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We find the exponents and obtain explicit estimates of the constants
related to the Hélder-Lipschitz regularity of the relative Chebyshev
centre map, various retractions onto convex subsets, metric projection
onto a closed convex subset and naturally defined homogeneous right-
inverses for closed linear surjective operators. The estimates are first
established in the abstract setting of an abstract uniformly convex
and/or uniformly smooth Banach space and, then, are transferred to
the setting of the subsets of and the closed operators from a wide class
of function and other spaces including, in particular, various anisotropic
spaces of Besov, Lizorkin-Triebel and Sobolev types endowed with geo-
metrically friendly norms defined in terms of averaged differences, local
polynomial approximations, functional calculus, wavelets and other me-
ans and a new class of spaces. New approaches are shown to be providing
better estimates in the abstract setting as well. Occasionally, attention
is paid to the question of the sharpness of the exponents.
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1. Introduction

This article is a part of a larger program of filling the gap between the theory
of function spaces, especially Besov, Lizorkin-Triebel and Sobolev and a wide

*This work was supported by the Russian Fund for Basic Research, project 08-01-00443
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class of spaces defined in the end of Section 2, and quantitative functional
analysis dealing with abstract Banach spaces. For example, the first natural
question, answered here, is: “What is the right equivalent norm for a function
space that should be chosen to investigate the geometric properties of this
space?” In particular, it appears that the original norm in a Sobolev space
W, (G) chosen by Sergey L. Sobolev,

W3 (@)sll* = 1 £1Lp(G)” + X105 FILo(G)II,

where G C R™ is open, s € N", p € (1,00)", and D;* is the Sobolev generalised
derivative order s; in the ith axis, is suitable, while the traditional

I£1Lp (@)l + D105 FILp ()

is not on many occasions.

The definitions and basic properties of all the spaces under consideration
are in §2, while all the necessary aggregated information about them in the
form of estimates for their uniform convexity and smoothness parameters and
limiting constants is given in §3. Much more information on the general
theory of function spaces can be found in the monographs written by Besov,
II'in and Nikol'skii [9], Burenkov [12], Sobolev [27] and Triebel (starting with
[28]). Most of the definitions of norms (spaces) is taken from [1].

Section 4 contains examples of the main results and the explanation how
the multitude of the main results corresponding to the various classes of
spaces (including abstract Banach spaces) and the different problems can be
established.

We devote the whole §5 to establishing the abstract part of our results for
every particular problem among the following ones presented:

(¢) the global Holder regularity of the relative Chebyshev map on the class
of the bounded subsets of a uniformly convex Banach space (§5.1.1);

(¢7) the global Holder regularity of the retractions onto a closed convex
subset of a uniformly convex Banach space (or an isomorphic (to this space)
quasi-Banach space) from metric spaces containing this subset isometrically
(65.1.2);

(i1) the global Holder-Lipschitz regularity of the metric projection onto a
closed convex subset of either a uniformly convex, or both uniformly convex
and uniformly smooth Banach space and a related retraction onto closed
convex subsets of the isomorphic quasi-Banach spaces (§5.2);

(2v) the construction of a natural homogeneous right-inverse (non-linear)
operator for a closed surjective operator defined on either a uniformly convex,
or both uniformly convex and uniformly smooth Banach space, or on a quasi-
Banach space isomorphic to any of them and the evaluation of its global
Hélder-Lipschitz regularity (§5.3);
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(v) the properties of the cross-sections of the balls in uniformly convex
and/or uniformly smooth Banach spaces that are more explicit then their
preceding counterparts used in the earlier proofs of the local Hélder-Lipschitz
regularity of the metric projections onto closed subsets (§5.4).

Eventually, we cite the technical results on the existence of uniformly
isomorphic and uniformly complemented copies of finite-dimensional l, spaces
in some classes of our spaces under consideration in §6. They are used to
establish the sharpness of the main results for some spaces and problems.

A local numbering of formulas is used throughout the article, i.e., the
formulae are numbered independently in every formal logical unit of the text,
such as a proof of a corollary, lemma, theorem, or a remark.

The author is grateful to Professors Oleg V. Besov and Boris S. Kashin
for the encouragement to writing this article.

The author is a recipient of an Australian Research Council Fellowship
(project DP0881037), and thanks the School of Mathematics and Statistics of
the University of New South Wales and ARC.

2. Definitions, notations, and agreements

N is the set of the natural numbers; Ny = N U {0}; for @, 8 € NZ, notation
a < B means the partial order relation generated by the coordinate order
relations; max(a, 8) = min{y : v > a, v > B}; R™ is n-dimensional Euclidean
space with the standard base (e',...,e"), z = (z1,...,2,) = Y or et = (@)
Tmin = Min; ; and Tyax ;= max; ;.
We write p’ for the conjugate top € [1,00]", i.e. 1/pi+l/pi=1(1 <i < n).
For A C N, |A| designates the number of the elements of A, and

/—ia={ﬁ:)8€N”,,8§a,a€A}.

In what follows, one can assume vy, = ((Ya)1s++ -+ (Ya)n) € (0,00)" and
i == E?(%)z = n to be fixed.
For z,y € R™ and t > 0, we write [z,y] for the segment in R™ with

endpoints z and y; zy = (2;9), t¥ = (t%); zfy = (%—-) for y; # 0, and

t/Ya = (WET) Assuming that |z],, = max;<i<, 2], we have the
inequality |z + yly, < ¢y, (|2]4, + |Y|+.) . For E C R™ and g € R™, we denote

|Ely, == inf |z],,, z+aeE:={y:y=z+azzc E},
zeE

Gy:={z:2€@,|z—-08G|y, >t}
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Definition 2.1. Form € N, h > 0, v € R, z € R", A*(h)f(x) 15 the
m-th order difference of the function f with step h in the direction of €' at
the point . Further notations are

m [ A™(R)f(z) for [z,x+mhe'] € E, and
A (h, B)f(z) = { | fripatoialon

i
: 1/a
o7t By i= ([ 18P E0w, )@ +yt0 ) du) .
-1

Sometimes, in the absence of ambiguity, we shall write 5;’11 (t,x, f) instead of
oty L E )y

If ¢ is an integrable function on a measurable set E C R", then |E| is
the Lebesgue measure of E, and ¢g = |E|™' [ ¢du. Let Qo = [-1,1]™
For v € Ry and z € R™, we say that Qu(x) =  + v+ Q) is a parallelepiped
of v.-radius v with center z; xg is the characteristic function of E, and
©: R — {0,1} is the ©—function.

Forn e N, r € (0,00]™, p € (0,00), g € (0,00], a (countable) index set I,
and a quasi-Banach space A, let [;(A) := {4(I, A) be the space of all sequences
o = {ar}ker C A with finite quasi-norm [laly, = (Cperlok|?)/? < oo.
For m € N and either [ = [.(A), or | € {l4(A),lpq(A),co(A)}, by I™ we
designate the subspace of [ satisfying a; = 0 for either imax > m, or ¢ > m,
correspondingly.

For p € (0,00], let L., = Lu«p(R4) be the (quasi)normed space of all
functions f measurable on Ry with finite (quasi)norm

(S 1#epae/e)" it p<oo

| f1Loo (R4 )|, if » = o0,

[ fLap(R4 )] =

For G Cc R"™ and f: G — R, we denote by f: R — R the function

= . | flz), forzed,
fla) = { 0, for z € R™\ G.

For p € (0,00]™, L,(G) is the space of all measurable functions f : G — R"
with the finite mixed quasi-norm

/1L = ( [([ ([ dxl)pg/;})pn/m)jfp

R R R

/pi

where, for p; = oo, ([, |g(z:)|P? dmz-)l is understood as esssup,, < |9(x:)].
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For s € N, o € [1,00) and an open set G C R, Wi (G) = W2 (G), will
- stand for the Banach space of measurable functions [ defined on G, possessing
Sobolev generalized derivatives D' f and finite norm

AW (@I = 1AL G+ flwg( @) = [ FILp(G) 5+ D5 FILa(G)I.
i=1

For an ideal space Y = Y (Q) for a measurable space (€2, 1) and a Banach
space X, let Y (02, X) be the space of the Bochner-measuarable functions
[ — X with finite (quasi)norm

IFIY (2, X)) = IOl x [ ()]l.

For example, L,(R", ,) withp, q € [1, c0], is a Banach space of the function
sequences f = { f(z)}Z, with finite norm ||[|{£x(-)} reno llqll|Lp(R™)].

Definition 2.2. Forp,q € (0, 00) andn € N, let It, , be the Banach space
of the sequences {ti’j}geegn with J € {No, Z}, endowed with the (quasi)norm

LEL™

{25} ttpqll := { Zti,m;} Ly(R™, I,(J)),

where { sz fez,,, € J is a fized neste_d family of decompositions of R™ into
untons of congruent parallelepipeds F? satisfying

Uz‘EZnF}j =R", |F/n Ffl =0 for every j € J, i #k,

and Fg}“ N Ffll is either () or Flfo" for every ig,i1 and jo > j1. We call this
system regular if the k-th side ly ; of the parallelepipeds {F7}iczn of the jth
decomposition (level) satisfies

Clb—j()\u)k < lk,j < Cub_j(An,)k
for some positive constants b> 1 and iy Cips

The space It, 4 is isometric to a complemented subspace of L,(R™,1,), while
its dual l¢; , is isomorphic to Ity , for p,q € (1,00) (see §3.2.4 of [2]).

For an operator T from X into Y, we denote by D(T), Ker T and Im T its
domain, kernel and image, and by C(X,Y) and £(X,Y) the spaces of closed
and bounded operators, respectively.

For 7, € (0,00)™ and s € [0, 00), let A ={a:aeN§,(a,7,) < s}.

For z € R™ and v > 0, we set 7, f(z) := f(» —z) and 0y, f(z) == f(v™"ez).
For a Banach space X and 4 C N7, |A| < 400, let Pa(X) be the space of
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the polynomials of the form ) . 4 coz® with {cataca C X, Pa = Pa(R).
Though the main results can be extended to the case of X-valued spaces,
we consider the scalar-valued case for simplicity. For a € [1,00]", let pa €
L(La(Qo),Pa) be a certain projector onto Pa. '

1 1

Definition 2.3. For a € [1,00]", let pay,: =T 00,0p4a00, 0T, .
Fore >0, a€ (0,00]", let Taw,z: La(Qu(2)) — Pa be an operator of the
best L,-approzimation satisfying

1 = Tt FILa(@u(N] =min 1f — gILa(@u(D, f € La(@u(2))
For f € La10c(G), v > 0 and a € (0,00]", we define the D-functionals

Du(v,z, f, G, A) ;={ |(|]f |La(Qu())/Pallv=0=1/) if Qu(z) C G,

otherwise.

- v,T La v —('y,,,,l/a.), 1 v - G,
Do (v,z, f,G,pa) :={ gf Pawsella(@u(@)lv J %tgilwise.

Remark 2.1. Note that

LT~ WA,u,szLa(Qv(z))” = || f ‘_“pA,v,alea(Qv(x))H

uniformly by v and x when they all are well-defined (see [1]).

While switching from one functional to another provides only an equivalent
norm, the geometric properties under consideration will depend on the para-
meters only.

Let us define the spaces of Besov and Lizorkin-Triebel type. In these
definitions, we use a parameter ¢ € (0, 00|, which is essential in the study of the
geometric properties of function spaces but not the topological (isomorphic)
ones (we have equivalent (quasi)norms for different ¢ € (0,00]). It will
normally be omitted for the sake of simplicity. If its presence and value should
be emphasized, we say that the space under consideration is endowed with
the ¢-product norm, or, just, the ¢-norm, and/or add ¢ as a subindex. For a
seminormed (homogeneous) space z(G) of functions defined on G C R™ and
an ideal space Y (@), we assume that its intersection 2(G) NY'(G) is endowed
with the ¢-norm too:

1£l2(G) nY(G)° = IV (@) + [l Flz(G)II.

Moreover, we shall always assume the parameter ¢ to be equal to one of
the other parameters or its components of z(G) and Y(G) except for the
smoothness.
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We start with the spaces defined in terms of the averaged (shifted) axis-
directional differences. While the study of these norms and the their equi-
valence with other norms was one of the primary tasks of, for example, [1], we
shall refrain from the usage of the results of this type here in order to cover
the sets of parameters not covered by the equivalence results and because the
geometrical constants depend on the specific equivalent norm choser.

Let Pr; be the orthogonal projector on the 4-th axis in R", and, for any

ye (I_Prl)(G)a
Ini(y) =TI - Pry)'(W)NG={2€G:z=y+te,tec R}.

Definition 2.4. For an ideal space Y = Y(G), p € (0,00]", q € (0, 00],
r>0,5820,s/7a <mé&Ng, ae (0,00 v >0, and an open set G C R™,
by b3, .(G) we denote the (quasi) semi-normed space of measurable functions
[ € Lagioc(Ini(y), dx;) for a.e. y € (I—-Pr;)(G) with finite (quasi) semi-norm

' N . s/q
M) 0@ =3 (/ 5 (b2 £ Gre) Y (G) | 472 %)
0

or, equivalently, with finite (quasi) semi-norm
a o o s\ 1/¢
@) (219707, Grvms, DAY @) sl
i=1

BY.4,a(G) :=b%,4,.(G)NY(G), by 4 o(G) :=1b}_,.(G).

p,q,a

Definition 2.5. For an ideal space Y = Y (G), p € (0,00]™, ¢q € (0, 0],
7>0,820,8/7% <meNg, ac (0,00 vE€R, and an open set G C R™,
we denote by I3 . (G) the (quasi) semi-normed space of measurable functions

p,q,a
f € Lo, joc(Ini(y), dz;) for a.e. y € (I—Pr)(G) with finite (quasi) semi-norm

& 0o 1/q .
m; _.. dt
@) IM0al@ =30 || | [ (@it G ) e %) |y(o)
i=1 4
or, equivalently, with finite (quasi) semi-norm
L

(4) (Z H{6™7677%. (679, -, Grms, ) }iezllal |Y(G))|<) ;
g=1
| V0a(G) = 13,0, (G)NY(G), 15,.(C) =15 .(G).

