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Abstract. In this paper, we present decompositions of arbitrary elements of
uniformly convex and uniformly smooth Banach spaces in the form of two
.d~orthogonal projections on convex closed cones and subspaces. Earlier corre-
sponding results were known only for Hilbert spaces. We also establish new
properties of the metric and generalized projection operators in Banach spaces.

1 Preliminaries

It is well known (see, for instance, [12]) that an arbitrary element a of a Hilbert
space H admits the Beppo Levi decomposition in the shape of sum of two mutually
orthogonal (metric) projections Pyrz and Pyyi2 of this element on a subspace M
and its orthogonal complement M-, i. e.,

x = Pyx+ Pyaz, ‘ ' (1.1)

where
(Ppriz,v) =0, Yve M. o (1.2)
Here (z,y) denotes the inner (scalar) product of z and y.
The representation (1.1) and (1.2) shows that Py, is the best approximation of
z among all the elements of the subspace M. This is a basis for many deep results
in various areas of mathematics such as geometry of spaces, functional analysis,
differential equations, approximation, and optimization.
Moreau has extended in [13] this result to convex closed cones in Hilbert spaces
in the form
z = Pxx + Pgox, (Pgz,Pgox) =0, (1.3)
where K is an original cone and K° is its polar cone in H. '
It turned out that the transition from Hilbert to Banach spaces is not so simple,
and it has required to attract both mietric and generalized projection operators in
Banach spaces (see [1]). Below we show how it is doing,.
Let B be a real uniformly convex and uniformly smooth Banach space [8], B*
its conjugate (dual) space, || - ||, || « I|«, || - |# norms in the spaces B, B* and H,
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respectively, 8 and Op« be origins of B and B*. Let (1 be a convex closed set in
the space B. As usually, we denote the duality pairing of B* and B by (¢, z), where
¢ € B* and z € B (in other words, (¢, z) is a dual product of ¢ and z).

Let J : B — B* be the normalized duality mapping determined by the equali-
ties:

(Jz,x) = [[Jlll|zl| =[] (1.4)
It is known that J is a homogeneous, continuous and strictly monotone operator in
uniformly convex and uniformly smooth Banach spaces. It is also bijective operator,
therefore for any = € B there exists a unique element ¢ € B* such that ¢ = Jz.
In our case, Jx = grad||z||?/2. Similarly, the normalized duality mapping from B*
to B which is denoted by J* has the same properties, and then z = J*¢ for all
¢ € B*. Obviously, Jlg = p~. In a Hilbert space, the duality mapping .J is the
identity operator Iy. The examples of duality mappings in the spaces (P, L¥ and
Sobolev spaces WP™, p € (1,00), can be found in [1].

Each uniformly convex and uniformly smooth Banach space B is reflexive to-
gether with its conjugate space B*. In these spaces (and, more generally, in any
reflexive strictly convex Banach space with the strictly convex dual), J* = J -1
where J~! is the inverse operator to J. Therefore, the equalities JJ* = Ip« and
J*J = Ig hold. : ' .

Let us recall the definitions of the metric and generalized projection operators.

Definition 1.1 The operator Py : B — ) C B is called metric projection
operator if it assigns to each « € B its nearest point Z € {2, i.e., the solution % for
the minimization problem '

o~ &l = fnf Jl= = £1. (15)

Under our conditions, the metric projection operator is well defined, i.e., there
exists a unique projection & for each z € B called the best approximation [9].

The operator Pq can be effectively used in Hilbert spaces due to the following
properties:

(a) Each point & € § is fixed point of Pq, i.e., Pof =¢.

(b) Pq is monotone (accretive) in H :

(j—g,ﬂ'}—’y)EO- .
(¢) A point Z is the metric projection of z on 2 C H if and only if the inequality
(93""5_15,51—3—5)20, VgEQ,

holds. The property (c) will be called the basic variational principle for Pq in H.
(d) The operator Py produces the absolutely best approximation of each x € H
with respect to the functional V;(x,£) = ||z — £||%;. This means that

Iz — &% < llo— €% —lz—aly, VEe

Consequehtly, Pq is the conditionally non-expansive operator in a Hilbert space,
ie., " ' '

