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Cryptographic protocols are often based on the two main resources: private randomness and private key. In
this paper, we develop the relationship between these two resources. First, we show that any state containing
perfect, directly accessible, private key (a private state) is a particular case of the state containing perfect, directly
accessible, private randomness (an independent state). We then demonstrate a fundamental limitation on the
possibility of transferring the privacy of random bits in quantum networks with an intermediate repeater station.
More precisely, we provide an upper bound on the rate of repeated randomness in this scenario, similar to the
one derived for private key repeaters. This bound holds for states with positive partial transposition. We further
demonstrate the power of this upper bound by showing a gap between the localizable and the repeated private
randomness for separable Werner states. In the case of restricted class of operations, we provide also a bound on
repeated randomness which holds for arbitrary states.
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I. INTRODUCTION

Ensuring the security of communication in quantum in-
ternet is one of the main current challenges of quantum
technology [1]. In this context, two distant honest parties
must distribute a secure key, i.e., a private correlated string
of bits. A prominent security framework that assures the
distribution of encrypted bits in a quantum network is the
quantum repeaters scheme [2–5]. It allows for distributing
secure key employing pure maximally entangled states [6] and
entanglement swapping [2,3].

In a recent article [7] the paradigm of network key swap-
ping was extended to the most general scenario of private
states [8,9], that are, generally, mixed quantum states. A
striking result of [7] is the existence of mixed states ρ and ρ ′,
such that no protocol between three parties A, B,C = C1C2

can transfer a non-negligible amount of key between A and B
from the key shared between the parties AC1 and BC2.

This fact shows an intriguing property of the secure key
extracted from mixed quantum states: it is not transitive for an
arbitrary state, i.e., the fact that A has secure connection with
C and C has secure connection with B does not imply that A
can establish secure connection with B.

In this article, we investigate the network properties of
another critical resource for cryptography: the private ran-
domness. In most cases, it is used for testing a quantum device
or postprocessing the classical outcome of the latter. For this
reason, the privacy of randomness appears as a precondition
for secure key distribution. This resource was recognized quite
early (for the review on this topic, see [10]; the framework for
single-party private randomness extraction was developed in
[11]), and has motivated commercial implementations (e.g.,
Ref. [12]). Only recently a resource theory framework of
(distributed) private randomness has been established [13]

(see, e.g., Refs. [6,14] for a review of other resource theories).
According to this approach, the task of distillation of private
randomness amounts to obtaining the so-called independent
states α via closed local operations and dephasing channel
(CLODCC). More precisely the CLODCC operations are
compositions of (i) local unitary operations by each of the
honest parties (UA and UB) and (ii) communication via de-
phasing channel from A to B and vice versa. The dephasing
channel transfers the state measured in a fixed (say computa-
tional) basis. These operations were introduced in the context
of purity distillation. The choice of this class of operations
in resource theory of private randomness is justified, as these
operations do not bring in private randomness.

It is common in the literature to represent the
private randomness obtained by two honest parties
against an eavesdropper in terms of tripartite states
(
∑dA−1

i=0
1

dA
|i〉〈i|) ⊗∑dB−1

k=0
1

dB
|k〉〈k|) ⊗ ρE (here ρE is

representing an arbitrary state of the eavesdropper). In
such an approach the honest parties are using local operations
and public communication. However, it is shown in [13]
that this approach is equivalent to distilling specific bipartite
states—the independent states, by means of CLODCC
operations. The independent states have a form of coherence
“twisted” into a shared mixed state:

αdA,dB =
∑

i, j,k,l

|i〉〈 j| ⊗ |k〉〈l| ⊗ UikσA′B′U †
jl , (1)

as it can be written in the following way:

τ |+〉〈+|A ⊗ |+〉〈+|B ⊗ σA′B′τ †, (2)

with |+〉A/B = ∑dA/B−1
i=0

1√
dA/B

|i〉 and τ = ∑
i j |i j〉〈i j| ⊗

U A′B′
i j .
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FIG. 1. Onion structure of quantum states containing ideal pri-
vacy. The singlet state is an example of a private state. The set of
private states is a proper subset of the set of independent states. The
state |+〉 is an independent state, which is not a private state.

In the scenario considered here, i.e., when two parties
want to localize private randomness at one place, we will be
interested in local independent states:

αdA =
∑
i, j

|i〉〈 j| ⊗ UiσA′B′U †
j . (3)

Although the structural analogy between the theories of pri-
vate key and randomness is somewhat natural, the results
explicitly determining this relation are missing. Developing
this analogy, we first show that any state containing an ideal
private key (a private state) [8,9] is, in fact, an independent
state. We therefore prove that the sets of quantum states
containing ideal privacy form an onion structure (see Fig. 1).

We then demonstrate that private randomness exhibits the
similar type of limitation as a secure key when distributed
on a communication network [7]. The answer to the question
“Can one always swap private randomness of general mixed
quantum states?” follows this close analogy.

The conceptual description that we introduce to capture
the topology of security in the network is called the loyalty
network. It represents each party as a vertex, while a directed
edge from vertex A to vertex B represents A being secure due
to loyalty of B. In the weaker sense, loyalty A → B means
that A trusts that B will not hand over his subsystem ρB of the
shared joint state ρAB to any eavesdropper Eve. Clearly, if B
is not loyal to A, the local private randomness of A is equal to
localizable purity. However, we will assume a stronger sense
of loyalty, in which loyal B cooperates in favor of A, such that
A has access to as much private randomness of a state ρAB as it
is possible (part of it is obtained from the correlations between
A and B).

We will exemplify this concept with entanglement swap-
ping of the singlet |ψ〉AB

+ := 1√
2
(|00〉 + |11〉)AB:

|ψ〉AC1+ ⊗ |ψ〉C2B
+

ent. swap.−−−−−−−→ |ψ〉AB
+ . (4)

This operation can be interpreted as follows.
Initially, party A has 1 bit of private randomness due

to the loyalty of party C = (C1C2), and party C has 1 bit
of private randomness due to the loyalty of party B. After
applying entanglement swapping, party A has 1 bit of private
randomness due to the loyalty of party B, and does not need
to rely on the loyalty of party C anymore.

FIG. 2. Depiction of the limitation for private randomness in the
context of network repeaters. Part (a) depicts redistribution of loyalty
in the network via entanglement swapping: on the LHS A trusts C
and C trusts B, as depicted by the green arrows. On the RHS A trusts
B only [2]. Part (b) shows that for any ε > 0 there exist states with
positive partial transposition, that have almost 1 bit of secure key KD

each. However, there is no LOCC protocol between three parties that
outputs an approximate private state with more than �nε	 bits of key
[7]. Part (c) depicts the result of this paper, in analogy to the case
(b): for any ε > 0, there exist states that have almost 1 bit of private
randomness, but there is no CLODCC protocol between three parties
that outputs an independent state with more than �nε	 bits of private
randomness.

Another way to see the dependencies in the loyalty network
of (4) is as follows: at the beginning A trusts C and B trusts C,
while the task is to remove C out of the network and to make
A trust B (or B trust A). As we show in Sec. IV, the bound
for repeated private randomness which we provide is invariant
under the swap; hence it covers also this particular topology
of network. Moreover, in Sec. VII we show that there are
swap-invariant states (e.g., some Werner states) that exhibit
gap between localizable and repeated private randomness.

We then ask if such transformation is possible for all mixed
quantum states, when the number n of copies of initial states
goes to infinity,

(ρAC1 ⊗ ρ̃C2B)⊗n priv. rand. repeater?−−−−−−−−−−−−−−→
n→∞ αAB

k×n, (5)

where k × n is the rate of private randomness that can be ob-
tained via tripartite operations from n copies of the input state
in the form of the independent states. These states, denoted
by α, contain ideal private randomness directly accessible by
local complete von Neumann measurement on the subsystem
of α. For the qualitative summary of the results, see Fig. 2 and
Sec. I A.
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Since we adopt methods shown in [7], the upper bound
that we obtain works for the states with positive partial
transposition (PPT states). These are bipartite states ρ that
satisfy [I ⊗ (·)�](ρ) � 0 [15], where (·)� is a transposition
and I is an identity operator. We show the power of the upper
bound by inspecting the gap between localizable and repeated
private randomness for separable Werner states. These are
states interpolating between symmetric and antisymmetric
states. Within the range of interpolating parameter that guar-
antees separability, for sufficiently large local dimension d ,
we observe the presence of a gap. We also consider a strictly
smaller class of operations, generated by compositions of (i)
n optimal single copy operations among the three parties,
followed by (ii) distillation by A and B solely, via general
CLODCC(A : B) operations. For this class, we derive a bound
for repeated private randomness for arbitrary states. We then
exemplify it by providing a family of states that do not have
positive partial transposition, yet exhibit the same gap (of
almost 1) between localizable and repeated randomness.