Next, we define the anisotropic local approximation spaces of Besov and
Lizorkin-Triebel type in terms of the AD-functional as follows.
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Definition 2.6. For p € (0,00]",q¢ € (0,00], a € (0,00]", s € [0 00),

D C NB, |D| < oo and an ideal space Y = Y(G), we denote by byqa(G)

and lf,D .(G), correspondingly, the anisotropic (quasi) semi-normed space of
functzons f € Laoc(G) with finite (quasi) semi-norm

B2 @) :-—-(]nt-sva(t,-,f,G,DnY(G)nq‘i) B2u(6) = B2, (O),
0

and

B2 (@ = | ﬁwm .G D))
0

ls , D (G) ls ,D (G)

p,q,u L ,q,U%
Assume also that

ByP (G) =530 (G)NY(G) and Lyg ,(G) =y (A) NY(G).

Remark 2.2. It is important to note that for s > 0 and Y = L, with
(max < Pmin We obtain equivalent norms in the non-homogeneous Besov cmd
Lizorkin- Triebel spaces defined above by substituting the integration fo

their seminorms with the integration fo for any fized h > 0. At the same
time, the geometric properties will remain the same for every h € (0,00},
depending on the parameters only (as in the previous remark).

Definition 2.7. Let G C R", p € [1,00]", ¢, € [1,00], s€ R, b>1 and
F = {Fi}ren, C C(Lp(G)) be a system of closed operators satisfying

feL,G) and Fpf =0 for keNyg= f=0.

We denote by B, , »(G) and Ly, #(@G), respectively, the Banach spaces of
functions defined on G with finite norms

1182, O = 1L + ( 3 8 FefLp@)le) ™",

keNg

1/q S
11286, = IAZH@IE + || ( 3 6 a1Fes ()19) Lol
keNoy
Remark 2.3. Under the conditions of the last definition, let also 2 C C

be open with b=%Q C Q fork € Ny, g € Hoo(2) (bounded holomorphic function
on Q), and A € C(Ly(G)) admits the bounded Heo(2) functional calculus

Hoo(2) 3 h = W(A) € L(Lp(G)) with || F(AIL(Lp(G)] < || F1Hoo(SD)]]-

Assuming that Fy, = g(b=*A), we obtain the Besov and Lizorkin- Triebel spaces

;,q,f(G) and L;,q,}-(G) defined in terms of the bounded H,-calculus.
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Definition 2.8. Let X,Y be (quasi)Banach spaces and X > 1. Then #
Banach-Mazur distance dgp(X,Y) between them is equal to oo if they a
not isomorphic and is, otherwise, defined by

dpm(X,Y)) i=inf{||T|| - [T~ : T: X 28Y, Ker(T) = 0}.

The space X is \-finitely represented in Y if for every finite-dimension
subspace X C X,

inf{d(X1,Y1) : Y1 is a subspace of Y} = \.

If A is equal to 1, then X is simply said to be finitely represented or almo.
1sometrically finitely represented in Y.

For example, it is well-known that, for a Banach space X, its secon
conjugate X ** is finitely represented in X, and X itself is finitely represente
in Cp.

2.1. Independently generated spaces

Definition 2.9. Independently generated spaces
Let S be a set of ideal ( quasi-Banach) spaces, such that every element Y € ¢
is either a sequence space Y = Y (I ) with a finite or countable T , OT a spac
Y =Y(Q), where (Q, p) is a measure space with q countably additive measur
K without atoms.

Leaf growing process (step) from some Y € S is the substitution of ¥
with:

o (Type A) Y(I, {Yi}ier) for some {Y;}ic; C S Y =V({I),
o (Type B) Y(Q,Yp) for someYy €S if Y =Y (Q).

Here the quasi-Banach space Y (I, {Yi}ier) is the linear subset of [Lie: ¥,
of the elements {x;}ic; with finite quasi-norm

| {%}ieIIY(I, {Yilier)| == {llz:ly; bierlly -

Note that a type B leaf (i.e. of the form YV = Y (£2)) can grow only one
leaf of its own.

We shall also refer to either {Yitier, or Yy as to the leaves growing from
Y, which could have been a leaf itself before the tree growing process. Let us
designate by IG(S) the class of all spaces obtained from an element of S in
a finite number of tree growing steps consisting of the tree growing processes
for some or all of the current leaves.
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Thus, there is a one-to-one correspondence between IG(S) and the trees
of finite depth with vertices from S, such that every vertex of the form Y (I)
has at most I branches and every vertex of the form Y (S)) has at most one
branch. The tree corresponding to a space X € IG(S) s designated by T(X).

The set of all vertices (corresponding to elements of &) of the tree cor-
responding to some X € IG(S) will be denoted by V(X).

We shall always assume that the generating set S of IG(S) is minimal
wn the sense that there does not exist a proper subset Q C S, such that S C
IG(Q).

If the set S includes only the spaces described by (different) numbers of
parameters from [1,00] and X € IG(S), we assume that I(X) is the set of all
the parameters of the spaces at the vertices of the tree T' corresponding to X

and
Pmin(X) :=Inf I(X) and pmax(X) :=supI(X).

For the sake of brevity, we also set
IG :={X € IG(lp, Ly, ltp,g, Ity o) ¢ [Prain(X), Pmax(X)] C (1,00)}.

We say that two IG-spaces are of the same tree type if their trees are congruent
and the spaces at the corresponding vertexes are both either l,-spaces, or
L,(S2)-spaces, or lt, 4-spaces, or It  -spaces.

Remark 2.4. a) We shall deal with the set {lp, Ly, ltp ¢, 1ty .}, where L,
Ly, ltp,q and lt;, . designate the classes {lp(I) }pe(1,00], {Lp(2) }pef1,00) for all
the Q with some countable non-atomic measure p on it, {Itp o(I)}p qe(1,00] aNd
{lt;‘;, » (1)} p.qef1,c0), TESPECEIVELY.

b) The subclass of l,-spaces can formally be excluded from the definition
of the class IG because Iy, is isometric to Uty = Ity , but is left there for the
sake of technical convenience. The subclass of Ity  -spaces is included to make
IG closed with respect to passing to dual spaces.

c) The Lebesgue or sequence spaces with mized norm and the l,-sums of
them are particular elements of IG(lp, Lp).

d) Two IG(S) spaces form a compatible couple of Banach spaces if their
trees are congruent and the spaces standing at the corresponding vertexes form
compatible couples themselves.

3. Uniform (p, h.)-convexity and (g, hs)-smoothness

In this section we define the notions of (p, h.)-uniform convexity and (g, hs)-
uniform smoothness of functions and spaces, and cite some estimates of the
related constants for all the spaces under consideration established in [2] that
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will be required in the next sections. Essentially more complete information
regarding these homogeneous notions of convexity and smoothness and some
more general notions in the settings of both abstract and concrete spaces is
provided in [2]. The study of the uniform convexity in a very close homo-
geneous form was initiated by Chekanov, Nesterov and Vladimirov [13] in
1978. In our terms, their uniform convexity corresponds to the case of (p, h.)-
uniform convexity with the constant function he(t) = C.. Some further
study was undertaken, for example, by Zélinescu [31] and others. Important
estimates for the classical moduli of the uniform convexity and uniform smooth
ness for particular spaces (different from the classical case of the Lebesgue
spaces or I presented in [19]) were found by Maleev and Trojanski in [21].
Throughout this section, we assume that F is a convex real-valued function
with the convex domain D(F) in a Banach space X with the norm ||l x-

Definition 3.1. For 1 —v = 4 ¢ (0,1), the modulii of uniform e
convexity and uniform p-smoothness of a function F' : X > D(F) —- R
are functions on Ry defined, correspondingly, by the relations

0u(ts 1, X) 1= () ™V int{uF () + vF (y)—F(pz + vy) -
z,y € D(F), ||z —y|x = t};

pu(ts F, X) i= (uv) ™ sup{uF (z) + vF(y)—F(uz + vy) :
2,y € D(F), ||z —y|x =t}
Let p,q € [1,00] and he, hs be non-negative functions defined on (0, 1).

We say that a function F is (p, he)-uniformly convex ((g, hs)-uniformiy
smooth) if

inf £P8,(t, F, X) > he(p) > 0 (sup(t‘qpu(t,ﬁz X) < hs(u)))
t>0

forallt € Ry and p € (0,1).

Since 0,(t, F,X) = 6,(t,F, X) and pu(t, F, X) = py(t, F, X), we can and
will always assume that ho(u) = he(v) and hs(u) = hs(v).

For 2 € [g,p] C (1,00), a Banach space X will be said to be (p, he)-
uniformly convex (respectively, (g, hs)-uniformly smooth) if the function
F(z) = ||lz|I% (I=)%) is (p, he)-uniformly convez ((q, h)-uniformly smooth).

For the sake of convenience, we shall assume that

he(0) = ilj% he(k) and hs(0) = iﬂ% hs()

if the corresponding limit exists.

Remark 3.1. a) In the case of a Hilbert space H and F(z) = ||z|?, we
have

St 1 - e H) = pu(t, || - |1, H) = 82,
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Hence, every Hilbert space is (2,1)-uniformly conver and (2,1)-uniformly
smooth.

b) A result from [18] implies that o Banach space X is (p, he) -uniformly
convezr with he(u) > 0 for p € (0,1) if and only if it is p-uniformly convex in
the classical sense (see [19]). Similarly, a Banach space X is (q, hs)-uniformly

smooth for a finite h, if and only if it is g-uniformly smooth in the classical
sense.

c) As noted in [2], the functions

sup ||z — y||% + ¢(x) for a bounded A C X and limsup ||z — yx|% + ¢(z)
yEA k—oo

for a bounded {yr}72, C X and an arbitrary convexr function ¢ : X — R
provide examples of (p, he)-uniformly convez functions if X is (p, h.)-uniformly
convez, while the functions

igg |z —y||% + f(z)+c for a bounded A C X and likminf |z —yrl% + f(z)+c
y —00

for a bounded {yx}32, C X and an arbitrary f € X* and ¢ € R provide
exzamples of (q, hy)-uniformly smooth functions if X is (q, hs)-uniformly smooth.

d) Considering the case of the vectors z,y € X satisfying uzx +vy = 0,
we obtain the estimates he(p) < pP~! + P~ < 1 if X is (p, he)-uniformly
convex and he(p) > p?~t + 71 > 1 if X is (p, he)-uniformly smooth because
the function g(t) = u* 4 v* is decreasing on (0,00) for uy=1-v € (0,1).

To formulate the main theorem of this section determining the (p, h.)-
uniform convexity and (g, hs)-uniform smoothness of IG-spaces, we define
two functions. For s,t € (1,00) and p € [0,1/2], let

_ ) (s=1 <
Wc,O(Sat) . { &s(zs 9s—t for s> 2:

where : .
1+ 2%~
§s(2) = At 2T

and

, | the positive root of (s —2)2°7' + (s —1)2°2 =1 for s5#2,
S I | for =2



SERGEY AJIEV 387
Theorem 3.1. LetY € {BS,Q’F(G),L;’QJ:(G),B;,,q,,f(G)*,Lf,,1q,,j_-(G)*}
for G CR™, p e (1,00)", q,5 € (1, ), s € R. Assume further that
[min(pmina q, 2): max(Pmax; ¢, 2)] - {Tm Tc] ol s OO):

and X is either a subspace, or a quotient, or almost isometrically finitely
represented in Y. Then the space X is (rey he)-uniformly conver with positive
he and (rs, hs)-uniformly smooth with finite h. Moreover,

() = We,0(Min(Pmin, 9),7¢) and b)) = ws,g(max(pmax,q),rs).

Theorem 3.2. Let G C R™, p,a € (1,00)", g,5 € (1,00), s € (0, c0)™
and

[min(pmina 4, Qmin, 2); max(pmax: g, Amax, 2)] c [7“5: 'r'c] - (1, OO)
Assume also that

Ye {BS,Q,Q(G), Blga(G) L 0.4(G), L2, (G), 82, . (G), o (e) N (e)}

pJQ)a p?Q‘a
4 (@), By 4.0 (G)", B;;f;,’a, (G)*, LY 4 2 (GYY, i;;é,,a!(g)*,
by 0t O B G0, 8 o U, L (G)

and X is either a subspace, or a quotient, or almost isometrically finitely
represented in'Y. Then the space X is (Tes he)-uniformly convex with positive
he and (rs, hs)-uniformly smooth with finite hg. Moreover, one has

hc(o) = wc,O(lnin(pmina q, amin): rc) and hs (0) = ws,O(maX(pmaxv q, amax): 'rs)-

Contrariwise, if the space Y is (Be, he)-uniformly convex with positive he and
(Bs, hs)-uniformly smooth with finite hg, then

(min(Pmin, ¢, 2), max(Pmax, ¢, 2)] C [rs, ol

Theorem 3.3. Let Y € {W3(G), W5 (G)*} for G C R™, p € (1,00)™;
s €(1,00), s € N" and

[min(pmin, 2), max(Pmax, 2)] C [rs,7¢] C (1, 00).