@1z~ &llu < llz—&llu, VE€

Actually, metric projection operator P in Hilbert (and only in Hilbert) spaces
has a stronger property of non-expansiveness:

|2 — gllg < |z —ylla, Vz,y € H.
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It is important to emphasize that the properties (b), (d) and (e) of the operator
Pq do not hold in Banach spaces [3,5]. However, the basic variational principle (c)
is satisfied in the form (see, for instance, [1])

(J(x—Z),x— & >0, VE€ . (1.6)

The construction of generalized projection operators Il in Banach spaces was
introduced in [1] by analogy with the metric projections in Hilbert space.
The minimization problem (1.5) is equivalent to

PQ:E = j; T V(.’E,f) = Elgg V($a£)7 V(LU,E) = ”',JC - 6”2

Now we notice that V(x,£) can be considered not only as the square of the
distance between an arbitrary point £ and the fixed point z, but also as a Lyapunov
functional with respect to £.

In Hilbert (and only in Hilbert) space

V(z,8) =zl — 2(2,€) + [I€]E-

‘We have shown in [1] that the similar functionals in Banach spaces can be con-
structed by using the Young-Fenchel transformation of the conjugate functions f(£)

and f*(p):
[ (@) = sup{{p, &) — F(£)}.
¢en
Introduce the functional W(z,£) : B x B — R by the formula:
W(z,€) = [lz]|* - 2(Jz, &) + [|€]%. (1.7)
It is easy to verify that

(=l + 1€1D* = W=, &) > (]l ~ [I€])* > o,

i.e., the functional W (zx, £) is non-negative and finite on any bounded set. Besides,
Vr,y € B
(JCE - Jy7y> < <J"E:-'E - y)'

Let £ be fixed. It was proved in [1] that W(z, £} is a continuous functional
with respect to z, it is convex and differentiable with respect to ¢ = Jz and
grad,W(z, &) = 2(x — £) is a monotone operator in B [15]. Besides, W(z,£) — oo
if and only if |z| — co. Finally, W{z,£) =0 if z = £.

Now.we can present a generalized projection operator Il in Banach space.

Definition 1.2 Operator Il : B — ) C B is called the generalized projection
operator if it associates to an arbitrary fixed point z € B the minimum point of
the functional W (x,¢), i.e. the solution of the minimization problem

Hox=3; &:W(z,z)= E12£f_2 W(x,£).

The element & € Q C B is called the generalized projection of the point z.
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Existence and uniqueness of the operator 1l follow from the above given prop-
erties of the functional Wz, £) and the strict monotonicity of the duality mapping.

We describe below the properties of the operator Il similar to (a)—(e) which
make this operator essentially effective in uniformly convex and uniformly smooth
Banach spaces (see also [2]).

(f) Each point £ € Q is fixed point of Ilg, i.e. £ = ¢. This also means that
IIp =Ig if Q= B. ' ’ '

(g) Mg is d-accretive operator in B (see [6]):

{(Jz — Jy,& —§) >0, Va,y € B. _
(h) The point Iz = Z is the generalized projection of  on {2 C B if and only
if the following inequality is satisfied:

(Jo— J&,5 —£) >0, V¢ € Q. (1.8)

The property (h) will be called the basic variational principle for llg in B.
(i) The operator Il gives the absolutely best approximation of z € B with
respect to the functional W(x, &) : '

W(i‘:g) < W(w,{) - W(CC,C??), V€ € 1.

_ Consequently, I is a conditionally non-expansive operator with respect to the
functional Wz, £) in the Banach space B, i.e., W(#,£) < W(z,§), V€ € Q.
(j) In Hilbert space, W (x,£) = ||z — £||%, and the operator IIg coincides with
the metric projection operator Fp.

Proposition 1.3 Let M, be an one-dimensional subspace of B spanned upon
the element e, with a unit norm, t.e., |leq|| = 1. Then the generalized projection
Iz of an arbitrary element © € B on My is (Jx, eq)eq, where (Jx,e,) is the

generalized Fourier coefficient.

In fact, 2 = Iy, @ = Ae, with some A, —oo < A < +0o. On the other hand,

T = ] W =
& = arg min (z,¢)

i 2 2z, Aea) + | heal?).
e i (lelf 207 Mew) + el |
This gives the equation for A : —2(Jz,eq) +2XA =0, i.e. A= (Jz,eq). _ O

It has been shown in [1] that mo = IIgJ* is also the generalized projection

operator from B* to {} C B with the same properties as Ilg. For instance, the
property (h) has now the form:
(k) The point mq¢ = ¢ is the generalized projection of ¢ € B* on £ C B if and
only if the inequality :
(6= Jdd—1) >0, Vi €, (1.9)
is satisfied. The property (1.9) is widely used in the theory of nonlinear variational
inequalities and optimization problems [1,4]..