A. Summary of the main results

For the reader’s convenience, we summarize here the main
results of our contribution.

Here and further in this paper we write interchangeably
ρAC1 , ρ̃C2B and ρ, ρ̃ whenever it is clear from the context.
Given a state ρAB, S(A)ρ will denote the von Neumann
entropy of subsystem A of ρAB, S(A)ρ := −Tr(ρA log2 ρA),
with ρA = TrBρAB. By S(A|B)ρ we denote the conditional en-
tropy S(AB)ρ − S(A)ρ , while I (A : B)ρ = S(A)ρ + S(B)ρ −
S(AB)ρ is the quantum mutual information. By log2 |A| we
mean the log of dimension of the system A (similarly for B and
AB). In case it is necessary, we will explicitly write the state
of which dimension is invoked: log2 |A|ρ . The logarithm is of
the base 2 throughout all of this paper. For the special case
of a distribution {p, (1 − p)}, its Shannon entropy we denote
as h(p) = −p log

2
p − (1 − p) log2(1 − p). We also refer to

it as the binary Shannon entropy.
The main step towards our results is the defini-

tion of the repeated randomness RA↔C1C2↔B
A (ρ ⊗ ρ̃) (an

analog of repeated key), which is the asymptotic rate (n →
∞) of private randomness (in the form of the ibits) that can be
achieved by the three parties from initial n copies of the state
ρ ⊗ ρ̃ via operations allowed in the resource theory of private
randomness [13] (called CLODCC). Separately, we define the
private randomness repeater rate in the i.i.d. case, i.e., when
three parties perform the same CLODCC operation on each of
the copies of the state, followed by a general operation from
CLODCC(A : B).

As the main result, we prove the following upper bound on
the rate of repeated private randomness:

RA↔C1C2↔B
A (ρAC1 ⊗ ρ̃C2B)

� D

(
ρ�|| I

|AC1|
)

+ D

(
ρ̃�|| I

|C2B|
)

, (6)

where D(ρ||σ ) = Tr(ρ log2 ρ − ρ log2 σ ) is the quantum
relative entropy and ρ� := (I ⊗ T )(ρ) denotes the partial
transposition of ρ. The right-hand side (RHS) of (6) can
be quite small in some cases, as we show with particular

examples of states for which repeated private randomness is
negligible. It can be rephrased in terms of the global purity,
G(ρXY ) := log2 |XY | − S(XY )ρ , as

RA↔C1C2↔B
A (ρAC1 ⊗ ρC2B) � G

(
ρ�

AC1

)+ G
(
ρ̃�

C2B

)
. (7)

The above form of the bound would be natural in the pu-
rity distillation paradigm [16]. In the context of private ran-
domness distillation it will be also natural to rephrase it in
terms of correlations, i.e., quantum mutual information. This
is because the mutual information quantifies the nontrivial
(not equivalent to purity) amount of private randomness. For
the case when ρ = ρ̃ has positive partial transposition and
has both subsystems in maximally mixed states, we have
immediate corollary.

The partial transposition does not change the entropy of
either of the subsystems of ρ. One subsystem (say A) is the
same after applying the map IA ⊗ (·)�B . For the other, by the
fact that det(X ) = det(X �) one has det(ρB − λI) = det(ρB −
λI)� = det(ρ�

B − λI). Hence the roots of this polynomial,
which are the eigenvalues of ρB, are the same as for ρ�

B :

RA↔C1C2↔B
A

(
ρAC1 ⊗ ρC2B

)
� 2I (A : C1)ρ� . (8)

This stems from the fact that the quantum relative entropy
between a state and the product of its two subsystems is equal
to quantum mutual information between them.

The key result of [13] which allows us to interpret our
main result is the protocol of optimal private randomness
distillation. It determines how a single party can localize as
much of the private randomness in her system as possible.
Additionally, in [13] it is shown that there are two sources of
private randomness: local, in the form of purity, and shared, in
the form of correlations. This fact is supported by quantitative
result: the amount of localized private randomness of a state
with positive partial transposition ρAC1 in the asymptotic limit
reads

RA(ρAC1 ) = [log2 |A| − S(A)ρ] + [log2 |C1| − S(C1)ρ]

+ I (A : C1)ρ.
(9)

Thus the amount of locally achievable private randomness for
the ρAC1 (i.e., between A and C1) is equal to the sum of local
purity log2 |A| − S(A)ρ and the amount of correlation in the
shared state (i.e., the quantum mutual information). When the
state ρ has subsystems in a maximally mixed state, we can use
the bound from Eq. (8) since no local purity can be achieved,
i.e., RA(ρAC1 ) = I (A : C1)ρ . It applies for states with positive
partial transposition, for which there is a gap:

I (A : C1)ρ > 2I (A : C1)ρ� . (10)

Although we notice the gap between correlations of ρ and
ρ� for states having key (and therefore distillable private
randomness) [17], the above gap cannot be demonstrated in
the same way as in [7] due to the factor 2 above. Instead,
since the key is not the only local form of private random-
ness, we study the most famous single parameter class of
states—the Werner states. In particular, we observe that the
symmetric Werner state [18], ρd

s = 1
d2+d (I + V ), where V :=
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∑
i, j |i j〉〈 ji| is called a swap operator, satisfies

I (A : B)ρd
s

= 1 + log2

(
d

d + 1

)
−−−→
d→∞

1,

I (A : B)(ρd
s )� = 1

d
log2 d + d − 1

d
log2

d

d − 1
−−−→
d→∞

0.

Hence, for large dimensions of d ,

RA
(
ρd

s

) ≈ 1, RA
(
ρd

s ⊗ ρd
s

) ≈ 0. (11)

As we show in Sec. VII, any separable Werner state of suffi-
ciently high dimension exhibits the gap, as it is the case for the
symmetric one. This result is analogous to the limitation for
key repeaters shown in [7]. In contrast, however, it is achieved
on separable states, rather than on the approximate private
states used in [7].

Finally, we consider a variant of the i.i.d. case, when the
three parties are forced to use identical operations on each
copy of the state and, further, A and B apply any CLODCC(A :
B) on such obtained outputs. For a particular independent state
of the form

αV,d = 1

2

[
I
d2

V
d2

V
d2

I
d2

]
, (12)

we prove the existence of a gap between private random-
ness RA(αV,d ), RB(αV,d ) and i.i.d. repeated private randomness
Riid

A (αV,d ), whenever dimension is sufficiently large. Namely,
we prove that, for d > 32, we have RA(αV,d ) = RB(αV,d ) = 1,
while Riid

A (αV,d ) < 1. In particular, for d > 11, we have

Riid
A (αV,d ) � 4 log2 d

d
+ η

(
4

d

)
, (13)

which clearly goes to zero when d → ∞.
Our paper is organized as follows. We start from Sec. II,

where all necessary tools are presented; in particular, we
introduce the concepts of the CLODCC operations and of a
local idit. In Sec. II A we precisely describe the framework
in which we work, stating what the involved parties are
allowed to perform. We do so by defining the allowed class
of operations (CLODCC) and its distinguished subclass, and
by establishing relations between them. Section III analyzes
the relationship between the sets of private states and of
independent states, showing they are not equal to each other.
This finding distinguishes our work from previous results on
limitations on quantum key repeaters. Section IV is divided
into two separate parts. In the first one, we prove results
on the state discrimination from the maximal noise by using
CLODCC operations. In the second part, we derive our main
result: an upper bound on the rate of repeated randomness.
This implies existence of the states with localizable random-
ness equal to 1 that have vanishingly small repeated inde-
pendent randomness. In Sec. V we provide alternative proof
of the bound on repeated private randomness for states with
positive partial transposition, showing, as a by-product, that
the latter rate is bounded by a value computed on partially
transposed states. In Sec. VI, we present the limitation for a
private randomness repeater in the i.i.d. case, where parties
first perform the same CLODCC operation on each copy of
the state and then apply arbitrary CLODCC on these copies.

