𝑎q in each fibre ℋ𝜑, one has to set 𝜆𝑖 to be given by a global charge. We will call the
source terms 𝜋𝜑ppd𝜑𝑓𝑖q𝑎q local gauge quantum fields, while the corresponding local source models
with global source strengths 𝜆𝑖 will be called local gauge quantum field models. If an extended
liouvillean model pℳp𝒩 ,ℬq,A, a, 𝜆1, 𝐻1, . . . , 𝜆𝑛, 𝐻𝑛q is equipped with an affine connection ∇ such
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that pℳp𝒩 ,ℬq,A, a,∇q is a gauge geodesic propagation model, while pℳp𝒩 ,ℬq, 𝜆1, 𝐻1, . . . , 𝜆𝑛, 𝐻𝑛q

is a quantum field model with 𝐻𝑖p𝜑q “ 𝜋𝜑ppd𝜑𝑓𝑖q
𝑎𝑖q @𝑖 P t1, . . . , 𝑛u, then the p4` 2𝑛q-tuple

pℳp𝒩 q,A, a,∇, 𝜆1, pd𝑓1q𝑎1 , . . . , 𝜆𝑛, pd𝑓𝑛q𝑎𝑛q (186)

can be called a ‘quantum field model with gauge geodesic propagation’. If 𝐺 and a are chosen to agree
with the Wigner classification theorem, then such model describes a family of quantum fields together
with a quantum particle geodesic propagation. However, while the availability of these constructions is
a quite remarkable fact, it is yet unclear how they could be translated to the usual objects of quantum
field theory.

3.4 Local liouvillean instruments and correlation functions

The temporal evolution of a local liouvillean model is completely described by the fibrewise evolution

𝜉p𝜔, 𝑡q “ e´i𝑡ℒp𝜔,𝑡qΩ𝜔, (187)

which is a generalisation of (100) taking local gauge and local source structures on ℳp𝒩 q Ď 𝒩`
‹0 into

account. The corresponding propagator (transition amplitude) between initial state 𝜔 and the final
state 𝜑 reads

xΩ𝜑, 𝑉𝜑,𝜔𝜉p𝜔, 𝑡qyℋ𝜑
“

A

Ω𝜑, 𝑉𝜑,𝜔e´i𝑡ℒp𝜔,𝑡qΩ𝜔

E

ℋ𝜑

. (188)

If ℒ is determined only by a given Poisson system pℳp𝒩 ,ℬq, ℎq with DF
𝜔ℎ P 𝒩 sa @𝜔 Pℳp𝒩 ,ℬq, then

the propagator (188) reads
A

Ω𝜑, 𝑉𝜑,𝜔e´i𝑡𝜋𝜔pD
F
𝜔pℎqq

E

ℋ𝜑

“

A

Ω𝜑, e
i𝑡 logp𝐽𝜑𝐽𝜑,𝜔qe´i𝑡𝜋𝜔pD

F
𝜔pℎqqΩ𝜔

E

ℋ𝜑

. (189)

We will now show that this evolution can be expressed as an instrument acting on 𝒩`
‹ and

parametrised by 𝑡 P R. Let us choose some 𝜓 P 𝒩`
‹0. Then the elements of each fibre of the GNS

bundle over 𝒩`
‹0 can be uniquely mapped to ℋ𝜓 by means of the standard unitary transition operator

𝑉𝜓,𝜔 “ 𝐽𝜓𝐽𝜓,𝜔 “ 𝐽𝜓,𝜔𝐽𝜔, which preserves the positive cones (see Section 2.2). Hence, at each value of
𝑡 P R and at each 𝜓 P 𝒩`

‹0, the set
ď

𝜔Pℳp𝒩 q
t𝑉𝜓,𝜔𝜉p𝜔, 𝑡qu Ď ℋ`𝜓 (190)

represents completely the evolution in a fibre bundle ℋℳp𝒩 q that is defined by means of a local
liouvillean operator. Using the bijective norm continuous homomorphism 𝜁6𝜓 : ℋ`𝜓 Ñ 𝒩`

‹ (defined as
𝜁6𝜋 for 𝜋 “ 𝜋𝜓), we can represent the mapping

R Q 𝑡 ÞÑ
ď

𝜔Pℳp𝒩 q
t𝑉𝜓,𝜔𝜉p𝜔, 𝑡qu Ď ℋ`𝜓 (191)

as a temporal evolution of subsets of 𝒩`
‹ ,

𝑡 ÞÑ 𝜁6𝜓

¨

˝

ď

𝜔Pℳp𝒩 q
t𝑉𝜓,𝜔𝜉p𝜔, 𝑡qu

˛

‚Ď 𝒩`
‹ . (192)

The family of mappings

R Q 𝑡 ÞÑ
!

Iℒ,𝜓p𝑡q : ℳp𝒩 q Q 𝜔 ÞÑ pIℒ,𝜓p𝑡qqp𝜔q :“ 𝜁6𝜓p𝑉𝜓,𝜔e´i𝑡ℒp𝜔,𝑡qΩ𝜔q P 𝒩`
‹

)

(193)

will be called a local liouvillean instrument (this name may be a bit deceiving, because of nonlo-
cality inherent in the 𝑉𝜑,𝜔 operation. The uniqueness of standard unitary transition for each pair of
elements of 𝒩`

‹0 together with bijectivity of 𝜁6𝜓 implies

𝜁6𝜓𝑉𝜓,𝜔𝜉 “ 𝜁6𝜙𝑉𝜙,𝜔𝜉 @𝜉 P ℋ𝜔 @𝜙, 𝜔 P 𝒩`
‹0, (194)
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hence an extended liouvillean instrument does not depend on the choice of 𝜓. In what follows we will
denote it by Iℒp𝑡q. Due to bijectivity of 𝜁6𝜓 there is an equivalence between the evolution generated
on the GNS bundle by the family of extended liouvillean operators and the evolution generated on
𝒩`
‹ by the extended liouvillean instrument. Thus, one can consider the extended liouvillean operator

structure over a given model (including local gauge and local source structures, as well as the isometry
𝛼‹ or a Poisson flow 𝑤ℎ) as auxiliary tools allowing to define suitable extended liouvillean instrument,
but otherwise devoid of any foundational meaning.

The GNS bundle allows to construct the 𝑛-point correlation functions, whenever all quantum
states under consideration are faithful. Let 𝒩 be a W˚-algebra, let 𝜑0, 𝜑1, . . . , 𝜑𝑛 P 𝒩`

‹0 and let
𝑥1, . . . , 𝑥𝑛 P 𝒩 . Then we can define the time independent 𝑛-point correlation function as

x𝑥1p𝜑1q ¨ . . . ¨ 𝑥𝑛p𝜑𝑛qy𝜑0 :“
@

Ω𝜑0 , 𝑉𝜑0,𝜑1𝜋𝜑1p𝑥1q ¨ ¨ ¨𝑉𝜑𝑛´1,𝜑𝑛𝜋𝜑𝑛p𝑥𝑛q𝑉𝜑𝑛,𝜑0Ω𝜑0

D

ℋ𝜑0

. (195)

If ℳp𝒩 q Ď 𝒩`
‹0 is 𝑚-dimensional, 𝜑0, 𝜑1, . . . , 𝜑𝑛 Pℳp𝒩 q and 𝜃 : ℳp𝒩 q Ñ R𝑚 is a coordinate system

on ℳp𝒩 q, then (195) can be expressed in terms of 𝜃 as

x𝑥1p𝜃1q ¨ . . . ¨ 𝑥𝑛p𝜃𝑛qy𝜑p𝜃0q “
@

Ω𝜑0 , 𝑉𝜑p𝜃0q,𝜑p𝜃1q𝜋𝜑p𝜃1qp𝑥1q ¨ ¨ ¨

¨ ¨ ¨𝑉𝜑p𝜃𝑛´1q,𝜑p𝜃𝑛q𝜋𝜑p𝜃𝑛qp𝑥𝑛q𝑉𝜑p𝜃𝑛q,𝜑p𝜃0qΩ𝜑p𝜃0q

D

ℋ𝜑p𝜃0q
, (196)

where 𝜃0, 𝜃1, . . . , 𝜃𝑛 P R𝑚 and 𝜑𝑖 “ 𝜑p𝜃𝑖q :“ 𝜃´1p𝜃𝑖q. Constructions provided in this paper allow us to
define also the time dependent 𝑛-point correlation functions as

x𝑥1p𝜑1, 𝑡1q ¨ . . . ¨ 𝑥𝑛p𝜑𝑛, 𝑡𝑛qy𝜑0 :“
A

Ω𝜑0 , 𝑉𝜑0,𝜑1e`i𝑡ℒp𝜑1,𝑡1q𝜋𝜑1p𝑥1qe
´i𝑡ℒp𝜑1,𝑡1q ¨ ¨ ¨

¨ ¨ ¨𝑉𝜑𝑛´1,𝜑𝑛e`i𝑡ℒp𝜑𝑛,𝑡𝑛q𝜋𝜑𝑛p𝑥𝑛qe
´i𝑡ℒp𝜑𝑛,𝑡𝑛q𝑉𝜑𝑛,𝜑0Ω𝜑0

E

ℋ𝜑0

, (197)

where 𝑡1, . . . , 𝑡𝑛 P R and ℒp𝜑, 𝑡q is an extended liouvillean. If a reformulation in terms of a coordinate
system 𝜃 (defined above) is possible, then (197) can be expressed as

x𝑥1p𝜃1, 𝑡1q ¨ . . . ¨ 𝑥𝑛p𝜃𝑛, 𝑡𝑛qy𝜑p𝜃0q “
A

Ω𝜑p𝜃0q, 𝑉𝜑p𝜃0q,𝜑p𝜃1qe
`i𝑡ℒp𝜑p𝜃1q,𝑡1q𝜋𝜑p𝜃1qp𝑥1qe

´i𝑡ℒp𝜑p𝜃1q,𝑡1q ¨ ¨ ¨

¨ ¨ ¨𝑉𝜑p𝜃𝑛´1q,𝜑p𝜃𝑛qe
`i𝑡ℒp𝜑p𝜃𝑛q,𝑡𝑛q𝜋𝜑p𝜃𝑛qp𝑥𝑛qe

´i𝑡ℒp𝜑p𝜃𝑛q,𝑡𝑛q𝑉𝜑p𝜃𝑛q,𝜑p𝜃0qΩ𝜑p𝜃0q

E

ℋ𝜑p𝜃0q

(198)

Due to different values taken by the components of ℒ operator at different points p𝜑, 𝑡q, the evolution
determined by (187) and (197) does not have to be unitary. It is so only when the dynamics and
perturbations in all fibres of the Hilbert bundle are the same.

Equation (197) describes how the predictive time dependent content of a quantum model ℳp𝒩 q
can be determined using the representation of geometric structures on ℳp𝒩 q in terms of the algebraic
structures on the GNS bundle. However, let us note that this equation is only an example of the variety
of possible definitions of the time dependent correlation functions that could be constructed with the
help of local liouvilleans and the GNS bundle. Moreover, one could carry the above constructions also
for MCP bundle, obtaining different quantitative results. The identification of the proper construction
should be based on a more detailed analysis of backwards compatibility with other approaches. In
next Section we will approach the derivation of the path integral analogue of the propagator (188).

4 Quantum histories

In order to solve the problems of ‘measurement’ and ‘time’ in quantum theory Griffiths [125], Omnès
[257, 258, 259, 260, 261, 262, 263], and Gell-Mann and Hartle [108, 109, 107, 134, 135, 110, 136] have
developed ‘consistent histories’ approach to quantum theory. Isham and Linden [159, 160, 161, 162,
163] have proposed a modification of this approach, called the (continuous-time) ‘history projection
operator’ approach, which was developed later by Savvidou and Anastopoulos [297, 298, 12, 11, 13].
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In Section 4.1 we will recall the elementary mathematical structure of the Isham–Linden approach,
in Section 4.2 we will discuss Savvidou’s construction [297, 298] of an action operator within this
setting, while in Sections 4.3 and 4.4 we will follow the Anastopoulous–Savvidou analysis of the
relationship of this framework with the geometric structures on the spaces of pure quantum states,
and the Daubechies–Klauder [77, 194, 365] continous-time regularised coherent states phase space path
integration. Sections 4.1-4.4 do not contain new results. Their aim is to lead us to a refined geometric
perspective on the relationship between the Daubechies–Klauder formula and the local liouvilleans.
In Section 4.5 we will apply the local liouvillean approach to the Falcone–Takesaki construction of
noncommutative flow of weights in order to construct the algebraic analogue of Savvidou’s histories
action operator. The discussion of limitations of this construction in the face of the results of Section 3
will lead us to construction of W˚-geometric generalisation of the Daubechies–Klauder path integration
in Section 4.6.

4.1 Propositions and evolution

The starting point of the history projection operator approach is consideration of a history 𝜛 of
abstract ‘propositions’ p𝑃𝑡1 , 𝑃𝑡2 , . . . , 𝑃𝑡𝑛q about a quantum theoretic model, assigned to an ordered
finite sequence p𝑡1, 𝑡2, . . . , 𝑡𝑛q, where 𝑡1 ă 𝑡2 ă . . . ă 𝑡𝑛, and 𝑡 is interpreted as ‘time’ parameter.
Following the ideas of Mittelstaedt [242] and Stachow [332, 333], Isham [159] has proposed to specify
this entity by the projection operator

𝑃𝜛 :“ 𝑃𝑡1 b 𝑃𝑡2 b . . .b 𝑃𝑡𝑛 , (199)

acting on the Hilbert space

𝒱𝑛 :“
𝑛
â

𝑖“1

ℋ𝑡𝑖 :“ ℋ𝑡1 bℋ𝑡2 b . . .bℋ𝑡𝑛 , (200)

where 𝑃𝑡𝑖 is a projection operator in the 𝑛-th copy of the Hilbert space ℋ𝑡𝑖 :“ ℋ of a given quantum
model. The history 𝜛 of nonunitary propositions as well as the description of the unitary dynamics
are contained in the class operator on 𝒱𝑛, defined as [108]

𝐶𝜛 :“ 𝑈p𝑡0, 𝑡1q𝑃𝑡1𝑈p𝑡1, 𝑡2q𝑃𝑡2 ¨ ¨ ¨𝑈p𝑡𝑛´1, 𝑡𝑛q𝑃𝑡𝑛𝑈p𝑡𝑛, 𝑡0q, (201)

where 𝑈p𝑡𝑖, 𝑡𝑖`1q “ e´i
ş𝑡𝑖`1
𝑡𝑖

d𝑡𝐻 are unitary evolution operators between times 𝑡𝑖 and 𝑡𝑖`1, acting on the
Hilbert space ℋ𝑡𝑖`1 and generated by a self-adjoint hamiltonian operator 𝐻. For a dynamics generated
by the hamiltonian 𝐻 with an initial state described by the density operator 𝜌, the probability of a
history 𝜛 is defined as

𝑝p𝜛; 𝜌,𝐻q :“ tr𝒱𝑛p𝐶
˚
𝜛𝜌𝐶𝜛q. (202)

Using this equation, for two given histories 𝜛 and 𝜗, one defines the histories functional30 [125]

H𝜌,𝐻 : Bp𝒱𝑛q ˆBp𝒱𝑛q Q p𝑃𝜛, 𝑃𝜗q ÞÑ tr𝒱𝑛p𝐶
˚
𝜛𝜌𝐶𝜗q P C, (203)

which, by definition, depends on 𝜌 and 𝐻. It satisfies, for 𝑃𝜛 ď I´ 𝑃κ,

Hp𝑃𝜛, 𝑃𝜛q ě 0, (204)
Hp𝑃𝜛, 𝑃𝜗q “ Hp𝑃𝜗, 𝑃𝜛q

˚, (205)
Hp0, 𝑃𝜛q “ 0, (206)

HpI, Iq “ 1, (207)
Hp𝑃𝜛 ` 𝑃κ, 𝑃𝜗q “ Hp𝑃𝜛, 𝑃𝜗q ` Hp𝑃κ, 𝑃𝜗q. (208)

30For historical reasons, this object is usually called ‘decoherence functional’. However, such name suggests that the
quantum histories formalism necessary involves the ‘decoherence approach to quantum measurement’ semantics, which
is not true. For this reason we choose to change the name of this mathematical object to much more neutral with respect
to possible semantics.
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Description of a quantum theoretic model provided in terms of the class operator and histories func-
tional is intended to serve as a single replacement for dualistic description of temporal behaviour of
model in terms of Schrödinger’s and von Neumann–Lüders’ equations.

The Born–Jordan–Dirac–Heisenberg (BJDH) algebra [41, 40, 84], generated by the canonical com-
mutation relations

rq, qs “ 0, rp,ps “ 0, rq, ps “ iI, (209)

is extended in the quantum histories framework to an algebra generated by the relations:

rq𝑡𝑖 , q𝑡𝑗 s “ 0, rp𝑡𝑖 , p𝑡𝑗 s “ 0, rq𝑡𝑗 ,p𝑡𝑘s “ i𝛿𝑗𝑘I, (210)

where the operators q𝑡𝑖 and p𝑡𝑖 are considered as operators defined in the Schrödinger picture for
different moments 𝑡𝑖 of time, acting on the Hilbert space ℋ𝑡𝑖 , while I is a unit element of that algebra.
In order to formulate an extension of this formalism to the case of a continuous time 𝑡 P R, Isham and
Linden [161] have changed the above relations to the form of the so-called history algebra:

rq𝑓 , q𝑔s “ 0, rp𝑓 , p𝑔s “ 0, rq𝑓 ,p𝑔s “ i
ş`8

´8
d𝑡𝑓p𝑡q𝑔p𝑡qI, (211)

where q and p are operator valued distributions, 𝑓, 𝑔 P 𝐿2pR,d𝑡q, p𝑓 :“ pp𝑓q, q𝑓 :“ qp𝑓q.31

Isham and Linden [160, 162] (see also [297]), have shown that these commutation relations may be
represented on the Hilbert continuous history space

𝒱 :“
â

𝑡PR
ℋ𝑡 :“

â

𝑡PR
p𝐿2 pR,d𝑥qq𝑡 . (213)

The ‘continuous tensor product’ space
Â

𝑡PRℋ𝑡 is defined to be the symmetric Fock–Cook space
[104, 75]

Frℋs “ Fr𝐿2pR,d𝑥qs “
8
à

𝑛“0

sym𝑛

˜

𝑛
â

𝑘“0

𝐿2pR, d𝑥q

¸

, (214)

where
Â

0 𝐿2pR, d𝑥q :“ C,

sym𝑛 : 𝜉1 b . . .b 𝜉𝑛 ÞÑ
1
?
𝑛!