From definitions of the projection operators Pn and I, and from the basic
variational principles (c) and (h), the following assertions can be easily obtained.

Lemma 1.4 Let Q be a non-empty closed convex set in the Banach space B.
Then '

HQHB = PQ@B.
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Lemma 1.5 Let ) be an a non-empty closed convex set in the Banach space
B and 0g € 2. Then:
(1) |Hoz||® < (Jz, lgz)
(2) (J& - Jlgz, oz) >
(8) {Jx,x — TIgz) > 0.

< ||z|* and |Haz|| < ||,
0,

We now establish "the dual oddness property” of the operators Py.

Lemma 1.6 Let 2 be a non-empty closed convez set in the Banach space B.
Let x be an arbitrary element of B. Then

~FPox = P(_g)(—:r). (1.10)
Proof. By (1.6}, estimate the dual product
D= (J((—2) = (=2)),(=2) - (=¢))

for all (—¢&) € —9Q, where & = Pyx. Since the inclusion (—£) € —{ is equivalent to
£ € £} and the operator J is odd, one has

D={J(x—-%),—-¢& >0, VEeq.
Hence,

(J((=2) = (=), (-2) = (=€)} 2 0, V(-§) € -0
This means that —Z = P_g)(—z). O

Further, one follows the representation of projection operators on ”shifted”
sets.

Lemma 1.7 Let ) be a non-empty closed convex set in the Banach space B,
and let x and m be arbitrary elements of B. Then

Poimz =m+ Po(z —m). (1.11)
Proof. From the basic variational principle (1.6) for the projections Pq in B,
we have
(J(z —m — Po(z —m)), Pa(z —m)—€) >0, VEeQd
This is equivalent to the following inequality
{(J(z — (m+ Pa(z —m))), Palz —m) + m—1n) 20,
Vn=~&+me N+ m.
Applying the same principle once again implies (1.11). O
Remark 1.8 If m & 2 then the equality
Po(m+ ) = Pam + Po_mx
follows from (1.11).

Denote modulus of smoothness and modulus of convexity of the space B by
ps(7) and 6p(e), respectively [8]. If ||z|| < R and ||{|| < R then (see [1])

(2L) ' R*65(lle — €ll/2R) < (Jz - J€ o — &) < 207 R*pp(4]lz - E||/R), (1.12)

where L (1 < L < 3.18) is the Figiel's constant (8], p. 128). We apply (1.12) in
order to obtain the estimate (1.13).
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Lemma 1.9 Suppose that Q is a non-empty closed convex set in Banach space
B, 05 € Q, & is the generalized projection of z € B on Q, gs(e) = é(g)/e, and
gst(-) is the inverse function. If ||z|| < R then

|Jz — J&|ls < 2CR, C = gzi(4L) = const. (1.13)

The proof is carried out according to scheme of Corollary 2.4 of 2] if to account
into consideration that

0< (Jo— J#,2) = (Jo — Ji,z) — (Jz — J&,z — &),

i.e.,
(Jo — J&,2) > (Jx — J&, & — &).
We use now closed convex cones and subspaces as the sets ).

Definition 1.10 A set K C B is said to be a cone if it contains the elements
Az, A > 0, together with elements z.

Any cone K C B induces the following two cones: dual cone K* and polar cone
K°,

Definition 1.11 The dual cone is given by the formula
K*={¢peB*: (¢,2) 20, Yz € K}.

Definition 1.12 The polar cone is given by the formula
K% ={¢ e B*: (¢,z) <0, Ve K}.

The cones K* and K° are convex and closed in the space B*. It is obvious
that K* = —K°. If z € intK then {¢,z) > 0 for all ¢ € K* and (¢,z) < 0 for all
¢ € K. Therefore, (¢, ) = 0 only if z € 9K, where 0K is the boundary of K.

If K is a subspace M C B then K* = K® = M1, where M+ = {¢ € B* :
(¢, z) =0, Vx € M} is the annihilator in the space B*.

