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Abstract

We propose an intersubjective epistemic approach to foundations of probability
theory and statistical inference, based on relative entropy and category theory, and
aimed to bypass the mathematical and conceptual problems of existing foundational
approaches.

1 Standard frameworks

The notion inference means ‘logical reasoning’. The deductive inference specifies premises
by the valuations of sentences in truth values, and provides an inference procedure which
is considered to lead to certain conclusion on the base of given premises. The inductive
inference specifies premises by the valuations of sentences in possible (plausible) values
and provides an inference procedure which is considered to lead to most possible (most
plausible) conclusions on the base of given premises. From the mathematical perspective,
the difference between deductive and inductive inference lays not in the form of logical
valuations (these can be the same in both methods), but in the procedure of specifying
conclusions on the base of premises. The conclusions of multiple application of deductive
inference to the sequence of sets of premises depend in principle on all elements of all
these sets, while the conclusions of the multiple application of inductive inference to the
sequence of sets of premises depend in principle only on some elements of some of these
sets. For this reason, the premises of inductive inference are also called evidence. An
example of inductive inference procedure is any statistical reasoning based on probabil-
ities. The evidence can be provided, for example, by particular quantities with units
interpreted as ‘experimental data’ together with a particular choice of a method which
incorporates these ‘data’ into statistical inference. Any choice of such method defines the
evidential meaning of the ‘data’, and is a crucial element of the inference procedure. A
standard example of such method is to ignore everything what is known about a sequence
of numbers associated with a single abstract quality (such as a “position”), leaving only
the value of arithmetic average and the value of a fluctuation around this average as a
subject of comparison (e.g., by identification) with the mean and variance parameters of
the gaussian probabilistic model.

According to frequentist interpretation (by Ellis [29], Venn [90], Fisher [31], von Mises
[91, 92], Neyman [68], and others) probabilities can be given meaning only as relative
frequencies of some experimental outcomes in some asymptotic limit. This interpretation
was very influential in the last 160 years, but so far none mathematically strict and
logically sound formulation of this interpretation exists (see, e.g., [48, 89, 39]). The
separation of a formalism of inductive inference into ‘probability theory’ and ‘statistics’ is
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also a consequence of frequentist interpretation, which forbids consideration of probability
(understood as relative frequency) as a subject of change based on change of evidence.
Thus, without frequentism, there is no reason for keeping the division of probabilistic
and statistical part of the framework of inductive inference into two separated theories.
Moreover, the methods of statistical inference used within the frames of the frequentist
approach are mainly based on ad hoc principles, which are justified by convention, and
do not possess mathematically strict and logically sound justification (see e.g. [76, 46, 6,
81, 47]). This is a consequence of the lack of strict and sound foundations of frequentist
interpretation of probability.

Beyond logically and mathematically unjustified frequentist approach (and even less
successful [45, 26] propensity interpretation [71, 74, 75, 36]), probability theory and sta-
tistical inference theory can be considered as two parts (resp., kinematic and dynamic) of
a single theory of quantitative inductive inference. The evidences used in this inference
need not be restricted to frequencies. Nevertheless, the choice of particular methods of
specification of evidences and drawing inferences requires some justification.

The ‘subjective’ bayesian approach (by Ramsey [77], de Finetti [20, 21, 22], Savage
[79], and others) allows any kinematics and requires Bayes’ rule as dynamics, grounding
both in requirement of personal consistency of betting. This is conceptually consistent,
but by definition lacks any rules relating the probability assignments (theoretical model
construction) with intersubjective knowledge (experimental setup construction, ‘experi-
mental data’). Thus, it is often accused of arbitrariness. Such accusations are justified
if they amount to saying that the methods of scientific inquiry seem to be something
more than individual personal consistency of bets, but are not justified if they appeal
to (operationally undefined!) notions of ‘objectivity’, ‘nature’, ‘reality’, etc., because any
theoretical statement is after all an arbitrary mental construct.