In particular, for a chosen class of independent states and
for sufficiently large dimension, we show a gap between the
private randomness and the repeated private randomness. In
Sec. VII we show a broad class of Werner states for which
our main result holds. We close this paper with Sec. IX,
summarizing our main results and putting them in the broader
picture of possible further research.

II. PRELIMINARIES ON PRIVATE
RANDOMNESS AND KEY

In this section, we recall necessary concepts of the resource
theory of private randomness and private key, allowing the
reader to better understand our further results.

The free operations of this theory are closed operations and
classical communication via dephasing channel (CLODCC).
This class of operations is a subclass of the well-known LOCC
operations, and was introduced as free operations in the re-
source theory of purity [19]. The systems under consideration
are closed, only local unitary transformations are allowed,
and the honest parties can exchange subsystems through a
dephasing channel. Such dephasing channel can be realized by
an eavesdropper Eve via (1) attaching an ancillary pure state
|0〉E to each system M passing between the honest parties,
(2) performing a CNOT (controlled-NOT) gate (with source at
M and target at the system E ), and (3) collecting E in some
quantum memory.

The target states (i.e., states containing ideal private ran-
domness in a directly accessible form) are given by indepen-
dent states [13], which can be viewed as the result of twisting
of coherent states [20] 1√

d
(
∑d−1

i=0 |i〉A) ⊗ 1√
d

(
∑d−1

i=0 |i〉B). In
the case of two dits of private randomness the independent
states have the form

αABA′B′ := U |+〉〈+|A ⊗ |+〉〈+|B ⊗ σA′B′U †, (14)

where U = ∑
i, j |i j〉〈i j| ⊗ Ui j and Ui j is a unitary transfor-

mation for each i j.
By local idit we will mean the independent state given

in Eq. (14) when |A| = d and |B| = 1 (or |A| = 1 and |B| =
d). Hence private randomness can be directly accessed from
a part of such state that is localized either at A or at B.
To explicitly indicate the number m of private random bits
directly accessible via measuring systems A (or B) in a local
idit, we will denote it as αm.

Note that these states are similar in construction to the pri-
vate states, defined [8,9] by twisting of maximally entangled
states |ψ〉AB

+ := 1√
d

∑d−1
i=0 |ii〉AB,

γABA′B′ := U |ψ〉+〈ψ |AB ⊗ σA′B′U †, (15)

with the unitary operator U = ∑
i |ii〉〈ii| ⊗ Ui. Every key

distillation protocol ends up in states approximating private
states, while every protocol which distills private randomness
produces approximated independent states. In Sec. III we
show that any private state is an independent state.

Following [13], RA(ρ) will denote the private randomness
localizable on system A by means of CLODCC(A : B) opera-
tions from (asymptotically many) copies of ρAB.

An important result from [13] asserts the following: if a
bipartite state has a negative conditional entropy, then the
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FIG. 3. Depiction of the considered scenario. All three parties
can perform locally unitary transformations, and can send a system
down a dephasing channel to the other parties. Their task is to distill
independent states shared by A and B.

whole of its private randomness content can be localized at
each of the parties by means of CLODCC operations.

Theorem 1 (Corollary from Theorem 4 of [13]). Any bi-
partite state ρAB satisfying S(B|A)ρ > 0 satisfies RA(ρAB) =
log2 |AB| − S(AB)ρ .

The quantity log2 |AB| − S(AB)ρ is called a global purity
[19], and is also a trivial upper bound on the amount of
localizable private randomness (achieved when both parties
can operate globally on the system AB). Any separable state
and, in general, states with positive partial transposition have
positive quantum conditional entropy (i.e., negative coherent
information) [6]. Moreover, as we will see, some ibits that
have negative partial transposition share this property with
PPT states. Furthermore, the resource theory of private ran-
domness has an empty set of free states: adding a maximally
mixed state can increase the amount of localizable private
randomness. However, the maximally mixed state on its own
represents the set of states which are closed under CLODCC
operations (see Sec. IV) and it contains zero localizable
private randomness. We can, therefore, view this state as a
correspondent of the set of separable states in the resource
theory of private key.

In what follows ρ ≈ε ρ ′ denotes ||ρ − ρ ′||1 � ε with
||X ||1 := Tr|X | for a Hermitian operator X .

A. Scenario of private randomness repeaters

In our scenario, there are three involved parties: A, B, and
C. Party C has two subsystems: C1 and C2. A dephasing
channel connects each pair of parties. Each of the parties can
perform either (i) unitary operation or (ii) sending of a system
to some of the other parties (or both of them). We denote
as CLODCC(A : C1C2 : B) the class of operation generated
by arbitrary (possibly infinite) compositions of the above
operations. The parties are given (arbitrarily large) n copies
of input states ρAC1 and ρC2B shared by A and C, and C and B,
respectively. The task of the parties is to obtain a local idit αm

on systems A and B with the largest possible amount m of bits
of private randomness, with randomness directly accessible by
von Neumann measurement on Alice’s system [see part (c) of
Fig. 2 and Fig. 3]. In the case of the above scenario, we obtain
the bound for states with positive partial transposition.

To obtain analogous results for states that are not hav-
ing positive partial transposition, we will consider a much
simpler scenario, with a smaller class of allowed operations,

CLODCC[Ciid : (A iid : Biid)] � CLODCC(A : B : C). For
the case of n copies of the input states, this class is defined by
the composition of two operations, denoted as (C : A : B)iid

and A ↔ B, respectively. The former operation corresponds
to an action of the three parties: they behave identically on
each copy, producing n copies of the best single-round output
ρ̂. The latter operation refers to A and B performing a general
CLODCC(A : B) operation on ρ̂⊗n. The task for the parties is
again to distill independent states shared by A and B.

We end this section with several simple observations,
which are crucial for our later considerations.

Observation 1. There is CLODCC(A : C1C2 : B) ⊂
CLODCC(C1C2 : AB).

Proof. The difference between these two sets of operations
is that A and B are joining their labs. They can now perform
global unitary transformations, and we have to show that they
still are able to dephase parts of their system. For example, A
can send a state to B via a dephasing channel according to def-
inition of the set of CLODCC(A : C1C2 : B) (and vice versa).
When A and B acting together want to dephase some system,
they can send it to C who sends it back to them. The claim
is then seen from the fact that a single dephasing channel
between C and AB can also simulate two separate dephasing
channels between C and A, and C and B, respectively, while
operations of C are the same in both sets. �

Consider the set S of operations on system AB induced
from the operations in CLODCC(C : AB) via composing the
latter with a partial trace over system C. We will argue that
this set includes operations that are a composition of unitary
transformations and projections in the computational basis.
We will denote the set of all such compositions as U + Deph.

Observation 2. The set S of transformations of system AB
defined as TrC�C:AB(ρABC ), with �C:AB ∈ CLODCC(C : AB),
satisfies U + Deph ⊂ S.

Proof. It follows directly from the fact that operations
UAB ⊗ IC and {Pa ⊗ IC} with a being a subsystem of AB
belong to the set CLODCC(C : AB). Indeed, the von Neu-
mann measurement on a subsystem of AB can be realized
via composition of sending the measured system a to C
and resending it back to AB. The same holds for arbitrary
composition of the latter two. The assertion then follows from
the fact that TrC (LAB ⊗ IC )(ρABC ) = LAB(TrCρABC ) for any
completely positive trace preserving linear map LAB. �

It is common that the allowed operations in a given re-
source theory preserve the set of the free states, i.e., transform
any free state into a free state. The observation below imple-
ments this property for the resource theory of (distributed)
private randomness.

Observation 3. Every � ∈ CLODCC is unital, i.e., � pre-
serves the maximally mixed state.