Assume also that X is either g subspace, or a quotient, or almost 1sometrically
finitely represented in Y. Then the space X is (r¢, he)-uniformly convex with
positive he and (rs, hs)-uniformly smooth with finite hs. Moreover, one has
he(0) = we,0(Pmin, re) and hs(0) = we,0(Pmax,7s). In addition, the condition

[min(pmina 2)5 max(pmax: 2)] < [Ts: Tc]

s sharp.
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Theorem 3.4. Let X be either a subspace, or a quotient, or almost
isometricall finitely-represented in Y € IG with [Pmin(Y), Pmax(Y)] C (1, 00)
and

(i (P (V) 2), DK (Prnae(¥), 2)] € [, ] € (L, 00).

Then the space X is (¢, he)-uniformly conver with positive he and (rs, hs)-
uniformly smooth with finite hs. Moreover, one has he(0) = we,0(Pmin(Y), Te¢)
and hs(0) = ws0(Pmax(Y),7s). In addition, the condition

[min(pmin (YY), 2), max(pmax(Y); 2)] C [rs, rel
is sharp.

Remark 3.2. Note that Besov and Lizorki-Triebel spaces By ,(R"™), and
Ly ((R™), (and their duals) for s. € R, g € (1,00) and p € (1,00)" endowed
with the wavelet norms are isometric to the spaces l4(N, l,) and lt, 4 (and their
duals) correspondingly. Thus, Theorem 3.4 covers, in particular, the case of
Besov and Lizorkin-Triebel spaces with wavelet norms and their duals with

Pmin(Bp g (R™)w) = Pmin(Lp ¢(R™)w) = Pmin(Bp o (R™)y,)
= pmin(L;’,q’ (Rn):}) = min(pmim Q)
and

pmax(B;,q(Rn)w) = pmax(L;,q(Rn)w) = pmax(B;f‘qf(Rn):;)
= pmax(Lf;',qf (Rn):;) = max(Pmax; Q)-

4. Main results and examples

The whole set of the main results can be described in the following way. One
takes either one of Theorems 5.1, 5.2, 5.4, 5.5, 5.10, 5.12, or one of Corollaries
5.2, 5.4, 5.5 written in terms of the extreme parameters of the (p, h.)-uniform
convexity and (g, hs)-uniform smoothness, and applies it to one of the spaces
under consideration by using one of the theorems from Section 3 providing
these parameters of convexity and smoothness for this particular space. In
the case of Theorem 5.5, one needs one of the theorems of §6 on the existence
of uniformly isomorphic and uniformly complemented copies of {,(I,)-spaces.

For the sake of simplicity the spectrum of function spaces for which the
presented results hold was reduced. At the same time, some of the original
equivalent norms for Besov and Lizorkin-Triebel spaces are hidden inside wider
classes. The following remark deals with these issues.

Remark 4.1. a) The results of this paper, excluding some related to
sharpness, hold for the classes of function spaces of Besov and Lizorkin- Triebel
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type (and their duals, subspaces, factor-spaces and finitely represented spaces)
with variable smoothness (including the weighted spaces ) which are defined by
substituting the power t° in the definitions of the corresponding spaces in §2
with a more general function w(t,x) (see [8]).

b) The classical Besov and Lizorkin- Triebel spaces defined in terms of
the differences (used instead of the a-averaged differences in the definition
of B} 4a(G) and Ly, .(G) in §2) have the same geometric properties (dealt
with in this paper) as By [R™),, and L2 (R ).

¢) The spaces Bj (G) and Fy o (G) (see [28]) defined in terms of the
Littlewood-Paley decomposition are particular cases of B} . 7(G) and L7  ~(G)
and their subspaces.

Let us consider some examples of the main results.
The following main result is a combination of Theorems 3.2 and 5.1.

Theorem 4.1. Let G C R”, p,a € (1,00)", q,c € (1,00), s € (0,00)"
and

[min(pmina 4, Qmin, 2): ma'x(pma.xa 4q; Cmax;, 2)] C [T37 Tc] C (11 OO)
Assume also that

Y € {B;0,0(G), Bia(G), L ,4(G), I24.(G), 52, ,(G), B4 (@),

p,q,a pq,a p,q,a p,g,a P,q,a

. A
b.0a(G) 1540(G), By o ur(G)*, B3A, L(Q), L3, . (G)*,
s . i
Lo (@) by 4,0 (G), b5l o (G) 1 4 o (G)", 154, (G},

and X is either a subspace, or a quotient, or almost isometrically finitely
represented in Y. Assume, in addition, that D C X is its conver locally
weakly compact subset, and A and B are bounded subsets of X. Then, for
every o > 0, the relative Chebyshev centre map Cp : H (X) — D is well-
defined and satisfies

ICp(A) = Cp(B)l|x < ret/™ (we,o(min(pmin, ¢, amin), 7e)) ™™
x (min (r(4, D), (B, D)) (1 +0))/"™ (dgx (A, B) "™
for dp(xy(A, B) < o min (r(A, D), r(B, D));
ICD(A) = Cp(B)l|x <re'/™ (we,o(min(pmin, g, Gmin), 7)) "
X (L+1/0)""edpxy (A, B)
for dg(xy(A, B) > o min (r(4, D), r(B, D));

|Co|HY™(H(F), D)|| < ret/" (we,o(min(pmin, ¢, amin), 7))~
x (r(F, D) + d(F))""
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for every bounded F C X.
Moreover, the Holder smoothness of Cp (for all such D C X ) cannot be

better then (max(pmax, 4, 2))_1 if X =Y isometrically.
The next theorem is the combination of Theorem 3.2 and Theorem 5.12.

Theorem 4.2. Let G C R™, p,a € (1,00)", q,5 € (1,00), s € (0,00)"
and

[min(prnim q; Gmin, 2): max(pmax: q, Amax; 2)] C [Ts: Tc} - (]-= OO)

Assume also that

Yoe{ pqa(G) Bt ol @) Lf 0alB 132060800406, B5.(G)

b,q,a 7,9, P,q,a P.q,a
2a00(@): B8.(G), By o o(G), Byl o(G)y LYy g0 r(G),
L;,f;, (G 05 40w (G), B0, L (G)*, 13 0 0 (G), I 1 (G)* ),

and Xo is either a subspace, or a quotient, or almost isometrically finitely
represented in Yg. Let, in addition, X and Y be quasi-Banach spaces, and
dpm (X, Xg) < d. Assume that A is a closed linear surjective operator from
X onto Y, and that FF CY is bounded and

Ce = wc,O(min(pmim q, a'min): Tc) and.¢g = Ws,{)(max(pma,x: q, amax): Ts)-
Then there exists a homogeneous right-inverse operator B : 'Y — X satisfying

AoB =1, Bl\xz = ABz, sup ||Byllx <d|A7L(Y,X)];

yEBy

e - T':Cs 1/re
1By — Ba|lx < d ALy, DI lly — ally + (—2r)
Pala" -

< (2l O T

Ts _I_ CS 'rs/?"c

rs/rc)

Falts ) 1/7e
147, /7
role 9/ c

for every z,y € Y, and
||‘B|I{?‘,R/?ﬂC (F7 X)” Sdllj_llﬁ(}/’ )‘i’)” (d(F)l—’r‘s/?"c + (
1/rs—1/7c
( (F,A0))™ g5 m=d(FY" ) )

wherejz' = X/Ker Aand A: X —Y is defined by the canonical factorisation
A= AoQKer A-
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Remark4.2. In the case of Besov and Lizorkin-Triebel spaces and their
" duals, the isomorphic (quasi) Banach spaces are often just the same spaces
endowed with equivalent (quasi) norms. Many examples of equivalent norms
(of the same types as we use here) for function spaces under consideration are
provided in [1].

The following example of a main theorem is a combination of Theorems
3.3 and 5.4 for the main part, and Theorems 5.5 and 6.2 for the sharpness
part.

Theorem 4.3. Let Yy € {Wy(G), W3 (G)*} for G C R™, p € (1,00)",
s € (l,00), s € N" gnd

Imin(pmim 2)1 max(pma}ca 2)} = {Ts, TC] C (1, OO)

Assume also that Xg is either a subspace, or a quotient, or almost isometrically
finitely represented in Y. Let also A be a closed conver subset of a quasi-
Banach space X that is isomorphic to Xo with dpp(X, Xo) < d and o > 0.
For a > 0, assume further that a metric space Y contains an isometric
copy A of A (endowed with the metric inherited from X), and A, is the
a-neighborhood of this copy in'Y. Then, there exists a retraction ¢ of A, onto
A that does not depend on o and satisfies

dy (#(z), $(y)) <8drH/™ (we,0(Pmins7e)) ™™ (1 + o))" (dy (z, y)) /™
for dy (z,y) < omin (a,7(A, A)/8), z,y € Ag;

dy ($(z), p(y)) <8drl/™ (we,0(Pmin,Te)) ™ (1 + 1/0) e dy (2, )
for dy(z,y) > omin (a,7(A, A)/8), z,y € Aq;
I HY (Y, A)|| < d(87e)"" (we,0(Pmins ) ™" (r(A, A) + d(A))Y7*.

if A is bounded. If, in addition, X = X isometrically, then one should take
d =1 in these estimates.

If A is a ball in X, while Xo = Yy isometrically, then the Holder reqularity
of any retraction ¢ of Ag is not greater than (max(Pmax,t)) ™ .

5. The setting of an abstract Banach space

Definition 5.1. For a metric space X, z,y € X, B C X and a bounded
ACX, let dx(z,y) be the distance between = and y,

dx(y,B) = inf dx(y,z), and r(A,B) =rx(A, B) = inf sup dx(z,v)
z€B zeB yEA
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be the Chebyshev radius of A relative to B. Assume also that
rx(A,z) =rx(A,{z}) and rx(A) = rx(4,X).
The diameter of the set A is

d(A) = sup dx(z,y).
z,y€A

Note that rx({z}, B) = dx(z, B).
The next definition provides an important example of a metric space.

Definition 5.2. Let X be a metric space and B C X. The metric space
H(B) is the set of all bounded subsets of B endowed with the Hausdorff metric

dy(F,G) = max(sup dx (z,G), supdx(y, F') for FUG C B.
zEF yeG

The (closed) e-neighborhood F of a subset F' C M in a metric space M is
{zeM: dy(z, F) <r}.

Note that, if A and B are subsets of a normed space X and r > 0, then
dx(A;) =dx(A)+2r and rx(A, B)=rx(A,B)+r.

Definition 5.3. Assume that X and Y are metric spaces, and o € (0, 1].
For f: X =Y, its (first order) modulus of continuity on a subset A C X 1is
defined, fort > 0, by

w(t, f) =w(t, f, X) =sup{dy (f(z), f(y) : z,y€A, dx(z,y) <{).
The mapping f is uniformly continuous on A if

w(to, f, A) < oo for some tg >0, and %il%w(t, f,A) =0.

By H¥(X,Y) we designate the family of all mappings f : X — Y
satisfying:

IfIH*(X,Y)| : = sup{dy (f(z), f(¥)) /dx(z,y)* : z,y € X and z # y}
B w(t, f, X)
=sup ———= < 0.
£>0 £

Note that H*(X,Y) is a seminormed space if Y is a (complete) linear metric
space, and that f € H¥*(X,Y) is a Holder (Lipschitz for &« = 1) mapping.
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Remark 5.1. If X is a convexr subset of a normed space endowed with
the inherited metric, Y is a metric space, and f i X = Y with a finite
w(to, f, X) for some tg > 0, then f is Lipschitz for large distances, i.e., for
every d > 0,

w(t, f) < 2w(d, fit/d for t>d.

Hence, we will be interested in the smoothness parameters c, and « for
(relatively) small distances:

w(t, f) < cot™ for t < d.

Corollary 5.1. a) Let X,Y, Z be metric spaces and € H*(X,Y), ¥ €
HA(Y,Z). Then one has

I 0 9|HY (X, 2)|| < [||H(X, Y)||° ||| HA (Y, Z)].

b) If X is a bounded metric space with the diameter d — SUpP, yea dx(2,y) and
0 # [B,a] C (0,1], then the norm of the embedding H*(X,Y) C HP(X,Y) is
equal to d*=P.
c) If X and Y are normed spaces, a bounded FUG C X, and A € L(X,Y),
then

dr(y) (A(F), AG)) < [|AIL(X, Y)||dex) (F, G)

and

r(A(F), A(G)) < JAIL(X,Y)|r(F, G).

Retractions, metric projections and homogeneous inverses of linear opera-
tors between Banach spaces are important examples of H“-mappings consider-
ed in what follows.

5.1. Retractions

Definition 5.4. For a metric space Y and X C Y, a mapping f: Y —
X is a retraction of Y onto X if f(z) =z for every x € X. The subset X is
said to be a retract of Y.

1t is also said to be a uniform or (o, C)-Holder retract for some a € (0, 1]
and C > 0 if the mapping f is uniformly continuous, or || f|H*(Y, X)) <cC,
correspondingly. A (1,C)-Hélder retract is traditionally called C'-Lipschitz.