ÿ

𝑠PSp𝑛q
𝜉𝑠p1q b . . .b 𝜉𝑠p𝑛q (215)

and Sp𝑛q is the group of permutations of the set t1, . . . , 𝑛u. The history of p𝑡1, . . . , 𝑡𝑛q is represented
by the vector of Frℋs generated by the action of 𝑛 ‘creation operators’

𝑏˚𝑡𝑖p𝑓q : Frℋs Q sym𝑛p𝜉1 b . . .b 𝜉𝑛q ÞÑ
?
𝑛` 1sym𝑛`1p𝑓 b 𝜉1 b . . .b 𝜉𝑛q P Frℋs, (216)

which, together with the ‘annihilation operators’

𝑏𝑡𝑖p𝑓q : Frℋs Q sym𝑛p𝜉1 b . . .b 𝜉𝑛q ÞÑ
1?
𝑛

ř𝑛
𝑘“1 𝑓 ¨ sym𝑛´1p𝜉1 b . . .b 𝜉𝑘´1 b 𝜉𝑘`1 b . . .b 𝜉𝑛q P Frℋs,

(217)
satisfy

r𝑏𝑡𝑖p𝑓q, 𝑏𝑡𝑗 p𝑔qs “ 0 “ r𝑏˚𝑡𝑖p𝑓q, 𝑏
˚
𝑡𝑗 p𝑔qs, r𝑏𝑡𝑗 p𝑓q, 𝑏

˚
𝑡𝑘
p𝑔qs “

ş`8

´8
d𝑡𝑓p𝑡q𝑔p𝑡qI (218)

31Correspondingly, in the histories approach to quantum field theory one considers the ‘field’ operator-valued distri-
butions q and p which act on a subspace of 𝐿2pR3, d3𝑥q, where the parameter �⃗� P R3 is interpreted as representing a
three-dimensional ‘space’, and extends the canonical commutation relations at single point of time with the additional
dependence on time dimension handled by the histories algebra [161, 162, 297]. When the dependence on the functions
in 𝐿2pR3, d3𝑥q is made implicit, these relations read

rq𝑡1p�⃗�1q, q𝑡2p�⃗�2qs “ 0, rp𝑡1p�⃗�1q, p𝑡2p�⃗�2qs “ 0, rq𝑡1p�⃗�1q, p𝑡2p�⃗�2qs “ i𝛿p𝑡1 ´ 𝑡2q𝛿
3
p�⃗�1 ´ �⃗�2qI. (212)

This means that the three-dimensional histories commutation relations are actually three-plus-one-dimensional canonical
commutation relations.
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on the common domain 𝒟 Ă ℋ. Moreover, it is assumed that there exists a unit vector Ω P 𝒟 :“
spant𝑏˚𝑡 p𝑓1q ¨ ¨ ¨ 𝑏

˚
𝑡 p𝑓𝑛qΩ | @𝑓1, . . . , 𝑓𝑛 P ℋu such that

𝑏𝑡p𝑓qΩ “ 0 @𝑡 P R @𝑓 P ℋ. (219)

These assumptions define the Isham–Linden representation of the history algebra (211) to be the Fock–
Cook representation. The spectral projectors of this representation of histories algebra are interpreted
[161] as propositions about the temporal histories of a given quantum theoretic model.

For a given hamiltonian 𝐻𝑡, the self-adjoint histories hamiltonian operator in the Schrödinger
picture is defined as

𝐻𝜅 :“

ż `8

´8

d𝑡𝜅p𝑡q𝐻𝑡, (220)

where 𝜅p𝑡q P 𝐿2pR, d𝑡q is a function which ‘smears’ 𝐻𝑡 in time. The histories algebra generates the
commutation relations with this hamiltonian.

The Araki theorem [14] states the existence and uniqueness of hamiltonian operator in the Fock–
Cook representation if this operator (if unsmeared) has a form

𝐻𝑡pp𝑡, q𝑡q “
1

2

ż

d𝑥p2
𝑡 p𝑥q ` �̃�𝑡pq𝑡q. (221)

For example, for a given ‘harmonic oscillator’ hamiltonian operator 𝐻𝑡 “
p2𝑡
2𝑚 `

𝑚w2

2 q2
𝑡 acting on the

Fock–Cook space 𝒱, the representation of the history algebra is constructed through the ‘annihilation
operator’ 𝑏𝑡, which takes the form

𝑏𝑡 “

c

𝑚w

2
q𝑡 ` i

c

1

2𝑚w
p𝑡, (222)

with the commutation relations

r𝑏𝑡𝑖 , 𝑏𝑡𝑗 s “ 0, r𝑏𝑡𝑖 , 𝑏
˚
𝑡𝑗 s “ 𝛿p𝑡𝑖 ´ 𝑡𝑗qI. (223)

By the Araki theorem, the Fock–Cook representation of the history algebra in 𝒱 is uniquely selected
by the requirement that the operator 𝐻𝜅 (220) exists in this representation. In nonsmeared version,
𝐻𝑡 “ w𝑏˚𝑡 𝑏𝑡. This leads to the following commutation relations [297]:

r𝐻𝜅, q𝑓 s “ ´
i

𝑚
p𝜅𝑓 , r𝐻𝜅,p𝑓 s “ iw2q𝜅𝑓 , r𝐻𝜅, 𝐻𝜅1s “ 0. (224)

Anastopoulos [11] has shown that the construction of the continuous history Hilbert space 𝒱 and
the representation of the history algebra in 𝒱 can be provided also for nonquadratic hamiltonians using
the coherent states representation [308, 116]. However, such representation lacks any characterisation
of its uniqueness.

4.2 Savvidou’s action operator

The important property of the histories approach, discovered by Savvidou [297], is the existence of the
self-adjoint quantum action operator, acting on 𝒱 and defined as

𝑆𝜆,𝜅 :“

ż `8

´8

d𝑡p𝜆p𝑡qp𝑡 9q𝑡 ´ 𝜅p𝑡q𝐻𝑡q, (225)

by an analogy to a Hamilton–Jacobi action functional in classical mechanics theory

𝑆HJ “

ż 𝑡1

𝑡2

𝑑𝑡ppΓp𝑡q 9qΓp𝑡q ´𝐻Γp𝑡qq, (226)
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where pΓ, qΓ, 𝐻Γ P 𝐶
8pΓq, and Γ is a classical mechanics phase space. In both these equations, the dot

symbol denotes the differentiation d
d𝑠 with respect to to time parameter 𝑠 of the evolution generated

by hamiltonian, that is (in the quantum theory)

q𝑡 :“ q𝑡p𝑠q :“ ei𝑠𝐻𝑡q𝑡e
´i𝑠𝐻𝑡 , (227)

9q𝑡 :“
d

d𝑠
q𝑡p𝑠q. (228)

Savvidou has shown that there also exists the Liouville operator

𝑉 :“

ż `8

´8

d𝑡r𝑉𝑡 :“

ż `8

´8

d𝑡pp𝑡 9q𝑡q (229)

which is self-adjoint on 𝒱. Hence, for 𝜆p𝑡q ” 1, one may express the action operator as

𝑆𝜅 “ 𝑉 ´𝐻𝜅 “

ż `8

´8

𝑑𝑡p𝑡 9q𝑡 ´

ż `8

´8

d𝑡𝜅p𝑡q𝐻𝑡 (230)

with the following commutation relations:

r𝑆𝜅, 𝐻𝜅1s “ i𝐻 9𝜅1 , r𝑆𝜅, 𝑉 s “ ´i𝐻 9𝜅, r𝑉,𝐻𝜅s “ ´i𝐻𝜅. (231)

For 𝜅p𝑡q ” 1 the histories quantum theory reduces to ordinary quantum theory, which (for 𝐻 :“
ş`8

´8
d𝑡𝐻𝑡) is reflected in the commutators r𝑉,𝐻s “ 0 and r𝑉, 𝑆s “ 0.

The operator 𝑉 acts on 𝑏𝑡 in the following way [297]:

ei𝑟𝑉 𝑏𝑓p𝑡qe
´i𝑟𝑉 “ 𝑏𝑓p𝑡`𝑟q. (232)

Moving to the Heisenberg picture, one can compare the action of 𝑉 , 𝐻𝑡 and 𝑆:

ei𝑟𝑉 𝑏𝑡p𝑠qe
´i𝑟𝑉 “ 𝑏𝑡`𝑟p𝑠q, (233)

ei𝑟𝐻𝑡𝑏𝑡p𝑠qe
´i𝑟𝐻𝑡 “ 𝑏𝑡p𝑠` 𝑟q, (234)

ei𝑟𝑆𝑏𝑡p𝑠qe
´i𝑟𝑆 “ 𝑏𝑡`𝑟p𝑠` 𝑟q, (235)

where the ‘smeared’ operator 𝑆𝜅 acts by an automorphism

ei𝑟𝑆𝜅𝑏𝑓p𝑡qe
´i𝑟𝑆𝜅 “ 𝑏Σ𝑟p𝑓q, (236)

where Σ𝑟 is an unitary operator acting on 𝜁 P 𝐿2pR, d𝑡q by

pΣ𝑟𝜁qp𝑡q :“ e´iw
ş𝑡`𝑟
𝑡 d𝑟1𝜅p𝑡`𝑟1q𝜁p𝑡` 𝑟q. (237)

For not smeared 𝑏𝑡 this can be formally written as

ei𝑟𝑆𝜅𝑏𝑡e
´i𝑟𝑆𝜅 “ e´iw

ş𝑡`𝑟
𝑡 d𝑟1𝜅p𝑡`𝑟1q`𝑟 d

d𝑡 𝑏𝑡, (238)

where the self-adjoint generator 𝑆𝜅 on Fr𝐿2pR,d𝑡qs corresponds to an action of self-adjoint 𝜎𝜅 on
𝐿2pR, d𝑡q given by

𝜎𝜅𝜁p𝑡q :“ ´

ˆ

´w𝜅p𝑡q ´ i
d

d𝑡

˙

𝜁p𝑡q. (239)

The map R Q 𝑟 ÞÑ ei𝑟𝑆𝜅 is a weakly continuous representation of a one-parameter family of unitary
operators. In the same way the action of the automorphism generated by the Liouville operator 𝑉

ei𝑟𝑉 𝑏𝑓p𝑡qe
´i𝑟𝑉 “ 𝑏𝑓p𝑡`𝑟q (240)
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corresponds to the action of
p𝑣𝑟𝜁qp𝑡q :“ e𝑟

d
d𝑡 𝜁p𝑡q “ 𝜁p𝑡` 𝑟q (241)

on 𝜁 P 𝐿2pR, d𝑡q.
Hence, 𝑉 transforms 𝑏𝑡 from time 𝑡, related with the Hilbert space ℋ𝑡, to time 𝑡`𝑟, related with the

Hilbert space ℋ𝑡`𝑟 (strictly speaking, 𝑉 transforms the support of the operator valued distribution).
This is, by definition, purely kinematical operation, which does not depend on the hamiltonian 𝐻𝑡.
On the other hand, 𝐻𝑡 generates the unitary evolution of the system in the single space ℋ𝑡 Ă 𝒱.
The action operator (230) joins together these two types of transformations. This is in some sense
analogous to the Hamilton–Jacobi formulation of classical mechanics, in which the Hamilton–Jacobi
action functional (226) is the generator of a canonical transformation of the classical mechanical model
from one time to another.

Savvidou [297] suggests that these two operators (𝑉 and 𝐻𝜅) are related respectively with two
different types of time evolution: the nonunitary ‘reduction’ (Lüders’ rule) related with subsequent
propositions 𝑃𝑡, and the ordinary hamiltonian evolution (Schrödinger’s equation) given by operators
ei𝑠𝐻𝑡 . However, the projection operators 𝑃𝑡, class operators 𝐶𝜛, and histories functional H𝜌,𝐻 were
used neither in derivation of the kinematical evolution related with the Liouville operator 𝑉 , nor in
derivation of the quantum action operator 𝑆𝜅. This is reflected in the apparent unitary character of
the corresponding temporal evolutions generated by 𝑉 and 𝑆𝜅. Hence, so far this suggestion has been
ungrounded. In the next two subsections we will follow Anastopoulos and Savvidou on their way of
reintroduction of nonunitary elements in quantum histories formalism.

4.3 Geometric phase as a trace of a history

There exists a class of quantities in quantum theory, which do not correspond to any element of an
algebra of operators, but are nevertheless very closely related to quantitative results of experimental
procedures. One of the important representatives of this class is the geometric phase. It reflects the
geometric structure of the Hilbert space. Mathematically, it is defined as a holonomy of the Berry
connection on the Hopf bundle [326]. The Hopf bundle is a 𝑈p1q principal bundle of the Hilbert space
ℋ over the projective Hilbert space Pℋ Ă ℋ. In other words, it is a principal bundle of the subspaces
ℋP of vectors in ℋ over the space of generating rays of ℋ. The Berry connection ∇P is defined as
a 𝑈p1q connection 1-form on the Hopf bundle, induced naturally by an inner product on the Hilbert
space ℋ, and given in the coordinate-free form by

∇P :“ x¨,d¨yℋ : ℋˆℋ Q p𝜁, 𝜉q ÞÑ i x𝜁,d𝜉yℋ P C. (242)

The geometric phase (called also the Pancharatnam–Berry phase [265, 33]) is then defined as

ei𝜃r𝛾s :“ e´
ş

𝜁P𝛾x𝜁,d𝜁yℋ , (243)

where 𝛾 is a closed path in Pℋ. We will denote a path generated by family of vectors R Q 𝑡 ÞÑ 𝜁p𝑡q P ℋ
by 𝜁p¨q. In case of open paths 𝜁p¨q in Pℋ it was shown in [2] and [296] that the geometric phase (called
also the Aharonov–Anandan phase) is given by

ei𝜃r𝛾s “ e´
ş𝑡1
𝑡0

d𝑡x𝜁p𝑡q, dd𝑡 𝜁p𝑡qyℋ x𝜁𝑡0 , 𝜁𝑡1yℋ . (244)

Consider now an initial vector 𝜁p𝑡 “ 0q, the final vector 𝜁p𝑡 “ 𝑟q, equal to the initial one up to
phase, and the unitary time evolution 𝑈p𝑠q on ℋ, described by the solution of the Schrödinger equation
with the hamiltonian 𝐻,

𝑈p𝑟q : 𝜁p𝑡 “ 0q ÞÑ 𝜁p𝑡 “ 𝑟q :“ e´i𝑟𝐻𝜁p𝑡 “ 0q, (245)

which acts along a loop 𝛾p𝑡q, 𝑡 P r0, 𝑟s, on the space Pℋ. The phase on the Hopf bundle is then
transformed into

e
ş𝑟
0 d𝑡x𝜁p𝑡q,p´ d

d𝑡
´i𝐻q𝜁p𝑡qyℋ “ e´

ş𝑟
0 d𝑡x𝜁, dd𝑡 𝜁yℋe´i

ş𝑟
0 d𝑡x𝜁p𝑡q,𝐻𝜁p𝑡qyℋ “ ei𝜃r𝛾se´i

ş𝑟
0 d𝑡x𝜁p𝑡q,𝐻𝜁p𝑡qyℋ . (246)
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The first term, given by the geometric phase, does not refer to dynamics generated by the hamiltonian
𝐻, and reflects purely geometric structure of the kinematical Hilbert space ℋ.

Following Anastopoulos and Savvidou [12], one can analyse the geometric phase from the perspec-
tive of quantum histories. Consider first a quantum model with a hamiltonian 𝐻 “ 0. For a given
history 𝜛 of the projections p𝑃𝑡0 , 𝑃𝑡1 , . . . , 𝑃𝑡𝑛q, where 𝑃𝑡𝑖 is a projection onto one dimensional vector
subspace of ℋ spanned by 𝜁𝑡𝑖 , the trace of the class operator is

tr𝒱𝑛p𝐶𝜛q “ x𝜁𝑡0 , 𝜁𝑡𝑛yℋ x𝜁𝑡1 , 𝜁𝑡0yℋ x𝜁𝑡2 , 𝜁𝑡1yℋ ¨ ¨ ¨
@

𝜁𝑡𝑛 , 𝜁𝑡𝑛´1

D

ℋ , (247)

while the corresponding histories functional

H|𝜁𝑡0yx𝜁𝑡0 |,𝐻“0p𝑃𝜁p¨q, 𝑃𝜉p¨qq “
@

𝜁𝑡𝑛 , 𝜁𝑡𝑛´1

D

ℋ ¨ ¨ ¨ x𝜁𝑡1 , 𝜁𝑡0yℋ ¨
@

𝜁𝑡0 , 𝜉𝑡1
D

ℋ ¨ ¨ ¨
A

𝜉𝑡𝑚´1
, 𝜉𝑡𝑚

E

ℋ
(248)

is a p𝑛`𝑚` 1q Bargmann invariant [23, 327, 13]. Assuming that 𝛿𝑡 :“ sup𝑖t|𝑡𝑖 ´ 𝑡𝑖´1|u « 𝒪p 1𝑛q, one
can approximate t𝜁𝑡𝑖u𝑛𝑖“1 by the path 𝜁p𝑡q on Pℋ, and for large 𝑛 this gives

log tr𝒱𝑛p𝐶𝜛q “ log x𝜁𝑡0 , 𝜁𝑡𝑛yℋ ´
𝑛
ÿ

𝑖“1

log x𝜁p𝑡𝑖q, 𝜁p𝑡𝑖´1qyℋ (249)

“ log x𝜁𝑡0 , 𝜁𝑡𝑛yℋ ´
𝑛
ÿ

𝑖“1

x𝜁p𝑡𝑖q, 𝜁p𝑡𝑖q ´ 𝜁p𝑡𝑖´1qyℋ `𝒪p𝑛´2q, (250)

hence

lim
𝛿𝑡Ñ0

log ptr𝒱𝑛p𝐶𝜛qq “ log x𝜁𝑡0 , 𝜁𝑡𝑛yℋ ´

ż 𝜁𝑡𝑛

𝜁𝑡0

x𝜁p𝑡q,d𝜁p𝑡qyℋ , (251)

where the last term is the Stieltjes integral. Comparing this result with equation (244), one can see
that for any path which allows for the definition of the Stieltjes integral, the trace of a class operator
is equal to a geometric phase (244):

tr𝒱p𝐶𝜛q “ ei𝜃r𝜁p¨qs. (252)

Hence, for a given history 𝜛, its corresponding geometric phase is defined by the trace of a class
operator. Observing that 𝐶𝜛 is used in the definition (203) of the histories functional, one can rewrite
the latter in terms of the geometric phase:

H𝜌𝑡0 ,𝐻“0p𝑃𝜁p¨q, 𝑃𝜉p¨qq “ x𝜁p𝑡0q, 𝜌𝑡0𝜉p𝑡0qyℋ x𝜁p𝑡𝑛q, 𝜉p𝑡𝑛qyℋ e
´
𝑡𝑛
ş

𝑡0

d𝑡
A

𝜁p𝑡q,d𝜁p𝑡q
d𝑡

E

ℋ
´
𝑡𝑛
ş

𝑡0

d𝑡x𝜉p𝑡q, dd𝑡 𝜉p𝑡qyℋ
. (253)