Proof. According to the definition of CLODCC, presented
in Sec. II, operations in this class are composed of unitary
operations and dephasing together with sending the dephased
system from one party to another. Clearly, the first two opera-
tions preserve the maximally mixed state. The only nonunital
operation is sending of the dephased system. However, a sub-
system of a maximally mixed state is also a maximally mixed
one; hence the map outputs also a maximally mixed state,
but (possibly) of different dimension on systems A, B, and
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C (denoted as |Â|, |B̂|, and |Ĉ|, respectively). However, |A| +
|B| + |C| = |Â| + |B̂| + |Ĉ|, because the CLODCC class does
not contain the partial trace operation. Hence this map can be
seen as “redistributing” the maximally mixed state among the
three systems. �

III. PRIVATE STATES ARE INDEPENDENT STATES

In this section, we discuss the differences between private
states and independent states. In particular, we prove that the
set of independent states is strictly included in the set of
all private states. This follows from the fact that there are
product states, such as |+〉 ⊗ I/2, which are ibits having zero
distillable key, because entanglement is a precondition for
secure key [21]. Nevertheless, the techniques used here are
related to those in [7]. For example, the relative entropy is
taken with respect to the set of separable states, while here it
is taken with respect to the maximally mixed state. We have
to simplify the approach, because the private randomness is
zero for the maximally mixed state, and is nonzero for any
other state. We show that these two similar, although different,
classes of states are related by the strict inclusion PS � IS,
which is the main result of this section.

Proposition 1. Any private state is a (local) independent
state, while the converse statement is not valid in general,
PS � IS. Moreover, the private random bit can be located at
either of the parties.

Proof. Any private state has a form γABA′B′ =∑d−1
i, j=0

1
d |ii〉〈 j j| ⊗ UiσA′B′U †

j . The twisting involved in
the definition of any private state can be simplified to have a
single control [22]:

γABA′B′ =
(

d−1∑
i=0

|i〉〈i|A ⊗ IB ⊗ Ui

)
|ψ+〉〈ψ+|AB ⊗ σA′B′

×
⎛
⎝d−1∑

j=0

| j〉〈 j|A ⊗ IB ⊗ U †
j

⎞
⎠. (16)

It is then enough to express the singlet state |ψ+〉AB as an
output of a control-shift gate: |ψ+〉AB = τ |+〉A ⊗ |0〉B with
|+〉 = ∑d−1

i=0
1√
d
|i〉 and τ = ∑

i |i〉〈i|A ⊗ Si,d , where Si,d | j〉 =
| j + i mod d〉, if d is prime. If d is not prime, it can be
expressed uniquely by multiplication of primes: d = d1 ×
· · · × dk where dl is prime for l ∈ {1, . . . , k} (for the sake of
uniqueness, we assume dl � dl ′ for l � l ′). In this case we
define τ := ⊗k

l=1 (
∑dl −1

i=0 |i〉〈i| ⊗ Si,dl ), where Si,dl is defined
as above with dl in place of d . Substituting this form of a
private state into (16) immediately yields

γABA′B′ =
[

d−1∑
i=0

|i〉〈i|A ⊗
(

k⊗
l=1

Sl[i],dl

)
⊗ Ui

]
|+〉〈+|A ⊗ |0〉

× 〈0|B ⊗ σA′B′

⎡
⎣d−1∑

j=0

| j〉〈 j|A ⊗
(

k⊗
l=1

S†
l[ j],dl

)
⊗ U †

j

⎤
⎦,

(17)

where l[i] is the lth digit of i written in a multibase system
of k bases: d1, . . . , dk . Written in such a form, this state is

by definition a (local) independent state. Indeed, consider
Eq. (14), with substitution B of system of dimension 1 and
B′ system in state |0〉〈0| ⊗ TrA′σ . The strictness of inclusion
follows from the state |+〉 ⊗ I/2 being an ibit, while having
no distillable key, because entanglement is a precondition of
security [21]. Because the singlet state is swap invariant, the
same reasoning follows when one expresses it as |ψ+〉AB =
τ ′|+〉B ⊗ |0〉A with τ ′ having control at B rather than at A.
This fact shows that the private random bit can be located in
any of the parties. �

The above Theorem implies the onion structure of quantum
states containing ideal privacy: |ψ+〉 ∈ PS � IS and |+〉 ∈
IS \ PS (see Fig. 1).

IV. LIMITATIONS ON PRIVATE
RANDOMNESS REPEATERS

The main result of this section provides a bound on re-
peated independent randomness. It is based on the restricted
relative entropy bound of the Supplemental Material of [7],
with the difference that allowed operations are taken to be
CLODCC instead of LOCC, while the set of free states is
given by a maximally mixed state, instead of the set of
separable states. We will first describe the asymptotic distin-
guishability using operations from CLODCC.

A. Discriminating states from maximal noise
via CLODCC operations

We are interested in an asymptotic distinguishability. In
analogy to the restricted relative entropy of entanglement of
[23], we consider now the simplest of the restricted relative
entropy: the relative entropy with respect to the maximally
mixed state. Due to limitations of the specific technique, our
results hold only for states with positive partial transposition
(PPT states). We build on the results of [7].

Definition 1. For a bipartite state on H := Cd ⊗ Cd , the
restricted relative entropy distance from the maximal mixed
state achievable via operations from set S of POVMS is

DS (ρ) := sup
�M∈S

D

[
�M (ρ)||�M

(
I

d2

)]
, (18)

D∞
S (ρ) := lim

n→∞
1

n
DS (ρ⊗n), (19)

where �M := ∑
i TrH[Mi(·)]|i〉〈i| is a completely positive

trace-preserving map, n ∈ N, and D(·||·) is the Kullback-
Leibler relative entropy of two probability distributions. A
restriction of S in (18) and (19) to the set J , corresponding
to such �M that belong to the CLODCC class, defines DJ (ρ)
and D∞

J (ρ), respectively.
Theorem 2. If ρ is a density operator on H := Cd ⊗ Cd ,

� := idCd ⊗ (·)�, and X � := �(X ) for a linear bounded X :
H → H, then

ρ� � 0 ⇒ D∞
J (ρ) � D

(
ρ�|| I

d2

)
. (20)
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Proof. Let � ∈ CLODCC and let {|i〉〈i|} be a base in H. Then

sup
�∈CLODCC

D

[
�(ρ⊗n)||�

(
I⊗n

d2n

)]
:= sup

�∈CLODCC
D

[∑
i

TrH
(
Mi

�ρ⊗n
)⊗ |i〉〈i|||

∑
i

TrH

(
Mi

�

I⊗n

d2n

)
⊗ |i〉〈i|

]

= sup
�∈CLODCC

D

[∑
i

TrH
[(

Mi
�

)�
(ρ� )⊗n

]⊗ |i〉〈i|||
∑

i

TrH

((
Mi

�

)� I⊗n

d2n

)
⊗ |i〉〈i|

]

� D

[
(ρ� )⊗n||

(
I

d2

)⊗n
]

= nD

(
ρ�|| I

d2

)
. (21)

Hence

lim
n→∞

1

n
sup

�∈CLODCC
D

[
�(ρ⊗n)||�

(
I⊗n

d2n

)]
� lim

n→∞ D

(
ρ�|| I

d2

)
.

(22)
In the above � = {M�} is a POVM of an operation from
the set CLODCC. In the second equality we use the identity
Tr(XY ) = Tr(X �Y � ) for matrices X and Y , and the fact that
(ρ⊗)� = (ρ� )⊗n. The last inequality follows from the fact that
the relative entropy is nonincreasing under CPTP maps. �

B. Rate of repeated private randomness

Now we are in a position to derive an asymptotic version
of the distinguishability bound, that is, the quantity that upper
bounds the rate of repeated randomness RA↔C↔B

A . It measures
the distinguishability of the state from the maximally mixed
state in terms of the relative entropy of the probability distri-
butions that can be obtained by CLODCC.

We start from presenting a rigorous definition of rates of
repeated randomness. Namely, for input states ρAC1 between
A and C, and ρ̃C2B between C and B, we call

RA↔C↔B
A (ρAC1 ⊗ ρ̃C2B)

:= inf
ε>0

lim sup
n→∞

sup
�n∈CLODCC,αm

×
{m

n
: TrC[�n((ρAC1 ⊗ ρ̃C2B)⊗n)] ≈ε αm

}
(23)

the quantum private randomness repeater rate of ρ and ρ̃ with
respect to arbitrary CLODCC operations among A, B, and C,
that can be obtained on a system A.