We shall also say that X is a local (o, §)-Hélder retract of Y for a non-
negative non-decreasing function ¢ defined on (0,00) if, for every r > 0
the subset X is a («, ¢(r))-Hélder retract of its r-neighborhood A, (with the
inherited metric).

A metric space X whose every isometric copy in an arbitrary metric space
Y is a retract is called absolute.
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According to Part b) of the next lemma, [, (T') is an absolute 1-Lipschitz
retract. It is Lemma 1.1 from [6].

Lemma 5.1 ([6]). a) Every metric space is isometric to a subset of loo(X).
b) Let Y be a metric space, Z C Y, and w be a nondecreasing subadditive
function defined on (0, 00) with lim;_ow(t) = 0. Assume also that f : Z —
lo(T") satisfies w(-,f,Z) < w. Then there exists a uniformly continuous
extension F': Y — Io(T') of f with w(-, F,Y) < w.

5.1.1. Chebyshev mapping

The Chebyshev cetres and Chebyshev radii are important notions of approx-
imation theory. In its terms the Chebyshev centre is the best uniform approx-
imation of a set by a point, while the Chebyshev radius is the error of this
approximation.

Definition 5.5. Let X be a Banach space, B C X and A C X is bounded.
A Chebyshev centre of A relative to B, if it exists, is a point x € B satisfying
r(A,z) = r(A,B). A Chebyshev centre of A is a Chebyshev centre of A
relative to X. Let B(X) be the class of all bounded subsets of X .

If the Chebyshev centre relative to B exists and is unique for every element
of a subclass . of the class of all bounded subsets of X, then the Chebyshev
centre mapping Cp : ¥ — B is the mapping that assigns, to every element
of ¥, its Chenyshev centre relative to B.

Let us note that a Chebyshev centre of A relative to X is, in fact, a
Chebyshev centre of A relative to any B D A, (4). It was shown by Garkavi
[16] that a Banach space X is either a Hilbert space, or of dimension one or
two, if and only if a Chebyshev centre of every bounded subset of X belongs
to its closed convex envelope.

Remark 5.2. a) Let us note that a Chebyshev centre of A always ezists
and the set of all Chebyshev centres is compact if X is reflexive and B is
locally weakly compact.

b) Garkavi [15] has shown that the uniqueness of the Chebyshev centre is
equivalent to the uniform convezity of X in every direction. Every uniformly
convex space is uniformly convex in every direction.

c) Let X be a normed space and a bounded AU B C X. Note that, for every
e > 0, a Chebyshev centre of A relative to B is also a Chebyshev centre of A,
relative to B and vice-versa, and that r(A., B) = r(A, B) +¢. Hence, we also
have

|T(A1 B) - T(C: B)| < dH(Aa C)

To prove the first main theorem of this subsection we need the following
lemma.
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Lemma 5.2. Forp € (1,0), let f be a (p, he)-uniformly convex function
defined on a convex subset D C X of a Banach space X, and z,y € D.
Assume also that

flz) = min}f(Z)-

zE€[z,y
Then we have the estimate

lim sup fe(8) ly — <% < £(y) — £(z).
040

t—

Proof of Lemma 5.2. Let us consider the convex and monotone on [0, 1]
function

o(t) = f(ty+ (1 —t)z).
The (p, he)-uniform convexity of f gives us

$1) = 4(t) _ 4t) = (0) .,
1=t t -

(1) cDlly — z|l%-
Noting that ¢ has non-negative right derivative at the origin due to its convex-
ity, we finish the proof by passing to the upper limit with £ — 0 + 0:

80 = 9(0) 2 9(1) - 6(0) ~ tim XIZE0 > i (o)l — i

O

The following two assertions are a quantitative counterpart of an important
result due to Amir from [4]: a Banach space is uniformly convex if and only if
Cx(A) is a singleton for every bounded A C X , and the Chebyshev map Cx
is uniformly continuous on bounded subsets of X (endowed with Hausdorff
metric). The next theorem is also a counterpart of Theorem 1.27 from 6]
where the classical modulus of convexity was employed.

Theorem 5.1. Forp € [2,00), let X be a (p, he)-uniformly convez Banach
space, D C X be its convex locally weakly compact subset, and A and B be
bounded subsets of X. Then, for every o > 0, the relative Chebyshev centre
map Cp : H(X) — D is well-defined and satisfies

IC(A) - Cp(B)||x <p*/P(limsup he(t)) ™?
t—040

x(min (r(4, D), (B, D)) (1 +0))""(dyx) (A, B))/?
for dg(xy(A, B) < o min (r(4, D),r(B, D));

—1/p
ICh(A) - Cn(B)|x < pV/» (1?3535 hc(t)) (1+1/0)Y% dgyx) (4, B)
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for dg(xy(A, B) > omin (r(A, D), r(B, D)) ;

=1/p )
ICo|HY#(H(F), D)| <5/ (limsup ht) ) (r(F, D) +a(F)»

for every bounded F' C X. Moreover, one also has

_l/p lim supg_, he(t)
p'/P (lim sup h,c(t)) < min (e e ,el/e\/limsup he(t) | -
t—0+0 t—0+0

Remark 5.3. a) Theorem 5.1 perfectly illustrates the statement of Re-
mark 5.1: the first inequality corresponds to relatively small distances, while
the second — to relatively large ones.

b) If B has a non-empty relative interior then the case of A and B being
relative balls in B of equal radius providing 1-Lipschitz estimates does not
reflect the convexity of X at all according to the next theorem.

c) The metric projection map Pp : X — D C X onto a closed convex subset
D is the restriction of Cp onto the singletons {{z}},. -

Ppz = Cp ({z}).

According to Theorems 5.2 and 5.8, this restriction has higher Holder regularity
q/p than the relative Chebyshev centre map itself (1/p) if the Banach space
X s both (p, he)-uniformly convex and (g, hs)-uniformly smooth.

Proof of theorem 5.1. D. P. Milman has shown that every uniformly convex
space is reflexive. Hence, according to Parts a) and &) of Remark 5.2, the
map Cp is well-defined on the bounded subsets of X. Assume that r(4, D) >
r(B, D). Taking an arbitrary £ > dg (A4, B), we conclude with the aid of Part
c¢) of Remark 5.2 that

(1) T(A:D) - T(A= OD(A)) = T(As OD(B)) < T(BsaCD(B)) = T'(B,D) + E.

Since X is (p, he)-uniformly convex, the same is true for the function f(z) =
r(A,z) defined on the convex set D. Therefore, according to (1), Lagrange’s
theorem and Lemma 5.2 with £ = Cp(A) and y = Cp(B), we have

lir_r,losfc? he(t)||Cp(B) — Cp(A)|l% < (r(4,Cp(B)))” — (r(A,Cp(A)))?
(2) <p(r(B,D) +¢)P " e”.

This is equivalent to the estimate

ICp(A) — Cp(B)|x <p'’/? ( lim sup hc(t)) ~¥ p(min (r(A, D),r(B, D))
t—040

(3 + oo (4,8)) " (daco(a,B) ",
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implying the first three inequalities of the theorem. To establish the last
inequality, we also have to take into account that

d(H(F))= sup dgix)(4,B)= sup ||z - yllx = d(F)
A,BEH(F) z,yeF

and r(A,D) <r(F,D) for AC F.

When ¢ tends to dy (A, B), one obtains the main estimate of the theorem.
The rest follows from the calculus inequalities (z/c)/* < e/ for z,¢ >
0,and p> 2. O

Corollary 5.2. For p € [2,00), let X be a quasi-Banach space that is
isomorphic to a (p, h)-uniformly convexr Banach space Y with dp MmM(X,Y) <
d, D C X be its convex locally weakly compact subset, and let A and B
be bounded subsets of X. Then for every o > 0 there exists a mapping
Yp: H(X)— D satisfying

Yp ({z}) =z for every z € X;

[4(4) ~¥o(B)lx <dp/>(lmsuphe(t)) "
t—0+0

x (min (r(4, D),r(B, D)) (1 + o))" (dprxy (4, B)) /*
for du(xy(A, B) < omin (r(A4, D), r(B, D));
I95(4) ~4(B) 1x < dp* (limsup he(t)) ™" (1 +1/0)/% diy (4, B)

t—0+40
for dg(x)(A, B) > o min (r(A, D),r(B,D));
=1/p )
[40lE /2 (F), D) < dp/e (Lemsuphe®))  (r(F, D) + d()) "

Jor every bounded F C X.

Proof of Corollary 5.2 Since the Banach-Mazur distance between X and
Y is less than d, there exists an isomorphism T': X — Y satisfying

(1) ITIEC VIITHLY, X)) < d.

Observing that T'D is a closed convex subset of ¥ and H (D) =T (H(D)),
let us choose ¢yp =T 1o CrpoT. According to Part c) of Corollary 5.1 and
the choice of T', one has, for every 4, B H(X),

DA = Bllx < |T7HLEY, X)|.|CroT A~ CrpTB|y;
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r(TA,TD) < ||T|L(X,Y)|r(A,D),
(2) duv)y(TA,TB) < |T|L(X,Y)|drx) (4, B).

The inequality (3) from the proof of Theorem 5.1 holds with TA, T'B and T'D
instead of A, B and D, correspondingly, so we combine it with (1) and (2) to
establish the following counterpart of (3) from the proof of Theorem 5.1 for

Yp:

B Ioo(d) - voB)x < (lmsuphe(t)) " (drgry (A, B))
t—04-0

x (min (r(A4, D),r(B, D)) + du(x)(4, B))l/p’.

Proceeding as in the proof of Theorem 5.1, we complete the proof of this
corollary. O

The next theorem shows the sharpness of the previous one. It is a quanti-
tative version of the ”if’-part of Theorem 5 from [4] with essentially the same
proof.

Theorem 5.2. For r > 0, let X be a Banach space, B D rBx be its
closed convex subset, and o € (0,1]. If the Chebyshev mapping Cp is well-
defined and Cp € H* (H(rBx), B), then the space X is (1/e, he)-uniformly
convez and o € (0,1/2].

Proof of Theorem 5.2. It is an observation that the appropriate part of
the proof of Theorem 5 from [4] can be quantified as it is. Thanks to the
homogeneity of X, we can assume, without loss of generality, that r = 1.
Assume also that x, y are arbitrary and satisfy ||z||x = ||yllx = 1. Let A and
D be, correspondingly, the convex envelopes of the subsets of Bx

T+ Y T+ y T4y a+y
z,—Y, 8 and T, —Yy, T v
lz+yllx’ llz+yllx 2 2

Then A contains the diameter of Bx, while D is a parallelogram, and therefore,

(1) Cp(A) =0 and CB(D):m;y.

In turn, the convexity of the norm implies

z+y Tty e+ ylx

o =1
il ) ‘||$+yllx 2 HX 2

Thus, one has
lz — yllx

U < g, (1~ Ietale)”

2
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This means (see [19]) that X is 1/a-uniformly convex in the classical sense:
(2) dx(f) > (40, )~ Yegie,

And, according to Dvoretzky’s theorem, 1/a > 2. The classical p-uniform
convexity is equivalent to (p, h.)-uniform convexity, that can be shown as in
[17], [5, Proposition I1.1.1] and [14].

5.1.2. Retraction problem

A very important tool is the following theorem that is Theorem 1.7 from [6)].

Theorem 5.3 ([24, 6]). Let A be a closed convex subset of a Banach
space X. Then H(A) is an absolute 8-Lipschitz retract.

Combining this theorem with the both parts of Lemma 5.1 and Part a) of
Corollary 5.1, one obtains the following corollary.

Corollary 5.3 ([6]). Let A be a closed conver subset of a Banach space
X, and let Y be a subset of a metric space Z. Then every Lipschitz mapping
[ Y — H(A) admits an extension F : Z — H(A) satisfying

|F|HY(Z, H(A))|| < 8[| fIH' (Y, H(A))|.
The next assertion is the first main theorem of this subsection.

Theorem 5.4. Forp € [2,00), let A be a closed convex subset of a quasi-
Banach space X that is isomorphic to a (p, h.)-uniformly convex Banach space
Z with dpp (X, Z) < d and o > 0. Fora > 0, assume also that a metric space
Y contains an isometric copy A of A (endowed with the metric inherited from
X ), and A, is the a-neighborhood of this copy in Y. Then, there erists a
retraction ¢ of A, onto A that does not depend on o and satisfies

dy (9(2), 6(3)) < 8ap*'? (lmsup he()) " (L + W)™ (dy (w,9))7?
t—0+40
Jor dy(z,y) < omin(a,7(A, A)/8), z,y € Aqs;

dy (#(x), $(y)) < 8dp'/? (limsup he(t)) 0 1) dy ()
t—0+40

for dy(z,y) > omin (a,r(A, A)/8), z,y € Ay;
i} ~1/z ;
617, 2)) < d(sp) e (timsup he(t)) (A, 4) +a(4)7

if A is bounded. Moreover, if X is a (p, he)-uniformly convexr Banach space
itself, then one can take d = 1 in these estimates.
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Remark 5.4. One can also use the numerical estimate given in The-
orem 4.1.

Proof of Theorem 5.4. Let us note that A is isometric to the subset
of singletons {{z}},.4 C H(A). Hence, according to Corollary 5.3, the
corresponding isometry of A into H(A) has an 8-Lipschitz extension f : A, —
H(A). Particularly, one has, for every z € A,,

(1) r(f(z),A) < 8dy(z,A) < 8a and r(f(z),A) <r(4,A4).