The operators Px and Ilx are nonlinear in general. However, they are ho-

mogeneous for any A > 0 (for any —00 < A < +oo0 if K is a closed subspace of
B).

Lemma 1.13 Let K be a non-empty closed convex cone in the Banach space
B with the vertez at the origin 0p, and let = be an arbitrary element of B. If
Hxx = & (resp. Pxx = &) then the equality Ilg(Ax) = A& (resp. Pgx(Ax) = \Z)
holds for any X\ > 0 (for all X if K 1s a subspace).

The proof follows from the properties (h) and (1.6) and Definition 1.10. This
lemma has many applications, in particular, it gives the property of ”conditional
linearity” to the projection operator Pps.

Proposition 1.14 Let x be an arbitrary element of the Banach space B and -
y be an arbitrary element of the subspace M C B. Then

Py (ax + By) = aPyzx + BPyy, Yo, f: —oo < a, 8 < +0o0.

The following dual assertions are immediate consequences of the basic varia-
tional principles (1.6), (1.8) and fundamental relation (K°)? = K, see [17]:
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Corollary 1.15 If K C B s a closed convexr cone with the verter at 0p,
K°® ¢ B* is the polar cone, x is an arbitrary element of the Banach space B, then:
(1) z € K if and only if PgoJx = 0p+; Jz € KV if and only if Pxx = 0p,

(2) x € K if and only if UgoJx = Op«; Jx € K if and only if Ugx = 0p.

Introduce the set Cx by the formula:
Cx={xeB: PK.’E:@B},

which is a kernel of the map Px. It is easy to check that Cx is a cone. In fact,
by Lemma 1.13, if Pxx = 6p then Px(Ax) = Op, for VA > 0, i.e. Definition 1.10
is satisfied. Moreover, C'x is a closed cone because it is the inverse image of a
closed set under a continuous map. In other words, let z,, € Cg and x,, — x. It
is clear that Jx,, € K°, Since J is a continuous operator in the space B therefore
Jr, — Jz. Consequently, Jx € K because K° is the closed cone. The claim is
stated now from the item (1) of Corollary 1.15.

By Lemma 1.13, Ik is a homogeneous operator too. Therefore, by using item
(2) of Corollary 1.15, one can define the closed cone Cj in the space B similarly
to the cone Cf : ‘

Cx={z€B: llgx =0z}
The closed cones C'kxo and CJo are constructed in dual space B* analogously:

CKO:{¢EB*: PKO¢:93*}

and :
C}(O ={p e B*: llgop = O+ }.
In this case, we can reformulate Corollary 1.15 for these cones.

~Corollary 1.16 If K C B is & closed convex cone with the vertex al 8p,
KO c B* is the polar cone, x is an arbitrary element of the Banach space B, then
(1) Jz € K° if and only if x € Cx; z € K if and only if Jx € Cio,
(2) z € K if and only if Jx € Clo; Jx € K° if and only if x € C.

In {2] we have proved the following important statement.

Lemma 1.17 Let K be a non-empty closed convexr cone in the Banach space
B with the vertez at 0. An element & € K is the generalized projection of x € B
on K if and only if
(1) {(Je—J&, &) =0,
(2) (Jr— J&,v) <0, VveE K.

This lemma and the property (h) were used in [2] to obtain the decomposition
of an arbitrary element x of the space B in the form: there exists w € B such that

z=JgoJz + w, (1.14)

where
(T goJz, w) = 0. (1.15)
By using (1.6} and repeating the arguments in [2] one can prove the analogous
assertion for the metric projections (see also [14]). :

Lemma 1.18 Let K be a non-empty closed convex cone in the Banach space
B with the vertex in 0. An element T € K is the metric projection of x € B on K
if and only if
(1) {(J(z —z),%) =0,
(2) {J(z — T),v) <0, Yv€E K.
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This lemma gives the representation of another type, namely, there exists v € B
such that

x = Pgx +v, (1.16)
where
(Jv, Pgx) = 0. (1.17)

Definition 1.19 (see [11], p. 115). We say that elements ¢ € B* and z € B
is mutually d-orthogonal and write ¢ L z (or z L% ¢), if (¢,z) = (z,¢) =0. An
element is d-orthogonal to a subset if and only if it is d-orthogonal to each element
of the subset.