Let CLODCC(A : B) be the set of POVMs which can be
implemented with CLODCC operations. An element of this
class is a corresponding CPTP map. That is, instead of a
POVM given by {Mi}, we consider the CPTP map M : X �→∑

i[Tr(MiX )] ⊗ |i〉〈i|. Hence M(ρ) is a distribution of POVM
elements from the stet {Mi} measured for a density operator ρ.
Our bound on the quantum independent randomness repeater
rate involves the measured relative entropy with respect to the
set CLODCC,

DC↔AB(ρAC1 ⊗ ρ̃C2B)

:= sup
M∈CLODCC(C:AB)

D

[
M(ρ ⊗ ρ̃ )‖M

(
I

dABC

)]
. (24)

By dABC we mean the multiplication of dimensions of ρ and
ρ̃. We denote by D∞

C↔AB the regularized version of (24),
analogous to the relationship between (19) and (18).

Before we prove the bound, we need a lemma showing a
lower bound on the measured relative entropy distance from
the maximally mixed state for states that approximate inde-
pendent states. We show that the measured relative entropy
distance with respect to U + Deph from the maximally mixed
state is proportional to m on ρ ≈ε αm.

Lemma 1. For ρ ≈ε αAA′B
m of dimensionality |AA′B|, we

have

DU+Deph

(
ρ‖ I

|AA′B|
)
� (1 − ε)m − h(ε). (25)

Proof. We will follow the proof of Lemma from [7] with
appropriate changes, since a general idit is twisted coherence
rather than entanglement. We use the fact that αm can be
expressed as UPm

A ⊗ σA′B′U †. Here U is a controlled unitary
operator, with control A and target A′B′, while σA′B′ is an
arbitrary state. Then,

DU+Deph

(
ρ‖ I

|AA′B|
)

= sup
�∈{U+Deph}

D

(
{Tr[M�(ρ)]}‖

{
Tr

[
M�

(
I

|AA′B|
)]})

� DU+Deph

[
TrA′B′ (UρU †)‖TrA′B′

(
U

I

|AA′B|U
†

)]

= DU+Deph

(
P̃m

A ‖ I

|A|
)

� DU+Deph

[
{Tr
(
Pm,F P̃m

A

)}‖{Tr

(
Pm,F

I

|A|
)}]

� (1 − ε)m − h(ε), (26)

where P̃m
A := TrA′B′ (UρU †) is a state, ε close to Pm

A ≡∑2m−1
i, j=0

1
2m |i〉〈 j|A. The first inequality holds due to monotonic-

ity of D(·||·) and the fact that U ∈ {U + Deph}. The second
inequality follows from (i) monotonicity under the projective
measurement {Pm,F } onto the basis of the Fourier transform
of the basis {|i〉}2m−1

i=0 (PA
m is an element of this transformed

basis) and (ii) Pm,F ∈ {U + Deph}. The last inequality is due
to {Tr(Pm,F

I
|A| )} = {1/2m}. Moreover, Tr(Pm,F P̃A

m ) � 1 − ε,
which follows from ρ ≈ε αm. Further, the highest entropy
among distributions {1 − ε, λ1, . . . , λd−1} is achieved by the
most mixed one for λi = ε

d−1 . We thus obtain the lower bound
on the relative entropy of the distribution, as claimed. �

We now come to the main result of this section.
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Theorem 3. For all states ρAC1 and ρ̃C2B:

RA↔C↔B
A (ρAC1 ⊗ ρ̃C2B) � D∞

C↔AB(ρAC1 ⊗ ρ̃C2B). (27)

Proof. For any ε > 0, by the definition of the rate of
repeated private randomness, there exists n ∈ N and � ∈
β := CLODCC(An : Cn : Bn), such that r � RA↔C↔B

A (ρAC1 ⊗
ρ̃C2B) − ε and α̃ := TrC�[(ρAC1 ⊗ ρ̃CBB)⊗n] ≈ε α�nr	, where
�·	 denotes the floor function. Taking σABC = I

|ABC| and σ̃ :=
TrC�(σ ), we have

max
M∈β

D
[
M
(
ρ⊗n

AC1
⊗ ρ̃⊗n

C2B

)‖M(σACB)
]

� max
M∈β

D
[
M

(
�
(
ρ⊗n

AC1
⊗ ρ̃⊗n

C2B

))‖M(�(σACB))
]

� max
M∈U+Deph

D[M(α̃AB)‖M(σ̃AB)]. (28)

Thanks to Observation 1 and the assumption that � ∈
CLODCC(C : AB) we obtain the first inequality. The third
line follows from the fact that we restrict maximization to
the set of operations that are induced on system AB from a
CLODCC(C : AB) via trace over C. The set of these opera-
tions is denoted by S. Due to Observation 2, the set S includes
U + Deph. We get the lower quantity if we restrict supremum
to the operations from U + Deph � S. Due to Observation 3,
σ̃ = I

dout
, where dout is the dimension of the output of the map

TrC�(·).
Applying Lemma 1 with α̃ ≈ε α�nr	 we arrive at

max
M∈U+Deph

D[M(α̃AB)‖M(σ̃AB)] � (1 − ε)�nr	 − h(ε). (29)

Bounds (28) and (29), together with minimization over σ and
taking the limit n → ∞, imply the following lower bound on
D∞

C↔AB:

D∞
C↔AB(ρAC1 ⊗ ρ̃C2B) � (1 − ε)r. (30)

Taking into account that r � RA↔C↔B
A (ρAC1 ⊗ ρ̃C2B) − ε with

arbitrary ε, the statement is proved. �
Corollary 1. The following inequality holds for all PPT

states ρ = ρC1A and ρ̃ = ρ̃C2B:

RA↔C↔B
A (ρ ⊗ ρ̃) � D

(
ρ�|| I

|AC1|
)

+ D

(
ρ̃�|| I

|C2B|
)

,

(31)
where dρ, dρ̃ stand for the dimensions of ρ, ρ̃, respectively.

This Corollary follows from applying Theorems 2 and 3 to
J = CLODCC(C : AB).

From the bound (31) in Corollary 1 we can conclude
that there are states that have localizable randomness equal
to almost 1, while their repeated independent randomness is
vanishingly small (see Sec. VII for examples).

To interpret the above result, we should compare the
localizable and repeated private randomness. Theorem 1
of [13], invoked in Sec. II, states that localizable private
randomness of an input state ρAC1 is equal to its global
purity, i.e., log2 |AC1| − S(AC1)ρ . Using the equality of
log2 |AC1| for ρAC1 and for ρ�

AC1
, the RHS of (31) can be

rewritten as log2 |AC1| − S(AC1)ρ� + log2 |C2B| − S(C2B)ρ̃� .
However, for any state σAC1 , log2 |AC1| − S(AC1)σ =
[log2 |A| − S(A)σ ] + [log2 |C1| − S(C1)σ ] + I (A : C1)σ . That
is, the global purity can be split into purity accessible locally

(sum of the first two terms), and the correlation part (the
mutual information). The locally accessible purity is a type of
private randomness that is accessible to A and B without help
of C, and hence is always available in our private randomness
repeater scenario. The partial transposition does not change
entropy of the local subsystem, S(A)ρ = S(A)ρ� , and the
same holds for B. Hence, for ρ̃ = ρ, the difference between
localizable private randomness from ρ at system A and our
bound reads

log2 |AC1| − S(AC1)ρ − [log2 |AC1| − S(AC1)ρ� ]

− [log2 |C2B| − S(C2B)ρ̃� ]

= I (A : C1)ρ − [log2 |B| − S(B)ρ̃ + log2 |C2| − S(C2)ρ̃

+ I (A : C1)ρ� + I (C2 : B)ρ̃� ]. (32)

Thus, due to the term log2 |B| − S(B)ρ + log2 |C2| − S(C2)ρ
appearing on the RHS of (32), the above bound is weak for
states that contain local purity. However, as we will see, it
is sufficiently powerful for all states that have local purity
equal to zero, i.e., that have both subsystems in maximally
mixed states. In the latter case, considering also ρAC1 = ρ̃C2B,
the gap between localizable and repeated localizable random-
ness reads I (A : B)ρ − 2I (A : B)ρ� . In Sec. VII we will study
behavior of this gap for the family of separable Werner states.