For a quantum theoretic model with a nonzero hamiltonian 𝐻 the histories functional is equal to [12]:

H𝜌𝑡0 ,𝐻p𝑃𝜁p¨q, 𝑃𝜉p¨qq “ x𝜁p𝑡0q, 𝜌𝑡0𝜉p𝑡0qyℋ x𝜁p𝑡𝑛q, 𝜉p𝑡𝑛qyℋ eix𝑆
˚r𝜁p¨qsy`ix𝑆˚r𝜉p¨qsy, (254)

where

x𝑆˚r𝜁p¨qsy :“
ş𝑡𝑛
𝑡0

d𝑡
@

𝜁p𝑡q,
`

i d
d𝑡 ´𝐻

˘

𝜁p𝑡q
D

ℋ “ i
ş𝑡𝑛
𝑡0

d𝑡
A

𝜁p𝑡q, d𝜁p𝑡qd𝑡

E

ℋ
´
ş𝑡𝑛
𝑡0

d𝑡 x𝜁p𝑡q, 𝐻𝜁p𝑡qyℋ . (255)

This agrees with the earlier result of Isham and Linden [161], who have constructed a special case
of histories functional H𝜌,𝐻 . Using the continuous time projection operator on 𝒱 corresponding to
coherent states and using the technical assumption of 𝑡0 Ñ ´8 and 𝑡𝑛 Ñ `8, they have obtained

H𝜌,𝐻p𝑃𝜁p¨q, 𝑃𝜉p¨qq “ x𝜁p𝑡0q, 𝜌𝑡0𝜉p𝑡0qyℋ e
ş𝑡𝑛
𝑡0

´A

𝜁p𝑡q,d𝜁p𝑡q
d𝑡

E

ℋ
´

A

𝜉p𝑡q,d𝜉p𝑡q
d𝑡

E

ℋ

¯

e
i
ş𝑡𝑛
𝑡0
px𝜉p𝑡q,𝐻𝜉p𝑡qyℋ´x𝜁p𝑡q,𝐻𝜁p𝑡qyℋq,

(256)
where

ş𝑡𝑛
𝑡0
x𝜁p𝑡q,d𝜁p𝑡qy is a Stieltjes integral. In order to compare the equation (254) with the action

equation (230), consider the Schrödinger representation of the histories algebra (210), provided by the
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operators p𝑡 “ ´i B
B𝑥𝑡

and q𝑡 “ 𝑥𝑡, acting on the space 𝐿2pR, d𝑥𝑡q. Then r𝑉𝑡 “ p𝑡 9q𝑡 “ ´i d
d𝑠 , and the

equation (255) can be written in the form

x𝑆˚r𝜁p¨qsy “ ´

ż 𝑡𝑛

𝑡0

d𝑡 x𝜁p𝑡q, pp𝑡 9q𝑡 `𝐻q𝜁p𝑡qyℋ (257)

if it is assumed that 𝑡 “ 𝑠 and d
d𝑡 “

d
d𝑠 . This equation shows that the nonhamiltonian part of the

action 𝑆 is reflected in the geometric phase.
According to Anastopoulos and Savvidou, the complete form of histories functional can be recon-

structed by summing over all paths 𝜁p¨q and 𝜉p¨q that are compatible with the given histories 𝜛 and
𝜗 respectively:

H𝜌,𝐻p𝑃𝜛, 𝑃𝜗q “
ÿ

𝜁p¨qĂ𝜛

ÿ

𝜉p¨qĂ𝜗

H𝜌,𝐻
`

𝑃𝜁p¨q, 𝑃𝜉p¨q
˘

. (258)

In face of the above results, they conclude, that «the knowledge of the geometric phase—for a set of
histories and of the automorphism that implements the dynamics—is sufficient to fully reconstruct the
decoherence [histories] functional—and hence all the probabilistic content of the [histories approach
to quantum] theory» [12]. In other words, the histories approach provides the complete description of
temporal behaviour of quantum theoretic models using two levels of description: the unitary action
automorphism and the histories functional, which incorporates the nonunitary changes of geometry of
the Hilbert space related with the sequences of projection operators taken into consideration.

However, this result is not completely clear. The functional x𝑆˚r𝜁p¨qsy, despite the suggestive
notation, is not the expectation value of the adjoint of the action operator 𝑆𝜅 (225), unless

ş`8

´8
d𝑡 is

interchangeable with x𝜁p𝑡q, ¨ 𝜁p𝑡qyℋ, and the smearing function 𝜅 is introduced consistently at some
stage of derivation of (257). Moreover, the assumption 𝑡 “ 𝑠 is not justified by any reasons other than
ad hoc decision. It is unsatisfactory that in order to derive the relationship of two different temporal
evolutions with the geometric phase one has to set the values of corresponding time parameters to be
identical. There also remains the question to what extent several different technical assumptions used
in the construction of 𝑆𝜅 and x𝑆˚r𝜁p¨qsy are essential for the final results and conclusions. Moreover, it is
problematic to what extent the operator 𝑉 can be related with the ‘external time’ without introducing
the family of projections 𝑃𝑡𝑖 and the object x𝑆˚r𝜁p¨qsy. By definition, the operators 𝑉 and 𝑆𝜅 refer only
to continuous number of copies of the same Hilbert space, but without any reference to projections or
‘measurements’.

Finally, these results are based on the arbitrary choice of the particular Fock–Cook (or coherent
states) representation of histories version of the BJDH commutation relations. If the number of degrees
of freedom of the algebra is finite, then the Stone–von Neumann [335, 360] theorem guarantees that the
Schrödinger representation of the Weyl form of the BJDH algebra of canonical commutation relations
is a unique, up to unitary equivalence, irreducible representation. However, in the infinite-dimensional
case there exists uncountable many different unitarily inequivalent irreducible representations of this
algebra [121, 375]. Hence, the choice of a particular representation provides a nontrivial decision
problem and should be justified by some argument, but there is no such argument at sight. In order to
resolve these problems we have to move to a more general approach to quantum theory, the algebraic
approach.

4.4 Hilbert space geometry and coherent state path integrals

In this subsection we will discuss the basic aspects of the geometric approach to the formalism of the
Hilbert space based quantum theory [344, 236, 191, 69, 326, 68, 142, 264, 2, 10, 70, 111, 71, 147, 148,
299, 102, 103, 45, 21, 67, 46, 65, 29] and its relationship with the description of temporal behaviour of
quantum theoretic models in the Hilbert space based quantum histories approach.

Every complex Hilbert space ℋ can be considered as the real Hilbert space of double dimension,
equipped with a complex structure operator jℋ : ℋ Ñ ℋ such that pjℋq2 “ ´I and

@

𝜉, jℋ𝜁
D

ℋ “
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i x𝜉, 𝜁yℋ [345]. The decomposition of the inner product on ℋ into real and imaginary parts,

re x𝜉, 𝜁yℋ “:
1

2
gℋp𝜉, 𝜁q, (259)

im x𝜉, 𝜁yℋ “:
1

2
wℋp𝜉, 𝜁q, (260)

equips the real Hilbert space ℋ with the structure of the nondegenerate positive definite real inner
product gℋ and nondegenerate closed two-form wℋ. They turn, respectively, to a riemannian and
a symplectic structure on the manifold Pℋ, with ℋ understood as a tangent space over Pℋ. The
complex structure jℋ imposes the relationships

gℋp𝜉, 𝜁q “ wℋp𝜉, jℋ𝜁q, (261)

∇gℋ
jℋ “ 0, (262)

where ∇gℋ is a covariant derivative on ℋ associated with gℋ. These two equations imply that the triple
pgℋ,wℋ, jℋq equips ℋ in the structure of the Kähler manifold. If ℋ – C𝑛`1 and some orthonormal
basis t𝑒𝑎u in ℋ is chosen, 𝑎 P t0, . . . , 𝑛u, then the inner product on ℋ can be denoted (using abstract
index notation)

x𝜉, 𝜁yℋ “ 𝜉˚𝑎𝜁
𝑎, (263)

while the infinitesimal equations for riemannian metric gℋ and symplectic form wℋ read

d𝑠2 “ g𝑎𝑏d𝜁
𝑎˚ b d𝜁𝑏, (264)

�̃�ℋ “ wℋ
𝑎𝑏d𝜁

𝑎 ^ d𝜁𝑏. (265)

The projection of these structures to the projective space Pℋ, provided in finite-dimensional case by
𝑧𝑎 :“ 𝜁𝑎{𝜁0, 𝑎 P t1, . . . , 𝑛u, induces a metric d𝑠2Pℋ and a 𝑈p1q connection one-form 𝐴Pℋ,

d𝑠2Pℋ :“
1

1` 𝑧˚𝑎𝑧
𝑎
, (266)

𝐴Pℋ :“ i𝑧˚𝑎𝑑𝑧
𝑎. (267)

The space Pℋ has the structure of the compact Kähler manifold, the metric d𝑠2Pℋ is the Fubini–Study
metric, while the connection one-form 𝐴Pℋ is the Berry connection. In finite dimensional case,

ℋ – C𝑛`1 ñ Pℋ – CP𝑛 – 𝑆2𝑛`1{𝑈p1q, (268)

while the Fubini–Study metric on Pℋ is given explicitly by

gFS
𝑎𝑏 “

x𝜁, 𝜁yℋ 𝛿𝑎𝑏 ´ 𝜁p𝑎𝜁
˚
𝑏q

|x𝜁, 𝜁yℋ|
2 , (269)

where the round brackets denote the symmetrisation of indices. The space CP𝑛 has a symmetry group
of dimension 𝑛p𝑛` 2q, which is generated by a family of 𝑛p𝑛` 2q Killing vector fields.

This framework allows a geometric description and reconsideration of the structure of the Hilbert
space based framework of quantum theory. In particular, the self-adjoint operators on ℋ, generating
the unitary Schrödinger evolutions on ℋ, correspond to such smooth functions on the Kähler manifolds
Pℋ that preserve the Kähler structure (that is, their hamiltonian vector fields are also the Killing vector
fields). These hamiltonian functions on Pℋ are given by the normalised expectations x𝜁,𝐻𝜁yℋ { x𝜁, 𝜁yℋ
of the corresponding self-adjoint operators 𝐻 on ℋ. Moreover, the geodesic distance 𝑑gFS with respect
to the Fubini–Study metric determines the transition probability between two vectors,

𝑝p𝜁|𝜉q “ |x𝜁, 𝜉yℋ|
2
“ cos2p𝑑gFSp𝜁, 𝜉qq, (270)

thus
𝑑gFSp𝜁, 𝜉q “ arccosptrℋp𝑃𝜁𝑃𝜉qq, (271)

55



where 𝑃𝜉 and 𝑃𝜁 are projection operators on the 1-dimensional subspaces of ℋ that are linearly spanned
by 𝜉 and 𝜁, respectively.

An interesting additional geometric structure can be introduced using the coherent vectors repre-
sentation. Let there be given a group 𝐺 together with its irreducible unitary representation 𝐺 Q 𝑔 ÞÑ
𝑈p𝑔q P Bpℋq. Then, for a given choice of a normalised reference vector 𝜁 P ℋ (specified, for example,
as the vector invariant under the maximal compact subgroup of 𝐺), one can define the Hilbert space
vectors 𝑈p𝑔q𝜁 P ℋ, introduce the equivalence relation

𝑔1 „ 𝑔2 ðñ Dei𝜆 P C 𝑈p𝑔1q𝜁 “ ei𝜆𝑈p𝑔2q𝜁, (272)

and define the homogeneus quotient space Γ :“ 𝐺{ „. The space Γ is a parameter space that defines
and labels the coherent vectors of ℋ by [308, 116, 268, 269]

𝜄Γ : Γ Q 𝑧 ÞÑ 𝑈p𝑧q𝜁 P Pℋ. (273)

Using 𝜄Γ, one can pullback the geometric objects from Pℋ to Γ, equipping Γ with the symplectic,
riemannian and affine structure:

d𝑠2Γ :“ ||d𝑧||2 ´ |x𝑧,d𝑧yℋ|
2
“ |xd𝑧,d𝑧yℋ|

2
´ |x𝑧,d𝑧yℋ|

2, (274)
𝐴Γ :“ i x𝑧,d𝑧yℋ , (275)
𝑤Γ :“ d𝐴Γ, (276)

where d denotes the exterior derivative on Γ, and 𝑤Γ is a symplectic structure on Γ if it is nondegen-
erate. If the space Γ is interpreted as the ‘phase space’, then 𝜄Γ is intepreted as a map from ‘phase
space’ to ‘space of rays’.

Anastopoulos and Savvidou [13] have used these results in order to uncover the relationship between
the quantum histories and the metric structure on the projective Hilbert space. Using coherent vectors
𝑧 P ℋ, they derive

x𝑧, 𝑧 ` 𝛿𝑧y “ 1` x𝑧, B𝑎𝑧
𝑎yℋ 𝛿𝑧

𝑎 `
1

2
x𝑧, B𝑎B𝑏𝑧yℋ 𝛿𝑧

𝑎𝛿𝑧𝑏 `𝒪p𝛿𝑧3q (277)

“ exp

ˆ

i𝐴𝑎p𝑧 `
1

2
𝛿𝑧q𝛿𝑧𝑎 ´

1

2
gFS
𝑎𝑏 𝛿𝑧

𝑎𝛿𝑧𝑏
˙

`𝒪p𝛿𝑧3q. (278)

For 𝛿𝑧𝑘 “ 𝑧𝑘`1 ´ 𝑧𝑘, the equation (248), written in the form

H𝐻“0p𝑃𝜛, 𝑃𝜗q “
ź

𝑘

x𝑧𝑘, 𝑧𝑘 ` 𝛿𝑧𝑘yℋ , (279)

leads to second-order approximation

H𝐻“0p𝑃𝜛, 𝑃𝜗q “ exp

˜

i
ÿ

𝑘

p𝑧𝑘 `
1

2
𝛿𝑧𝑘q𝛿𝑧𝑘 ´

1

2

ÿ

𝑘

𝛿𝑠2𝑘

¸

. (280)

If the paths 𝑧p¨q are continuous and the variations 𝛿𝑧𝑘 are bounded (|𝛿𝑧𝑎𝑘 | ă 𝜖 and 𝜖 Ñ 0), then this
equation converges to the expression (243) on the geometric phase. However, if the paths 𝑧p¨q cannot
be considered as continuous (or differentiable) functions of 𝑡, then the approximation of the histories
functional for the cut-off of the scale of 𝑡 given by 1

𝜐 leads to [13]

H𝐻“0p𝑃𝜛, 𝑃𝜗q “ exp

ˆ

i

ż

𝛾
𝐴Γ ´

1

2𝜐

ż

𝛾
d𝑡gFS

𝑎𝑏 p𝑧p𝑡qq 9𝑧𝑎 9𝑧𝑏
˙

. (281)

This result is very closely related to the Daubechies–Klauder approach [77, 194, 195, 198], who intro-
duced exact continuous-time regularised coherent vectors propagator for the phase space path integral,
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and proved that under mild assumptions on hamiltonian (square and quadric integrability, see e.g. [197]
for a brief statement of those) one has

@

𝑧p𝑡 “ 𝑠q, e´i𝐻𝑠𝑧p𝑡 “ 0q
D

ℋ “ lim
𝜐Ñ`8

ż

D𝑧p¨qe

´

i
ş

𝛾 𝐴Γ

¯

ep´i
ş𝑠
0 d𝑡 ℎp𝑧p𝑡qqqe´

1
2𝜐 p

ş𝑠
0 d𝑡 𝑔𝑎𝑏p𝑧p𝑡qq 9𝑧𝑎 9𝑧𝑏q (282)

“ 2π lim
𝜐Ñ`8

e𝜐𝑠{2
ż

�̃�𝜐WppΓ, qΓqe
i
ş

ppΓdqΓ´𝐻ppΓ,qΓqd𝑡q, (283)

where ℎp𝑧p𝑡qq is a hamiltonian function32 on Γ, while �̃�𝜐WppΓ, qΓq is a pinned Wiener measure on
a phase space Γ. Moreover, this formulation is covariant under canonical transformations of phase
space coordinates, what is not the case for most of other approaches to quantisation, including the
Schrödinger quantisation

pΓ, qΓ P 𝐶
8pΓq ù ´i

B

B𝑥
, 𝑥 : 𝐿2pR, d𝜆q Ñ 𝐿2pR,d𝜆q, (284)

the Born–Jordan–Dirac–Heisenberg quantisation

pΓ, qΓ P 𝐶
8pΓq ù p, q : ℓ2pNq Ñ ℓ2pNq, rq, ps “ iI, (285)

as well as the lattice formulation of phase space version of Feynman path integral (see a discussion
in [197]). All these methods of quantisation depend on the particular choice of the phase space
coordinates, what makes these prescriptions incomplete, because descriptions which are considered to
be canonically equivalent on the level of phase space become unitarily inequivalent on the level of the
Hilbert space, and there is provided no procedure solving the problem of choice of unique description
among inequivalent ones. The above result shows that the metric structure on the Hilbert space (and
the corresponding metric structure on Γ) provides an important conceptual and mathematical element
of the quantum theory.

It is also interesting to note that for finite value of 𝜐 the propagator (282) is not longer unitary [195].
From the perspective of histories approach to quantum theory, this means that the metric structure on
the Hilbert space allows (some sort of) quantification of the nonunitary (and noncontinuous) temporal
behaviour. This observation should be furnished by an additional result of Klauder and Maraner [199],
who showed that the usual definition of dynamics on phase space by means of Hamilton’s variational
principle,

𝛿

ż

d𝑡p𝜃𝑎 9𝜉𝑎 ´ ℎp𝜉p𝑡qqq “ 0, (286)

where 𝜔𝑎𝑏 “ B𝑎𝜃𝑏 ´ B𝑏𝜃𝑎 is a symplectic form on the phase space, while 𝜉 are arbitrary phase space
coordinates, is equivalent to the variational principle

𝛿

ż

d𝑡p𝜃𝑎 9𝜉𝑎 `
1

2
𝜆gFS

𝑎𝑏 p𝜉p𝑡qq
9𝜉𝑎 9𝜉𝑏q “ 0 (287)

under constraint
det

`

gFS
𝑎𝑏 p𝜉q

˘

“ ℎ´2𝑛p𝜉q (288)

and in the limit 𝜆Ñ 0, where gFS
𝑎𝑏 p𝜉q is a riemannian metric on the phase space, 2𝑛 is the dimension

of this space, while 𝜆 P R is an arbitrary scale factor. This result was derived in the context of
phase space Γ, but nothing forbids us from applying it to Pℋ, with the hamiltonian function provided
by normalised expectation of hamiltonian operator and with the riemannian metric provided by the
Fubini–Study metric of Pℋ. The equation (286) takes then the form of variation of the equation (255),

𝛿 x𝑆˚r𝜁p¨qsy “ 𝛿

ż 𝑡𝑛

𝑡0

d𝑡

B

𝜁p𝑡q,

ˆ

i
d

d𝑡
´𝐻

˙

𝜁p𝑡q

F

ℋ
“ 0, (289)

32In the context of our paper, we consider it to be defined by ℎp𝑧p𝑡qq :“ x𝑧p𝑡q, 𝐻𝑧p𝑡qyℋ for a given self-adjoint
hamiltonian operator 𝐻 on ℋ.
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which gives the Schrödinger equation. This leads to a question whether some modification of the
variational principle (287) on Pℋ could result in an interesting form of the temporal behaviour of
quantum theoretic models? In particular, it seems that for not vanishing metric term, provided by
the finite values of 𝜆 corresponding to finite values of 𝜐 in (281) and (282), the resulting temporal
behaviour would be nonunitary.

