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I present two new approaches to resource theories: first provides
an implementation of Mielnik’s idea of nonlinear transmitters, with
`-pullbacks of left and right Brègman strongly quasi-nonexpansive
operations replacing the CPTP maps, and concrete examples con-
structed using duality mapping together with the Mazur (resp.,
Kaczmarz) map on Lp (resp., Orlicz) spaces over JBW (resp., W∗)
algebras; second provides a categorical framework for resource the-
ory of epistemic knowledge, with facts (resp., actions) available to
a given user encoded in terms of comonad (resp., monad). The first
approach provides some special cases of the latter framework.

DΨ,
←−
P DΨ,

−→
P DΨ, LSQ(Ψ), RSQ(Ψ) [0]

Let X be a reflexive Banach space (hence, X?? ∼= X), let
Ψ : X→]−∞,∞] be Legendre (:= essentially strictly con-
vex and essentially Gateaux differentiable). Then:
1) Gateaux derivative of Ψ, DGΨ : int(efd(Ψ)) →

int(efd(ΨF)), is a bijection, where: int := topological
interior, ∅ 6= efd(Ψ) := {x ∈ X | Ψ(x) 6= ∞}, ΨF(y) :=
supx∈X{[[x,y]]−Ψ(x)}, [[x,y]] := y(x) ∀x,y ∈ X× X?.

2) Brègman information, defined as
DΨ(y, x) := Ψ(y)−Ψ(x)−

[[
y− x,DGΨ(x)

]]
for x ∈ int(efd(Ψ)) and ∞ otherwise, satisfies:
(i) DΨ(x,y) ≥ 0, with = 0 iff x = y;
(ii) if x ∈ int(efd(Ψ)) and ∅ 6= Q⊆ int(efd(Ψ)) is con-
vex closed, then arginfz∈Q{DΨ(z, x)} is a singleton,

{←−P DΨ
Q (x)}, called left DΨ-projection of x onto Q;

(iii) left generalised pythagorean theorem:

DΨ(y, x) ≥ DΨ(y,
←−
P DΨ

Q (x)) + DΨ(
←−
P DΨ

Q (x), x) ∀y ∈ Q,

with = iff Q is affine, characterises
←−
P DΨ

Q ;
(iv) if ∅ 6= K ⊆ int(efd(Ψ)) is such that DGΨ(K) is
convex closed, then arginfy∈K {DΨ(x,y)} is a single-
ton, and its element, the right DΨ-projection of x onto
K, satisfies

−→
P DΨ

K (x) =DGΨF ◦←−P DΨF

DGΨ(K) ◦D
GΨ(x);

(v) right generalised pythagorean theorem:

DΨ(x,y) ≥ DΨ(x,
−→
P DΨ

K (x)) + DΨ(
−→
P DΨ

K (x),y) ∀y ∈ K,

with = iff DGΨ(K) is affine, characterises
−→
P DΨ

Q .
3) Given ∅ 6= M ⊆ int(efd(Ψ)) and a function T : M→

int(efd(Ψ)), Fix(T) := {x ∈ M | T(x) = x} 6= ∅, while
F̂ix(T) is defined as a set of such x∈M that there exists
a sequence {xn}n∈N ⊆ M weakly convergent to x with
limn→∞ ||xn− Txn||X = 0. In general, Fix(T) ⊆ F̂ix(T).

4) We will call T : M → int(efd(Ψ)): (i) LSQ(Ψ) iff
DΨ(x, T(y)) ≤ DΨ(x,y) ∀(x,y) ∈ F̂ix(T)×M and (p ∈
F̂ix(T), {yn}n∈N is bounded, limn→∞(DΨ(p,yn) −
DΨ(p, Tyn)) = 0) ⇒ limn→∞ DΨ(Tyn,yn) = 0; (ii)
RSQ(Ψ) iff DΨ(T(x),y) ≤ DΨ(x,y) ∀(x,y) ∈
M × F̂ix(T) and (p ∈ F̂ix(T), limn→∞(DΨ(yn, p) −
DΨ(T(yn), p)) = 0, {yn}n∈N is bounded) ⇒
limn→∞(yn, T(yn)) = 0.