The relations (1.15) and (1.17) mean that IxoJz 1% w and Pxzx L% Ju.
Observe that d-orthogonality is a symmetric characterization of Banach spaces. In
Hilbert space, it specializes to the usual definition of orthogonality: # 19 y <=>

(z,y) =0.
Introduce the coeflicient

Applying the Cauchy-Schwarz inequality for (Jx,y) and the definition (1.4), it is
not difficult to see that —1 < k < 1 and k =0 if Jz 1¢ y. From Lemma 1.17 and
Lemma 1.18, we have Vx € B

2] = Fall]] < |z,

where
(Jz,T)
kl - T
[EAf Al
and
|z — Z|| = ka||=| < [I=],
where
(J(‘T - "E)a CC>
kg = —————.
|z — z||||z|

The decompositions (1.14) and (1.16) are "semi-definite” because the elements
w and v are unknown. The goal of this paper is to obtain the completely determined
decompositions of arbitrary elements from both spaces B and B* in the form of the
sum of two d-orthogonal projections on convex closed cones and subspaces.

2 Main results
First of all, we will reformulate Lemma 1.6 and Lemma 1.7 for the cones K, K*,
KO,

Lemma 2.1 Let K be a non-empty closed convexr cone in the Banach space B
with the vertez at the origin 8z, K* C B* and K° C B* be dual and polar cones,
respectively. Let ¢ be an arbitrary element of the Banach space B*. Then

Py+(—¢) = —Pxog.
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Lemma 2.2 The following relations are valid for arbitrary elements x € B,
mé€E B,y e B*, and( € B*: :

P ym® =m+ Px(z ~m), ' (2.1)
Preych =+ Pic- (9 = ©), (2:2)
Propcp =( + Pgo(i — (). (2.3)

In particular, 7
(i) Pg.pm(z + m) =m+ Pgz.
(ii) If m € M then

Pyzrz=m+ PM(LB ~ m)
(iii) Setting in (2.3) v = 0p+ and ¢ = Jz we get

PKO_|_J$HB* = PKO(—J:E) +- Jz. (24)

The following statement is the Banach space analogue of the Kurokawa’s rep-
resentation which was established for Hilbert spaces.

Lemma 2.3 Let K C B be a closed convex cone with the vertex at 8, K* C
B* be a dual cone, x be an arbitrary element of the Banach space B. Then

IIK.’E = J*HK*+JEJGB. ) (25)

Proof. Let & = lxz. By Lemma 1.17
(1) {Jz — J&, %) =0,
(2) (Jz — J&,v) <0, Yv € K.
By Definition 1.11 and the inequality (2) we obtain the inclusion

J& — Jr e K*

Therefore,
Jie K* + Jx.
Let us choose an arbitrary v € K* - Jzx. Then

(W= J2,8) = (= Jz) = (T — Jz),2)

= (p — Jx,8) — (J& — Jx,8) = (3 — Jx, ) > 0.
Here we used the equality (1) and the inclusions ¥ — Jz € K* and £ € K. Since
J*J = J~1J = Ip, we can rewrite the previous inequality as follows

(J*J0p — J*Ji, Ji — ) >0, Vap € K* + Jz.

From the basic variational principle (h) for the projection operator Ilg, we have
then equality
J& =g+ jz JOB,
which is equivalent to (2.5). O
In Hilbert spaces, (2.5) implies : '

_PK:I::PK*—HUHH; VQ?GH, (26)

which is the fact of [10]. A
' The main theorem of the paper is as follows.
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Theorem 2.4 If K C B is a closed convex cone with the vertex at 85, K° C
B* 1s the polar cone, x and ¢ are arbitrary elements of the Banach space B and
B*, respectively, then

z = Pgx+ J* ko, (2.7)
where
HioJz L% Prz, ie., {(IgoJz, Prx) =0, (2.8)
and
¢ = Prop + JlgJ ¢, (2.9)
where
OgJ*¢ L% Prog, i.e., (TIgJ*$, Pxogp) = 0. (2.10)

Proof. We are starting to prove (2.9) and (2.10). By Lemma 2.1 one has
¢ — Prod = ¢ + Pr«(—).
If 4 = 0p+ and ( = ¢, then (2.2) yields
¢ + Prc-(—¢) = P+ 1408+
By Lemma 1.4 we obtain
Py sOpe = s 1 905-.
Further, Lemma 2.3 and the properties of J imply:
Hprqg0p = JlgJ .