V. DIRECT BOUND FOR PPT STATES IS NOT
TIGHTER THAN THE INDIRECT ONE

In this section we provide a more direct proof of Corollary
1. One might think that the latter bound could be improved by
getting rid of the factor 2 in front of the one presented in (8)
in Sec. I A, as analogous phenomenon happens for the private
key (see Lemma 12 and Theorem 13 of the Supplemental
Material of [7]). As we will see below, this is not the case:
we obtain the same bound. We show it here, because its
intermediate step is worth mentioning separately. It states that
the repeated private randomness is upper bounded for states
from PPT set by its value taken on the partially transposed
state.

Theorem 4. For any two bipartite states ρ and ρ̃ that have
positive partial transposition,

RA↔C1C2↔B
A (ρAC1 ⊗ ρ̃C2B) � RA↔C1C2↔B

A

(
ρ�

AC1
⊗ ρ̃�

C2B

)
. (33)

Proof. We first note that the definition of RA↔C↔B
A involves

the term TrC�[(ρAC1 ⊗ ρC2B)⊗n], with � ∈ CLODCC(A : C :
B) ⊂ LOCC(A : C : B) ⊂ SEP(A : B : C), where SEP(A :
B : C) are the operations that can be expressed in a form∑

i Ai ⊗ Bi ⊗ Ci(·)A†
i ⊗ B†

i ⊗ C†
i . Adopting the idea of the

proof of Lemma 12 from [7], we note that TrC (σACB) =
TrC[(IAB ⊗ TC )σABC], i.e., we can transpose the state on sys-
tem C before tracing it, then trace and obtain the original state
traced over system C. This fact holds for any state σ , and in
particular for σ := �(ρAC1 ⊗ ρ̃C2B). Hence

TrC�[(ρAC1 ⊗ ρC2B)⊗n]

= TrC{(IAB ⊗ TC )�[(ρAC1 ⊗ ρC2B)⊗n]}
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= TrC

⎛
⎝(IAB ⊗ TC )

∑
i jk

Ai ⊗ Bj⊗

×Ck (ρAC1 ⊗ ρC2B)⊗nA†
i ⊗ B†

j ⊗ C†
k

⎞
⎠. (34)

Using (I ⊗ T )(X1 ⊗ X2ρY1 ⊗ Y2) = X1 ⊗ Y T
2 (ρ� )Y2 ⊗ X T

2 ,
we obtain

TrC

⎛
⎝(IAB ⊗ TC )

∑
i jk

Ai ⊗ Bj⊗

×Ck (ρAC1 ⊗ ρC2B)⊗nA†
i ⊗ B†

j ⊗ C†
k

⎞
⎠

= TrC

⎛
⎝∑

i jk

Ai ⊗ Bj ⊗ C∗
k

(
ρ�

AC1
⊗ ρ�

C2B

)⊗n

× A†
i ⊗ B†

j ⊗ (C∗
k )†

⎞
⎠. (35)

We will show now that C∗
k are such that the total

operation
∑

i jk Ai ⊗ Bj ⊗ C∗
k (·)A†

i ⊗ B†
j ⊗ (C∗

k )† is a valid
CLODCC(C : AB) operation. Let ↪→ |0〉〈0|X denote the op-
eration of adding an ancillary state |0〉 to the system X . Any
operation from CLODCC(C : AB) can be simulated by the
following four LOCC operations (and their composition in a
proper order).

(1) Unitary transformation on system C: UC→C′c.
(2) Dephasing channel from C to A, i.e., {Pi

c ⊗ IC′ }|c|−1
i=0

with Pi := |i〉〈i|c.
(3) Operation which changes the system c in a way that it is

in the same state as some dephased system on AB. It first adds
an ancillary blank state, and further performs appropriate shift
{Sc

i,|c|}|c|−1
i=0 ◦ ↪→ |0〉〈0|c, with Sc

i,|c|| j〉 := | j + i mod|c| 〉. This

operation is controlled by the outcomes of {Pi
a ⊗ Iā}|a|−1

i=0 with
Pi

a := |i〉〈i|a, a being an arbitrary subsystem of AB satisfying
|a| = |c| and ā denoting complement of AB to a.

(4) Trc (used only after a dephasing channel and an opera-
tion on system A analogous to the third operation on this list).

For any k there is Ck = M1 ◦ · · · ◦ Ml ◦ · · · , where Ml

are Kraus’ operators from the above set of operations (up
to the restriction that Trc can be used only after the third
operation from the list). Hence C∗

k = M∗
1 ◦ · · · ◦ M∗

l ◦ · · · . All
operations on the above list, apart from the first, do not change
under complex conjugation, as they are formulated with real
numbers, while UC→C′c becomes another unitary transforma-
tion U ∗

C→C′c. Thus any CLODCC(C : AB) operation � after
partial transposition (·)�C ⊗ IAB becomes some other operation
�′ ∈ CLODCC(C : AB). By evaluating it on ρ�

AC1
⊗ ρ�

C2B, the
assertion follows. �

Remark 1. Although the fact that CLODCC(A : B) �

LOCC(A : B) was already noticed in the context of resource
theory of purity [16], the above simulation of an operation
from CLODCC by means of LOCC is an explicit proof of this
inclusion. Local operations of enlarging system ↪→ |0〉〈0|,

partial trace, and von Neumann projection are explicitly inside
LOCC. The operation of application of the shift Si,|s| is
controlled by the outcome of the projective measurement on
the other system, which employs the communication based
interdependencies of the Kraus operators of an LOCC opera-
tion.

From the above we have an immediate Corollary, where by
G(ρAB) we denote log2 |AB| − S(AB)ρ .

Corollary 2. For any two bipartite states ρ and ρ̃ that have
positive partial transposition, there is

RA↔C1C2↔B
A (ρAC1 ⊗ ρ̃C2B) � G

(
ρ�

AC1
⊗ ρ̃�

C2B

)
. (36)

Proof. We first note that CLODCC(A : C1C2 : B) ⊂
CLODCC[A : (C1C2B)] (see Observation 1). The state σ =
ρ�

AC1
⊗ ρ�

C2B, treated as a bipartite state with a partition A :
(C2C1B), has a positive partial transposition, since ρAC1 has it
positive by assumption. Hence Theorem 1 implies that G(σ )
is achieved. �

Since G(ρ ⊗ ρ̃ ) is additive on the tensor product, the RHS
of (2) is equal to the RHS of the bound (31) of Corollary 1. So,
the above bound is no better than the already presented one.
This is in contrast with the case of private key [7], where the
corresponding bound was better by a factor of 2 (cf. Lemma
12 and Theorem 13 of the Supplemental Material of [7]).

VI. LIMITATION FOR I.I.D. PRIVATE RANDOMNESS
REPEATERS FOR SOME IBITS

In this section we focus on a simpler case in which the three
parties first perform the same CLODCC operation on each
of the copies of the state, and then A and B perform general
CLODCC(A : B). We begin with defining the rate of repeated
private randomness gained by CLODCC[Ciid : (Aiid : Biid)]
operations. As we will see, in this case even some states
with negative partial transposition will have limited repeated
private randomness.

We begin with a formal definition of private randomness
repeater based on the operations mentioned above:

RCiid:(Aiid:Biid)
A (ρAC1 ⊗ ρ̃C2B)

:= inf
ε > 0

lim sup
n→∞

sup
�n∈CLODCC[Ciid:(Aiid:Biid)],αm

×
{m

n
: TrC�n((ρAC1 ⊗ ρ̃C2B)⊗n) ≈ε αm

}
(37)

will be called the quantum i.i.d. private randomness repeater
rate of ρ and ρ̃ with respect to CLODCC[Ciid : (Aiid : Biid )]
operations among A, B, and C, that can be obtained at system
A. With a little abuse of notation we will denote RCiid :(Aiid :Biid )
as Riid

A . Moreover, in the case of ρ = ρ̃, we will refer to
Riid

A (ρ ⊗ ρ̃ ) as to Riid
A (ρ).

From Lemma 1 of the content of the Supplemental Note 2
in [7], we know the following.