These observations will play an important guiding role in generalisation of the elements of histories
approach to an algebraic context.

4.5 Case study: Algebraic action operator and the limits of unitarity

Given a W˚-algebra 𝒩 and 𝜓 P 𝒲0p𝒩 q, consider a crossed product 𝒩 ¸𝜎𝜓 R, defined as the von
Neumann algebra acting on the Hilbert space 𝐿2pR,d𝑡;ℋq – ℋ b 𝐿2pR, d𝑡q and generated by the
operators 𝜋𝜎𝜓p𝑥q and 𝑢Rp𝑡q, which are defined by

p𝜋𝜎𝜓p𝑥q𝜉qp𝑡q :“ 𝜎𝜓´𝑡p𝑥q𝜉p𝑡q, (290)
p𝑢Rp𝑡2q𝜉qp𝑡1q :“ 𝜉p𝑡1 ´ 𝑡2q, (291)

for all 𝑥 P 𝒩 , 𝑡, 𝑡1, 𝑡2 P R, 𝜉 P 𝐿2pR,d𝑡;ℋq, see e.g. [355]. These two operators satisfy the covariance
equation

𝑢Rp𝑡q𝜋𝜎𝜓p𝑥q𝑢
˚
Rp𝑡q “ 𝜋𝜎𝜓p𝜎

𝜓
𝑡 p𝑥qq. (292)

The equation (290) can be written as

p𝜋𝜎𝜓p𝑥q𝜉qp𝑡q “ ∆i𝑡
𝜓𝑥∆´i𝑡

𝜓 𝜉p𝑡q “ e´i𝐾𝜓𝑡𝑥ei𝐾𝜓𝑡𝜉p𝑡q, (293)

where 𝐾𝜓 is a modular hamiltonian of the modular operator ∆𝜓. So, the covariance equation (292)
translates between the family of unitaries that partially generate the crossed product algebra 𝒩 ¸𝜎𝜓 R
and the modular automorphism of the underlying von Neumann algebra 𝒩 :

𝑢Rp𝑡q𝜋𝜎𝜓p𝑥q𝑢Rp𝑡q
˚ “ 𝜋𝜎𝜓pe

´i𝑡𝐾𝜓𝑥ei𝑡𝐾𝜓q. (294)

Using the uniqueness of the standard representation up to unitary equivalence, Falcone and Take-
saki [99] (see [210] for a pedagogical introduction) proved that the map 𝒩 ÞÑ 𝒩 ¸𝜎𝜓 R extends to
a functor VNCore from the category VNIso of von Neumann algebras with ˚-isomorphisms to its
own subcategory VNsfIso of semi-finite von Neumann algebras with ˚-isomorphisms. The functori-
ality CanVN : W˚IsoÑ VNIso of Kosaki’s construction [203] of canonical representation 𝜋𝒞 of any
W˚-algebra 𝒞 turns the assignment

𝒞 ÞÑ 𝜋𝒞p𝒞q “: 𝒩 ÞÑ r𝒩 “Č𝜋𝒞p𝒞q (295)

to a functor
W˚Core : W˚IsoÑ VNsfIso, (296)

where W˚Core :“ VNCore ˝ CanVN, while W˚Iso consists of W˚-algebras and ˚-isomorphisms.
For any W˚-algebra 𝒩 , the object W˚Corep𝒩 q P ObpVNsfIsoq will be called canonical core of 𝒩
and denoted r𝒩 . By equipping the canonical core von Neumann algebra r𝒩 of the countably finite
W˚-algebra 𝒩 with the choice of some 𝜔 P 𝒩`

‹0, we obtain a unitary isomorphism r𝒩 – 𝒩 ¸𝜎𝜔 R.
The operator 𝑢Rp𝑡q, when considered as an operator on 𝐿2pR,d𝑡q, takes the form

𝑢Rp𝑟q “ e´i𝑟𝑉 , 𝑉 :“ ´i
d

d𝑡
. (297)

So, the analogue of a quantum ‘histories liouvillean’ automorphism (241) is naturally present in the
structure of a unitary representation of the canonical core algebra. From the covariance equation (292)
it follows that this automorphism of 𝒩 ¸𝜎𝜔 R uniquely corresponds to the modular automorphism of
𝒩 . Hence, the pair p𝒩 , 𝜔q uniquely determine a W˚-dynamical system p𝒩 ,R, 𝜎𝜔q. But there might
be also given another description of a temporal behaviour related with the same algebra 𝒩 , provided
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by some group of ˚-automorphisms 𝛼 : R Ñ Autp𝒩 q. If 𝛼 is continuous in the weak-‹ topology,
then one has to consider the coexistence of two W˚-dynamical systems: p𝒩 ,R, 𝜎𝜔q and p𝒩 ,R, 𝛼q.
While 𝜎𝜔 is completely determined by the properties of 𝒩 and 𝜔, the ˚-automorphism 𝛼 is arbitrary.
Using familiar terminology, one can say that 𝜎𝜔 is a ‘kinematic’ automorphism, while 𝛼 is a ‘causal’
automorphism. These characteristics of 𝜎𝜔 and 𝛼, together with an equation (297) lead us to propose
to consider 𝜎𝜔 as an algebraic replacement of the ‘histories liouvillean’ automorphism (233) and to
consider 𝛼 as an algebraic replacement of the ‘histories hamiltonian’ automorphism (234). We will
join these two separated automorphisms into one automorphism, representing the ‘complete temporal
behaviour’ of the quantum theoretic model p𝒩 , 𝛼, 𝜔q, and forming an algebraic replacement for the
‘histories action’ automorphism (235).

We do not require the model p𝒩 , 𝛼, 𝜔q to be a ‘quantum dynamical system’ (in the sense of [273])
with respect to 𝛼 : RÑ Autp𝒩 q, because we do not need to (and do not want to) assume the invariance
of 𝜔 with respect to 𝛼. In fact, instead of declaring invariance of 𝜔 with respect to 𝛼, we will use 𝛼 in
order to construct a new algebraic state 𝜑. Consideration of the derivations of these ˚-automorphisms
together with the corresponding hamiltonians is also not useful here, because of the lack of a unique
characterisation of unbounded generators of ˚-automorphisms in terms of corresponding self-adjoint
hamiltonians (see [210] for more discussion and further references on this).

The standard liouvillean of 𝜎𝜔 is given by its modular hamiltonian 𝐾𝜔 “ ´ log ∆𝜔. We will denote
by 𝐿𝛼 the standard liouvillean of 𝛼 in the GNS representation pℋ𝜔, 𝜋𝜔,Ω𝜔q. If

𝐿𝛼,𝜔 :“ 𝐿𝛼 `𝐾𝜔 ` 𝐽𝜔𝐾𝜔𝐽𝜔 (298)

is essentially self-adjoint on domp𝐾𝜔q X domp𝐿𝛼q X domp𝐽𝜔𝐾𝜔𝐽𝜔q, and if 𝐾𝜔 ` 𝐿𝛼 is essentially
self-adjoint on domp𝐾𝜔q X domp𝐿𝛼q, then

𝑢𝛼,𝜔p𝑥qp𝑡q :“ ei𝑡p𝐾𝜔`𝐿𝛼q𝑥e´i𝑡p𝐾𝜔`𝐿𝛼q @𝑥 P 𝜋𝜔p𝒩 q, (299)

is a weak-‹ continuous ˚-automorphism of 𝜋𝜔p𝒩 q, and 𝐿𝛼,𝜔 is its standard liouvillean. Hence,
p𝜋𝜔p𝒩 q,R, 𝑢𝛼,𝜔q is a W˚-dynamical system with a corresponding crossed product 𝜋𝜔p𝒩 q ¸𝑢𝛼,𝜔 R.
Moreover, if 𝐿𝛼 is bounded, then the DFFA convergent perturbation expansions hold:

𝑢𝛼,𝜔p𝑥q “
8
ÿ

𝑛“0

i𝑛
ż

0ď𝑡𝑛ď¨¨¨ď𝑡1ď𝑡
d𝑡1 ¨ ¨ ¨ d𝑡𝑛r𝛼𝑡𝑛p𝐾𝜔q, r. . . , r𝛼𝑡1p𝐾𝜔q, 𝛼𝑡p𝑥qs . . . ss,

(300)

𝐸𝛼,𝐾𝜔p𝑡q :“ ei𝑡p𝐾𝜔`𝐿𝛼qe´i𝑡𝐿𝛼 “
8
ÿ

𝑛“0

i𝑛
ż

0ď𝑡𝑛ď¨¨¨ď𝑡1ď𝑡
d𝑡1 ¨ ¨ ¨ d𝑡𝑛𝛼𝑡𝑛p𝐾𝜔q ¨ ¨ ¨𝛼𝑡1p𝐾𝜔q. (301)

Hence, under some relatively weak conditions, the modular automorphism 𝜎𝜔 and the additional
˚-automorphism 𝛼 form together a unique automorphism 𝑢𝛼,𝜔 with its own self-adjoint liouvillean
𝐿𝛼,𝜔. If one thinks of 𝛼 as an algebraic analogue of an automorphism generated by the ‘interaction
hamiltonian’, then the automorphism 𝑢𝛼,𝜔 can be considered as a ‘correction’ of 𝑢𝛼 by means of an
associated 𝑈p1q connection 1-form r𝐾𝜔, ¨ s on the Hilbert bundle of Hilbert spaces ℋ𝜔 over the image
of real line R in ℳp𝒩 q. Given 𝐿𝛼 and 𝐾𝜔, we can define also the operator

𝐿𝜔,𝛼 :“ 𝐾𝜔 ` 𝐿𝛼 ` 𝐽𝜔𝐿𝛼𝐽𝜔, (302)

with the conditions on essential self-adjointness analogous to the case of 𝐿𝛼,𝜔. This operator is not
interpretable as a standard liouvillean of 𝛼 perturbed by a 𝑈p1q connection form. However, as we will
see below, it also encodes some very interesting information.

By an analogy with the Hilbert space based histories approach to quantum theory we will call 𝐿𝛼,𝜔
an (algebraic) action operator and will call 𝑢𝛼,𝜔 an (algebraic) action automorphism. We will
call 𝐿𝜔,𝛼 a dual action operator.

Recall that in the Hilbert space based histories approach the action operator was a generator
of a complete unitary temporal behaviour of a given quantum theoretic model, including not only
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the ‘internal’ temporal unitary changes related to the fixed Hilbert space, but also the ‘external’
temporal unitary changes between two different Hilbert spaces (in fact, that formalism was limited to
the continuous one-parameter family of identical copies of the same Hilbert space). In the algebraic
approach, the change of a Hilbert space corresponds to the change of an algebraic state, and it implies
the corresponding change of a representation of an underlying W˚-algebra. In order to strengthen
the relationship between the Hilbert space based histories and our algebraic approach, we will show
how the action operator is related to the change between two representations or between two different
algebraic states.

In order to do this, we need to use one more result of Dereziński, Jakšić and Pillet [80]. They
show that if 𝜔 is a faithful Kubo–Martin–Schwinger state with respect to a ˚-automorphism 𝑢 with
a parameter 𝛽, then under the assumptions used previously for derivation of ˚-automorphism 𝑢𝑄𝑡 and
its standard liouvillean 𝐿𝑄, and assuming additionally that

ˇ

ˇ

ˇ

ˇ𝑒´𝛽𝑄{2Ω𝜔

ˇ

ˇ

ˇ

ˇ

ℋ𝜔
ă 8,

Ω𝑄 :“ e´𝛽p𝐿𝑢`𝑄q{2Ω𝜔, (303)

𝜔𝑄p¨q :“ xΩ𝑄, ¨Ω𝑄y {||Ω𝑄||
2
ℋ𝜔

(304)

satisfy

0) Ω𝜔 P dompe´𝛽p𝐿𝑢`𝑄q{2q,

1) Ω𝑄 P ℋ6𝜔 is cyclic and separating for 𝜋𝜔p𝒩 q,

2) 𝜔𝑄 is KMS with respect to 𝑢𝑄 and 𝛽,

3) log ∆Ω𝑄 “ ´𝛽𝐿𝑄 and
log ∆Ω𝑄,Ω𝜔 “ ´𝛽𝐿𝑢 ´ 𝛽𝑄. (305)

By the Takesaki theorem, the faithful state 𝜔 on a W˚-algebra is always KMS with respect to 𝜎𝜔

with 𝛽 “ 1. Hence, under the assumptions allowing for the construction of the dual algebraic action
operator 𝐿𝜔,𝛼, and assuming also that

ˇ

ˇ

ˇ

ˇ𝑒´p𝐾𝜔`𝐿𝛼q{2Ω𝜔

ˇ

ˇ

ˇ

ˇ ă 8, it holds that

𝜑p¨q :“

@

e´p𝐾𝜔`𝐿𝛼q{2Ω𝜔, p ¨ qe
´p𝐾𝜔`𝐿𝛼q{2Ω𝜔

D

ℋ𝜔
ˇ

ˇ

ˇ

ˇe´p𝐾𝜔`𝐿𝛼q{2Ω𝜔

ˇ

ˇ

ˇ

ˇ

2

ℋ𝜔

(306)

is KMS with respect to 𝑢𝜔,𝛼 with 𝛽 “ 1. Hence, 𝑢𝜔,𝛼 is a modular automorphism of 𝜋𝜔p𝒩 q with
respect to 𝜑. This is a very interesting result, because it means that while p𝑢𝛼,𝜔, 𝐿𝛼,𝜔q play the role of
an action automorphism and an action operator with respect to the pair p𝒩 , 𝜔q, p𝑢𝜔,𝛼, 𝐿𝜔,𝛼q play the
role of a modular automorphism and a modular hamiltonian with respect to the pair p𝒩 , 𝜑q. Hence,
under the assumptions

1. 𝜔 is a faithful normal algebraic state on a W˚-algebra 𝒩 ,

2. 𝐿𝛼 is a standard liouvillean of ˚-automorphism 𝛼 of 𝒩 affiliated with 𝜋𝜔p𝒩 q,

3. 𝐾𝜔 ` 𝐿𝛼 is essentially self-adjoint on domp𝐾𝜔q X domp𝐿𝛼q,

4. 𝐾𝜔 ` 𝐿𝛼 ´ 𝐽𝜔𝐿𝛼𝐽𝜔 is essentially self-adjoint on domp𝐾𝜔q X domp𝐿𝛼q X domp𝐽𝜔𝐿𝛼𝐽𝜔q,

5.
ˇ

ˇ

ˇ

ˇe´p𝐾𝜔`𝐿𝛼q{2Ω𝜔

ˇ

ˇ

ˇ

ˇ

ℋ𝜔
ă 8,

the ˚-automorphism 𝛼 can be always assimilated as a part of the modular automorphism 𝜎𝜑 that is
uniquely specified by an ‘updated’ algebraic state 𝜑 (306). In other words, the ˚-automorphism forming
a ‘causal’ part of an algebraic quantum action automorphism can be considered as a constitutive
element of a ‘kinematic’ temporal behaviour, just with respect to another algebraic state.

This way Savvidou’s construction of the Liouville and action operators acting on the symmetric
Fock–Cook Hilbert space Frℋs and generating two corresponding types of unitary temporal evolution
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becomes replaced by the algebraic construction of liouvillean and action operators generating the ˚-
automorphisms of corresponding representations of canonical core W˚-algebra r𝒩 . The main structures
of each approach, the Fock–Cook Hilbert space Frℋs and the Falcone–Takesaki W˚-algebra r𝒩 , are
constructed in a functorial way from the corresponding underlying ingredients of the given quantum
theoretic model: the Hilbert space ℋ and the W˚-algebra 𝒩 , respectively (for a functorial description
of Fock space construction see e.g. [34]). Both approaches show that every quantum theoretic model
is generically equipped with two different types of unitary temporal evolution: the ‘kinematic’ auto-
morphism and the ‘causal’ automorphism. Moreover, while the particular quantitative form of the
latter evolution can be arbitrarily postulated, the quantitative form of the former is determined by the
particular (quantitative) representation of an abstract algebra that is used in the given model. Both
approaches enable to incorporate these two different unitary temporal evolutions into a single unifying
unitary ‘action’ evolution. Both approaches enable also to describe the generators of the ‘kinematic’
and ‘action’ evolutions in terms of operators acting on the ‘temporal’ space 𝐿2pR,d𝑡q. In the case
of the Hilbert space based approach, all these automorphisms are generated by the corresponding
hamiltonian operators, while in the case of algebraic approach the quantitative representations of all
these automorphisms are generated by the corresponding standard liouvillean operators.

However, apart from these similarities, there are also important differences between those two
approaches. In particular, the representation of the histories algebra on the Fock–Cook space is unique,
up to unitary equivalence, only for hamiltonians which have a form specified by the Araki theorem
[14]. For a general hamiltonian there is no possibility to guarantee the uniqueness (up to unitary
equivalence) of the Fock–Cook representation of the histories algebra of the Fock–Cook Hilbert space
Frℋs. In contrast to this, the representation of a core algebra r𝒩 in terms of a crossed product
algebra 𝒩 ¸𝜎𝜔 R acting on ℋ𝜔 b 𝐿2pR, d𝑡q is uniquely determined, up to unitary equivalence, by
any particular choice of a state 𝜔 P 𝒩`

‹0, which is considered as part of the definition of the model.
Moreover, while in both approaches the initial ‘dynamic’ unitary automorphism can be postulated
as an arbitrary additional component of the model, only in the algebraic approach can the resulting
(dual) ‘action’ automorphism be considered as purely ‘kinematic’ (modular) automorphism, related to
the change of the algebraic state. The change of unitary description of the temporal behaviour of the
quantum theoretic model p𝒩 , 𝜔q equipped with an additional ‘unitary’ ˚-automorphism 𝛼 is completely
determined by the quantum theoretic model p𝒩 , 𝜔q and the map 𝜔 ÞÑ 𝜑, which can be considered as a
part of the definition of the model. There is no corresponding result of such type in the Hilbert space
based approach to quantum histories. We consider these two results as an important suggestion in
favour of the change of perspective on the role of unitary temporal behaviour of quantum theoretic
models. Stating it briefly, instead of postulating the hamiltonian as an independent component of
quantum theoretic model and later perturbing it (what seems to be the only method within the
frames of the Hilbert space based approach to mathematical foundations of quantum theory), an
algebraic approach allows to derive the liouvillean that characterises the unitary temporal behaviour,
given the information about change of state. The change between two identical quantitative Hilbert
spaces equipped with the same quantitative representation of the operator algebra becomes replaced
by the change between two different (but faithful) algebraic states which correspond to two different
(but unitarily equivalent) quantitative representations.