The chain of these equalities gives (2.9). The equality (2.10) arises from Lemma
1.18 (1) because o
(J*(¢ — ¢}, ¢) = 0.
Now we consider the dual space B* and the cone K* C B*. In this case
x — Prgx = x — Pgoyox = x + Prgoy (—z)

because (K°)° = K. The decomposition (2.7), (2.8) can be obtained from (2.1)
with z = g, m = = and (2.5) written in the form

Hygodx = JH(KO)*_HDHB = JH(KO)*_{_J*(Jm)J*OB*. (2.11)
Indeed,
x + Pgoy (—x) = Plgoy 1208
= H(KO)*+J*(J93)J*QB* = J*HKOJLU.

Thus, (2.7) is true. Finally, as before, (2.8) arises from Lemma 1.18 (1). Uniqueness
of (2.7) and (2.9) is proved like in [18], p. 256. The theorem is accomplished. O

Introduce the following definition.

Definition 2.5 (1) An element 1 € B* is called to be J-co-ordinate sum of
‘the elements y € B and ¢ € B* if

v=Jy+¢,

(2) an element « € B is called to be J*-co-ordinate sum of the elements y € B and
¢ € B*if
z=9y+ J¢.
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The relations (2.7) - (2.10) show that an arbitrary element z € B is the J*-co-
ordinate sum of two mutually d-orthogonal projections Prxz and IlxeJz, and an
arbitrary element ¢ € B* is the J-co-ordinate sum of two mutually d-orthogonal
projections Pyo¢ and g J*¢.

It is not difficult to see that along with Pg, the operator J(I — Pg) is also
projection operator from B to K C B* for all z € B. Indeed, from (2.7} one has

J(I — Pg) =Ilgod = myeo.
Furthermore,
oz — Pgx) = wgox,
and
[MxoJell, < |l — Txcal .
In addition, for all ¥ € B*

Tr (Y — Proy) = 7,
in particular, for all x € B
wx(Jr — PgoJz) =gz
and
el < 73 - TigaJa].

Remark 2.6 We have established that (2.9) follows from (2.5). The inverse
assertion is also valid: (2.5) follows from (2.9). The same conclusion can be done
for the couple (2.7) and (2.11).

Remark 2.7 Corollaries 1.15 and 1.16 can be also obtained proceeding from
the decompositions (2.7) and (2.9). However, the open problem is to prove whether
the cone C'k is convex and J*IIxoJz belongs to Ck. The same problems arise for
the cones Cxo,C and Clo.

Denote T = Py + J*koJ, T : B — B. It is easy to check (see [1]) that
20%5 (| — y|/2C) < (Jz ~ Jy, T — Ty) < 2C%ps(d|z — 4l /C),  (212)

where 65(¢) is the modulus of convexity, pp(7) is the modulus of smoothness of the
space B, and

O =+/(ll=]* + llyll*)/2.0

From Theorem 2.4 we deduce the corollary.

Corollary 2.8 The following relations are valid for arbitrary elements x € B
and i € B* :
MgoJz,x) = |[MxoJz|? < ||z||?, . (2.13)
(W, T T*6) = Wi T w12 < ). (2.14)
This gives in a Hilbert space (cf [18]):

(‘T:PKO‘r) = ”PKUH:H%{D ("E:PKQ;) = HPKm”%{
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Proof. By Theorem 2.4, for all x € B
(Mo Jz,3) = (J(@ - Prz),a)

- = (J(z — Pxx),z — Pgz) + {J(z — Pxx), Pxx).
It follows from Lemma 1.18 and the definition (1.4) that

(J(z — Pxz), Prz) =0

and ,
(J(z — Pgx),z — Pxz) = ||z — Pxx|? = |[Tgo Jz|2.

Observe by Corollary 1.15 that IlgoJx = fp+ if x € K. Thus, (2.13) is satisfied,
and (2.14) is obtained in the same manner. O

Return now to subspaces of Banach spaces. -

Corollary 2.9 If M C B is a closed subspace, M+ C B* is its annihilator,
then every element x of the Banach space B has one and only one decomposition

x = Pyax + J* Uy J, (2.15)

where . ‘ _
' (Iyyr Jz,v) =0, Yo € M. ' (2.16)

Proof. The equality (2.15) is obtained similarly to the previous theorem, and
(2.16) is a direct consequence of the annihilator definition.