The syntactic approach (by Johnson [52], Keynes [56], Carnap [9, 10], and others)
amounts to construct probability theory as a predicative calculus in a formal language, but
it does not provide neither any sound justification for the choice of language and calculus
nor any definite methods of model construction, different from ‘subjective’ approach (see
e.g. [43, 41, 95]). This makes syntactic approach foundationally irrelevant.

The ‘objective’ bayesian approach (by early Jeffreys [49], Cox [16, 17], Jaynes [47],
Berger [5], and others) allows various mathematical rules of assignment of probabilities
(see e.g. [55, 47]) and of inference (see e.g. [16, 17, 82, 83, 11, 12]). It attempts to select
the preferred rules by an appeal to some notions of ‘rational consistency’ or ‘experimen-
tal reproducibility’, but it fails to provide sound conceptual justification for these rules
which would be neither subjectively idealistic (personalist) nor ontologically idealistic
(frequentist) [87, 88, 30, 54, 63]. (One of important problems is the lack of justification
of the methods that associate particular constraints in entropic updating rule with some
functions of ‘experimental evidence’, see e.g. [87, 88].) Yet, the idea to provide some rules
of probabilistic model construction taking into account the role played by experimental
evidence in intersubjective consistency of inductive inferences seems to be crucial.

The variety of above conceptual frameworks for probability theory and statistical
inference corresponds to the variety of mathematical frameworks. There are four main
approaches: by Bayes–Laplace [4, 23], Borel–Kolmogorov [7, 59], Whittle [93, 94], and
Le Cam [64, 65]. But even more approaches is possible, because probability theory
can be built upon two components: evaluational (kinematic) and relational (dynamic),
and, apart from selection of one or two of these components, one can provide different
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mathematical implementations thereof. For example, the evaluational component can be
given either by an abstract measure theory on σ-algebras of subsets of some set, or by an
integral theory on vector lattices, while the relational component might be given either
by Bayes’ rule, or by conditional expectations, or by entropic updating, etc.

The Borel–Kolmogorov framework [7, 59] is based on the notions of measure spaces
(X ,f(X ), µ) and probabilistic models

M(X ,f(X ), µ) ⊆ L1(X ,f(X ), µ)+.

Building upon measure-theoretic integration theory, this framework is, from scratch,
equipped with kinematic (evaluational) prescriptions, but has no generic notion of con-
ditional updating of probabilities. (The reason of it is an associated, but by no means
necessary, frequentist interpretation, which claims identification of probabilities with fre-
quencies. This forbids ‘updating’ probabilities because it would mean updating the fre-
quencies.) There are three facts to observe here. First, many different measure spaces
(X ,f(X ), µ) lead to L1(X ,f(X ), µ) spaces that are all isometrically isomorphic to the
same abstract L1(f) space, where f is camDcb-algebra (countably additive, Dedekind
complete, boolean, allowing at least one strictly positive semi-finite measure), constructed
by [35]

f := f(X )/{A ∈ f(X ) | µ(A) = 0}.

Thus, only L1(f) is necessary for defining probabilistic models. But, given any camDcb-
algebra f, the association of L1(f) (and any other Lp(f)) to f is functorial [35], and
no appeal to representations in terms of measure space is ever required. Second, by
the Loomis–Sikorski theorem [66, 84], each camDcb-algebra f can be represented as a
measure space (X ,f(X ), µ), given the choice of measure µ on f. However, there are many
different measure spaces that lead to the same algebra f [80]. Thus, using the measure
spaces (X ,f(X ), µ) instead of camDcb-algebras f is ambiguous. Finally, as observed by
Le Cam [64, 65] and Whittle [93, 94], probabilistic description in terms of measures µ on
(X ,f(X )) can be completely replaced by the description in terms of integrals ω on vector
lattices A(f). (For every camDcb-algebra f there exists a canonically associated vector
lattice A(f) of characteristic functions on the set of boolean homomorphisms f → Z2.)
Thus, one can deal exclusively with positive finite integrals over commutative algebras f
instead of measures on f(X ). The normalised integrals are just expectation functionals,
and probability of a ∈ f is recovered by evaluation p(a) := ω(χa) on characteristic
function χa ∈ A(f).