In the similar way as in Savvidou’s Hilbert space based formulation: 1) when the generators
of ‘kinematic’ and ‘causal’ automorphisms are joined into the new ‘action’ generator 𝐾𝜔 ` 𝐿𝛼, the
reference to two different temporal parametrisations of 𝛼 and 𝜎𝜔 disappears (the choice of rescaling
of the time parameter between 𝛼𝑡 and 𝜎𝜔𝑠 was implicitly set above to be 𝑡 “ 𝑠, however any scalar
relationship 𝑡 “ 𝜆𝑠, 𝜆 P R, will work, and any of such choices corresponds to the choice of a specific
section of a 𝑈p1q bundle for the ´rlog ∆𝜔, ¨ s connection); 2) the resulting description of temporal
behaviour is an unitary automorphism which does not possess any explicit relationship with the von
Neumann–Lüders nonunitary type of temporal behaviour. In consequence, the above construction is
insufficient to deal with the problem of algebraic reformulation of the Anastopoulos–Savvidou histories
description of the geometric phase. It seems that the idea of construction of localised unitary evolution
without taking into account more specific information about the changes of local geometry of quantum
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state spaces is just not enough.
In particular, the restriction of description of temporal behaviour of quantum models to ˚-auto-

morphisms implies the preservation of spectrum: if 𝛼 is a ˚-automorphism of a C˚-algebra 𝒞, then

𝛼pp𝑧I´ 𝑥q´1q “ p𝑧I´ 𝛼p𝑥qq´1 @𝑥 P 𝒞 @𝑧 P C. (307)

The decision that description of temporal behaviour of quantum theoretic models should be provided
in terms of the ˚-automorphisms removes a priori the possibility to describe the changes of the eigen-
values in time. This restriction is imposed by the ‘spectral principle’ which is a part of an idealistic
ontological interpretation of a quantum theoretic formalism. However, it is too strong for many prac-
tical purposes.33 We do not see any reasons for accepting this situation other than wish of securing the
validity of some very particular interpretation.34 In order to develop the framework which bypasses
the double standards of dealing with description of experimental information and temporal behaviour,
one has to consider the nonunitary description of temporal behaviour as a valid constituent of the
structure of quantum theoretic models. The nonunitary changes of quantitative representation can
be determined in an algebraic approach by nonunitary changes of algebraic states. Hence, in order
to provide such nonunitary description, one has to introduce some method of ‘updating’ the algebraic
state that corresponds to a specified information.

Note that in the current Section we can replace the use of a standard liouvillean of a global W˚-
dynamical system p𝒩 ,R, 𝛼q by a local quantum Poisson system pℳp𝒩 ,ℬq, ℎq, using the perturbations
of a local liouvillean 𝜋𝜔pD

F
𝜔ℎq by 𝐾𝜔 (and, dually, 𝐾𝜔 by 𝜋𝜔pD

F
𝜔ℎq). This localises the linearity of

a flow to a tangent space, allowing for a nonlinear generating function for the ‘causal’ part of the
dynamics. As a result, the above discussion can be applied to local action operator and its dual.
Yet, the localisation does not change the qualitative conclusions drawn from the above discussion, so
we have chosen to keep the presentation in maybe a bit more familiar global language. Because ℬ is
a Banach Lie algebra and ℳp𝒩 ,ℬq is constructed as a Banach Lie–Poisson submanifold, locally the
generators of causal dynamics will be always linear, so will be the flow determined by the Lie–Poisson
bracket t¨, ¨u.

Hence, in order to get nonlinear contributions to the effective dynamics, some other geometric
structure, beyond 𝜋𝜔pD

F
𝜔ℎq and 𝐾𝜔, has to be used. In particular, from the discussion in Section

2.4.3 it follows that, given a bundle of the GNS Hilbert spaces over a trajectory of faithful normal
states, a natural parallel transport operator is given by the standard unitary equivalence 𝑉𝜑,𝜓. The
corresponding connection ∇1{2 is a Levi-Civita connection of the Wigner–Yanase riemannian metric,
and the local geodesic ‘free fall’ along ∇1{2 corresponds to a norm projection in the (standard represen-
tation) Hilbert space, associated to a local continuous-time projective measurement. In this sense, the
connection ∇1{2 locally implements this what was an original intention of the nonhamiltonian part of
the histories functional, as exposed by the equations (247), (248), (252), and (253). In a discussion of
Savvidou’s action operator in Section 4.3 we have noticed that it does not restore this aspect of histo-
ries functional. Because the above algebraic action operator provides an exact algebraic generalisation
of Savvidou’s formulation, it shares the same feature. One can think of Savvidou’s ‘Liouville’ operator
𝑉 and modular hamiltonian 𝐾𝜔 as generators of ‘intrinsic’ kinematic automorphisms of, respectively,
a single Hilbert space ℋ or a single W˚-algebra 𝒩 . These should be taken into account when one pro-
vides a spatial representation of the ‘intrinsic’ causal automorphism of ℋ or 𝒩 , respectively, in terms
of a bundle of copies of ℋ or 𝒩 over a real line R. However, neither ei𝑠𝑉 or 𝜎𝜔𝑠 can be understood
as representing the changes between quantitatively distinct Hilbert spaces, corresponding to different

33In consequence, the range of applicability of the ‘unitary’ framework is usually extended by the use of additional
mathematical tools and techniques, like parameter fitting or renormalisation, which are explicitly nonunitary, but are
not considered as part of the content of the quantum theoretic model.

34According to this interpretation, the eigenvalues of operators can be specified with infinite precision (at least in
principle) by the quantitative results of experimental procedures, hence they have ontological meaning, and correspond
to the ‘possessed properties’ of ‘ontological quantum systems’, as opposed to ‘postulated properties’ of ‘quantum theoretic
models’. Unfortunately, this idealistic ontological interpretation does not apply to any actual experimental situation
without additional techniques of processing of the quantitative results of experimental procedures which render the
fundamental assumption of this interpretation false (or at least meaningless).
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measurements. In case of the Hilbert space based histories, this change requires to use the Berry
connection, while in the algebraic framework (as implemented systematically in Sections 2.5 and 3)
this requires to use the connection ∇1{2, corresponding to the parallel transport operator 𝑉𝜑,𝜓.35

4.6 W˚-geometric quantum histories

In [211, 139] we showed that the nonunitary change of quantum states due to Lüders’ rule (and other
rules, see also [245]) is a special case of the constrained minimisation of the quantum relative entropy
functional 𝐷0. Moreover, the local smooth geometry of the quantum models can be derived (under
mild conditions) as the subsequent terms of the Taylor expansion of any smooth information distance
𝐷. This leads to the idea [205, 206, 208] to use quantum relative entropy as a general tool of generating
nonunitary evolution of quantum states that takes into account the geometric structure of the quantum
model.

Taking into account the above discussion, we consider the connection ∇𝐷Ψ derived from a Brègman
distance 𝐷Ψ to be the appropriate replacement for the Berry connection used in the Anastopoulos–
Savvidou analysis, as well as for our own use of 𝐾𝜔 above. However, we are unfortunately lacking
the mathematical structure that would allow us to practically use other connection then ∇1{2, thus
below we will consider only this possibility. On the other hand, the affine Killing hamiltonian vector
field used in Sections 4.3 and 4.4 can be replaced by an arbitrary hamiltonian function ℎ on ℳp𝒩 q,
provided the latter is equipped with a BLP manifold structure. Those two substitutions allow us to
state the W˚-geometric versions of the formulas (246) and (255). On the differential geometric level
(and ignoring for a moment a functional analytic incompatibility between BLP, GNS, and quantum
information geometric manifold structures), the effective dynamics is described by the 1-form

ℱ “ dℎp𝜑q ´ d∇1{2p𝜑q, (308)

where d∇1{2 is a connection form of the Levi-Civita connection ∇1{2. This formula states that local
causal dynamics and local inferential dynamics participate to the same extent in the effective local
dynamics. Hence, neither inference nor causality is considered as more fundamental. The form ℱ can
be considered as a localisation of the causal inference instrument (3) that does not impose the ordering
on composition of causal and inferential dynamics.

In order to generalise the additional regularising riemannian term in (281) and (282), let us consider
the expansions

𝐷p𝜑` 𝜀𝑣, 𝜑q “
𝜀2

2
g𝐷𝑎𝑏p𝜑q𝑣

𝑎𝑣𝑏 `𝒪p𝜀3q (309)

and [290]

𝐷𝛾p𝜑` 𝜀𝑣, 𝜑q “
𝜀2

2
g
𝐷𝛾
𝑎𝑏 p𝜑q𝑣

𝑎𝑣𝑏 `
𝜀3

6
pΓ∇0

𝑎𝑏𝑐 ` Γ∇𝛾
𝑎𝑏𝑐 ` Γ∇1

𝑎𝑏𝑐q𝑣
𝑎𝑣𝑏𝑣𝑐 `𝒪p𝜀4q, (310)

where Γ∇
𝑎𝑏𝑐 are the Christoffel symbols of the corresponding connections. Setting 𝜀2 “ 1

𝜐 suggests us
to use the quantity

𝑃 𝛾,𝜖
𝑘,1,1 :“ e

´𝑘
ş

𝛾 d𝑡𝐷
´

𝜑p𝑡q`𝜀d𝜑p𝑡q
d𝑡

,𝜑p𝑡q
¯

b

detpg𝐷q (311)

as a generalised regulariser, where 𝑘 P R` is a constant. We interpret this object as a local quantum
entropic prior: an expression for a local prior measure representing user’s ignorance about the choice
of propagation between neighbouring states along a specific trajectory 𝛾 : r0, 𝑠s Ñ ℳp𝒩 q. See
Section 4.7 for a discussion of entropic priors in the commutative case. More specifically, (311) is
a localised quantum version of the 𝑃𝑘,1,1 prior. For 𝐷1{2p𝜎, 𝜌q “

1
2

ˇ

ˇ

ˇ

ˇ

?
𝜎 ´

?
𝜌
ˇ

ˇ

ˇ

ˇ

2

ℋ, this corresponds to

integrating against a local gaussian measure. The global Jeffreys prior
b

detpg𝐷1{2q appears already
in the Klauder–Maraner formula (287), as a constant (288), which sets a relationship between local
measure of uncertainty of inference and local generator of causal dynamics.

35As opposed to 𝐾𝜔, 𝑉𝜑,𝜓 cannot be used in the perturbation of the standard liouvillean, because it is a mapping
between two different standard representations, not an operator acting on a single Hilbert space.
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Thus, we propose to generalise the formula (282) to

lim
𝜀Ñ`0

ż

𝒟𝜑p¨qe
i
ş

𝛾 d𝑡xΩ𝜑p𝑡q,d∇1{2 p𝜑qΩ𝜑p𝑡qyℋ𝜑p𝑡q e
´i

ş

𝛾 d𝑡
A

Ω𝜑p𝑡q,𝜋𝜑p𝑡qpD
F
𝜑p𝑡q

ℎqΩ𝜑p𝑡q

E

ℋ𝜑p𝑡q

¨ e
´𝑘

ş

𝛾 d𝑡𝐷
´

𝜑p𝑡q`𝜀d𝜑p𝑡q
d𝑡

,𝜑p𝑡q
¯

b

detpg𝐷q. (312)

As discussed in Section 1.2, there are some legitimate reasons to believe that at least at the level of the
second order approximation of an entropic prior, the above formula can receive an exact foundation by
means of stochastic integration process. Yet, without a proof of this conjecture, the formula (312) has
now a status of a heuristic proposal. However, most of the applications of path integrals in theoretical
physics have precisely the same status (the exactness of the Daubechies–Klauder formula (282) is more
an exception than a rule).

The differences between the formulas (312) and (189) correspond to the standard differences be-
tween algebraic and path integral formulations. Both formulations admit introducing additional local
gauge and source terms, so they can be used to study various applied models. Taking a closer look at
the Daubechies–Klauder formula (282), one may note that the left side of this equation is formulated
without taking into consideration the possible changes of the GNS representation along the states,
because the coherent vector states are considered to be defined in a single Hilbert space. If such
changes would be considered (as we do it here), then an operator e´i𝐻𝑠 in (282) should be multiplied
from left by a corresponding standard unitary transition operator. This leads us to the conjecture:

(189) “ (312), (313)

if the left hand side of this equation is evaluated in terms of the MCP, instead of the GNS, Hilbert
space. While this conjecture is quite heuristic, it seems to be a legitimate candidate for a W˚-geometric
analogue of the Daubechies–Klauder propagator formula (282). A development of a suitable stochastic
calculus allowing for an exact mathematical treatment of (312), as well as the proof that the proposed
construction of MCP Hilbert space is well defined, are the necessary conditions to approach the problem
of proving this conjecture. Yet, in Section ??, based on the discussions in Sections 1.2.2, 2.4.3, and
5.3, we will propose another, more geometric approach to the equivalence intended behind the formula
(313), without requiring equality on the level of Hilbert bundles.

4.7 Appendix: Entropic priors on statistical models

To simplify the notation, whenever we will use the coordinate-dependent formulas in this Section, we
will assume that the statistical model ℳ :“ ℳp𝒳 ,fp𝒳 q, �̃�q Ď 𝐿1p𝒳 ,fp𝒳 q, �̃�q` is equipped with a
global coordinate system 𝜃 : Θ Ñℳ, where Θ Ď R𝑛 is open.

The entropic prior 𝑃𝑘,𝛼,𝛽 is defined in order to provide the general «statistical representation of the
[notion of the] vacuum of information in a given hypothesis space» [289]. Every probability measure
encodes some knowledge, hence the notion of the ‘vacuum of information’ has also to refer to some
given knowledge which defines it. The ‘vacuum of information’ is relative to the given information
manifold, and as such it is defined to depend on the invariant volume measure on the information
manifold, the Jeffreys prior [180]

𝒥 p𝜃q “
a

|detgp𝜃q|d𝜃1 ^ . . .^ 𝜃𝑛, (314)

which distributes prior probability over all hypothesis space, as well as on the initial reference density
𝑝0p𝑥, 𝜃q “ 𝑝0p𝑥|𝜃q𝑃 p𝜃q on 𝒳 ˆ Θ which sums up all additional reference knowledge (e.g., the quan-
titative results of previous experimental procedures) which will be encoded into the structure of the
vacuum of information.

In particular, when the reference knowledge consists only of model-independent information en-
coded in the density 𝑚p𝑥q, then the reference density factorises to 𝑝0p𝑥, 𝜃q “ 𝑚p𝑥q𝑃 p𝜃q. The entropic
prior build with respect to such factorisation encodes the ‘vacuum of information’ regarding the de-
pendence between the parameters Θ of the model ℳ and the initial knowledge 𝑚p𝑥q about the data
𝒳 .
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In the nonparametric formulation based on 𝐷𝛾 entropies for 𝛾 P r0, 1s, the entropic prior is
defined as such 𝑃𝑘,𝛼,𝛽 which minimises the functional [290]

inf
𝑃
p𝑘

ż

𝑃 p𝑝q𝐷𝛼p𝑝, 𝑝0q `𝐷𝛽p𝑃,𝒥 qq, (315)

where p𝛼, 𝛽q P r0, 1s ˆ r0, 1s, the distance 𝐷𝛼 is calculated over 𝒳 ˆΘ, the distance 𝐷𝛽 is calculated
over Θ, and the scalar 𝑘 ě 0 parametrises the preference of 𝑃 over 𝒥 with respect to the reference
density 𝑝0. In the parametric formulation, the functional minimised in (315) reads

𝑘𝐷𝛼p𝑝p𝑥|𝜃q𝑃 p𝜃q, 𝑝0p𝑥|𝜃q𝑃 p𝜃qq `𝐷𝛽p𝑃 p𝜃q,
a

|detgp𝜃q|d𝜃q. (316)

By definition, the entropic priors are minimisers of the estimation by expected loss (decision) functional
𝐷𝛼 under the constraint that the 𝐷𝛽-distance of entropic prior 𝑃 from volume measure 𝒥 does not
exceed some constant value. In other words, they express the degree of confidence in the reference
distribution, relatively to degree of confidence in volume measure invariance of 𝑃 .

The general solution of the above minimisation problem takes the form

𝑃𝑘,𝛼,𝛽 “ 𝑃𝑘,𝛼,𝛽𝒥 , (317)

where 𝑃𝑘,𝛼,𝛽p𝜃q is a scalar density which, up to normalisation, is equal to [290, 329, 330]

𝑃𝑘,𝛼,𝛽p𝜃q :“

#

1` 𝑘p1´ 𝛽q𝐷𝛼p𝑝𝜃, 𝑝0q
´ 2

1`𝛽 : 𝛽 ‰ 1,
expp´𝑘𝐷𝛼p𝑝𝜃, 𝑝0qq : 𝛽 “ 1,

(318)

under the condition that
𝑘𝑚𝑖𝑛 :“ inft𝑘 ě 0 |

ş

𝑃𝑘,𝛼,𝛽 ă 8u (319)

exists and 𝑘 ě 𝑘𝑚𝑖𝑛. If 𝑘𝑚𝑖𝑛 “ 0, then 𝑃0,𝛼,𝛽 is Jeffreys prior. On the other hand, 𝑃8,𝛼,𝛽 is the Dirac
delta concentrated on 𝑝0. Moreover, 𝑃𝑘,𝛼Pt0,1u,𝛽Pr0,1r is a multivariate Student 𝑡 distribution, 𝑃𝑘,𝛼,0 is
a generalised multivariate Cauchy distribution, 𝑃𝑘,𝛼,1 is a minimum 𝐷𝛼 prior density, and

𝑃𝑘,1,1p𝑝q “ e´𝑘𝐷1p𝑝,𝑝0q (320)

is a maximum relative entropy (= minimum 𝐷1 distance) prior density. If 𝑝0 is taken to be the
Bernoulli–Laplace uniform prior, then 𝑃1,1,1p𝑝q “ e´S𝐺𝑆p𝑝q is a maximum Gibbs–Shannon entropy
density (Jaynes prior [166]). A maximum Gibbs–Shannon entropy density can be also recovered as
𝑃8,1,1p𝑝q if 𝑝0 is an element of the exponential family. When no reference distribution (no background
information) is specified, then 𝑃𝑘,𝛼,𝛽 reduces trivially to Jeffreys’ prior. If the reference measure 𝑝0
does not belong to a manifold 𝒬 on which the minimisation procedure generating the entropic prior is
evaluated, then 𝑘 p1´ 𝛽q factor for 𝛽 ‰ 1 is replaced by a more general scalar quantity 𝑘, dependent
on the projection of 𝑝0 on 𝒬 (for details, see [329]).