5) Under some conditions on Ψ (we will call such Ψ to
be LSQ-adapted) one has: (i) if ∅ 6= K ⊆ int(efd(Ψ))
and {T1, . . . , Tn} are LSQ(Ψ) functions K → K such
that F̂ :=

⋂n
i=1 F̂ix(Ti) 6= ∅ and T := Tn ◦ · · · ◦ T1, then

F̂ix(T) ⊆ F̂, and if F̂ix(T) 6= ∅ then T is LSQ(Ψ); (ii)←−
P DΨ

Q ∈ LSQ(Ψ) with F̂ix(
←−
P DΨ

Q ) = Fix(
←−
P DΨ

Q ) = Q.
6) (i) Under some conditions on Ψ (we will call such Ψ

RSQ-compositional): if ∅ 6= K ⊆ X, {T1, . . . , Tn} are
RSQ(Ψ) functions K→ K such that F̂ :=

⋂n
i=1 F̂ix(Ti) 6=

∅ and T := Tn ◦ · · · ◦ T1, then F̂ix(T) ⊆ F̂, and if
F̂ix(T) 6= ∅ then T is RSQ(Ψ); (ii) under some ad-
ditional conditions (making Ψ to be RSQ-adapted)
we get

−→
P DΨ

DGΨF(M) ∈ RSQ(Ψ) with F̂ix(
−→
P DΨ

DGΨF(M)) =

Fix(
−→
P DΨ

DGΨF(M)) =DGΨF(M).
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D`,Ψ and (`,Ψ)-transmitters [6, 2]
•Given Z ⊆ int(efd(Ψ)), a set U, and a bijection ` :

U → Z, we define the Brègman `-information on U
as D`,Ψ(φ,ψ) := DΨ(`(φ),`(ψ)) ∀φ,ψ ∈U.
• For C⊆U, if `(C) is convex (resp., affine; closed), then

C will be called `-convex (resp., `-affine; `-closed).
• For any `-closed `-convex (resp., (DGΨ ◦ `)-closed
(DGΨ ◦ `)-convex) set C and any ψ ∈ U, a left (resp.,
right) D`,Ψ-projection is

←−
P

D`,Ψ
C (ψ) :=

←−
P DΨ

`(C)(`(ψ))

(resp.,
−→
P

D`,Ψ
C (ψ) :=

−→
P DΨ

`(C)(`(ψ)).
• For ∅ 6=W ⊆U and T : `(W)→ Z, T` : `−1 ◦ T ◦ ` : W→

U will be called an `-operation (or an `-transmitter).
•This gives classes LSQ(`,Ψ) and RSQ(`,Ψ) of `-

operations. Few other classes are also available. We
will denote F̂ix(T`) := `−1(F̂ix(T)).

Resource theories for (`,Ψ)-transmitters [1]
Given a set U (of states), a resource theory of states is
a triple (P,S, R), where P is a submonoid of a monoid
of endomorphisms of U, ∅ 6= S ⊆ U satisfies P(S) ⊆ S,
and R := {r : U→R+ | (r ◦ p)(φ)≤ r(φ) ∀φ ∈U ∀p ∈ P}.
The elements of P (resp., S; R) are called free operations
(resp., free states; resource monotones). We introduce:

1L
R) (T , F̂ix(T ),⋃φ∈F̂ix(T ){D`,Ψ(φ, · )}) (resp., (T , F̂ix(T ),⋃

φ∈F̂ix(T ){D`,Ψ( · ,φ)})): if ∅ 6= K ⊆ U, T ⊆ LSQ(`,Ψ)

(resp., T ⊆RSQ(`,Ψ)) is a monoid such that T` : K→K
∀T` ∈ T ,

⋂n
i=1 F̂ix(Ti) 6= ∅ and F̂ix(T1 ◦ · · · ◦ Tn) 6= ∅

∀{T`
1 , . . . , T`

n} ⊆ T , then D`,Ψ(φ, · ) (resp., D`,Ψ( · ,φ)) is
a resource monotone for any φ ∈ F̂ix(T ); this holds if
Ψ is LSQ-adapted (resp., RSQ-compositional);

2L
R) (T ,K,

⋃
φ∈K{D`,Ψ(φ, ·)}) (resp., (T ,K,

⋃
φ∈K{D`,Ψ(·,φ)})):

for any `-closed `-convex (resp., (DGΨ ◦ `)-closed
(DG ◦ `)-convex) set ∅ 6= K ⊆ U, if T is given by the
set of all