On the other hand, the Bayes–Laplace framework [4, 23] is based on finitely additive
boolean algebras B and conditional probabilities p(x|θ) : B × B → [0, 1]. It is equipped
from scratch with dynamical (relational) prescription, given by Bayes’ rule

p(x|θ) 7→ pnew(x|θ) := p(x|θ)p(b|x ∧ θ)
p(b|θ)

,

but it provides no generic notion of probabilistic expectation over a continuous (count-
ably additive) domain of infinite sets. Bayes’ rule defines a concrete method of providing
statistical inferences. Thus, statistical inference can be understood as a dynamical compo-
nent of probability theory. As noticed by Jaynes [47], Bayes’ rule and all Bayes–Laplace
framework has precisely the same properties and the same range of validity if the condi-
tional probabilities are evaluated into [1,∞] instead of [0, 1]. Hence, the normalisation
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of probabilities is not a necessary feature of probabilistic/inferential framework (it is nec-
essary only in the frequentist interpretation). Moreover, Bayes’ rule is a special case of
constrained relative entropic updating [13, 37]

p 7→ pnew := arg inf
q∈M

{∫
p log(p/q) + F (q)

}
,

for p, q in a probabilistic modelM =M(X ,f(X ), µ), dimM = n <∞, with parametri-
sation θ :M(X ,f(X ), µ)→ Θ ⊆ Rn, and constraints given by

F (q) = λ1

(∫
X
µ(x)

∫
Θ

dθq(x|θ)− 1

)
+ λ2

(∫
Θ

dθq(x|θ)− δ(x− b)
)
,

where λ1 and λ2 are Lagrange multipliers.

2 Towards new approach

In order to bypass the above problems, we need to take more careful look at the founda-
tions of bayesian approach. Note that the Ramsey–de Finetti type [77, 20, 21] and Cox’s
type [16, 17] derivations of Bayes’ theorem (or, equivalently, of the algebraic rules of
‘probability calculus’) assume that the conditional probabilities p(A|I) are to be used in
order to draw inferences on the base of premises (evidence) I. Hence, the function p(A|I),
or any other function used to derive it, already assumes that some rule of probability up-
dating (inductive inference) has to be used, because only this assumption allows to speak
of some elements of the algebra as ‘evidence’, or to speak of conditional probabilities as
‘inferences’. Any particular algebraic rules of transformation of conditional probabilities
arise only as a result of additional assumptions, which might not be relevant for general
purposes and require anyway some additional justification. This observation allows us to
consider spaces M(f) ⊆ L1(f)+ of unconditioned positive finite integrals (information
models) as a candidate for kinematic component of inductive inference theory, and to
consider some principle P : M(f) → M(f) of updating of integrals as a candidate
for its dynamic component (information dynamics). As opposed to approaches aimed
at identification of algebraic and lattice theoretic relations underlying evaluations p(A|I)
and their transformations [57, 58], we do not require that inferences should be conditioned
exclusively on the elements of the underlying algebra, and we allow infinite-dimensional
algebras and information models in foundations.

The choice of any particular form of principle of inductive inference (information
dynamics) is a delicate issue, because (for any particular form of information kinematics)
it determines the range and form of allowed inferences. According to the arguments
of [44, 15], there can be given no deductive logical premises for the claim that some
inductive inference rule is absolute (universal), while inductive justification of induction
is impossible due to circularity. However, if the chosen principle reduces in particular
cases to a wide class of practically convenient and in some sense optimal techniques,
then it can be considered as appealing. Moreover, if it allows characterisation by axioms
possessing unambiguous interpretation, then it can be considered as appealing too.