Thus, considering the composition ¥ 4 o f with ¢4 provided by Corollary 5.2,
we combine (1) with the estimate (3) from the proof of Corollary 5.2, to obtain

@) lgao f(@) a0 fw)lx <8dp?(lmsuphe(t) " (dv(e9))
t—040

X (min (a, (A, A)/8) + dy (=, y)) e

This estimate implies the first two inequalities of the statement of the theorem.
The last inequality follows from the third estimate for the 1/p-Holder norm
of 14 for bounded F' = A from Corollary 5.2, and the composition rule (Part
a) of Corollary 5.1).

If we, actually, have X = Z, then one takes d = 1 because we can use the
Chebyshev map Cp and Theorem 5.1 instead of 14 and Corollary 5.2. O

To investigate the sharpness of the exponents in the last theorem, we
need an isomorphic version of Lemma 1.28 from [6] that is the next lemma.
To highlight the changes we outline the proof. Let us define some related
objects.

For every p € [1,00],n € N,a > 0and F C I,, let 2 be the vector defined
by the multiple of the characteristic function axr : I, — {0,a}. Note that
|lzF —zll, = ol FAH|VP.

Remark 5.5. Although this information is not used in what follows, let
us note that {xr}rcr, are the extreme points of the translate of the multiple
of the unit ball of loo(In): %CEIH + 5B (1,)- In the next lemma we shall deal
with all of them but the origin.

Lemma 5.3. Forp € (1,00) andr > 0, let T, : l,(In) — loo realize an
isomorphism between l,(I,,) and Im Ty, and {aTnzr}rc1, C B C Im T, be
a closed and convex uniform retract of its r-neighborhood B, in lo. Then the
modulus of continuity of the corresponding retraction f satisfies

w(cEri=PaP, ) + n~ VPP (1 /2 f) > afey for every a >0,

where
co = | TulL(p(In), lo)ll and e1 = | Ty |£(loos Lp(Tn)]l-
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Proof of Lemma 5.3. Following the pattern of the proof of Lemma 1.28 in
[6], where the case of isometric copies of [, and its unit ball was considered,
we adapt it to our isomorphic setting.

For every xr, one defines yr coordinatewise by the relation

(yp)i =1/2+ 15%1? (Twzw)i + cgr'~PaP|FAH|,

implying
(1) lyr — Yoo < cBr'~PaP|FAH].
The inequality t/r <1+ (¢/r)P implies
1Tazr = Tnzalloo <7+ | TIL(I(In), loo) [Pr~Pa?| FAH.
Hence, one also has
(2) lyr — Tz r|leo < /2.
The group G, of the permutations of I, acts (by isometries) on l,(1,,):
(Sw® )i = Ts-1(;) for i € I,.

Introducing the vectors {zr}rcy, C lp(I,) defined by

1 "
iR = ';1_1 Z SG'Tn 1f(y0'_1(F))7
" oeG,

one sees that S,zp = zo(F) for ¢ € G, and thus,

(3) 2F = AFXF +EFXI\F-

Since the estimates in (1) and (2) are uniform by F, we also have

(4) [ Thzr — Thzhlleo < gr' PaP|FAH| and  |[Tuzr — Thzr|eo < r/2.

Considering F' C H C I, with |[F| = [n/2] and |H \ F| = 1, one deduces from
(3) and (4) that

(8)  H[YPla~ x| < 2t — 2nllp < e1l|Tazr — Tuzsrlloo < cro(r/2, £);

6)  Un\FI"?ler| < llzr — zpllp < 1| Tnzr ~ Tnzrlloo < cr(r/2, f).
Finally, (4 — 6) and the definition of ¢; completes the proof:
w(cgr'PaP|FAH|) 2 | Tozr — Taznlleo > 7 Y|2p — 2a|lp
> ¢ A —ep| > afer — 2|H|_1/pw(r/2,f)
>afec; — 21+1/pn"1/pw(r/2, f)-
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-0

The following important technical lemma shows that the balls are among

the best retracts of their own normed spaces in the sense of the existence

of 2-Lipschitz retractions (that are also metric projections if X is strictly
convex).

Lemma 5.4. Let X be a normed space and Bx be its unit ball. Then
there exists a 2-Lipschitz retraction of X onto Bx. It is ¢x : X — Bx

defined by
o

) = .
Px(2) = a1, Talln)

Proof of Lemma 5.4. Since ¢x(z) = x for ||z||x < 1, we have to consider
only two cases.

Assuming that ||z||x > 1 and ||y||x > 1, one has, by the triangle inequality
and the identity

r Y :3?—31 1 _ 1
@) lellx ~ Tlix |\$1|X+y(||33llx ||ynx)’
g | e —vllx  llelx —lollxl gy o0
lallx ~ Tollxllx = Tellx el

In the case ||z||x > 1 and ||y||x < 1, we have, by the same argument,

T |z —yllx lzl|x — 1
‘ E Hx < xR
< H$||;||:iilx H&‘CH)'(IQ:]J!QHX < 2|z - ylx

O

Theorem 5.5. For C3,C3 > 0 and p € [2,00), let X be a separable
Banach space containing a Cs-complemented subspace X,, with dpn(Xn,lp) <
Cy for every n € N. Assume also that a closed convexr subset B of X
contains the unit ball (Bx C B C X ), and that By, is the ro-neighborhood
of an isometric copy B of B in ls, such that there exists a retraction ¢ €
H*(B,,,B) of B, onto B satisfying either ¢ € H*(By,, B) if B is bounded,
or w(t, ¢, B;) < h(r)t* for t < d = d(r) with some ro > 0, o € (0,1], and
a (necessarily non-decreasing) positive-valued functions h(r) and d(r). Then
the estimate oo < 1/p holds.

Proof of Theorem 5.5. For every n € N, let us fix some positive constants
co,c1 with cge; < Oy, isomorphisms T, @ [p(l,) < X, and projectors P,
satisfying

(1) Tl £0p(In), Xn)ll < co, 1T LXK bp(T))]| < e1, [Pl LX) < Cs.



SERGEY AJIEV 403

Let us also choose the parameters a > 0 and r € (0, rg], such that

el
(2) a = (con*/?)~! and w(r/2,¢) < (23+l/p0203) ;

With this choice, we see that the conditions of Lemma 5.3 are satisfied for
the retraction f = f, of the r-neighborhood By, , of the isometric copy
Bx, = J(Bx,) of the unit ball Bx N X,, of X, in I, defined by

(3) fn=Jo¢x, 0P, 0] o,

where J : B < B is a given isometry and ¢x_ is the 2-Lipschitz retraction
(metric projection) of X, onto its unit ball By, . Particularly, one deduces
from the composition rule that w(t, f) < 2Csw(t, ¢), and, thus, either

(4) fn = HQ(BX,,,T:BX‘”), or W(ta fnaBXn'r) - QOBh(TO)ta

for the cases of bounded, or unbounded B respectively. Thus, Lemma 5.3
provides, with the help of (1), (2) and (4), the key estimate

w(r'™P/n, fn) > (Con*P)! for n > r'-7/d,

which cpmpletes the proof of the theorem for the cases of both bounded and
unbounded B. 0

5.2. Chebyshev sets and metric projection

Metric projection is a very important example of a retraction possessing better
smoothness than the retractions considered in the previous subsections. In
approximation theory it corresponds to the best approximation of a function
by a function from a closed convex or linear subclass.

In this subsection we are going to investigate the smoothness of the metric
projections on closed convex subsets of either uniformly convex, or both
uniformly convex and uniformly smooth spaces. We further provide retractions
onto such subsets from the ambient space that is either uniformly convex, or
both uniformly convex and uniformly smooth. These retractions possess either
better smoothness, or better constants than their counterparts in the previous
subsections.

Definition 5.6. A subset D C X of a Banach space X is a Cheyshev set
if the metric projection mapping Pp : X — D is well-defined by the relation

_p — i _
|z — Ppz| x ggglif yllx,

that s, for every x € X, there exists a unique y = Ppz minimizing the
distance between x and D.
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As mentioned in Remark 5.3, the metric projection is the restriction of the
relative Chebyshev centre map:

Ppz = Cp ({z}).

Note that, by the Hahn-Banach theorem, Ppy = Ppz if y = Az + (1 — \)Ppx
for some A > 0.

Remark 5.6. a) While every closed convex subset of a reflexive and strict-
ly convexr Banach space is a Chebyshev set, there exist examples of such
Banach spaces with discontinuous (in norm) metric projections on some Che-
byshev sets (see [11, 29]). The necessary and sufficient condition on a Banach
space for such a continuity was found by L. P. Vlasov [30] (Theorem 5.6
below). This condition was introduced by V. L. Skmul’yan in 1940. S. L. So-
bolev [27] designed an approach to establish the duality between Lebesgue spaces
by utilizing it. Every uniformly convex space satisfies this condition.

b) There exists an important characterization of inner product spaces due
to Phelps [23]: a Banach space with dim X > 2 is a Hilbert space if and only
if the metric projection on every closed convex Chebyshev subset is 1-Lipschitz
(nonezxpansive).

c) According to Lemma 5.4, the metric projections onto the balls of a
strictly convexr normed space X are 2-Lipschitz. This means that balls are
too good subsets to distinguish the peculiar features of the (local) geometry of
X from the point of view of the metric projection.

Theorem 5.6 ([30]). Every closed and convex subset of a Banach space
X possesses a single-valued and continuous (in norm) metric projection if
and only if every subsequence {zx}ren C X with ||zn||x = 1 for every n,
satisfying the condition limg_.oo f(zk) = 1 for some f € X* with || f|x~ =1,
is convergent in X.

The uniform continuity of the set-valued metric projection was investigated
by Berdyshev [7], while the same phenomenon for the (single-valued) metric
projection in uniformly continuous and uniformly smooth spaces was studied
by Bjornestal [10] in the case of metric projections onto subspaces and by
Benyamini and Lindenstrauss [6] in the case of metric projections onto the
closed convex subsets. In the latter case, the estimates for the local uniform
continuity, that is for the modulus w(t, Pp, z+7r(z)Bx) with r(z) < Cd(z, D),
were established in terms of the moduli of the uniform continuity and uniform
smoothness. In some special case, global estimates of similar nature (that
cannot be derived from the local ones) were established by Alber [3]. In this
section, we establish global estimates ih the general setting of an arbitrary
closed convex subset providing the same order of the Hélder regularity with
explicit numerically friendly constants.



SERGEY AJIEV ‘ 405

We shall extensively use the following lemma. Its application to the
functions of the form F(z) = |z — x|k with r € {q,p} substitutes the
cosine theorem in our non-Euclidean geometry.

An alternative proof (and'a generalisation) of this lemma can be found in

2].

Lemma 5.5. Let X be a Banach space, z,y € X, and let F': X — R be
conver.
a) If F' is a (p, he)-uniformly convex function on X for some p € [1,00) and
fz € OF (), then we have

F(y) =2 F(z) + fo(y — z) + limsup he(0) |y — z[/%.
8—040

b) If a (q, hs)-uniformly smooth function on X for some q € [1,00) and f, €
X™ 1is the Frechet (or Gdteaux) derivative of F' at z (f, = VF(x)), then we
have

Fly) < F(z) + foly — ) + lminf Ay (0)]ly — 2]|%-

Proof of Lemma 5.5. As in the proof of Lemma 5.2, we define ¢(t) =
F(ty+ (1 —t)z).

To establish Part b), we write the condition of (p, h.)-uniform convexity
of F' in the form of the second divided difference:

(1) ¢(1i = f(t) _9(t) - ¢(0)

Since ¢ is continuous and ¢(t) > ¢(0) + tf.(y — z), one takes the upper limit
in ¢ in (1) to complete the proof of Part a):

¢(1) = $(0) — fo(y — z) > limsup he(8) ||y — =%
8—0+0

> he(t)lly — zll%-

To proceed with b) we also write the condition of (p, h.)-uniform convexity
of F' in the form of the second divided difference:

1~=14% t
Since ¢ is continuous and ¢(t) = ¢(0) +tf.(y — =) + o(t), one takes the lower
limit in ¢ in (2) to complete the proof of the lemma:

#(1) ~ 9(0) = fuly — 7) < Limint ho(O)lly - z]%.

< hs(O)lly — )%

O

Since the metric projection onto a closed convex subset of a Banach space

is a particular example of a retraction of the whole space onto this subset, it

seems reasonable to expect at least the same regularity as given by Theorem
0.4. The theorems below confirm this expectation.
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Theorem 5.7. Forp € [2,00), let X be a (p, he)-uniformly convez Banach
space, and D C X be a closed convex subset. Assume also that a bounded
AC X andr,0 > 0. Then we have

—1/;0 J
| Ppz — Ppy|x < p”p(lim{%ﬁ hc(t)) (L +o))P ||z — y|| 37

forx € D,, ||z —y| < or;

“1/'}0 !
1Pow = Poyllx < p!/” (limsup he(®)) (1+1/0)"" 1o~ yllx

for||lz—y|| > ad(z, D). In particular, if f (y — Ppz) < 0 for f € X* satisfying
| fllx =1 end f (z — Ppz) = ||z — Ppz|x,

then one also has

M_Q/p
|Ppz - Poyllx < (limsuphe()) o~ yllx.
t—0-+0

Moreover, Pp € HY?(A, D) and

| Po| HYP(4, D)|| < pl/P( lim sup hc(t)) _l/p(d(A) +r(4, D))"
t—04-0

Proof of Theorem 5.7. According to the definition of Pp and Part a) of
Lemma 5.6 below, we have

(1) f (Ppy — Ppx) <0 for every y € X.