If 𝑝0 is a maximum entropy distribution obtained under some given constraints, then the entropic
prior quantifies to what extent the densities other than 𝑝0 (within a given model) are less probable or
less reliable. The reliability of 𝑝p𝑥|𝜃q other than 𝑝0p𝑥|𝜃q decreases exponentially with the deviation of
𝑝p𝑥|𝜃q from 𝑝0p𝑥|𝜃q, and the sensitivity for this exponential decrease is controlled by the constant 𝑘.
In general, the larger 𝑘 is, the stronger is the impact of reference distribution (assumed background
information) on the inference provided with respect to the ‘vacuum of information’ 𝑃 p𝜃q. If the
reference hypothesis is built up from knowledge independent of the model (encoded in 𝑚p𝑥q), then the
larger 𝑘 is, the more preference is given to this independent knowledge. On the other hand, the smaller
𝑘 is, the more inference based on 𝑃 p𝜃q will depend on distributions other than 𝑝0p𝑥|𝜃q, so it becomes
easier for the eventual ‘noise’ in constraints to be taken by inference to be a ‘signal’. So, while 𝑘 Ñ 0
smoothens the prior, 𝑘 Ñ 8 sharpens it. Jeffreys’ and Jaynes’ (maximum Gibbs–Shannon entropy)
priors are just two extreme points of this scale.

The entropic priors 𝑃𝑘,1,1 are the only entropic priors on probabilistic manifold which are based on
the measure of distance which is coordinate invariant, local, consistent for independent subsystems and
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additive. This is a characterisation of 𝐷1 as a unique distance functional on the space of normalised
probability densitites used for the purpose of probability updating, as provided in [324, 325, 186].
Hence, they are the unique priors which encode the notion of coordinate invariant, local, additive,
and independent subsystem consistent ‘vacuum of information’. For more discussion on the topic of
entropic priors, see [328, 49, 51, 52, 288, 290, 331, 329].

5 Information theoretic renormalisation

In this section we will analyse another application of quantum information geometry for the purpoes
of inference over quantum models. We start from discussion of the Jaynes–Mitchell source theory
[241, 173, 177, 118, 120], which describes the general continuous changes of information states of an
exponential model driven by the sources of information. Next, we discuss Favretti’s [100] information
geometric generalisation of this theory to the setting of dually flat information manifolds. It allows for
a strictly geometric implementation of the idea of renormalisation of dynamics by reduction of dimen-
sionality of the model by fixing the control parameter, which is provided on the space of information
states (as opposed to the space of functions or operators). Our original contribution amounts to an
observation that the Jaynes–Mitchell–Favretti approach is canonically related to the use of Brègman
distances, so it can be used to locally approximate information dynamics on an arbitrary manifold of
quantum states. We discuss how this setting allows to use the departure of local geometry from the du-
ally flat smooth geometry (generated by quantum Brègman distances) as the geometric description of
multiparameter nonlinear quantum control and renormalisation problems. We also introduce another
type of geometric renormalisation of inferential dynamics of quantum states, which describes situations
where none of specific control (covariate) parameter is fixed, but the quantum model is subjected to
the action of completely positive maps. This procedure is based on the use of 𝐷f distances as well as
associated contraction coefficients, introduced by Ruskai et al [72, 64, 293, 227].

5.1 Jaynes–Mitchell source theory

Consider first an arbitrary statistical model ℳp𝒜q over finite boolean algebra36 𝒜 (with 𝑚 P N
denoting the number of elements of 𝒜), a set t𝑓𝑘u𝑛𝑘“1 of functions 𝑓𝑘 : 𝒜 Ñ R with 𝑛 P N, and
a change in the expectation x𝑓𝑘y𝑝, caused by the independent changes in both 𝑓𝑘p𝑥𝑖q “: 𝑓 𝑖𝑘 and
𝑝p𝑥𝑖q “: 𝑝𝑖,

𝛿 x𝑓𝑘y “
𝑚
ÿ

𝑖“1

𝑝𝑖𝛿𝑓
𝑖
𝑘 `

𝑚
ÿ

𝑖“1

𝑓 𝑖𝑘𝛿𝑝𝑖. (321)

If 𝑓𝑘 depends on some additional parameters 𝑟 “ p𝑟1, . . . , 𝑟𝑙q, such that

𝛿𝑓𝑘p𝑥𝑖, 𝑟q “
𝑙
ÿ

𝑗“1

B𝑓𝑘p𝑥𝑖, 𝑟q

B𝑟𝑗
𝛿𝑟𝑗 , (322)

then the first term of (321) reads

𝑚
ÿ

𝑖“1

𝑝𝑖𝛿𝑓
𝑖
𝑘 “ x𝛿𝑓𝑘y𝑝 “

C

𝑙
ÿ

𝑗“1

B𝑓𝑘
B𝑟𝑗

𝛿𝑟𝑗

G

𝑝

“: 𝛿𝑊𝑘. (323)

We denote the second term of (321) by 𝛿𝑄𝑘, so

𝛿𝑄𝑘 :“
𝑚
ÿ

𝑖“1

𝑓 𝑖𝑘𝛿𝑝𝑖 “ 𝛿 x𝑓𝑘y𝑝 ´ x𝛿𝑓𝑘y𝑝 , (324)

36For the reasons of mathematical fanciness, we occasionally consider the sets ℳp𝒜q Ď 𝐿1p𝒜q` of finite positive
measures over localisable boolean algebras 𝒜, but this is completely equivalent to consideration of localisable measure
spaces ℳp𝒳 ,fp𝒳 q, �̃�q Ď 𝐿1p𝒳 ,fp𝒳 q, �̃�q`.
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which gives
𝛿 x𝑓𝑘y𝑝 “ 𝛿𝑊𝑘 ` 𝛿𝑄𝑘. (325)

Consider now an exponential family defined as an 𝑛-dimensional parametric probabilistic man-
ifold [76, 202, 276]

ℳexpp𝒳 ,fp𝒳 q, �̃�q :“ t𝑝px , 𝜃q :“ expp´ log𝑍p𝜃q ´
ř𝑛
𝑖“1 𝜃

𝑖𝑓𝑖px qq | 𝜃 :“ p𝜃1, . . . , 𝜃𝑛q P Θ Ď R𝑛u, (326)

where 𝑓𝑖 : 𝒳 Ñ R are assumed to be arbitrary functions, linearly independent of each other and of the
constant function 1 (this guarantees that 𝜃 ÞÑ 𝑝p𝜃q is one-to-one and that the matrix g𝑖𝑗 is invertible
[366]),

log𝑍p𝜃q :“ log

ż

𝒳
�̃�px q exp

˜

´

𝑛
ÿ

𝑖“1

𝜃𝑖𝑓𝑖px q

¸

(327)

is a factor arising from normalisation condition
ş

𝒳 �̃�px q𝑝px , 𝜃q “ 1, called a Massieu functional
[238, 239], while Θ Ď R𝑛 is supposed to be such open set that the integral in (327) converges. The study
of geometric properties of this family provided an original stimulus for development of information
geometry [55, 59, 93, 6]. In particular, Chencov found [55, 57] that the finite dimensional exponential
families are geodesic surfaces of ∇0-connections and admit the generalised pythagorean equation (144)
for the Kullback–Leibler distance.

If dim𝒳 “: 𝑚 ă 8, then
ş

𝒳 �̃�px q𝑘px q “
ř𝑚
𝑗“1 𝑘px𝑗q for any 𝑘 : 𝒳 Ñ R. In such case ℳexpp𝒳 ,fp𝒳 q, �̃�q

can be characterised in terms of the Gibbs–Jaynes [112, 166] procedure of maximisation of the Gibbs–
Shannon entropy [112, 316, 317]

SGSp𝑝q :“ ´
𝑚
ÿ

𝑗“1

𝑝px𝑗q log 𝑝px𝑗q (328)

subject to constraints 𝐹 p𝑝q given by
" ř𝑚

𝑗“1 𝑝px𝑗q1 “ 1,
ř𝑚
𝑗“1 𝑝px𝑗q𝑓𝑖px𝑗q “ 𝜂𝑖,

(329)

with 𝜂 :“ p𝜂𝑖q P Ξ Ď R𝑛. The maximum value attained by SGS for a given p𝜂𝑖q (or, equivalently, for a
given p𝜃𝑖q), reads

SGSp𝑝p𝜃qq “ log𝑍p𝜃q `
𝑛
ÿ

𝑖“1

𝜃𝑖𝜂𝑖. (330)

If 𝑝 belongs to an exponential family with 𝜆𝑘 :“ 𝜃𝑘, 𝑘 P t1, . . . , 𝑛u, then the corresponding change
in entropy reads

𝛿SGS “ 𝛿 log𝑍p𝜆q ` 𝛿

˜

𝑛
ÿ

𝑘“1

𝜆𝑘 x𝑓𝑘y𝑝

¸

“ ´
1

𝑍

˜

𝑛
ÿ

𝑘“1

𝛿𝜆𝑘𝑓
𝑖
𝑘 `

𝑛
ÿ

𝑘“1

𝜆𝑘𝛿𝑓
𝑖
𝑘

¸

e´
ř𝑛
𝑘“1 𝜆𝑘𝑓

𝑖
𝑘 `

𝑛
ÿ

𝑘“1

𝛿𝜆𝑘 x𝑓𝑘y𝑝 `
𝑛
ÿ

𝑘“1

𝜆𝑘𝛿 x𝑓𝑘y𝑝

“

𝑛
ÿ

𝑘“1

𝜆𝑘p𝛿 x𝑓𝑘y𝑝 ´ x𝛿𝑓𝑘y𝑝q “
𝑛
ÿ

𝑘“1

𝜆𝑘𝛿𝑄𝑘. (331)

Due to (322),
ř𝑛
𝑘“1 𝜆𝑘𝛿𝑄𝑘p

@

𝑓
r𝑘

D

𝑝
, 𝑟q is an exact differential of SGSp

@

𝑓
r𝑘

D

𝑝
, 𝑟q, even if 𝛿𝑄𝑘p

@

𝑓
r𝑘

D

𝑝
, 𝑟q is

not an exact differential of any function. Thus, (331) is equivalent to

𝛿SGS “

𝑛
ÿ

𝑘“1

𝜆𝑘𝛿 x𝑓𝑘y𝑝 ´
𝑛
ÿ

𝑘“1

𝑙
ÿ

𝑗“1

𝜆𝑘

B

B𝑓𝑘
B𝑟𝑗

F

𝑝

𝛿𝑟𝑗 (332)
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and
BSGSpx𝑓𝑘y𝑝 , 𝑟q

B x𝑓𝑘y𝑝

ˇ

ˇ

ˇ

ˇ

ˇ

𝑟“const

“ 𝜆𝑘. (333)

These results are completely analogous to the first law of equilibrium thermodynamics. The change of
‘information work’ 𝑊𝑘 is dependent only on the changes of quantity 𝑓𝑘. The change of ‘information
heat’ 𝑄𝑘 and of absolute entropy SGS depends only on the change of information state provided by
probability 𝑝. While having the same mathematical form, the above results are completely independent
of thermodynamics and hold for any exponential family. The first law of equilibrium thermodynamics
is just a special case of the above result.

Let us now consider a three dimensional exponential family

ℳexpp𝒳 ,fp𝒳 q, �̃�; Θq :“

"

𝑝p𝜆𝐴, 𝜆𝐵, 𝜆𝐶q “
1

𝑍
e´𝜆𝐴𝑓𝐴p𝑥q´𝜆𝐵𝑓𝐵p𝑥q´𝜆𝐶𝑓𝐶p𝑥q | p𝜆𝐴, 𝜆𝐵, 𝜆𝐶q P Θ

*

, (334)

where 𝑓𝐴, 𝑓𝐵, 𝑓𝐶 P 𝐿8p𝒳 ,fp𝒳 q, �̃�q, and Θ Ď R3 is some fixed open set. Let the change of information
be described by x𝑓𝐴y𝑝 Ñ x𝑓𝐴y𝑝 ` 𝛿 x𝑓𝐴y𝑝 with the additional conditions that the possible changes of
x𝑓𝐵y𝑝 are left unconstrained (𝛿𝜆𝐵 “ 0 but we allow 𝛿 x𝑓𝐵y𝑝 ‰ 0), and it is known that x𝑓𝐶y𝑝 does not
change (𝛿 x𝑓𝐶y𝑝 “ 0 but we allow 𝛿𝜆𝐶 ‰ 0). The quantity x𝑓𝐴y𝑝 is called a ‘driving variable’. Thus,
we consider a source-and-response problem with an additional control variable:

𝛿 x𝑓𝐴y “ 0, 𝛿𝜆𝐴 ‰ 0 ‘driving variable’ (source parameter)
𝛿 x𝑓𝐵y ‰ 0, 𝛿𝜆𝐵 “ 0 ‘information heat bath’ (response parameter)
𝛿 x𝑓𝐶y “ 0, 𝛿𝜆𝐶 ‰ 0 ‘control variable’ (additional source)

Following Mitchell and Jaynes, will now provide an answer to a question: how the presence of the
second source affects the relationship between first source and the response parameter?

Given some finite dimensional statistical model ℳp𝒜q parametrised by a coordinate system 𝜆 :
ℳp𝒜q Ñ 𝑈 Ď R𝑛 with 𝑛 :“ dimpℳp𝒜qq, then the general form of the variation of an expectation
functional x𝑓y𝑝 for some element 𝑝p𝜆0q Pℳp𝒜q reads

𝛿 x𝑓y𝑝 :“ x𝑓y𝑝p𝜆q ´ x𝑓y𝑝p𝜆0q “
8
ÿ

𝑖“1

1

𝑖!

ÿ

p𝑗1,...,𝑗𝑖q

B𝑖 x𝑓y𝑝p𝜆q

B𝜆𝑗1 ¨ ¨ ¨ B𝜆𝑗𝑖

ˇ

ˇ

ˇ

ˇ

ˇ

𝜆“𝜆0

𝛿𝜆𝑗1 ¨ ¨ ¨ 𝛿𝜆𝑗𝑖 . (335)

The first order term of (335) (corresponding to the linear character of variation) reads

𝛿 x𝑓y𝑝 “
𝑛
ÿ

𝑗“1

B x𝑓y𝑝
B𝜆𝑗

𝛿𝜆𝑗 . (336)

In the case of exponential model ℳexpp𝒜; Θq, from the equations (336) and

𝐾𝑖𝑗 “
B2 log𝑍p𝜆q

B𝜃𝑖B𝜃𝑗
“ ´

B x𝑓𝑖y𝑝
B𝜆𝑗

“ ´
B x𝑓𝑗y𝑝
B𝜆𝑖

, (337)

it follows that the relationship between ‘fluxes of information’ 𝛿 x𝑓𝑘y𝑝 and ‘forces of information’ p´𝛿𝜆𝑘q
can be determined in the first (linear) order by the covariance matrix37

¨

˝

𝛿 x𝑓𝐴y𝑝
𝛿 x𝑓𝐵y𝑝
𝛿 x𝑓𝐶y𝑝

˛

‚“ ´

¨

˝

𝐾𝐴𝐴 𝐾𝐴𝐵 𝐾𝐴𝐶

𝐾𝐵𝐴 𝐾𝐵𝐵 𝐾𝐵𝐶

𝐾𝐶𝐴 𝐾𝐶𝐵 𝐾𝐶𝐶

˛

‚

¨

˝

𝛿𝜆𝐴
𝛿𝜆𝐵
𝛿𝜆𝐶

˛

‚. (338)

37In this terminology 𝜆𝑘 play the role of the ‘potentials of information’, but this should not be confused with the
‘scalar potentials’ Ψ and ΨL on hessian manifolds, such as ´ log𝑍p𝑝q and SGSp𝑝q (which play the role of information
discrimination functionals).
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Hence,

𝛿𝜆𝐶 “ ´
𝐾𝐶𝐴

𝐾𝐶𝐶
𝛿𝜆𝐴, (339)

which means that 𝛿𝜆𝐶 and 𝛿𝜆𝐴 are not independent of each other. This is also reflected in the second
equation following from (338), namely

𝛿 x𝑓𝐴y𝑝 “ ´𝛿𝜆𝐴

ˆ

𝐾𝐴𝐴 ´
𝐾2
𝐴𝐶

𝐾𝐶𝐶

˙

, (340)

which is equivalent to
𝛿 x𝑓𝐴y𝑝
𝛿𝜆𝐴

“
B x𝑓𝐴y𝑝
B𝜆𝐴

´
𝐾2
𝐴𝐶

𝐾𝐶𝐶
. (341)

If we decide to consider only the variables x𝑓𝐴y𝑝 and x𝑓𝐵y𝑝 (removing x𝑓𝐶y𝑝 from the definition of the
problem), then the covariance matrix of the problem takes the form

ˆ

𝛿 x𝑓𝐴y𝑝
𝛿 x𝑓𝐵y𝑝

˙

“ ´

ˆ

𝐾𝐴𝐴 𝐾𝐴𝐵

𝐾𝐵𝐴 𝐾𝐵𝐵

˙ˆ

𝛿𝜆𝐴
𝛿𝜆𝐵

˙

. (342)

From the assumption that there are no additional parameters 𝑟 of control associated with the element
𝑓𝐴 of the abstract algebra (that is, x𝛿𝑓𝐴y𝑝 “ 0), it follows that 𝛿 x𝑓𝐴y𝑝 “ 𝛿𝑄𝐴. In such case the above
equation turns into

𝛿 x𝑓𝐵y𝑝 “
𝐾𝐵𝐴

𝐾𝐴𝐴
𝛿𝑄𝐴. (343)

Hence, the changes of x𝑓𝐵y𝑝 are driven by the ‘source of information’ 𝛿𝑄𝐴. We will call the correspond-
ing evolution of probability distribution 𝑝p𝜆𝐴, 𝜆𝐵, 𝜆𝐶q P ℳexpp𝒜; Θq an ‘information driving’. The
number of different variables is not limited to three, but three variables are sufficient to describe all
possible types of constraints. Mitchell [241] has shown that the readjustment of expectation values of
functions t𝑓𝑘u under driving caused by sources of information can be described the following equivalent
principles:

i) expectations uncorrelated with driven variables remain unchanged,

ii) Lagrange multipliers of unconstrained variables remain unchanged,

iii) SGS is re-maximised under new values of constraints.