Because Bayes’ rule is a special case of constrained maximisation of relative entropy
[13], we consider the latter as a candidate for a general principle P of quantitative in-
ductive inference. For an evidence that it is appealing from the practical point of view,
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let us note that: (i) the conditional expectations are characterised as maximisers of
the expectations of Bregman relative entropy [3]; (ii) the maximum likelihood methods
are just special case of application of Bayes’ rule [47]; (iii) inference techniques based
on Fisher–Rao information metric amount to using the second order Taylor expansion
of Csiszár–Morimoto relative entropies [62, 27]; (iv) many standard frequentist tech-
niques of statistical inference can be reexpressed in terms of relative entropy, see e.g.
[62, 18, 97, 47, 28]. Regarding axiomatisation, Shore and Johnson [82, 83, 51], Paris and
Vencovská [69, 70], and Csiszár [19] have provided characterisations of the principle of
maximisation of constrained Kullback–Leibler relative entropy as a unique probability
updating rule that satisfies some set of conditions (see also [85, 87, 88, 11, 12, 37]). Simi-
lar axiomatisation was provided by Jones and Byrne [53] and Csiszár [19] with respect to
maximisation of Bregman relative entropies with linear constraints. More generally, the
existence and uniqueness of constrained maximisation of any Bregman relative entropy
is equivalent with the projection along ∇-geodesic onto the non-empty set that is convex
and closed in ∇?-geodesics, where the torsion-free flat affine connections (∇,∇?) arise
from the third order Taylor expansion of this relative entropy [1, 2]. If any of conditions
of this type are accepted (what forms a particular decision), then the resulting updating
rule is unique, what makes this rule axiomatically appealing. However, like in the case
of derivation of Bayes’ rule from Cox’s type or the Ramsey–de Finetti type procedure,
one might deny some of the premises of these derivations (such as normalisation), and
decide to accept some other set of premises, leading to some other inductive inference
rule. There also remains a problem how to relate the mathematical constraints of relative
entropic updating with the operational descriptions specifying particular experiment.

The choice of a particular form of information dynamics is thus relativised to a par-
ticular set of decisions, which are in principle arbitrary. The same applies also to the
choice of particular form of information kinematics (which includes model construction
and model selection). But this arbitrariness is not necessarily unconstrained. According
to the ‘subjective’ bayesian interpretation, it is constrained by consistency of decisions of
a single person (individual). Thus, each person can in principle choose arbitrary method
of kinematic model construction and arbitrary method of inductive inference, but he or
she is required to maintain personal consistency of these choices in subsequent inferences.
In our opinion, the necessary requirement for scientific inference (as opposed to personal
inference) is to make these decisions consistent relatively to a particular community of
users/agents. In other words, the decisions underlying construction and use of a particu-
lar form of information kinematics and information dynamics should be intersubjectively
accepted and applied by all members of the given community. This way, within the range
of intersubjective validity of these decisions, the notion of information model and its
dynamics cannot be considered as ‘subjective’.

This asks for the sufficient conditions that define the scientific inference. The crucial
observation comes from Fleck [32, 33, 34] (see also [86] and [61]), who showed that the
‘scientific facts’ and ‘experimental data’ are always specified within the frames of some de-
cisions (expressed in terms of particular assumptions and settings, including specification
of the allowed response scales of measured outcomes, allowed experimental preparations
and treatments, etc.), which are necessary to obtain intersubjective consistency with the
preconceived notion of an ‘experiment of a given type’. These decisions define the range
of allowed variability of ‘facts’ and ‘data’, but are not determined by the theoretical model
under consideration. Yet, both theoretical (inferential, informational) and experimental
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(operational, knowledge-carrying) layers of scientific inquiry, as well as their mutual rela-
tionships, are determined by some intersubjectively shared thought style (which is an en-
tity from meta-theoretic level). Hence, ‘scientific facts’ or ‘experimental data’ are relative
to some particular intersubjectively shared decisions on construction and use of experi-
mental setups. Everything that is individually (personally) experienced in a particular
experimental situation, but does not fit into the frames rendered by the above decisions,
is not considered as a valid ‘experimental data’ (‘scientific facts’) for an experiment of
a given type. However, it does not mean that the ‘experimental data’ for a particular
instance of experiment of a given type is completely determined by these frames. Taking
under consideration all above restrictions and relativisations, there remains unexpected-
ness of a particular outcome that appears within given frames (of particular configuration
and particular range of allowed outcomes). The aim of theoretical inquiry is to provide
inductive inferences about these unexpected outcomes, dependently on the particular
constraints that are taken into consideration as evidence.