We will show simpler than in [18] that the decomposition (2.15) is unique in
the class of J* - co-ordinate couples. Suppose that there are two representatlon of
this kind:

z=u +J%, w1 €M, ¥ e Mt
and _
T =up+ J P, us € M, ¥ € ML
Then the equality
ug — uy = J Py — J¥hg, - (2.17)
‘is valid, where |
Uz — Uy € M, ¢1—¢2€Ml.

From this we have
0= (1 — oy us — ur) = (1 — Yo, "1 — T o).
It is known (see [1]) that
(1 = 2, 91 — T*4pa) > (2L) ' R28p (|| T* 91 ~ J*¢2||/2R),

where g (¢€) is the modulus of convexity of the space B, L (1 < L < 3.18) is the
Figiel's constant, and

R = /(llpnl? + [[¢2]%)/2.
Since 65(0) = 0 and J* is bijective operator, we obtain: J*¢ = J*i3 and 9, = 1».
It follows from (2.17) that u; = us. ' [l
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Remark 2.10 By (2.16), IT;. Jx is d-orthogonal to the subspace M. In par-
ticular,
(HMJ.JQS,PMiC) = 0.
Therefore, x is the J*-co-ordinate sum of two mutually d-orthoganal projections
Pyz and I ,,. Jz. In a Hilbert space, (2.15) and (2.16) together coincide with (1.1)
and (1.2), also (2.7) and (2.8) coincide with (1.3).

Emphasize that if M C B is closed subspace and M L+ ¢ B* is its annihilator
then:
(i) an element # € M is the generalized projection of x € B on M if and only if

(Jx — J&,v) =0, Yve M.

This means that Jz — J& € M1,
(ii) an element € M is the metric projection of z € B on M if and only if

(J(x —F),v) =0, Yve M.

This means that J{x —z) € M+ (cf. [7]);
(iii) Proposition 1.14 implies the following:
Py (Jx+tJ(x — Pyzx)) = Py Jo +tlly Jz, —oo <t < +oo.l]

It is clear that an arbitrary linear functional f{z) in Banach spaces B is written
in the form ' '

f(z) = (,z), Vz € B, (2.18)
where 1) is the fixed element of the space B*. The following proposition gives the
way for a construction of this element.

Proposition 2.11 Suppose that f : B — R is a linear continuous functional
on Banach space B,
N={ueB: f(u) =0}
is the null subspace (kernel) of this functional, N L is its annihilator. Let an arbi-
trary xo ¢ N. The representation (2.18) holds, where the element ¢ € B™ has the
form

¥ = FI T Go=Tysro (219)
and it is uniquely determined by the functional f.
Proof. There follows from Theorem 2.9 that ‘
zo = Pyz + J' Ty Jzo, (UyiJz,v) =0, Yo € N. (2.20)

By Corollary 1.16, Iy Jzg # 0, consequently, f(J Iy Jxg) = ¢ # 0. Let 3y =
¢ lzg. Then by the homogeneous property of the normalized duality mapping and
Lemma, 1.13, we have

flo = flz) I Ty ) = f(z) — e f (@) £ (T Ty Jao) = 0.
Therefore, x — ¢~ f(x)J*Iji . Jxo € N and there exists y € N such that
' :1:=y—|—c“1f(:c)J*HNJ_Jx0...
Denote f(x) = and {y = IHy+ JJ2o. We can rewrite the previous equality as

x=y+c 7T .
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This means that the space B is the J* ~ co-ordinate sum of d—orthogonal subspace
N and one-dimensional subspace generated by the element (. Now a calculation
of the dual product

(Gor ) = (Co, ) + ¢ F(@)lISoll®
leads to (2.18) and (2.19), because {{o,y) = 0.
Let us prove a uniqueness. Suppose that along with (2.18), the representation

f(z) = (hr,=), Vz B

holds. Then
(- 1,2) =0, Ve € B
and
(3 — b1, J" = J"1) = 0.
Similarly to Corollary 2.9, ¥ = 1. It is obvious that || f||. = ||¢||-. O

Observe that dim N+ = 1 always. By using Proposition 1.3, one can simplify
the expression for 4/ some more. Suppose that N1 is the subspace of B* spanned
upon the element e* with a unit norm. Then