The function F(y) = ||ly — z||% is (p, hc)-uniformly convex and 8F (Ppz) =
{-pllz — Ppz|% ' f}. Hence, Part a) of Lemma 5.5 and (1) provide the key
estimate

@) I1Poy =zl = |Ppz — il > limsup he(8)]| Poy — Ppalk.

Therefore, we obtain, with the aid of Lagrange’s theorem and the triangle
inequality, the estimate implying the first two inequalities of the theorem

] . ul/p ’
() IPoy = Poallx < (lmsuphe(®) 27| Poy - 2|} 2 — {7

_ ~1/p 1/p'
< (limosE[%) hc(t)) pl/p(d(y, D) + ||y — ﬂcHX) & o — yH;Zp-
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Since, in the last inequality of the theorem, the estimate (1) remains true if
we substitute Ppy with y, we have the corresponding counterpart of (2):

Iy ==l = 1oz — all% > limsup he(t) |y — Palk.

The latter formula implies

, -1/p
(4 ly—Poylx < lly— Pozlx < (limsuphe(t)) lly - zllx-
t—0-0

Hence, changing the roles of z and y in (2), we obtain

(5) IPpz—yl%k = IPpz—yll% — I Poy—yl%k = s he(t)| Poy — Pzl

The combination of (4) and (5) provides the last but one inequality in the
statement of the theorem. To finish the proof of the theorem, we note that
the estimate for the H'/?( A, D)-norm follows directly from (3). O

The next corollary is the isomorphic version of the previous theorem.
While the resulting mapping is not a metric projection, it is still a retraction

~with additional properties and occasionally better constants than those given
by Theorem 5.4.

Corollary 5.4. Forp € [2,00), let X be a quasi-Banach space that is iso-
morphic to a (p, he)-uniformly conver Banach space Y with dpy(X,Y) < d,
and D C X be a closed convex subset. Assume also that A C X is bounded
and r,a > 0. Then there exists a retraction vvp of X onto D satisfying:

Yp(X \ D) C 8D;

—1/}3 !
9w~ wpyllx < dp*/?(limsup he(s)) " ((1+0)r) " fla ~ g3

forz € D, ||z —y| <or;

. —1/p ’
lvpz — ¥pyllx < dp”p(limgfg hc(t)) (1+1/0)" |z —y||x

for ||z — y|| > od(z, D). Moreover, Pp € HY/P(A, D) and
1/ 1/p( 1: -1z 1/p’
| wp| HY?(A, D)|| < dp p(hmosué:) hc(t)) (d(A) + (A, D)7
t—0+

Proof of Corollary 5.4. According to the condition on the Banach-Mazur
distance between X and Y, there exists an isomorphism 7" : X < Y satisfying
\T|L(X, V)T LY, X)|| < d. We define

(1) Yp=T"toPrpoT.
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This means, in particular, that one also has the identity 70D = 8T D implying
the inclusion 9p (X \ D) C @D. In the same manner as one proceeds in the
proof of Corollary 5.2, we use Parts a) and c) of Corollary 5.1 to deduce the
following counterpart of the key estimate (3) from the proof of Theorem 5.7

Wby — ¥pzllx < T LY, X)||PrpTy — ProTx|y

_1/
2) < 7720, X)l| (limsup ho(t))  p?
t— 040

x (d(Ty, TD) + | Tz — Ty|ly)"? | Tz — Ty|| 4"

_ -1/p . d
< d(tmsuphe(®) " P Adly, D) + lly ~ 2lx) e -yl 7

It implies all the statements of the corollary in exactly the same manner as
the estimate (3) in the proof of Theorem 5.7. O

Note that a Hilbert space is (2,1)-uniformly convex, while the metric
projection is Lipschitz in this case. This observation suggests that the global
regularity of the metric projection could be higher if the space is not only
(p, he)-uniformly convex but also (g, hs)-uniformly smooth. It is the subject
of the next theorem. Since the approach of [10] and Section 2.2 in [6] based on
developing the geometry of the cross-sections of the unit ball (that is of quite
of interest by itself) leads to local estimates, we have to design an alternative
approach based on our counterpart of the cosine theorem for Banach spaces
(Lemma 5.5).

We shall need the following simple but useful lemma.

Lemma 5.6. Let X be a Banach space, D C X be its closed conver
subset, x € X \ D, and r > 0. Then the following statements hold.

a) A point y € D 1is the closest point to x in D if and only if there exists
f e X* with | f||x~ = 1 satisfying

max f(z) = f(y) and f(z —y) = [z - yllx = [z — vl x.
b) If a point y € D is the closest point to x € X \ D, in D, then y, =
(1—=r/d(z,D))y + zr/d(z,D) is a closest point to x in the closed convex
neighborhood Dy of D, and this point is unique if X is strictly convexz.

c) For every bounded subsets AU B C X, we have co(A + B) = co(4) +
co(B) and co(A,) = (co(A4)),.

Proof of Lemma 5.6. Part c) follows immediately from the definition of the
convex envelope implying, in particular, the convexity of D, = D+rBx. The
latter set is also closed because D, = g~!([0,r]) for the continuous g(z) =
d(x, D). Therefore, the nearest to = point of D, (or any other closed convex
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subset) is unique if X is strictly convex in Part c). The well-known Part a)
follows from the geometric form of the Hahn-Banach theorem applied to the
convex sets D and z + d(z,D)Bx. Finally, the main assertion of Part b)
follows from a) because

max f(z) = f(yr) and f(z — yr) = [z — yr | x.

O

Now we are in a position to prove the main theorem of this subsection

showing that the (global) regularity of the metric projection is higher if, in
addition, the space X is also (g, hs)-uniformly smooth.

Theorem 5.8. For 2 € [q,p] C (1,00), let X be a (p, he)-uniformly
convez and (g, hs)-uniformly smooth Banach. space and let D C X be closed
and convezr. Assume also that A C X is a bounded subset of X, o,r >0 and

By = Iir—l}ﬁsllt%) he(t) and cg = ltiE}DifOf (L)

Then we have

14+q/p

1/p

pe B 1—q/p

||Pay—PDscnxs(qc : ) (@ +esczotrat)lar) ™ |y — gy
C

Jor every x € D, and y € X satisfying ||y — z||x < or;

1+¢q/p

pc o 1/9—1/p
|Ppy — Ppz||x < (qc : ) (cscc_q/z’ — cr—q) ly - z||x

Jor every z,y € X satisfying ||y — z|x > od(z, D);

“PDI HY/?(4, D)“ < (—i%;) Up (r(4, D)7 + cucz9/Pd(4)0

)l/q—l/p
gcCc .

Moreover, if p = q = 2, we also have

1/2
Cs/

| Po| H' (X, D)|| < —,

{8

that is, Pp 1s cg/ % /ce-Lipschitz.

Remark 5.7. The ezponent q/p of the Holder-Lipschitz reqularity of the
metric projection is sharp when both p and q are sharp for a wide subclass
of the independently generated spaces IG, Junction spaces defined in terms of
the wavelet norms and their duals. The proof will appear elsewhere.
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Proof of Theorem 5.8. First assume that z € X and y € X \ D. Then,
with the aid of Part a) of Lemma 5.6 providing g € X* satisfying ||g||x~ = 1,

9(y — Ppy) = d(y, D), g(z ~ Ppy) < 0 and —p|| Ppy — y|% 'g € 8] - —yl%,
one obtains from Part a) of Lemma 5.5 (” Cosine theorem”, as in the proof of
Theorem 5.7, that

(1) cllz = Ppyll% < lly — =l = lly — Poyl% < lly — =|%-

Now assume that z,y € X \ D and d(y, D) > d(z, D) = a. Then, according
to Part b) of Lemma 5.6 and (1), we have z € D,

(2)
1Pp,y — zllx < g Plly — z||x, ¥' = Pp,y = (1 —a/d(y, D))y + ya/d(y, D),

and d(y’, D) = a. Note also that one has Ppy’ = Ppy by Lemma 5.6 a).
Applying once more Lemma 5.5 a) together with Lemma 5.6 a), implying
the existence of f € X* with ||f||x =1,

(3) f(Ppy—Ppz) <0, f(x—Ppz) =a and —p|z—Ppz|[% ' f € 8||-—z||?,
that
4) cel|Poy — Pzl < ||[Ppy — =l — a”
< 21Poy — all% " (| Poy — 2y - a?),
where the second inequality follows from the Lagrange theorem.

At the same time, changing the roles of z and y' (Ppy’ = Ppy) in (3), one
finds h € X* satisfying

(5)  llhllx= =1,h(Ppx— Ppy) < 0 and h(y’ — Ppy) = ||y’ — Ppyl|x = a.

Therefore, the expression for 3’ in (2) and (5) imply p|lz — Ppz|% 'h =
V| - —Ppz|% and

(6) h(z —y') = h(z — Ppz — (¥ — Ppy)) + h(Ppz — Ppy)
<a-a+ h(Ppy— Ppz) <0.

Hence, we can use Lemma 5.5 b), and then (2) to obtain
(7) 1Ppy — x|k — a® = llz — Ppyl% — Iy’ — Poyll? < esllz - v/ |I%
< esc; Py — 2|

Next, using (7) twice (to estimate the right-hand side of (4), and || Py — =%
itself), we establish the key estimate

1/p
pc
(8) |Poy — Ppalix < (qcyf}/p) ly -~ =1%”

9

_ % 1fa=1/p
x (d(z, D) + esc; 7|y — 2% )
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implying immediately all the inequalities of the theorem except for the last
one. To prove it, we just skip the usage of the Lagrange theorem and omit
the last inequality in (4) and use (7) only once (along with p = q = 2

(9) el Ppy — Poall% < ||Poy — all} — a? < coc; 9P|y — z||%.

O

We obtain the following corollary relying on Theorem 5.8 in the same

manner as we deduced Corollary 5.5 from Corollary 5.4. As before, we do

not have the metric projection for the isomorphic version but still have a very
smooth retraction with some additional properties.

Corollary 5.5. For 2 ¢ [g,p] € (1,00), let X be a quasi-Banach space
that is isomorphic to a (p, he)-uniformly conver and (@, hs)-uniformly smooth
Banach space Y with dem(X,Y) < d, and let D c X be closed and conver.
Assume also that A C X is a bounded subset of X, o,7r >0 and

Cc = limsup h¢(t) and c, = liminf h,(t).
t—0+4-0 t—0+0

Then there erists a retraction p of X onto D satisfying

Yp(X \ D) c D;

1/p
Coq . 1-q/p
[y = Ypa|x < d (qciq/p) (@ + cacgarmonyiar) ™% 1y _gylp

foreveryz € D, andy € X satisfying ||y — || x < or;

1/p

B _ _N\Ya=1/p

1Yoy — ¥pzlx < d (;%&E) (CSCc il 5 q) ly — =l x
Ce

for every m,y € X satisfying ly — zl|x > od(z, D);

1/¢g—1/p

1+q/p
gce

1/p
” Yp| HY/?(4, D) H <d (—?L) (T(A, D)7 + cscg‘*’/pd(A)q)

Moreover, if p = q = 2, then we also have

1/2
| ol B2 (¢, D)) < %5

Ce

that is Pp is dcl/? /ce-Lipschitz.
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Proof of Corollary 5.5. Since dpym(X,Y) < d, there exists an isomorphism
T: X <Y with

(1) ITILY)ITHLY, X)) < d.

We define ¢¥p by the formula (1) from the proof of Corollary 5.4. Moreover,
one also has the identity 79D = 9T D implying the inclusion Yp(X\D) C 6D.
As in the proofs of Theorem 5.7 and Corollary 5.2, all the statements of our
corollary except for the last one follow immediately from our key estimate

1/p
(2) 1Yoy —¥pz|x <d (q_;-%) ly — =%

1/q—1/p
x ((d(z, D) + cuc; 27|y — a1

that is a consequence of the key estimate (8) from the proof of Theorem 5.8
applied to the metric projection Prp of Y onto its closed and convex subset
T'D, (1) and the observations

¥y — Yozl x < |TL(Y, X)||| ProTy — PrpTzy

and d(Tz,TD) < ||T|L(X,Y)|ld(z, D). In the Lipschitz case p = ¢ = 2, we
just use Part a) of Corollary 5.1 and the estimates of the Lipschitz norms of the
mappings T, 7! and Prp provided by (1) and Theorem 5.8 correspondingly
to finish the proof of the corollary. O

5.3. Homogeneous right-inverse operators

In different branches of mathematics, one needs to find a solution of an
equation of the form Az = y with a closed operator A from a quasi-Banach
space X onto a quasi-Banach space Y, where the solution is not unique. It is
better when the solution 2 depends continuously on y. Sometimes it is also
preferred for the solution to have a minimal possible norm, or comparable
to it. For example, A could be a linear partial differential operator, or an
operator corresponding to a boundary problem in PDE.

According to the Banach theorem on inverse operator, every injective and
surjective bounded linear operator A from a Banach space X into a Banach
space ¥ admits its (left and right) bounded linear inverse A=, If the kernel of
A is not empty but complemented subspace of X (with a projector P: X —
Ker A), then the same theorem provides the (bounded linear) right inverse B
of A satisfying

AoB=Tand BoA=]-P.
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In fact, the bounded right inverse (linear) operator B with respect to :
bounded linear operator A4 exists if and only if Ker A is complemented ir
X because (BA)2 = BA if AB = I. Unfortunately, it was established by
Lindenstrauss and Tzafriri [20] that the only Banach spaces possessing only
complemented subspaces are those that are isomorphic to the Hilbert spaces
(see also Theorem 5.14 below). It was shown by Skaletskiy [26] that, if X has
a uniform normal structure, then there exists a bounded homogeneous right
inverse B that is uniformly continuous on every bounded subset of Y (see also
[24, 6]).