We postulate that for any (stage of historical development of a) given thought style,
the scientific character of inquiry requires to separate the theoretical abstract language
used to intersubjectively define and communicate theories from the operational language
used to intersubjectively define and communicate corresponding experiments. The spec-
ification of operational (‘experimental’) language for intersubjectively valid construction
and use of experimental setups allows to define the range of validity of particular methods
of inductive inference. More precisely, this allows to construct the relational justification
of given rules of construction of information kinematics and information dynamics with
respect to a particular description of experiments of a given type, provided in terms of a
given operational language. In particular, this applies to justification of the choice of E
and F in the constrained maximisation of relative entropy. They can be determined by
the assumptions expressed in operational language and by the chosen relationship (corre-
spondence) between operational and theoretical descriptions. The latter interprets terms
of operational language in theoretical terms, and provides an operational (experimental)
contextualisation of a given information (inductive inference) theory.

This means that the theoretical model is verified only with respect to certain context
of intersubjectively shared decisions which construct the ‘experiment of a given type’.
More precisely, the ‘experimental verification’ of a predictive theory means just an in-
tersubjective reproducibility (consistency) of relationship between predictions (inferences)
over a particular information model and results of use of an experimental setup of a given
type, with respect to a given correspondence between the kinematics of this model and
construction of experimental setup of a given type, as well as between the constraints of
inductive inference and the particular use of this experimental setup. To simplify these
relativisations, we can restrict the notion of intersubjective validity, as refering to fixed
operational definitions and fixed operational contextualisation. This leads to intersubjec-
tive interpretation: the meaning of knowledge used to define particular theoretical model
and its dynamics is provided by operational criteria that are sufficient and necessary in
order to intersubjectively reproduce an ‘experiment of a given type’ that is considered to
correspond to this theoretical model (which means that the inferences drawn from this
model are interpreted as most plausible outcomes of corresponding experiment).

This interpretation does not define the absolute (passive, static) meaning of the notion
of ‘knowledge’. It defines only the relational (active, dynamic) meaning of this notion,
as a particular relationship between kinematics-and-dynamics of theoretical model and
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construction-and-use of experimental setup. It differs from Bridgman’s operationalism [8]
and various versions of logical positivism, because it postulates neither the reduction of
theoretical layer to experimental layer, nor the absolute universality of their relationship.
It differs from conventionalism of Duhem [24, 25], Poincaré [72, 73], and late Jeffreys [50]
by an additional requirement of intersubjective consistency between experimental setup
construction and theoretical model construction. This way it is capable of providing a
solution to the problem that neither ‘subjective’ bayesianism nor ‘objective’ bayesianism
can justify the particular use of ‘experimental data’ as evidence in inductive inference
procedures. Personal betting behaviour and ontological postulates play no role in it.
The intersubjective consistency (validity) of a particular relationship between theoreti-
cal model construction and operational construction of experimental setup, as well as a
particular relationship between theoretical dynamics and operational use of experimental
setup, is relative only to some community of users/agents which agree upon them. The
constraint of intersubjective agreement is of meta-theoretical character and cannot be
described in terms of inductive inference theory. Beyond any given community, the par-
ticular rules of models construction and inductive inference, as well as their relationship
with the particular experimental setups and their use, are irrelevant (arbitrary, person-
alistic, ‘subjective’), but within this range they are indispensable (necessary, scientific,
‘objective’). This resolves the “subjective vs objective” bayesian debate, as well as it
dissolves the bayesian version of the reference class problem [40], by removing them be-
yond inductive inference theory. The criteria for intersubjective consistency (coherence)
of experimental verifiability establish the direct link of inductive inference with experi-
mental data, which is independent of any assumptions of ontological or meta-theoretical
character.