←−
P

D`,Ψ
Q (resp.,

−→
P

D`,Ψ
Q ) with `-closed `-convex

(resp., (DGΨ ◦ `)-closed (DGΨ ◦ `)-convex) Q such that
K ⊆ Q, with the composition

←−
P

D`,Ψ
Q1
�←−P D`,Ψ

Q2
:=
←−
P

D`,Ψ
Q1∩Q2

(resp.,
−→
P

D`,Ψ
Q1
� −→P D`,Ψ

Q2
:=
−→
P

D`,Ψ
Q1∩Q2

).
Each y ∈ int(efd(ΨF)) defines an observable on U, given
by y ◦ ` : U→R. The (linear) witnesses of S are defined
as the elements of {y∈ int(efd(ΨF))+ | [[x,y]]≥ 0 ∀x ∈ S}.

Categories, functors, (co)monads [1]
1. Allowing ∅ as object and empty arrows as morphisms,

we obtain a category lCvx(`,Ψ) (resp., LSQcvx(`,Ψ)) of
`-convex `-closed sets and left D`,Ψ-projections (resp.,
LSQ(`,Ψ) transmitters), composed by � (resp., ◦).

2. For any LSQ-adapted Ψ, there is an embedding func-
tor ιL`,Ψ : lCvx(`,Ψ)→ LSQcvx(`,Ψ), and a functor FixL

`,Ψ :
LSQcvx(`,Ψ)→ lCvx(`,Ψ), defined by identity on ob-
jects and by T 7→ ←−P D`,Ψ

Fix(T) on arrows.
3. For int(efd(Ψ)) = X = ran(`), let Pow(X) be the cat-

egory of subsets of X and functions between them.
A map coL

Ψ( · ), assigning to each Y ∈ Ob(Pow(X)) the
norm closure of a convex hull of Y, and to each
f ∈ Arr(Pow(X)) the map

←−
P DΨ

Q , Q = coL
Ψ(ran( f )), de-

termines a functor coL
`,Ψ : Pow(`−1(X))→ lCvx(`,Ψ).

4. The adjunctions, ιL`,Ψ a FixL
`,Ψ and coL

`,Ψ a FrgSet, where
FrgSet is a functor forgetting about convexity and
topology, equip lCvx(`,Ψ) with a comonad coL

`,Ψ ◦
FrgSet and a monad FixL

`,Ψ ◦ ιL`,Ψ.
5. Under some additional conditions, DGΨ sets func-

torial equivalence between the above categories and
their right versions, inducing the corresponding
(comonad, monad) pair on rCvx(`,Ψ).

Examples of D`,Ψ [2, 1]
1) For a Hilbert space H, dimH =: n < ∞, the Umegaki

relative entropy D1(ρ,φ) := trH(hρ(log hρ − log hφ))
equals D`=id,Ψ=Φ◦Λ(ρ,φ), where ψ = trH(hψ · )∈B(H)?,
Λ is a nonincreasing rearrangement of eigenvalues,
while Φ(x) := ∑n

i=1(xi log(xi)− xi) for x≥ 0 and ∞ oth-
erwise [Bauschke–Borwein’97]. So, Lüders’ and quan-
tum Jeffrey’s rules [4], as well as a partial trace [5], be-
ing derived from special cases of

−→
P D1, belong to

−→
P D`,Ψ.

If (X, || · ||X) is strictly convex, uniformly Fréchet differ-
entiable, and satisfies the Radon–Riesz property, then
Ψϕ :=

∫ || · ||X
0 dtϕ(t) : X→R+ is Legendre, LSQ-adapted,

and RSQ-compositional for any strictly increasing, con-
tinuous ϕ : R+→R+, with ϕ(0) = 0, and limt→∞(t) = ∞.
This gives us:
2) for any semi-finite JBW-algebra A with a faith-

ful normal semi-finite trace τ, the nonassociative
(L1/γ(A,τ), || · ||1/γ) spaces [Abdullaev’84, Iochum’84]
are uniformly convex and uniformly Fréchet differen-
tiable for any γ ∈]0,1[ [Ayupov’86, Iochum’86]. Intro-
ducing the nonassociative Mazur map `γ : A? 3 φ =∣∣hφ