My Jzy = {e*, J*(Jzg))e* = (", xo)e",
and this gives
P = f(J"e*)e*.00

Next we establish the equality of Pethagorean type for the Lyapunov functional
(1.7) (cf. [2]). Denote z; = Pxx and 2 = Pxx —x. Then

W (22, 21) = |J* T goJz||2 4 2(IU g0 Jz, Pr) + || Px |

= ||Prz|?® + [Txo Iz,
1e.,
W(z2,21) = llzall? + |22, (2.21)
In a Hilbert space, (2.21) corresponds to the well known fact:
lzllF = |zl + = - 21
In addition, by (1.4)
(Jz,z) = (Jz,2) + (Ja, J*TIgoJz) =

|2)|% + (Jz, J* g0 J2), Vo € B.
Hence,
ll® = 1212 4 (Jz, J* ko Jz).O

In conclusion, we will obtain some decomposition results for ”shifted cones”.

Corollary 2.12 Let be arbitrary elements m € B and ( € B*. Then under the
assumptions of Theorem 2.4, the following representations are satisfied:

¢ = Pgojep+ JlgJ* (¢ — () (2.22)

and
r = PK_HnLE + J*HKOJ(LB - WL) (223)
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Proof. Rewrite (2.9) for the element ¢ — (:

¢ — ¢ = Pgo(¢— () + JIIxJ* (¢ — ().

Substitution ¥ = ¢ for (2.3) and the previous equality give together (2.22). The
second claim (2.23) can be proved by the similar way. O

Corollary 2.13 Let ¢ be an arbitrary element of B*. The operator
T = Pg«¢p — P+ 40p-
s "quasi-invariant” in the sense that
Pgwp — Pro 0B = Prodp — Pyoy 40~ (2.24)
Proof. The representation (2.4) implies

Proy 40+ = Pro(—¢) + ¢.
Since for all ¢ € B*

¢ — Pg+¢ = ¢ + Pgo(—¢) = Pro40p~,
we have
¢ = Pr«¢ + Proyy0pe. (2.25)
On the other hand,

¢ — Pro(@) = ¢ + Px-(—¢) = Pg+ 1405
Hence,

¢ = Pro¢ + Pg~440p- (2.26)
Comparing (2.25) and (2.26) we conclude that (2.24) is satisfied. O

In particular, if ¢ = Jz one has
PK*JiU - PK*-}-J:{;JQB = PKOJCC - PKO_|_J$JGB.
Our final theorem concerns Hilbert spaces.

Theorem 2.14 Suppose that H is the Hilbert space, and arbitrary elements
x € H and m € H. The following decompositions hold:
(1) x = Pgymz + Propme —m,
(2) x = Pg(z — m) + Pgoip,
(3) x = Pgximz+ PKD(:L‘ — m)
Proof. Let us recall that the Moreau decomposition is being written in the
form
x = Pgx + Prox, Vzc H.
Then o .
x —m = Pg(zx —m) + Pgo(x —m). (2.27)
Further we need (2.1) for K and K° which are

Pgpm® =m + Pg(xz —m)

and
Pyo & =m + Pgo(z —m).
Substituting
Prg(x —m) = Pxymxz—m
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and

Pyo(x —m) = Pgoym@ —m
to (2.27), we obtain (1). Using these substitutions separately, we see that the claims
(2) and (3) follow from (2.27). O

Remark 2.15 We have to conclude from the decomposition theorems that the
‘generalized projection operator Il is canonical in Banach spaces.

Remark 2.16 The elements m and ¢ in (2.1)-(2.3) can be replaced by the
operators m(y) : B — B and ¢(u) : B* — B*. .

Remark 2.17 (see [1]). All results of this paper are valid for dual mappings
J# with the gauge function u(t), defined by the relations

|J#z) 5 = p(lll),  (J*z,2) = p(lz])]z]-

Remark 2.18 Sakai in [16] has noticed that (1.3) and (2.6) are equivalent. By
this fact, he has considered the non-negative Radon measures on open sets of R®
and shown that they are closely related to the theory of Cartan-Deny. He applied
this result to the obstacle problems in Sobolev space W™ (K). We also proved in
Theorem 2.4 that (2.9) and (2.5) are equivalent, and this allows to hope that the
studies of [16] can be continued in the spaces W§"™ (K), p € (1, 00).
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