Corollary 3. For any two states ρAC1 and ρ̃C2B and any � ∈
CLODCC(A : C1C2 : B), the output state ρ̂AB = TrC�(ρAC1 ⊗
ρC2B), satisfies∥∥∥∥ρ̂AB − I

|AB|ρ̂

∥∥∥∥
1

�
∥∥∥∥ρ�

AC1
− I

|AC1|
∥∥∥∥

1

+
∥∥∥∥ρ̃�

C2B − I

|C2B|
∥∥∥∥

1

.

(38)
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Proof. Follows from I
d ∈ SEP and CLODCC ⊂ LOCC, as a

special case of Lemma 1 in [7]. �
Proposition 2. For a state ρ ∈ Cd ⊗ Cd , satisfying ||ρ� −

I
d ||1 � 1

e , and any operation � ∈ CLODCC(A : C1C2 : B), the
output state ρ̂AB = TrC�(ρ ⊗ ρ) satisfies

| log2 |AB|ρ̂ − S(AB)ρ̂ |

� 2

∥∥∥∥ρ� − I

d

∥∥∥∥
1

log2 d + η

(
2

∥∥∥∥ρ� − I

d

∥∥∥∥
1

)
, (39)

where η(x) := −x log2 x.
Proof. From the asymptotic continuity of quantum mutual

information [24,25] for any ρ, ρ ′ ∈ CdA ⊗ CdB such that ||ρ −
ρ ′||1 � ε with 0 < ε < 1

e ≈ 0.368, one has

|S(AB)ρ − S(AB)ρ ′ | � ε log2 dAB + η(ε). (40)

Since the von Neumann entropy of the maximally mixed
state equals log2 |AB|, the assertion follows directly from
Corollary 3. �

We will exemplify the upper bound (39) using the in-
dependent state from (12). This state has negative partial
transposition. We will use the property∥∥∥∥α�

V,d − I

2d2

∥∥∥∥
1

� 2

d
. (41)

We are ready to show the gap between private randomness and
repeated private randomness for αV,d , for sufficiently large d .

Theorem 5. The family of states {αV,d}∞d=2 satisfies the
following properties.

(1) For d > 2, RA(αV,d ) = RB(αV,d ) = 1.
(2) For d > 11,

Riid
A (αV,d ) � 4 log2 d

d
+ η

(
4

d

)
. (42)

(3) For d > 32, 1 = RA(αV,d ) = RB(αV,d ) >

Riid
A (αV,d ) →d→∞ 0.

Proof. The first statement follows from negativity of coher-
ent information of αV,d for d > 2, so that Theorem 1 applies.
Let us denote αV,d as αAA′B′ to indicate subsystems explicitly.
Like for the states with positive partial transposition, the
conditional entropy S(B′|AA′) is equal to the global purity of
αAA′B′ , i.e., to log2 |AA′B′| − S(AA′B′)αV,d . This in turn gives
I (AA′ : B′)αV,d = 1.

For the second statement, we focus on a perspective of
party A. This property follows from the sequence of inequali-
ties:

Riid
A (α ⊗ α) � RA(ρ̂) � log2 |AB|ρ̂ − S(AB)ρ̂

� 2

∥∥∥∥ρ� − I

d

∥∥∥∥
1

log2 d + η

(
2

∥∥∥∥ρ� − I

d

∥∥∥∥
1

)

� 4 log2 d

d
+ η

(
4

d

)
, (43)

where ρ̂ = TrC�(αAC1 ⊗ αC2B) with � ∈ CLODCC(A :
C1C2 : B). The first inequality comes from the definition of
the class of operations involved in Riid

A . The second one holds
because private randomness cannot be greater than the global
purity, i.e., the amount of purity that A and B can obtain when
they join their systems and act globally. The value of global

purity is achievable due to the Schumacher compression
[26,27]. The next inequality follows from Corollary 3. The
last one is due to Eq. (41) and the fact that, for d > 11, we
have 2 × 2

d � 1
e and the Proposition 2. For d > 32, the RHS

of the just proven bound is less than 1, i.e., less than RA(αV,d ).
The argument for RB is symmetric. �

The inequality presented in the third item of Theorem 5
seems to be trivial, as RA involves in its definition a class of
operations not restricted by “i.i.d.” However, we can make
sure that this is not the case for the states αV,d on systems
AA′. Indeed, for these states, private randomness is directly
accessible for Alice via identical measurements on each copy
of αV,d on subsystem A. One can then define Riid

A as private
randomness localizable at subsystem of party A via identical
operations on the input state.

Corollary 4. For system A of the state αV,d with d > 32,
there is

Riid
A (αV,d ) < Riid

A (αV,d ). (44)

VII. GAP BETWEEN LOCALIZABLE AND REPEATED
PRIVATE RANDOMNESS FOR SEPARABLE

WERNER STATES

In this section we show that the main result holds for a
larger set of Werner states than the fully symmetric state and
we briefly study the critical dimension for which there is a
limitation in the randomness repeaters.

A general Werner state ρ is a convex combination

ρ = (1 − θ )ρs + θρa, (45)

with θ the mixing parameter, the symmetric state ρs :=
1

d2+d (I + V ), and the antisymmetric state ρa := 1
d2−d (I − V ),

where V is the swap operator, while d is the dimension
of the systems A and B. We will be using the facts that
the partial transpose (·)� is a linear operator, (I)� = I,
and (V )� = d|�+〉〈�+|. Using the above results, we
write the partial transposes of ρs and ρa as (ρs)� =
I−|�+〉〈�+|

d2+d + |�+〉〈�+|
d and (ρa)� = I−|�+〉〈�+|

d2−d − |�+〉〈�+|
d .

Defining |�+〉〈�+|⊥ := I − |�+〉〈�+|, we get ρ� =
(1 − 2θ ) |�+〉〈�+|

d + [ θ
d2−d + 1−θ

d2+d ]|�+〉〈�+|⊥.. The state
ρ� is diagonal in the basis of maximally entangled states,
called a Bell basis [28] because it is a convex combination of
Bell diagonal states ρ�

s and ρ�
a . From the form of ρ� one can

directly obtain the eigenvalues of ρ� in the Bell basis:

λ0 = (1 − 2θ )

d
,

λ1 = · · · = λd2−1 = 1

d

[
θ

d − 1
+ 1 − θ

d + 1

]
. (46)

The eigenvalue λ0 is associated with the eigenvector |�+〉,
while all other d2 − 1 eigenvalues are equal and given by
(46). Because ρ� is Bell diagonal, the reduction to indi-
vidual systems A and B gives the maximally mixed state;
hence S(A)ρ� = S(B)ρ� = log2 d . Computing the entropy
of the whole state, which is S(AB)ρ� = α

d log2 [ 1
α

( d−α
d2−1 )] −

log2 [ d−α
d2−1 ] + log2 d , where α ≡ 1 − 2θ , we are in the
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FIG. 4. Values of dcri as the parameter α increases from 0.1 by
steps of 0.05. It is worth mentioning some special values, such as
α = 0.1, for which the dcri takes a very large value of 51, and α ∈
{0.2, 0.5} that determine sudden drops of dcri to the values {5, 2},
respectively.

position to compute the mutual information:

I (A : B)ρ� = log2

[
d (d − α)

d2 − 1

]
+ α

d
log2

[
α(d2 − 1)

d − α

]
.

In consequence,

lim
d→+∞

I (A : B)ρ� = 0. (47)

As noticed in Sec. I A, the states illustrating our claim are
those which satisfy

I (A : B)ρ > 2I (A : B)ρ� . (48)

Let us notice that states ρs and ρa have supports, respectively,
in the orthonormal subspaces Hs and Ha of the full Hilbert
space HAB = Hs ⊕ Ha. The von Neumann entropy of the
density matrix ρ = ( 1+α

2 )ρs + ( 1−α
2 )ρa reads [see Eq. (12.19)

in [29]]

S(AB)ρ = h

(
1 − α

2

)
+ 1 + α

2
S(AB)ρs + 1 − α

2
S(AB)ρa

= h

(
1 − α

2

)
+ 1 + α

2
log2(d+) + 1 − α

2
log2(d−),

(49)

where d+ = d (d + 1)/2 and d− = d (d − 1)/2. Hence the
mutual information of the Werner state ρ in the form (45) is

I (A : B)ρ = log2

[
2d

(d − 1)( 1−α
2 )(d + 1)( 1+α

2 )

]
− h

(
1 − α

2

)
.