3 The principles of new foundations

On the level of mathematical framework, following earlier paper , we propose to unify
kinematic (probabilistic, evaluational) and dynamic (statistic-inferential, relational) com-
ponents, taking the best insights from analysis of the Borel–Kolmogorov and the Bayes–
Laplace approaches. Thus, we replace measure spaces (X ,f(X ), µ) by camDcb-algebras
f, and we consider integrals instead of measures. The failure of frequentism allows us to
introduce statistical inference and lack of normalisation directly into foundations. We de-
fine: information kinematics as given by information models M(f) ⊆ L1(f)+ and their
information geometry (specified by deviations, riemannian metrics, affine connections,
etc., see e.g. [14, 1, 2, 38]); information dynamics as given by minimisation of informa-
tion deviation D :M(f)×M(f)→ [0,∞] such that D(ω, φ) = 0 ⇐⇒ ω = φ, weighted
by relative prior measure E : M(f) ×M(f) → [0,∞], and subjected to constraints
F :M(f)→]−∞,∞],

PD,E,F :M(f) 3 ω 7→ arg inf
φ∈M(f)

{∫
ϕ∈M(f)

E(ϕ, ω)D(ϕ, φ) + F (φ)

}
∈M(f). (3.1)

On the level of information semantics, the underlying algebra f represents an abstract
qualitative language subjected to quantitative evaluation, the space M(f) of finite inte-
grals and its geometry represents quantified knowledge, while the entropic updating (3.1)
represents quantitative inductive inference procedure determined by the triple (D,E, F ).
The functions E and F specify the evidence, while the resulting projection PD,E,F is an
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inductive inference: the most plausible state of knowledge subjected to given evidence.
By well-posed inference problem we understand such triples (D,E, F ) for which the so-
lution PD,E,F exists and is unique. The lack of existence indicates overdetermination of
an inference problem, while the lack of uniqueness indicates its underdetermination. For
E(ϕ, ω) = dϕδ(ϕ − ω) the principle (3.1) says: given initial information state ω, choose
such information state that is most close to ω in terms of distance defined by D, under
constraints defined by F . Other relative prior measures E on M(f) allow more general
selection of information state, which takes under consideration the relative distances to
several different information states associated with the initial state. (This idea was first
proposed by Zhu and Rohwer [96, 97], see also [78].)

To determine the particular operational and conceptual meaning attributed to the
terms ‘knowledge’ and ‘change of knowledge’, the information semantics requires an
additional epistemic interpretation. It should determine the choice of a particular infor-
mation kinematics (M(f) and its information geometry) and a particular information
dynamics (D, E, F ) when applied to some particular experiments. According to inter-
subjective epistemic interpretation: (i) the construction of information kinematics should
correspond to the intersubjective description of construction of experimental setup of a
given type (provided in some operational terms); (ii) the construction of information dy-
namics should correspond to the intersubjective description of the use of a experimental
setup of a given type. But what do ‘intersubjective description’ and ‘correspondence’
mean?