This subsection is devoted to the existence of the right homogeneous (but
non-additive) inverses for the closed linear surjective operators from a (p, h,)-

uniformly convex (and, possibly, (g, hs)-uniformly smooth) Banach space X

~onto a Banach space Y that are also Hélder-regular mappings on bounded
subsets of Y. We use the results from the previous subsections.

We start with finding a smooth right inverse of the quotient map with
the aid of the properties of the metric projection established in the previous
subsection.

Theorem 5.9. Forp e 2, 00), let X be a (p, he)-uniformly convex Banach
space, Z C X be its subspace, F' be a bounded subset of the quotient space
X=X /Z, and Qz : X — X be the corresponding quotient mapping. Then
the mapping By : X — X defined by Bz : # s Ple(i)O satisfies

Bz(A&) = ABz(Z) for every \€R and 7 € X,

QzoBz=1on X, |Bsi|x = |z 5:

1529 = Baolx <15 — &z + 2" (lmsuphe(t)) (I + 7 - 3l )"
t—0-+0

X ”.73—5“)(

Jor every Z,5 € X, and

B2 E X1 < @(FNY +p/2 (timsup helt)) (olF) + r(F, fop)

Proof of Theorem 5.9. The first three properties of the operator B follow
immediately from the definition of the metric projection and the quotient
space X. In particular, the homogeneity follows from the uniqueness of the
metric projection PQ;( 0 for every & € X and the linearity of Q5.

To establish the last estimate of the theorem, let us note the identity

(1) a+Py+Z($—a)——-—Pa+y+Z$,
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following from the uniqueness of the metric projection of any particular pomt
For an arbitrary ¢ > 0 and %, € F, we choose z = Bz% and y € Q7 (@)
satisfying

(2) ly —zllx < |lg -2l ¢ +e.

The identity (1) and the triangle inequality yield Bzj = y— T+ Py (x)(az Y)
and

(3)  IBzi— Bzillx < |y —zlx + HPQ;(&}(“‘ —y) - PQ?(:%)OHX

To estimate the difference of the metric projections in (3) , we use the estimate
(3) from the proof of Theorem 5.7

1/p 1/p
) [Fozre 0~ Poga] , < (tmsmph) s
- ) 1
x (12l % + lly — 2l|x)*" flz — gl 3.
Now one uses (2 — 4) to obtain
| =1z 1/p /| = ~ 1/p
1B2§ — Badlx < 13~ gz +e + (limsuphe(t)) 7 (I3 7l +e)
x (12l % + 12 — gll ¢ +¢€)"/”
and hence, the key estimate

_ N L . ~1/p
) 1Bzg - Bailx <13 —illx + (lmsuphe(®)  p*”

x (1212 + 12 - 727 12 - 91"

We accomplish the proof by noticing that

|zl < r(F,{0}) and |2 - gl ¢ < (d(F))*¥'||Z — g||{" for every &,7 € F.

O

The following theorem deals with the case of a closed surjective operator

A defined on a quasi-Banach space that is (linearly) isomorphic to a (p, he)-
uniformly convex Banach space.

Theorem 5.10. Forp € [2,00), let X, Y be quasi-Banach spaces, and let
X be isomorphic to a (p, he)-uniformly convex Banach space Z with dgy (X, Z)
< d. Assume also that A is a closed linear surjective operator from X onto
Y, and that a bounded F C'Y. Then there exists a homogeneous right-inverse
operator B : Y — X satisfying

AoB =1, BA\x = ABz, sup |By|x <d|A™|L(Y,X)|;

yEBy
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1By = Brlx < dlA-1£(¥, X)l (ly ~ zlly +pV7 (limsup he(t) "
t—0+0

X (lely + lly = lly) " ly ~ 2l }/%)

for every z,y € Y, and
|BIE?(F, X)|| < d| AL (Y, X) | ((@F) Y +pH

 (tmsupho(o)) ™" (dF) +(m, 10) ),

t—0+0

whereﬁ' =X/Ker Aand A: X — Y is defined by the canonical factorisation
A = Ao Qker 4. Moreover, if X is a (p, he)-uniformly conver Banach space
itself, one can take d = 1 in these estimates.

Remark 5.8. Taking A=1: X > X and X = 7 (isometrically), one
can see that Theorem 5.9 is a particular case of Theorem 5.10.

Proof of Theorem 5.10. Since the Banach-Mazur distance between X and

Z is less then d > 1, there exists an isomorphism T : X « Z and, thus, the
induced isomorphism 7' : X «» Z/TKer A = Z satisfying

) ITIEX, 2)NTHL(Z, X)I| < d and |TIL(X, 2)]| > |TIL(X, 2)].

Since the operator 4 : X — Y, defined by the factorisation 4 = AQK@.}. A
with the quotient map Qger 4 : X — X, is closed and surjective (Im A =
Im A =Y), and the factor-space X = X/Ker A is quasi-Banach, there exists
a bounded linear inverse A~! ¢ L(Y,X) .We define a mapping B by the
formula

(2) B=T7"0Brger aoTo A",

where Brger 4@ Z — Z is the mapping provided by Theorem 5.9.

The homogeneity of B follows from the homogeneity of all the other
mappings in (2). The identity Ao B =TI is a consequence of the observation
that A oT~! is a closed operator from Z onto ¥ satisfying

—_— —_——

(3) AoT-1=AoT" ! and (Ao T-1)"1 =T o 41

because of the identity Qker 4 07~ = 771 6 Qpger 4. The upper estimate
for sup,cp, |Bylx is implied by (1), (2), and the isometric property of
Brker 4 : Z — Z provided by Theorem 5.10.

Eventually, the estimate for the Hélder norm of B on bounded subsets is
deduced from the corresponding inequality for Brker 4 given in Theorem 5.9
by means of multiple applications of Parts a) and b) of Corollary 5.1 in exactly
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the same manner as it is done in the proof of Corollary 5.2. Namely, (1) and
(2) imply

IBy — Bz|x < ||T~Y|£(2,X)| HBTKer ATA Yy — Brye A:fvi—lmyﬁz

and

@ |TA|, < ITIEX 2) AL, R)2)x for 2 € X.

Combining these Lipschitz estimates ((4)) with Corollary 5.1, Parts a) and b),
and the estimate for the Holder norm of Brker 4 provided by Theorem 5.9,
we obtain the first proof of the Holder norm estimate in the statement of the
theorem. .

Alternatively, we can deduce from (1), (2), (4) and the first inequality in
Theorem 5.9 for Brker 4 the key estimate

5 i —1/p
1By - Ballx < d| AL, X)l|(lly - zlly +p7 limsup he(r))
t—0+40

x (lelly + ly =) ly - 2[1¥7),
and then, using the estimates
(5) vy —ally < (dENY" |y - zlly and ||z]ly < r(F,{0}) for z,y€ F,
to finish the proof. Of course, if 7" is an isometry, we can take
d=|ITIL(X, Z)IITHL(2 X)| = | FILE, DIT~1(Z, X)) = 1.

L
With Theorem 5.9 in mind, it is natural to expect the existence of more
regular homogeneous inverses for bounded linear operators from both (p, he)-
uniformly convex and (g, hs)-uniformly smooth Banach spaces. In the same
manner as we have established Theorems 5.9 and 5.10 relying on Theorem 5.7,
we obtain the next two theorems on the basis of Theorem 5.8.
Let us start with a counterpart of Theorem 5.9.

Theorem 5.11. For p € [2,00), let X be a (p,he)-uniformly convex
Banach space, Z C X be its subspace, F be a bounded subset of the quotient
space X = X /Z, and Qz : X — X be the corresponding quotient mapping.
Then the mapping Bz : X — X defined by Bz : T+ PQ-ZJ@O satisfies

Bz(AZ) = ABz(Z) for every A€R and 7 € X,

QZ OBZ g J on X, ”Bzﬁfux = ”fﬁ“}“(,
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IBzj — BzE||x < [|§ - &|| %
-pcs 1/p » ot ra A fgd Jp R
e ) (1315 +eocelg—219) g - 2l

for every %, € X, and

- PCs L
| Bz HY/?(F, X)|| < (d(F))*~9/» + (W)

x (r(fa-{o})q +—csc;Q/pd(1?)q)

1/g—1/p

If, in addition, p = q = 2, then we also have

- 1/2
IBz|[HY?(V, X)| <1+ &

Cc

Remark 5.9. The exponent q/p of the Holder-Lipschitz reqularity of By
is sharp when both p and q are sharp for a wide subclass of independently
generated spaces IG, function spaces defined in terms of the wavelet norms
and their duals. The proof will appear elsewhere.

Proof of Theorem 5.11. We follow the steps of the proof of Theorem 5.9
stressing on the differences only. Choosing z and y as in that proof, we use
Theorem 5.8 to obtain our counterpart of the inequality (4) from the proof of
Theorem 5.9

(1) “PQEI(E:) (z-y) - PQ;@)O”X

pe /p, _ 1/q-1/p f
< (o) 181 + cucs oy — 2l "2} — y

implying in exactly the same manner our key estimate

pes )UP

@) 1B29~ Bsdllx < lg -z + (~Tror

q

= e _ 1/¢=1/p _
x (I121% +escs 25 - 31%) g - 2127,

We accomplish the proof in the general case in the same way as the proof of
Theorem 5.9.

In the case p = ¢ = 2, the estimate (1) and the key estimate become,
according to Theorem 5.8,

1/2

—|ly — |
Ce y X

c

H%;@@—w—%;@wxg
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and
oL/2
6 1B27 - Bait|x < (1 + & ) 15 - %,
(54
‘respectively. The proof is complete. O

Theorem 5.12. For 2 € [¢,p] C (1,00), let X and Y be quasi-Banach
spaces, and let X be isomorphic to a (p, hc)-uniformly conver and (g, hs)-
uniformly smooth Banach space Z with dpp(X,Z) < d. Assume that A is a
closed linear surjective operator from X onto Y, and that F C Y is bounded

£ i hc R t. i Jz l o

Then there exists a homogeneous right-inverse operator B: Y — X satisfying

AoB =1, B\x = \Bz, sup ||Byllx <d|A~Y|L(Y,X)|;
yEBy

1By — Bz x <d ALY, X)|| (Ily —zly

pcs  \1/p B 1/q-1/p
(=) (el +eocslly = 2)3) 7 fly - o) 27
gcCe

for every z,y € Y, and

IBIH?(F, X)|| < d| A~*|L(Y, X) (d( Fyl-a/p

pes \1/p _ 1/q—1/p
() m o0 eazmraey) ),

'wherejz' =X/Ker AandA: X - Y is defined by the canonical factorization

A=Ao QKer A-
If, in addition, p = q = 2, then we also have

- _ 1/2
IBIHYP(Y, X)|| < d||A71|L(Y, X)| (1 + CZ ) ,

C

Moreover, if X is a (p, he)-uniformly convex and a (g, hs)-uniformly smooth
Banach space itself, one may take d = 1 in these estimates.
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Proof of Theorem 5.12. Using the notation from the proof of Theorem 5.10,
we use the same B defined by

(1) B=T7" 0Bpger aoTo A1,

where Bz is provided by Theorem 5.9. The estimate for SUPye B, || BYl x, the
identity A o B = I and the homogeneity of B have been already established
in that proof. As in the proof of Theorem 9.10, we combine the relations
(1), (2) and (4) from that proof and the first inequality of Theorem 5.11 with
Brier 4, TA 'z and TA‘ly instead of Bz, # and j respectively to establish
the key estimate

o = pcs \1/p
(2) 1By - Ballx <d|A7L(y, X)) (uy ~ally + (qclﬂ,p)

< (=1 +csc;q/puy—xu§’»)w”puy_muifp)-

Now we finish the proof of the general case of p and ¢ exactly as it is done in
the proof of Theorem 5.10 with the aid of the estimates (5) from that proof.
In the case p = ¢ = 2, we combine relations (1), (2) and (4) from the proof
of Theorem 5.10 with (3) from the proof of Theorem 9.11, where Brker 4,
TA 'z and Tﬁ_ly are taken instead of Bz, # and § respectively, to finish
the proof of the theorem. O

As a practical remark, let us note that, if there exists any bounded (non-
linear) right-inverse operator By for A in Theorems 5.10 and 5.12, then

1A, X)) < sup 1Bolz
zeX\{0} “33”1/

The next theorem exposes the limitations of the linear and Lipschitz
settings for the right-inverse operators.

Theorem 5.13. Let X be a Banach space. Then the following properties
are equivalent.

a) The space X is isomorphic to a Hilbert space.

b) For every bounded linear operator A from X onto a Banach space Y,
there exists its right inverse B € L(Y, X )

¢) For every closed linear operator A from D(A) C X onto a Banach space
Y, there exists its right inverse B € LIY. X,

d) The space X is reflezive, and for every bounded linear operator A from
X onto a Banach space Y, there ezists its right inverse B, that is Lipschitz
onY and B0 = 0.

e) The space X is reflexive, and for every closed linear operator A from
D(A) € X onto a Banach space Y, there exists its right inverse B, that is
Lipschitz on Y and B0 = 0.
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Proof of Theorem 5.13. It is enough to show the implications
a) = ¢) = b) = a)anda) = ¢€) = d) = a).