Now we move to the problem of renormalisation of sources, which amounts to removing the variable
𝐶 from the definition of the model, while keeping it as a constraint in the allowed transformations
of variables (information flows). Consider again the covariance matrix (338), with the constraint
𝛿 x𝑓𝐶y𝑝 “ 0. A direct calculation shows that the relationships between ‘fluxes’ and ‘forces’ of informa-
tion related with 𝐴 and 𝐵 can be completely described by the covariance matrix

ˆ

𝛿 x𝑓𝐴y𝑝
𝛿 x𝑓𝐵y𝑝

˙

“ ´

ˆ

�̃�𝐴𝐴 �̃�𝐴𝐵

�̃�𝐵𝐴 �̃�𝐵𝐵

˙ˆ

𝛿𝜆𝐴
𝛿𝜆𝐵

˙

, (344)

where
$

’

’

&

’

’

%

�̃�𝐴𝐴 :“ 𝐾𝐴𝐴 ´𝐾𝐴𝐶𝐾
´1
𝐶𝐶𝐾𝐶𝐴

�̃�𝐴𝐵 :“ 𝐾𝐴𝐵 ´𝐾𝐴𝐶𝐾
´1
𝐶𝐶𝐾𝐶𝐵

�̃�𝐵𝐴 :“ 𝐾𝐵𝐴 ´𝐾𝐵𝐶𝐾
´1
𝐶𝐶𝐾𝐶𝐴

�̃�𝐵𝐵 :“ 𝐾𝐵𝐵 ´𝐾𝐵𝐶𝐾
´1
𝐶𝐶𝐾𝐶𝐵.

(345)

The covariance matrix (344) can be thought of as a ‘renormalised’ version of the covariance matrix
(342), where the dependence on an additional correlated information related to variable 𝐶 is taken
into account. Assuming again that 𝛿𝜆𝐵 “ 0 and x𝛿𝑓𝐴y𝑝 “ 0, the predicted change of x𝑓𝐵y𝑝 due to the
action of the source 𝛿𝑄𝐴 takes the form

𝛿 x𝑓𝐵y𝑝 “
�̃�𝐵𝐴

�̃�𝐴𝐴

𝛿𝑄𝐴 “

ˆ

𝐾𝐵𝐴

𝐾𝐴𝐴
´
𝐾𝐵𝐶

𝐾𝐶𝐶

𝐾𝐶𝐴

𝐾𝐴𝐴

˙

𝛿�̃�𝐴, (346)
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where
𝛿�̃�𝐴 :“

𝛿𝑄𝐴
p1´𝑅2

𝐴𝐶q
(347)

is the ‘renormalised information source strength’, while

𝑅𝐴𝐶 :“
𝐾𝐴𝐶

p𝐾𝐴𝐴𝐾𝐶𝐶q
1
2

(348)

is the correlation coefficient. In other words, the additional constraint (𝛿 x𝑓𝐶y𝑝 “ 0) imposed on the
information related to an additional variable that is correlated with the driving variable (x𝑓𝐴y𝑝) is
observed in ‘renormalisation’ of the action of the driving source (𝛿𝑄𝐴) on the dimensionally ‘reduced’
system of variables (without x𝑓𝐶y𝑝):

𝛿 x𝑓𝐵y𝑝 “
�̃�𝐵𝐴

�̃�𝐴𝐴

𝛿𝑄𝐴
1´𝑅2

𝐴𝐶

. (349)

Now, if 𝑅𝐴𝐶 has a spectral radius smaller than 1, one can expand the renormalisation factor in (347)
and (349),

p1´𝑅2
𝐴𝐶q

´1 “

8
ÿ

𝑛“0

p𝑅2
𝐴𝐶q

𝑛 “ 1`𝑅2
𝐴𝐶 `𝑅

4
𝐴𝐶 ` . . . . (350)

Defining the ‘propagators’ 𝒢𝑖𝑗 :“ ´𝐾𝑖𝑗𝐾
´1
𝑗𝑗 , one can expand (346) in the form

𝛿 x𝑓𝐵y𝑝 “ p𝒢𝐵𝐴 ´ 𝒢𝐵𝐶𝒢𝐶𝐴 ` 𝒢𝐵𝐴𝒢𝐴𝐶𝒢𝐶𝐴 ´ 𝒢𝐵𝐶𝒢𝐶𝐴𝒢𝐴𝐶𝒢𝐶𝐴 ` . . .q𝛿𝑄𝐴. (351)

Thus, the dimensional reduction of the information model which removes from the scope the corre-
lated constrained variable changes the description of information flow, which can be recasted in terms
of perturbative series of propagators between the ‘sources’ of driving variables and ‘information fluxes’
of driven variables (‘sinks’) that are mediated by the “virtual” (removed) variable. Comparison of
(336) with (335) leads us to note, following Jaynes, that the above effects appear at the first level of
perturbative expansion in powers of information source strength. In consequence, the corresponding
classification of approximated results is provided by the degree of fine tuning of the available informa-
tion. This brings a clear meaning to the perturbative expansion and renormalisation as the process of
classification of approximated description of the quantitative effects of change of information with re-
spect to the degree of quantitative refinement of this information (which is given by information source
strength). This approximation does not refer to any additional ‘theoretical’ or ‘physical’ dimensional
constant parameters and keeps the values and meaning of the constants defining experimental re-
sponse scales, etc., to be fixed by definition and not entering the scene. Thus, there is also no need
for ‘renormalisation’ of these constants, avoiding the conceptual problems which are always caused by
such procedure.

5.2 Favretti’s dually flat geometrisation

Now we turn to reformulation and generalisation of the Jaynes–Mitchell source theory provided by
Favretti [100]. Suppose that ℳp𝒜q is a probability manifold with dimℳp𝒜q “ 𝑛 P N, equipped
with the pair of coordinate systems p𝜃, 𝜂q : ℳp𝒜q Ñ Θ ˆ Ξ Ď R𝑛 ˆ R𝑛. Let the information about
trajectory 𝑝p𝑡q Pℳp𝒜q be specified as the constraints expressed in terms of both coordinate systems:

"

𝐹1p𝜃p𝑝q, 𝑡q “ 0,
𝐹2p𝜂p𝑝q, 𝑡q “ 0.

(352)

Favretti shows that under additional assumption that ℳp𝒜q is equipped also with a riemannian metric
g and a pair of affine connections p∇𝜃,∇𝜂q such that pℳp𝒜q,g,∇𝜃,∇𝜂q is a dually flat manifold with
a dually flat coordinate system given by p𝜃, 𝜂q (see Section 2.4.1), the implicit function theorem allows
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one to describe geometrically the evolution 𝑝p𝑡q quantitatively, in terms of one of these coordinate
systems.

Let the scalar potential functions determined by the above dually flat geometry be denoted by
Ψp𝜃q :“ Ψ ˝ 𝜃 and ΨLp𝜂q :“ ΨL ˝ 𝜂, where ΨL is a Fenchel dual of Ψ with respect to (114). Consider
the diagram

ℳp𝒜q
𝜂

{{

𝜃

$$
Ξ

L´1
Ψ //

𝜋Ξ
𝐴
��

Θ
LΨ

oo

𝜋Θ
𝐵
��

Ξ𝐴

p𝜋Ξ
𝐴q
´1

OO

Θ𝐵,

p𝜋Θ
𝐵q
´1

OO

(353)

where L´1Ψ : Ξ Ñ Θ and LΨ : Θ Ñ Ξ are the Legendre transforms given by smooth diffeomorphisms,
which are expressed in coordinate-dependent way as

𝜃𝑖 “ pL´1Ψ p𝜂qq
𝑖 “

B

B𝜂𝑖
ΨLp𝜂q “: B𝑖ΨLp𝜂q, (354)

𝜂𝑖 “ pLΨp𝜃qq𝑖 “
B

B𝜃𝑖
Ψp𝜃q “: B𝑖Ψp𝜃q, (355)

while

𝜋Ξ𝐴 : Ξ Q 𝜂 ÞÑ 𝜂𝐴 P 𝐴 Ď R𝑘, (356)

𝜋Θ𝐵 : Θ Q 𝜃 ÞÑ 𝜃𝐵 P 𝐵 Ď R𝑛´𝑘, (357)

are projections with

𝜂 “ p𝜂𝐴, 𝜂𝐵q P R𝑘 ˆ R𝑛´𝑘, (358)

𝜃 “ p𝜃𝐴, 𝜃𝐵q P R𝑘 ˆ R𝑛´𝑘. (359)

The maps 𝜋Ξ𝐴 and 𝜋Θ𝐵 , when equipped with particular values at their codomain (denoted here, re-
spectively, by 𝜂𝐴 P Ξ𝐴 Ď R𝑘 and 𝜃𝐵 P Θ𝐵 Ď R𝑛´𝑘), provide an example of the constraints (352):

"

𝜂𝐴p𝑝p𝑡qq “ 𝜋Ξ𝐴p𝜂p𝑝p𝑡qqq “ 𝜂𝐴,
𝜃𝐵p𝑝p𝑡qq “ 𝜋Θ𝐵p𝜃p𝑝p𝑡qqq “ 𝜃𝐵.

(360)

The subspaces Ξ𝐴 and Θ𝐵 denote, respectively, the range of the values 𝜂𝐴 and 𝜃𝐵 of the constraints
𝜋Ξ𝐴 and 𝜋Θ𝐵 . The fibres corresponding to these projections are given by

ℳΞp𝜂𝐴q :“ p𝜋Ξ𝐴q
´1p𝜂𝐴q “ t𝜂 P Ξ | 𝜂𝐴 “ 𝜂𝐴u Ď Ξ, (361)

ℳΘp𝜃
𝐵q :“ p𝜋𝜃𝐵q

´1p𝜃𝐵q “ t𝜃 P Θ | 𝜃𝐵 “ 𝜃𝐵u Ď Θ, (362)

and they induce the corresponding leaves of a pair of foliations of ℳp𝒜q by

ℳp𝜂𝐴q :“ t𝑝 Pℳp𝒜q | p𝜋Ξ𝐴 ˝ 𝜂qp𝑝q “ 𝜂𝐴u, (363)

ℳp𝜃𝐵q :“ t𝑝 Pℳp𝒜q | p𝜋Θ𝐵 ˝ 𝜃qp𝑝q “ 𝜃𝐵u, (364)

with
ď

𝜃𝐵PΘ𝐵

ℳp𝜃𝐵q “ℳp𝒜q “
ď

𝜂𝐴PΞ𝐴

ℳp𝜂𝐴q. (365)

Using the orthogonality (110) of the coordinate systems 𝜃𝑗 and 𝜂𝑖, Favretti shows that the tangent
space at the point 𝑝 Pℳp𝜃𝐵q Xℳp𝜂𝐴q has the following orthogonal decomposition

T𝑝ℳp𝒜q “ T𝑝ℳp𝜃𝐵q ‘T𝑝ℳp𝜂𝐴q “ spantB1, . . . , B𝑘u ‘ spantB𝑘`1, . . . , B𝑛u. (366)
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For any 𝑎 P Ξ𝐴 and 𝑏 P Θ𝐵, the leaves ℳp𝑎q and ℳp𝑏q are, respectively, ∇𝜂- and ∇𝜃- autoparallel
submanifolds of ℳp𝒜q, hence they are called mutually dual foliations. Favretti observes that this
allows to consider the evolution 𝑡 ÞÑ 𝑝p𝑡q geometrically, as a horizontal lift with respect to an integrable
Ehresmann connection.

Let us now assume that ℳp𝒜q is an p𝑛`𝑚q-dimensional dually flat probability manifold equipped
with the projections (356)-(359), as well as with an additional projection generated by

𝜋Ξ𝐶 : Ξ Q 𝜂 ÞÑ 𝜂𝐶 P Ξ𝐶 Ď R𝑚, (367)

where 𝜂 “ p𝜂𝐴, 𝜂𝐵, 𝜂𝐶q P R𝑘 ˆ R𝑛´𝑘 ˆ R𝑚. One can introduce the foliation ℳp𝜂𝐶q, corresponding
to the constraint 𝜂𝐴 ´ 𝜂𝐴 “ 0, in the same way as before. In such case the pairs of mutually dual
foliations are given by ℳp𝜂𝐴, 𝜂𝐶q, ℳp𝜃𝐵q and ℳp𝜂𝐶q, ℳp𝜃𝐴, 𝜃𝐵q. However, ℳp𝜂𝐶q, ℳp𝜃𝐵q are not
mutually dual.

This setting allows for the geometric generalisation of the source renormalisation procedure in the
following form. Let temporal evolution 𝑡 ÞÑ 𝑝p𝑡q satisfy the constraints 𝜃𝐵p𝑡q “ 𝜃𝐵 and 𝜂𝐶p𝑡q “ 𝜂𝐶 ,
that is,

"

𝜃𝐵p𝑝p𝑡qq “ p𝜋Θ𝐵 ˝ 𝜃qp𝑝p𝑡qq ´ 𝜃
𝐵 “ 0,

𝜂𝐶p𝑝p𝑡qq “ p𝜋
Ξ
𝐶 ˝ 𝜂qp𝑝p𝑡qq ´ 𝜂𝐶 “ 0,

(368)

then
𝑝p𝑡q Pℳp𝜃𝐵q Xℳp𝜂𝐶q. (369)

These conditions rephrase the Jaynes–Mitchell conditions 𝛿𝜆𝐵 “ 0 and 𝛿 x𝑓𝐶y “ 0 in the information
geometric terms. Now one can find what is the form of evolution determined by these constraints, if
changes of information are specified by the temporally driven ‘response’ parameters 𝜂𝐴 “ 𝜂𝐴p𝑡q (which
corresponds to the ‘driving variable’ x𝑓𝐴y). The constraints (368) on the evolution can be restated
using (354) in the form

B𝐵ΨLp𝜂𝐴p𝑡q, 𝜂𝐵p𝑡q, 𝜂𝐶q ´ 𝜃
𝐵 “ 0. (370)

Favretti has shown that the implicit function theorem applied to (370) implies the existence of a
smooth map

ℎ : Ξ𝐴 ˆ Ξ𝐶 Q p𝜂𝐴, 𝜂𝐶q ÞÑ 𝜂𝐵 P R𝑛´𝑘 (371)

such that

𝜂𝐵p𝑡q “ ℎp𝜂𝐴p𝑡q, 𝜂𝐶q, (372)

9𝜂𝐵p𝑡q “ B
𝐴ℎp𝜂𝐴p𝑡q, 𝜂𝐶q 9𝜂𝐴p𝑡q, (373)

ℎp𝜂𝐴p𝑡q, 𝜂𝐶q “ ´
`

pB𝐵B𝐵ΨLq´1B𝐴B𝐵ΨL
˘
ˇ

ˇ

𝜂𝐵“ℎp𝜂𝐴p𝑡q,𝜂𝐶q
. (374)

By the assumption of dual flatness, this gives also

9𝜂𝐵p𝑡q “ pΨ̃,𝐵𝐴pΨ̃,𝐴𝐴q
´1q|𝜃“𝜃 9𝜂𝐴p𝑡q “: 𝒢𝐵𝐴p𝜃q 9𝜂𝐴p𝑡q, (375)

where

pΨLq,𝑖𝑗 :“ B𝑖B𝑗ΨL ”
B2ΨLp𝜂q

B𝜂𝑖B𝜂𝑗
“ g𝑖𝑗p𝜂q, (376)

Ψ,𝑖𝑗 :“ B𝑖B𝑗Ψ ”
B2Ψp𝜃q

B𝜃𝑖B𝜃𝑗
“ g𝑖𝑗p𝜃q, (377)

and

𝜃 :“ L´1Ψ p𝜂𝐴, ℎp𝜂𝐴p𝑡q, 𝜂𝐶q, 𝜂𝐶q, (378)

Ψ̃,𝐵𝐴 :“ Ψ,𝐵𝐴 ´Ψ,𝐵𝐶pΨ,𝐶𝐶q
´1Ψ,𝐶𝐴, (379)

Ψ̃,𝐴𝐴 :“ Ψ,𝐴𝐴pI´𝑅2
𝐴𝐶q, (380)

𝑅2
𝐴𝐶 :“ pΨ,𝐴𝐴q

´1Ψ,𝐴𝐶pΨ,𝐶𝐶q
´1Ψ,𝐶𝐴. (381)
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The equation (375) can be written more explicitly as

d𝜂𝐵p𝑝p𝑡qq “ g𝐵𝐴p𝑝p𝑡qq
1

I´𝑅2
𝐴𝐶p𝑝p𝑡qq

pg𝐴𝐴p𝑝p𝑡qqq
´1 d𝜂𝐴p𝑝p𝑡qq. (382)

From (380) it follows that
pΨ̃,𝐴𝐴q

´1 “ pI´𝑅2
𝐴𝐶q

´1pΨ,𝐴𝐴q
´1, (383)

hence, if 𝑅𝐴𝐶 has a spectral radius smaller than 1, one can use (350), which leads to the perturbative
expansion in terms of corrections that come from interaction with the additional source,

𝒢𝐵𝐴 “ Ψ̃,𝐵𝐴pI´𝑅2
𝐴𝐶q

´1pΨ,𝐴𝐴q
´1 “ 𝒢𝐵𝐴 ´ 𝒢𝐵𝐶𝒢𝐶𝐴 ` 𝒢𝐵𝐴𝒢𝐴𝐶𝒢𝐶𝐴 ` . . . , (384)

where
𝒢𝑖𝑗 :“ Ψ,𝑖𝑗pΨ,𝑗𝑗q

´1 (385)

For d𝜂𝐵 “ 9𝜂𝐵p𝑡qd𝑡, d𝜂𝐴 “ 9𝜂𝐴p𝑡qd𝑡, the above expression takes the form

d𝜂𝐵 “ p𝒢𝐵𝐴 ´ 𝒢𝐵𝐶𝒢𝐶𝐴 ` 𝒢𝐵𝐴𝒢𝐴𝐶𝒢𝐶𝐴 ´ . . .qd𝜂𝐴, (386)

which is a generalisation of (351). Hence, the additional constraint d𝜂𝐶 “ 0 acts as a source of
information, which imposes nontrivial corrections in the relationship between the evolution of d𝜂𝐴 and
d𝜂𝐵, that are perturbatively described by equation (386). Note that the implicit function theorem
does not provide an explicit form of the function ℎ. Thus, one may need to integrate the equation
(373). The equation (386) provides a perturbative approximation of (373), which can be subjected to
integration. This might be called a ‘perturbative renormalisation’ or ‘inferential scattering’ of 𝒢𝐵𝐴.