While it is impossible to formalise the intersubjective decisions within the framework
of inductive inference theory, one can formalise the operational criteria that are neces-
sary and sufficient in order to verify whether individual instances of experimentation (e.g.,
some mutually related preparations, actions and observations) can be considered as an
intersubjectively valid instance of an ‘experiment of a given type’. These criteria define
an intersubjective notion of an ‘experiment of a given type’, which is an abstraction,
because one cannot step twice into the same stream. The intersubjective reproducibility
(validation) of experiments can be undestood as a preservation of their abstract structure
in all individual (personal) instances of experimentation. We will encode this structure
together with the corresponding structure-preservation criteria in terms of category the-
ory. By an ‘experiment of a given type’ we understand an ‘experimental setup of a given
type’ and a ‘given type of its use’. The former is defined by providing some particular
categories: (i) Subj of abstract qualities (‘preparations’, ‘subjects’, ‘things’, ‘properties’,
‘questions’, ‘experimental units’) subjected to consideration in experiment; (ii) Config
of active configurations of experimental inputs (‘treatments’, ‘interventions’, ‘acts’); (iii)
Scale of registration scales of experimental outcomes (‘outputs’, ‘results’). The latter
is defined by providing an association between inputs and outcomes conditioned on the
choice of qualities. The particular association of outcome, input and quality in course of
an individual (personal) instance of an experiment will be called ‘fact’ or ‘experimental
data’. Following [42] we define an observation as a map from preparation (quality) to
outcome (registration value), and define an experimental design as a map from prepa-
ration to treatment (act, configuration). This allows us to define fact as a map from
experimental design to an outcome. We also require that facts can be decomposed into
‘active’ parts provided by treatments, and ‘passive’ parts provided by observations. Fol-
lowing [67] we assume that Subj, Config and Scale are equipped with forgetful functors
U· : · → Set (allowing to deal with their objects as with sets), and we define: a category
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of observations as a product category Scale×Subjop; a category of experimental designs
as a comma category USubj ↓ UConfig; a category of facts as

Scale× (USubj ↓ UConfig)op.

The decomposion of facts into experimental designs, treatments and observations is pro-
vided, respectively, by means of the projection functors

Ped := (·)op ◦ Π(USubj↓UConfig)op ,

Pt := ΠConfig,

Po := idScale × ΠSubjop .

Let theoretical layer be equipped not only with models M(f) and triples (D,E, F ),
but also with spaces H of hypotheses. Define an inductive inference theory as a method
that assigns to each modelM(f) a (D,E, F )-dependent map into some H. If this method
can be expressed as a covariant functor from the category of modelsM(f) equipped with
information geometric structures and geometry-preserving morphisms as arrows to the
category of spaces of hypotheses, then by correspondence we undestand the functorial
association of the respective categories:

facts
Ped

vv

Po

((
Pt◦Ped

��
exp. designs

Pt

// treatments

Ct

��

observations

Co

��
hypotheses models.

theoryoo

This scheme is inspired and motivated by [42] and [67]. The functors Ct and Co are
correspondence rules that interpret active and passive components of experimental layer
in terms of, respectively, active and passive components of theoretical layer. The theory
will be called experimentally verifiable with respect to the given intersubjective context
of facts and correspondence rules iff the above diagram commutes. This replaces the
‘absolute’ evaluation of the truth (verifiability, falsifiability) of a theory by the mutual
coherence of experimental and theoretical layers of intersubjective scientific inquiry in
face of the given correspondence rules. In analogy to [67] one can consider the algebras f
as objects of Subj. In such case each f can be understood as an abstract entity that is
used for intersubjective communication of experimental preparations. The preparations
represented by f are subjected to observations valued into the objects of Scale. The
interpretation (correspondence rule) Co maps collections of these valuations into the
corresponding information modelsM(f) and their geometry. The modelsM(f) consists
of theoretic valuations (integrals) into R+, which are states of information. Due to Co,
the information states can be understood as the carriers of quantitative intersubjective
knowledge describing the experimental setup of a given type. The choice of evidence E
and F provides the description of active configurational settings (treatments, inputs).
The choice of D and PD,E,F determines a range of allowed inferences. The experimental
verifiability condition determines the relationship of these inferences with experimental
facts.

9



References

[1] Amari S.-i., 1985, Differential–geometrical methods in statistics, Lecture Notes in Statistics
28, Springer, Berlin.

[2] Amari S.-i., Nagaoka H., 1993, Joho kika no hoho, Iwanami Shoten, Tōkyō (engl. transl. rev.
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