∣∣ ◦ sφ 7→
∣∣hφ

∣∣γ ◦ sφ ∈ L1/γ(A,τ) for φ = τ(hφ ◦ · ),∣∣hφ

∣∣∈ A+, s2
φ = I, we obtain the class D`γ,Ψϕ

: A?× A?→
[0,∞]. Due to isometric isomorphism of L1/γ(A,τ) for
different τ [Ayupov–Abdullaev’89], D`γ,Ψϕ

do not de-
pend on τ, only on (A,γ, ϕ). For ϕ(t) = t1/β−1/β, β ∈
]0,1[, we get Dγ,β(ω,φ) = (τ(hω))γ/β + 1−β

β (τ(hφ))γ/β−
1
β(τ(hφ))γ/β−1τ(hγ

ω ◦ h1−γ
φ ) ∀ω,φ ∈ A+

? .
3) A function Υ : R→R+ is called Orlicz iff it is convex,

Υ(0) = 0, Υ 6≡ 0, and Υ(−u) = Υ(u). Any Υ and a semi-
finite W∗-algebra N with a faithful normal semi-finite
trace τ determine a noncommutative Orlicz space
(LΥ(N ,τ), || · ||Υ) [Kunze’90]. In [2] we characterise (in
terms of conditions on Υ and a type of N ) strictly con-
vex, uniformly Fréchet differentiable LΥ(N ,τ), satis-
fying the Radon–Riesz property. By replacing [[ · , · ]]
with re [[ · , · ]], and introducing the noncommutative
Kaczmarz map, `Υ :N? 3 φ 7→ uφΥ−1(

∣∣hφ

∣∣) ∈ LΥ(N ,τ),
where φ = τ(uφ

∣∣hφ

∣∣ · ) is a unique polar decomposi-
tion, we get D`Υ,Ψϕ

: N? ×N?→ [0,∞] (due to isomet-
ric isomorphism of LΥ(N ,τ) for different τ [Ayupov–
Chilin–Abdullaev’12], it does not depend on τ).

Epistemic adjointness [3, 1]
We define an epistemic inference theory as a triple
(IndInf, E, J), where IndInf is a category of informa-
tion state spaces as objects and information processings
(inductive inferences) as morphisms, J is a monad en-
coding operations on IndInf, while E is a comonad, en-
coding the range of possible adjunctions I a P (with a
category ExpDes of experimental designs (e.g., spaces of
configuration parameters) and experimental procedures,
I : ExpDes→ IndInf encoding the method of model con-
struction from data, and P : IndInf→ ExpDes encoding
the criteria of (ideal) experimental verification).
• Identifying J with agent, E with coagent, and (E, J)

with a subject/user, the multi-(co)agent epistemic in-
ference theory is given by (IndInf,{Ei | i ∈ I},{Jj | j ∈
J }), and becomes multi-user under pairing I = J .
•An intersubjective commensurability of two sub-

jects/users is given by a groupoid between them,
understood internally in the 2-category Comonads ×
Monads over IndInf, with the (co)lax×(co)lax mor-
phisms as 1-cells, and the choice of lax vs colax (as
well as weak vs strong) dependent on the purposes.
•Ex.1: (lCvx(`,Ψ), coL

`,Ψ ◦ FrgSet,FixL
`,Ψ ◦ ιL`,Ψ) is an epis-

temic information theory with a single user.

•Ex.2: (Pow(N?), idPow(N?),{FrgSet ◦ coL
`Υ,Ψϕ

( · )
`
}), with Υ

and ϕ varying as in Ex.3) above, is a multi-agent
epistemic inference theory. Each agent corresponds
to a family of resource theories of states of type 2L),
parametrised by `Υ-closed `Υ-convex sets of free states.
•Ex.3: If IndInf has a terminal object 1, then

any agent (J,µJ,νJ) determines a monoid (MJ :=
Nat(idIndInf, J),µJ( · ◦ · ),η J) of free operations, with
resource spaces (resp., free resources) as elements of
Ob(IndInf) (resp., {σ1(1) ∈ Ob(IndInf) | σ ∈ MJ}),
and functors r : IndInf→ [0,∞] with r ◦ σA(A)≤ σA(A)
∀σ ∈ MJ ∀A ∈Ob(IndInf) as resource monotones.
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