The implications ¢) = b) and e) = d) are trivial.

It X is isomorphic to a Hilbert space, then there is a bounded linear
projector P onto Ker A. Let Q: X — X = X /Ker A is the quotient map.
From the inverse mapping theorem, there exists bounded linear A= : ¥ — X.
Now we define the right inverse B by

B: y— (I—-P)z, where z€ Q! (/-Nl"'ly) ;

It is correctly defined (does not depend on a particular z € % g (}i"ly)) and

1Bl < lI = P|I[A7Y.

If b) holds, we take an arbitrary subspace Z C X and choose A — QR: X —
X and Y = X. Now the composition P = B o A is a bounded projector
with Ker P = ker A = Z meaning that Z is complemented in X. From the
celebrated result of Lindenstrauss and Tzafriri (see [20]), X is isomorphic to
a Hilbert space because Z was arbitrary.

After noticing that every space isomorphic to a reflexive (particularly,
Hilbert) space is reflexive, and a bounded linear operator is Lipschitz, we
prove a) = e) exactly as a) = c).

Assume that d) holds. As before, we take an arbitrary subspace Z C X and
choose A=Q: X - X and Y = X. Then the function f(z) =z+BoQ(—x)
is a Lipschitz retract of X onto Z. Hence, by Theorem 5.13, there exists a
bounded linear projector P of X onto Z since X = X ** holds by the reflexivity
of Z. Since all subspaces of A are complemented, the application of the same
theorem due to Lindenstrauss and Tzafriri finishes the proof. O

5.4. Geometry of the cross-sections of the unit ball

As was mentioned in Part b) of Remark 5.3 and Part c) of Remark 5.6 (Lemma,
5.4), both the (relative) Chebyshev centre map restricted to the balls of
equal radius and the metric projection onto a ball do not distinguish the
pertaining features of the geometry of a Banach space from the point of view
of the (p, he)-uniform convexity and (g, hs)-uniform smoothness. It makes
it important to observe that the geometry of the cross-sections of the balls
determined completely by these properties of the ambient Banach space. The
cross-sections of the balls in uniformly convex and uniformly smooth spaces
were extensively studied by Bjornestal [10] and Benyamini and Lindenstrauss
(see Section 2.2 in [6]) in order to establish the local regularity of the metric
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projections. This subsection contains counterparts of their results on cross-
sections from the point of view of (p, h,)-uniform convexity and (g, hs )-uniform
smoothness.

Definition 5.7. Let X be a smooth Banach space (i.e. every z € X
possesses unique norming f € X* with f(z) = ||z||x ), Bx and Sx be its unit
ball and unit sphere respectively, = € Sx, f€Sx«, f(x) =1 and 7 € (0,1].

The cross-section B, , is defined by

Bra=BxNf"1-17)=Bx Nz, +Ker f,

where z; = (1 — 1)z and f(z) = 1. Its diameter d(Br;) and the internal and
external radii r7(B; ;) and rg (Brz) are defined as

dBT = s y B = i s
Honl = g el B = B -
and
TE(BT,CL') = sup ”y - m'r”X
'yESXmB-r,a;

There is a simple estimate of the internal radius of the cross-section in
terms of its diameter:

2r;(Brg) <d(B) < 2rg(Br z)
The opposite estimate is established in the next lemma.

Lemma 5.7. Let X be a Banach space, x € Sx, 2 € [q,p] C (1,00) and
7 € (0,1). Then,

a) if X is (p, he)-uniformly convezr, we have

lim sup hc(t)TE(B’r,m)p <1-(1- )P
t—0+40

and
max (2‘2hc(1 /2),2 P limsup hc(t)) (d(Brz)) <1—(1—7)7;
" t—0+4+0
b) if X is (q, hs)-uniformly smooth, we have

o, q — — q.
ltlinolfof hg (t) (TI (BT,:C)) =1 (1 ] T) )

c) if X is both (p, he)-uniformly conver and (g, hs)-uniformly smooth, we
have

< ltimoiwt{lof ho(t) \ 7 /
B..) < — Bl ) )95
TE( *r,x) = q lim sup hc(t) (TI( ) ))

t—0+40
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and

1/p
D l]timﬂgl{)f hs(t)
A Byl < BT’E))Q/P .

t—040

(rz(
g max (2“2h6(1/2), 2=Plim sup hc(t)>

Remark 5.10. In many spaces under consideration, including L, and l,,

one has

2P72ho(1/2) = 1 > limsup h.(2).
t—04+0

(See Theorem 3.4.)

Proof of Lemma 5.7. For every € > 0, one can choose y,z € B . with
ly = 2||x > d(Brz) — . Remembering the definition of the (p, h¢)-uniform
convexity, we obtain

1) he(1/2) (d(Bre) — €) < he(1/2)lly — 2[%

P P P
< Iyl + ll21% _ “?J“"Z <1—(1-17),
where we have also used Pp, ,(0) = z; = (1 — 7)z and ¥}% € B,,. At the

same time, Part a) of Lemma 5.5 with F(y) = ||y||?, and, thus, Fip. £ p||a:|[f,’{'"1f,
yields the estimate

@) lmswph(®)llo - 2.1 < olff ~ ol < 1= (1-7)?
for every v € B, implying the first inequality of Part a) after taking
supremum over v € B, ,.

- Combining the first inequality of a) and d(B) < 2rg(B, ) with (1), we
complete the proof of a).

To establish b), it is enough to notice that, for every y € Sx N B, X
Lemma 5.5, b) with the same F implies

S [ g . 9 < limi _ q
1= (=) = gl — o < limnf h(t)]ly — 2. ]%
To prove ¢) we denote

(3) €4 = max (2"2h6(1/2), 27Plimsup hc(t)) y Ce = limsup h.(t),
t—0+40 t—04+0

s lfgloﬁlf s (£)-

Let us note that a) and b) read as

Ce (TE(Brg))? <1—(1—cs (r1(Bra))?)"? < qcs (r1(Br,a))°
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and

(4) CHﬂBprél—ﬂ—deﬂ%demSg%ﬁﬂﬂmﬂﬁ

where we have used the inequality (1 — z)* > 1 — ax for a > 1. This finishes
the proof of the lemma. O
We need the next elementary calculus lemma.

Lemma 5.8. For p > 1, let hy(z) = ((1+2)? = 1)'/? on [0,00), and
a > 0. Then the function h, is strictly increasing and concave and satisfies

max(z, (pz)/?) < hy(z) < 1+, hp(z) < pYP(1 4 )P 2YP for z € (0,4,

~and hy(z) > 1.
Moreover, its asymptotic line at oo 1s z + 1.

The last lemma relates the internal radius (B, ;) and ||z — y||x under
the notation of Lemma 5.7. In fact, it demonstrates to which degree we can
approximate the metric projection onto a closed convex subset Pp with the
degenerated metric projection onto one point Pp_,. To establish it we will
follow the idea of Bjornestal [10] (see Section 2.2 in [6]) to use the properties of
the cross-sections of balls but in a different fashion providing explicit estimates
for the constants.

Lemma 5.9. For p € [2,00), let X be a (p, he)-uniformly convez Banach
space, and let D C X, z, f, y, v and T be as in Lemma 5.7. Assume also that
ly — zllx <e, and that n > 0 satisfies ho(n) < 1 for ho(t) = 2g(t) — ¢, where
g9(z) = (limsup,_,g19 hc(t))_l/p hyp(x), and hy(z) is defined in Lemma 5.8.

Then we have

for every € € [0,m]. Moreover, if D is a subspace of X, we also have

g(n) 1
T 7rg B’r,z)gl'u_xfr XSQ( s )E
( | | l—-n+g(m) 1-79

for e € [0,n] with any n < 1 chosen to satisfy g(n) —n < 1.

Proof of Lemma 5.9. We start with the case of arbitrary closed and convex
D C X, and then consider the simplification when D is a subspace.

Let us note that g, hg and g(t) —t are positive strictly increasing functions
on (0,00). Moreover, according to Part d) of Remark 3.1, g(t) > hp(t);
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meaning that 7 < 1 if ho(t) = 2f(¢t) — t and ho(n) < 1. Hence, f(y) >
f(z) — € >0, and there exists

(1) w=[v,Pp]N f7! and v=Aw+ (1 - A)y for some A <1,

Note that w = By + (1 — B)Ppy for some 8 € [0,1).
The estimate 7 < r (B ;) follows from the triangle inequality 1 < ||z, || x+

Tr (BT,m).
To estimate |[v — x| x, we borrow its (implicit) representation from the
proof of Lemma 2.6 in [6]

(2) v-=1=-7)z=Tw+ (1-7)(y —2) + (7 — N (y —w),

following from (1), and employ the triangle inequality. We already have the
estimates

@) ly—zllx <e ly-wllx <lly—Ppylx < ly —ppzllx <1+e

In addition, the inequality (2) from the proof of Theorem 5.7 and the monotonicity
of g(z) yield

(4) Poyllx < g(e),
which implies

0= f(w)=08f(y)+ (1 ~-B8)f(Ppy) > B(f(z) —€) — (1 - B)||Ppyllx
=Pl —&] — [ —Hale),
hence

g(e)
p= 1—e+g(e)

The last estimate, along with the triangle inequality, (3) and (4), permits us
to estimate ||w||x:

(5) llwllx < Bllyllx+1-B)llppyllx < B(1+e—g(e))+g(e) < : —~2<¢:g§c-€17(5)'

To estimate |7 — A| (and 1 — )), we note that
I1—7=f(v)=(1-X)f(y) and thus, A —7 = (1-\)f(y —z),
imi)lying with the aid of the triangle inequality that

1 —17 l—7 1—7

: — A= < fi o= < (1-— =
(6) 1-—A ) S1=c and therefore, |A —7| < (1—Me < e

&,



SERGEY AJIEV 425

Now combining (3), (5) and (6), we derive from (2) the key estimate

(7) TS Ty (B'r,a:) £ llo== Tr || x
S Tlwllx + (@ =7y — zllx + |7 = Allly — w||x
29(e) 1+e
STl»—-s—l—g(e) +(1—T)E+(1—T)EI_E

2¢(¢) 2e 2e
=T - + .
l—e+gle) 1-—¢ 1-¢

Whence, one has

2(1 —€)g(e)
1 —-e+g(e)

(8) 2& > (l—i-e— ) > 7(1 = ho(g)),
where, for the last inequality, we have used Lemma 5.8. Plugging the outcome
of (8) back into (7), we obtain

i Erdbealte (r—zsgg—gl(s) a 1256) by 29(e)7 + 12_65

=k (1 -Q—Qf(LEZE) " lis) ol (1 nggzzn) " lin)ls’

where we have used Lemma 5.8 for the second inequality and the strict
monotonicity of g and hq for the last inequality.

If D is a subspace, w = Ppy and we do not need (5), while the estimates
(7 — 9) become, respectively,

T =71 (Bro) < llv=2|x < 7l Ppyllx + (1 - 7)lly —zllx + |7~ Ally— Poyl x

(10) S Tg(6)+(1‘_7_)5+(1_’r)51 jji e (g(s) B ]_?ff) + 12—65:
1 227 (1+e~ (1-e)gle)) 2 {1 - hole)),
and

2€ 2E 2¢
1 (Bra) <7 (906) - 252 ) + oo <o+ 1

g(€) 1 9(n) 1
(12) 525<1_5+g(5)+1—5)§2<1*T}+9(77)+1_’7)E'

The proof of Lemma 5.9 is complete. O
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6. Complemented isomorphic copies of
finite-dimensional [,-spaces

Definition 6.1. For A\ > 1, we say that a quasi-Banach space X is \-
isomorphic to a quasi-Banach space Y if there ezists an isomorphism T : X <
Y with

ITLEC VYT, X)) < A

For § > 1, we say that a subspace Z of X is B-complemented in X if there
exists a projector P onto Z with |P|L(X)| < B.

Theorem 6.1. Let G C R”, p,a € (1,00)", ¢,5 € (1,00), s € (0,00)"
and

e {pmin:pmaxa q, 2}

'Assume also that

YG{ D,q,a G)1 B;;: (G)? ?a(G) pqa(G) L;{;a(G)? p,qa(G):
5 0000 i (6, BE. o G, B, L lE)", B2, . AP,
Lot o (G) 63 0.0t (G) B2, 1 (G)*, 18, . wt(G)", B4, (G}

Then there are constants Cy,Cy > 0, such that Y contains an Co-isomorphic
and C1-complemented copy of I(I,,) for every n € N.

Theorem 6.2. Let Y € {W3(G), W5 (G)*} for G C R™, p € (1,00)",
€ (1,00), s € N and
rie {pmimpma)u 2}-

Then there are constants Cy, Cy1 > 0, such that Y contains an Cu-isomorphic
and C1-complemented copy of 1.(I,,) for every n € N.

Theorem 6.3. LetY €{B} ,(R")y, L o(R")w, B ,(R™)%, Ly o (R™)2}
forp e (1,00)", s € (1,00), s € N* and

T & {pmimpmam q, 2}

Then there are constants Cy, C1 > 0, such that Y contains an Co-tsomorphic
and Cy-complemented copy of l-(I,) for every n € N.

Remark 6.1. Similar result holds for the spaces from the class IG (with
a simpler proof) but it requires additional definition classifying the set of
indexes, and therefore is omitted here.
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