5.3 Brègman distance and nonlinear quantum control

An important feature of the Jaynes–Mitchell theory is that it allows to consider not only the ‘source’
(‘input’, ‘configuration’) and ‘response’ (‘output’, ‘registration’) variables, but also the ‘control’ (‘co-
variate’) variables, defined as fixed parameters of the model. The constraints imposed by these fixed
variables can be factored out from the relationship between causes and effects, but at the price of
‘renormalisation’ of the source terms. It amounts to reduction of the dimensionality of the model
(removing the dimensions described by control parameters) and subsequent rescaling of the remaining
source terms by the ‘renormalisation factors’. Thus, one can eliminate control parameter from the
model construction at the price of renormalisation of the source terms that determine the information
dynamics. This procedure is nonperturbative and geometric, but under certain conditions it can be
expanded in the perturbative series of corrections. Quite remarkably, the renormalisation factor that
appears at the first order of expansion in powers of source strength can be perturbatively expanded in
an infinite series of corrections, which contain all orders of interaction effects with the ‘virtual’ source
terms that can be associated with the factored-out ‘control’ variables.38

Besides generalisation from exponential families to dually flat manifolds, the information geometric
framework introduces important conceptual change: the ‘source’, ‘response’, and ‘control’ variables
are no longer associated with particular functions on the sample space, but rather with the partic-
ular coordinate variables on the information model. As discussed in Section 1.1, all these variables
form specific examples of observables in our approach to quantum foundations. As a consequence,
renormalisation of sources can be considered exactly as a transformation of information models that
amounts to ‘coarse graining’ and subsequent rescaling. The coarse graining provides a a reduction of
dimension of the model that is preserving the operational definitions of the coordinate variables on a
submodel, but at the price of redefinition of their functional relationship by means of change of the
local geometry of the model from dually flat to curved one.

38This phenomenon was first observed in the Heims–Jaynes analysis of the gyromagnetic effect [138], and appeared
later also in Jaynes’ analysis of the Rayleigh acoustic scattering [173, 177] and (independently) in Schwinger’s source
theory [309, 310].
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In principle, the change of an information state 𝜑 P ℳp𝒜q or 𝜑 P ℳp𝒩 q, associated with an
integrable real function 𝑓 over 𝒜 or an operator 𝑓 P 𝒩 sa, respectively, can be specified in three
different ways: by means of 𝛿p𝜑p𝑓qq, by means of 𝜑p𝛿𝑓q, or by means of a source term p𝛿𝜑qp𝑓q “: 𝛿𝑄𝑓 .
The main insight of the source theory is that the changes specified by source terms have the direct
operational meaning whenever the model ℳp𝒜q is equipped with a pair of dually flat coordinate
systems. In such case, the changes p𝛿𝜑qp¨q can be reexpressed in terms of corresponding changes of
source-and-response parameters. However, the change of information driven by the change of one of
source-and-response variables leads to change of other variables that are correlated with it.

This can be interpreted as a cause-and-effect relationship, but under the condition that ‘causes’
and ‘effects’ are understood as inputs and outputs of correlation relationships, respectively. This is
different from the meaning assigned to these terms in other sections of this work. In general, there
are possible at least two clearly distinct perspectives on what the ‘causes’ and ‘effects’ are. From
the purely operational perspective, any reproducible relationship between configuration and response
parameters of description of experimental situation deserves to be called a causal relationship, and
any predictively verifiable inferential procedure relating them is considered as a satisfying method
of the theoretical modelling of causality (see e.g. [144]). On the other hand, from the ontologically
flavoured perspective, the ‘causes’, ‘effects’, and their relationships are theoretical notions, which
may indirectly correspond to epistemic parameters and predictively verifiable relationships between
them, derived from some inductive procedure (see e.g. [266]). In this Section we chose the former
terminology (speaking of ‘epistemic causality’, because the term “inferential causality” would probably
cause, nomen omen, more confusion), while in the rest of this work we consider causality and inference
as a priori independent theoretical constructs, but without attribution of any ontological claims. From
the inferential perspective, ‘causes’ are just the same as ‘configurations’.

If one of the parameter spaces tΘ,Ξu can be considered as a space of ‘causes’ (‘configurations’), the
other becoming a space of ‘effects’ (‘registrations’). The role of the Legendre transform LΨ : Θ Ñ Ξ
is to associate effects with causes (and vice versa).39 This allows to use LΨ (and “epistemic” ‘cause-
and-effect’ interpretation) in order to analyse changes of effects following (correlatively, inferentially)
from the changes of causes, as well as changes of causes following from the changes of effects. These
two issues are known, respectively, as forward and backward induction problems. Let us also note that
the dually flat geometry always satisfies the relationships (354) and (355) as well as (376) and (377).
Hence, it also satisfies

gΨ
𝑖𝑗p𝜃q “

B𝜂𝑗
B𝜃𝑖

. (387)

The equations (355) and (387) assert that

∙ a Legendre transform LΨ governs the relationship between causes and effects,

∙ a riemannian metric gΨ governs the relationships between changes of causes and changes of
effects.

From the perspective discussed in the Section 1.2.2, LΨ defines the ‘system of epistemic causality’ of
an individual user (the perspective of a fixed measurement frame), relating the ‘configurations’ and
‘registrations’ in such way that the discrimination function on the space of configurations defines the
discrimination function on the space of registration. On the other hand, gΨ defines the ‘local system
of epistemic causality’ on the information manifold, allowing to translate between different local users.
Hence, the source theoretic renormalisation can be interpreted as a perturbation of the local system
of epistemic causality due to presence of the nonzero sources of information.

Now let us observe that, as discussed in Section 2.4.1, every dually flat manifold determines an
associated Brègman distance 𝐷Ψ. While our notation in Section 5.2 indicates this fact, it was left
unnoticed by previous authors. Also, we note, following the discussion in Section 2.4.3, that the
framework of dually flat manifolds and associated Brègman distances is applicable locally to any

39Note that this notion of ‘causality’ belongs strictly to a theoretical layer of scientific inquiry. Without specification
of some particular epistemic semantics it is not related in any specific way with the experimental ‘effects’ and ‘causes’.
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quantum manifolds, as long as one defines the manifold structure using a specific Brègman function.
The extension from commutative to quantum dually flat geometries is straightforward. The notation
applied by us in Section 5.2 keeps the correct order of multiplications, so the quantities used in this
Section can be interpreted as operators as well.

The equation (387) is a geometric equivalent of the linear case (336) of the expansion (335). In
order to obtain higher-order terms of (335), one needs to consider information models that are not
dually flat. Hence, one can in principle begin with an arbitrary quantum information model ℳp𝒩 q,
equipped with a Brègman distance 𝐷Ψ which defines the local ‘ideal’ dually flat manifold structure
pℳp𝒩 q,g𝐷Ψ ,∇𝐷Ψ , p∇𝐷Ψq:q, and consider the emergence of the nonzero curvature of the effective
riemannian geometry pℳp𝒩 q, g̃q as a result of presence of the additional source (control) terms that
are ‘renormalised out’ by the transition g ÞÑ g̃. It is quite interesting that the departure from the
dually flat geometry and constant curvature of a model implies the presence of additional information
sources operating at different points. From the perspective of analogy with general relativity, we can
say that sources curve the geometry of a quantum information manifold. Combining this with our
discussion of the role of quantum riemannian metric in the Daubechies–Klauder formula (see Sections
(1.2.2) and (4.6)), we can conclude that the JMF renormalisation leads to the redefinition of the local
prior measure used for the path integration. Interpreting the local prior measure as an information
theoretic analogue of mass, we can say that this process encodes dependence on additional sources
by the change of the geometry of a model, which is in turn reflected in the renormalisation of an
information theoretic local mass, and a corresponding point-dependence of the zero-point energy.

We will use the term brègmanian renormalisation to refer to a local renormalisation of pℳ, 𝐷Ψq

using JMF source theory. More generally, let us observe (following Lauritzen [223]), that the Norden–
Sen geometry captures the description of information geometry only up to third order of Taylor
series expansion of information distance, which in principle allows to develop higher–order differential
tensor theories of information geometry, more general than the Norden–Sen geometry. Thus, it is
plausible that the higher order source renormalisation terms may also possess a complete geometric
representation, but requiring to use higher order tensor geometries arising from the Taylor expansion
of the Brègman distance as the referential object subjected to renormalisation.

The ‘source term’ defined as above has different meaning than the ‘source term’ introduced in
Section 3.2. Yet they are complementary. The former corresponds to a perturbation 𝛿𝜃 of a coordinate
system 𝜃 : 𝜑 ÞÑ 𝜃p𝜑q “ 𝜑p𝑥q under constraint 𝜑p𝛿𝑥q “ 0. This description rests on the assumption
that all relevant local information which has to be taken under consideration is completely specified by
means of the variations 𝛿p𝜑p𝑥qq and p𝛿𝜑qp𝑥q. The latter corresponds to perturbation 𝛿𝑥 of an element
𝑥 of (a local GNS representation of) a 𝑊 ˚-algebra 𝒩 by means of state dependent perturbation of
liouvillean. Our approach allows 𝛿𝑥 to be arbitrary, so it can also depend on 𝜑, and may not arise as
an infinitesimal change generated by a global automorphism of 𝒩 . These two different uses of a single
notion are compatible and complementary in the sense provided by the equations (323)-(325): while
the ‘sources’ of Sections 5.1 and 5.2 generalise the notion of ‘heat sources’, the ‘sources’ of Section
3.2 generalise the notion of ‘work sources’. In our work we view ‘work sources’ (respectively, ‘heat
sources’) as the geometric perturbation of the geometry of causal evolution (respectively, inferential
evolution).

5.4 Contraction coefficients

The Brègmannian renormalisation answers the question about the behaviour of the constraints of
inference (and resulting information dynamics) under dimensional reduction of information model due
to the presence of constant control parameters. However, given any information model and constraints
of inference, there appears also another renormalisation-type question: what is the behaviour of these
objects under coarse grainings? Because the constraints may involve information geometric quantities
(for example, the ‘two point correlation function’ 𝐾𝑥𝑦p𝜌q “

ş1
0 d𝜆trℋp𝜌

𝜆𝑥𝜌1´𝜆𝑦q is an evaluation of
the quantum Bogolyubov–Kubo–Mori riemannian metric g𝐷1

𝜌 on the pair of tangent vectors 𝑥, 𝑦 P
T𝜌ℳp𝒩 q), this is related to the question about behaviour of information geometric quantities under
completely positive maps. Restriction to quantum 𝐷f-geometries, where f is an operator convex
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function defining the 𝐷f distance, secures the Markov monotononicity of g𝐷f and ∇𝐷f , but this does
not extend naturally to every geometric quantity on ℳp𝒩 q that can be built using these objects and
their derivatives.

In the commutative case Chencov [58, 59] has defined the Markov monotone connections as such
affine connections ∇𝐷f that for any Markov map 𝑇 the image of a ∇𝐷f-geodesic line on ℳp𝒜q belongs
to a ∇𝐷f-geodesic line on 𝑇‹pℳp𝒜qq as its interval or its point, while an affine parameter of this line
remains, up to rescaling, an affine parameter of the ∇𝐷f-geodesic line in the image [59]. Thus, the be-
haviour of any trajectory along a given ∇𝐷f-geodesic under the action of Markov maps is characterised
by their invariance properties under coarse graining by preduals of Markov maps and rescaling by an
affine parameter. This leads to a question whether it is possible to find a suitable analogue of an affine
parameter for arbitrary quantum information model ℳp𝒩 q which would allow for some sort of control
over the mutual behaviour of ℳp𝒩 q, its information geometry, and information dynamics under coarse
grainings. More specifically, we need to find some scalar contraction coefficient y, which globally
characterises the geometry of ℳp𝒩 q and is Markov monotone, ypℳp𝒩 qq ě yp𝑇‹pℳp𝒩 qq, and then
use it in order to rescale the constraints of inference on ℳp𝒩 q.

Some examples of contraction coefficients yp𝑇‹q were provided in the case when dimℳp𝒩 q ă 8,
with semi-finite 𝒩 by Lesniewski and Ruskai [227], following earlier works [72, 64, 293]:

y𝐷f
p𝑇‹q :“ sup

𝜔,𝜑Pℳp𝒩 q,

"

𝐷fp𝑇‹p𝜔q, 𝑇‹p𝜑qq

𝐷fp𝜔, 𝜑q
| 𝜔 ‰ 𝜑

*

, (388)

y
g
𝐷f p𝑇‹q :“ sup

𝜑Pℳp𝒩 q

$

&

%

sup
𝑢PT𝜑ℳp𝒩 q

$

&

%

g
𝐷f

𝑇‹p𝜑q
p𝑇‹p𝑢q, 𝑇‹p𝑢qq

g
𝐷f

𝜑 p𝑢, 𝑢q

,

.

-

,

.

-

, (389)

y𝑑
g
𝐷f
p𝑇‹q :“ sup

𝜔,𝜑Pℳp𝒩 q

#

p𝑑
g
𝐷f p𝑇‹p𝜔q, 𝑇‹p𝜑qqq

2

p𝑑
g
𝐷f p𝜔, 𝜑qq

2
| 𝜔 ‰ 𝜑

+

, (390)

where

𝑑
g
𝐷f p𝜔, 𝜑q :“ inf

𝑐P𝐶

#

ż 1

0
d𝑡

c

g
𝐷f

𝑐p𝑡qp 9𝑐p𝑡q, 9𝑐p𝑡qq

+

, (391)

and 𝐶 is defined as a class of all smooth curves 𝑐 : r0, 1s Q 𝑡 ÞÑ 𝑐p𝑡q Pℳp𝒩 q such that 𝑐p0q “ 𝜔 and
𝑐p1q “ 𝜑. Apart from Markov monotonicity of the above coefficients, Lesniewski and Ruskai proved
that these coefficients are convex in 𝑇‹, and satisfy

1 ě y𝐷f
p𝑇‹q ě y

g
𝐷f p𝑇‹q ě y𝑑

g
𝐷f
p𝑇‹q. (392)

Now, let the inferential quantum dynamics be given by 𝐷f entropic projection on ℳp𝒩 q, with
the constraints 𝒬 Ďℳp𝒩 q specified in terms of lower semi-continuous convex function 𝐹 : ℳp𝒩 q Ñ
s ´8,`8s,

ℳp𝒩 q Q 𝜔 ÞÑ arg inf
𝜑Pℳp𝒩 q

t𝐷fp𝜔, 𝜑q ` 𝐹 p𝜑qu Pℳp𝒩 q. (393)

With the nontrivial examples of contraction coefficients at hand, we can propose to control the be-
haviour of constraints 𝒬 under coarse grainings 𝑇‹ by means of markovian renormalisation semi-
group transformation

𝐹 p𝜑q ÞÑ
1

yp𝑇‹q
𝐹 p𝑇‹p𝜑qq, (394)

which amounts to subsequent coarse graining and rescaling of constraints. The choice of a particular
form (394) of transformation of constraints can be justified either by appealing to arguments and in-
sights based on ordinary renormalisation semi-group theory or by recalling another result of Lesniewski
and Ruskai:

y𝐷f
p𝑇‹q ‰ y

g
𝐷f p𝑇‹q ðñ D𝜔 ‰ 𝜑 such that

1

y𝐷f
p𝑇‹q

𝐷fp𝑇‹p𝜔q, 𝑇‹p𝜑qq “ 𝐷p𝜔, 𝜑q. (395)
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In such case, the invariant y𝐷f
p𝑇‹q contains a complete information about the behaviour of distance

𝐷fp𝜔, 𝜑q under rescaling by coarse grainings 𝑇‹. In view of (395), the aim of rescaling (394) is to obtain
the same form of information dynamics (for a given initial state) independently of the coarse graining.
In consequence, we will say that the quantum dynamics (393) is in a fixed point of markovian
renormalisation semi-group transformation with respect to a contraction coefficient y iff, given an
initial state 𝜔 Pℳp𝒩 q, 𝜔 ‰ 𝜑, the equations

"

yp𝑇‹q𝐹 p𝜑q “ 𝐹 p𝑇‹p𝜑qq,
yp𝑇‹q𝐷p𝜔, 𝜑q “ 𝐷fp𝑇‹p𝜔q, 𝑇‹p𝜑qq

(396)

hold for any 𝑇‹ on ℳp𝒩 q. If (396) is not satisfied, then the action of (394) generates the ‘flow’ of
forms of dynamics along the ‘trajectory’ of semi-group of markovian morphisms.

As these examples show, quantum information geometry provides quantitative tools allowing to
develop various renormalisation procedures for quantum inference, which possess explicit conceptual
and quantitative meaning. In particular, the brègmannian and markovian renormalisation procedures
reflect, respectively, two different problems: coarse graining and rescaling of the solution of dynamical
(inferential) problem and coarse graining and rescaling of the definition of dynamical (inferential)
problem.40 We refer to [30, 31, 32] for another (and more developed) approach to quantum information
geometric renormalisation based on the use of markovian morphisms 𝑇‹ (see also [79] for a pedagogical
overview).

40Consider 𝑦 “ 𝑓p𝑥q, where 𝑓 is an arbitrary function. It is clear that the procedure used to control the quality
of approximation of the initial data 𝑥 does not need to correspond to the procedure used to control the quality of
approximation on the space of solutions of this equation.
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79

http://www.arxiv.org/pdf/quant-ph/0008052
http://www.arxiv.org/pdf/quant-ph/0007093
http://www.arxiv.org/pdf/quant-ph/0304049
http://archive.numdam.org/article/ASENS_1973_4_6_1_67_0.pdf
http://dx.doi.org/10.2977/prims/1195192744
http://projecteuclid.org/euclid.pjm/1102913224
http://dx.doi.org/10.2977/prims/1195191148
http://dx.doi.org/10.2977/prims/1195190105
http://www.arxiv.org/pdf/gr-qc/9706069
http://www.arxiv.org/pdf/1207.6736
http://arxiv.org/pdf/math/0403345
http://www.arxiv.org/pdf/1206.7004
http://www.arxiv.org/pdf/1310.3188
http://www.arxiv.org/pdf/1402.4949
http://www.arxiv.org/pdf/math-ph/0207026
http://sophia.dtp.fmph.uniba.sk/~bona/preprint Ph10-91.html
http://sophia.dtp.fmph.uniba.sk/~bona/NLQM-Opava1992.pdf
http://www.arxiv.org/pdf/math-ph/9909022
http://webdoc.sub.gwdg.de/diss/2000/bostelmann/produkte.pdf
http://libgen.org/get?open=0&md5=10fe324534f787c6047f854057211637
http://libgen.org/get?open=0&md5=bafb8a86b7ceb8efe729599bdc6ab0a2
http://www.arxiv.org/pdf/gr-qc/9701051
http://www.arxiv.org/pdf/quant-ph/9906086
http://www.arxiv.org/pdf/math-ph/0112041
http://www.arxiv.org/pdf/math-ph/0008017
http://www.albany.edu/physics/ACaticha-EIFP-book.pdf
http://www.arxiv.org/pdf/physics/0312131
http://www.arxiv.org/pdf/physics/0307055


[54] Chencov N.N., 1965, Kategorii matematicheskŏı statistiki, Dokl. AN SSSR 164, 511. Ò 3.
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