(50)
Hence limd→+∞ I (A : B)ρ = 1 − h( 1−α

2 ). This shows that
there always exists a value of d large enough to satisfy the
condition (48). The minimum value of d for which the Werner
state ρ satisfies (48) will be called the critical dimension dcri.

To understand better the nonlinear dependence of dcri, we
also investigate the plot of I (A : B)ρ and 2I (A : B)ρ� versus
dimension for some selected values of α, as shown in Fig. 4
. The inspection of the sequence presented in Fig. 4 shows
that the parameter α essentially induces compression of both
curves towards the y axis, which generates the different cross-
ing of the curves as α approaches 1. For the values α greater
than 0.5 the value of dcri goes down smoothly and without
sudden drops and rises. (See also Fig. 5.)

VIII. TOWARDS TWO-QUBIT EXAMPLES

So far the exemplary states were of dimension higher than
2 ⊗ 2. In this section we show that a wide class of a well
known family of states, that of Bell diagonal states (after
partial transposition), escapes our technique.

FIG. 5. Plots of information vs dimension show the values of I (A : B)ρ (blue line) and 2I (A : B)ρ� (orange line) for several values of α,
starting with α = 0.1 in the upper left corner and increasing by steps of 0.1 until α = 0.9 in the bottom right corner. The solid area highlights
the gap between I (A : B)ρ and 2I (A : B)ρ� .
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Any Bell diagonal state can be expressed in the form of a
matrix

ρBell = 1

2

⎡
⎢⎣

a+ + a− 0 0 a+ − a−
0 b+ + b− b+ − b− 0
0 b+ − b− b+ + b− 0

a+ − a− 0 0 a+ + a−

⎤
⎥⎦,

(51)
where the entries are weights of appropriate Bell states:
ρBell = a+|ψ+〉〈ψ+| + a−|ψ−〉〈ψ−| + b+|φ+〉〈φ+| + b−|φ−〉
〈φ−|. After partial transposition we obtain the desired family
of states:

ρ�
Bell = 1

2

⎡
⎢⎣

a+ + a− 0 0 b+ − b−
0 b+ + b− a+ − a− 0
0 a+ − a− b+ + b− 0

b+ − b− 0 0 a+ + a−

⎤
⎥⎦.

(52)
Since � is an involution, we have (ρ�

Bell )
� = ρBell. We check

now if some of the states of the form ρ�
Bell ≡ ρBellG exhibit a

gap between localizable and repeated randomness. Note that
every Bell diagonal state has maximally mixed subsystems.
Since partial transposition does not change the entropy of the
subsystems, the same holds for ρBellG. Hence the condition
I (A : B)ρBellG > 2I (A : B)ρ�

BellG
is equivalent to: S(AB)ρBellG <

2S(ρ�
BellG) − 2, i.e.,

S(AB)ρBellG < 2S(AB)ρBell − 2. (53)

This condition is equivalent to the following one:

2H ({a+, a−, b+, b−}) − 2

> H
({

1
2 (a+ + a− + b+ − b−), 1

2 (a+ + a− − b+ + b−),

1
2 (a+ − a− + b+ + b−), 1

2 (−a+ + a− + b+ + b−)
})

.

(54)

We can use the above condition if the state ρBell is separable,
that is, for a+, a−, b+, b− � 1

2 . We have searched for the
gap via 5 × 105 random tests of ρBell states, yet did not find
any case with a gap in Eq. (53). Indeed, for a large region
of parameters we are able to confirm that considered states
escape our technique.

To see this, let us denote a+ = α1
2 , a− = α2

2 , b+ = α3
2 , and

b− = α4
2 . Then the condition of Eq. (54) reads

2H

({αi

2

}4

i=1

)
− 2 > H

({
(1 − αi )

2

}4

i=1

)
. (55)

It turns out that the converse inequality holds, if only αi /∈
[1/3, 1/2] for all i = 1, . . . , 4. This can be seen from ex-
panding 2 = ∑

i αi, and observing that the converse inequality
holds elementwise:

2η
(αi

2

)
− αi � η

(
1 − αi

2

)
, (56)

under considered condition on αi, where η(x) = −x log2 x.
The latter fact is confirmed by plotting the difference of the
LHS and RHS using Mathematica 7.0. In terms of parameters
a± and b± of the state ρBellG we cannot decide based on
the aforementioned results if the state has limited repeated
randomness if a±, b± ∈ [0, 1

6 ) ∪ ( 1
4 , 1

2 ]. This fact allows us to
conjecture that all the states ρBellG escape our technique.

IX. DISCUSSION

In this manuscript we have studied the relationship be-
tween private key and private randomness obtainable from
quantum states, treated as quantum resources. We have shown
that the states containing ideal privacy (private dits) belong
to the set of states containing ideal private randomness (inde-
pendent dits). We have then asked if the topology of loyalty in
the network of repeaters can be modified by free operations
of the resource theory of private randomness. We focused
on the simplest repeater: two stations A and B linked by
connections with an intermediate station C. The problem we
focused on is whether there exists such an action of the
three parties that, after performing it, A can relay solely
on loyalty of B instead of trusting an intermediate party C.
While entanglement swapping is an example of such type of
an action in the case of pure (maximally entangled) states,
we show that in the case of the mixed states it is not so
(in general).

To achieve our goal, in analogy to the rate of the repeated
private key, we have defined the rate of repeated private
randomness and shown an upper bound on the latter quantity.
It is equal to twice the relative entropy with respect to the
maximally mixed state. The bound holds for states with
positive partial transposition. To exemplify the phenomenon,
we showed that the separable Werner states for sufficiently
large dimensions exhibit a gap between localizable private
randomness and a repeated one. Interestingly, the states used
in [7], exhibiting limitation on the repeated key, cannot serve
as good examples in our context. This is due to the factor 2
appearing in our upper bound [one cannot achieve the gap
between I (A : B)ρ and 2I (A : B)ρ� ]. Improving the bound
to characterize the subset of states (especially the subset
of separable ones) that exhibit the gap between private and
repeated private randomness is an important direction to study.
Our Theorem 4 and Corollary 2 are analogs of Lemma 12
and Theorem 13 of [7], respectively. The former yield the
same bound as the one presented in our main result (Corollary
1). This is in contrast with the results for the private key.
Indeed, in the latter case, the mentioned Theorem 13 of [7]
presents the bound on the repeated private key without factor
2. However, a study in this direction allowed us to show that
for PPT states the repeated private randomness of ρ ⊗ ρ̃ is
upper bounded by the same function evaluated on ρ� ⊗ ρ̃� ,
which is of independent interest.

We also studied a limited repeater of private randomness
in which the three parties first perform identical operations
on each copy, and later perform the best CLODCC protocol
on all obtained copies of A and B, without the help of C. We
showed that a certain idit, which is not in the PPT set, exhibits
an extreme gap for large d . Our findings in this respect do not
have a direct analog in [7] and can be extended to hold for a
private key.

Presented results open an interesting perspective for further
research. First of all one could discuss the implication of
results presented in the paper for the simplest possible case,
i.e., 2 ⊗ 2 states. The first step toward solution has been made
in Sec. VIII, showing that such construction is not straight-
forward and more sophisticated techniques or candidates are
needed.
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Secondly, as it was proposed also in [13], one could
consider in the context of our paper the amortized approach
in which the allowed operations can bring k bits of private
randomness (e.g., in the form of purity). The output ran-
domness gets further lowered by k in the end. This is to
compute the private randomness content of a given quan-
tum state rather than private randomness of an operation.
Since the latter class of operation is still to be explored, we
have followed here the approach of [13] based on CLODCC
operations.

From the broader perspective we could ask a ques-
tion: which quantum resources (or just properties of quan-
tum states) are “transferable” via a quantum network
of mixed states? We have shown that the limitation on
the transfer of certain resources is not bound to pri-
vate key only. Designing axioms for a resource theory
to have limited transfer is an interesting direction of
studies.

It is also essential to show an analog of the obtained results
for channels rather than states, in the spirit of [30], and for
states with negative partial transposition, adopting methods
of [31]. Further investigation of interdependencies between
private randomness and private key can also lead to fruitful
results.
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