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INTRODUCTION

In recent years, considerable progress has been made in
the classification and characterization of Banach spaces accord-
ing to various geometric properties of their unit spheres.

Among the first and most important of the properties to be inves-
tigated were rotundity and smoothness. Then, various uniformity
conditions were imposed on these two properties, with the result
that each gave rise to a chain of properties, related according
to their varying degrees of uniformity. Chapter I contains the
definitions of these properties, along with the notations to be
used throughout the paper.

In chapter II, we consider midpoint local uniform con-
vexity (mel.u.c.), and show that it is a link in the convexity
chain between local uniform convexity (l.u.c.) and rotundity
(R)e This property has been known and considered for some time
by other people, notably G. Lumer and M. M. Day, but to the
writer's knowledge has not previously been investigated directly
in itg relation to other convexity and smoothness properties.
The sectioh ends with sufficiency conditions for m.l.u.c. in B
and in B*,

The notion of m.l.u.c. was initially considered in the
hope that it would be dual to strong differentiability of the
norm (Str). Although this hope did not materialize, we were
able to find another well-known property, (H), which, in the
case of reflexive Banach spaces, fits into the convexity chain

between l.u.c. and m.lo.u.c., and which does in fact yield full




duality with (Str). These are the principal results of chapter
III.

Product spaces are considered in chapter IV. In partic-
ular, it is shown that the lp product of m.l.u.c. spaces is
mel.u.ce., and also that the 1p product of (H) spaces is (H).

Chapter V contains an assortment of isomorphism results,
many of which were previously known, and included here only for
the sake of completeness. The principal result of this chapter

is an improvement on a theorem of Fan and Glicksberg, and states -

that if B* is separable, then B is isomorphic to an l.u.c. space.




CHAPTER I

Definitions and Notation

Throughout this paper, B will designate an arbitrary
Banach space, |l--'|| the norm in B, U the unit ball of B (the
set of all points with norm = 1), S the unit sphere of B (the
set of all points in B of norm one), and B* the conjugate or
adjoint space of D.

The properties listed below depend on the norm and lin-
ear structure, and thus can be defined for arbitrary normed lin-
ear spaces (not necessarily complete). But, since our primary
concern is with Banach spaces, we have phrased all the defini-
tions in terms of a Banach space B. In some cases, we have
listed two equivalent formulations of the same property, so that
we may use whichever formulation best suits our needs in a given
situation. Although most of the properties discussed below actu-
ally apply to the unit ball U of B, we shall use the convention
that "B is ( - )" means "B is a Banach space whase unit ball U
is (- )",

In general, we shall write "lim xn" for " lim x "

n-+ o
when the omission will not lead to confusion. We shall also use
the conventional shorthand "iff" for "if and only if".

Definition 1.1 B is rotund (R) iff 'Ix + y,, = 'lxll + ,IY"

implies x = ty, t > O, whenever x ¥ 0 and y # 0. ([Note: In many

papers, this property is called strictly convex.J

Definition 1.2 B is locally uniformly convex (l.u.c.) iff given

€ > 0 and an element x with “ x” = 1, there exists 6(€, x) >0



such that _“_?%IH_ 51 - §(E€, x) whenever ”x - y“ z2€ and
Iyl =

Since much of our work in this paper will deal with se-
quences, we list the following equivalent formulation of l.u.cCe.
Definition 1l.2a B is locally uniformly convex (l.u.c.)
iff ||x || = ||%|| =1 and lim |}x, + x,|| = 2 implies
lim len - xo|| = 0.
Definition 1.3 B is uniformly convex (u.c.) iff given € > 0,
there exists 6(6’) > 0 such that J_Lx_'zt_y_l_l_ s1- 6(€) whenever
- vl = €0 ana x| = 1] - 2.
Definition 1.4 B is smooth (S) iff at every point of S there is
only one supporting hyperplane of U.

An equivalent formulation of smoothness is
Definition l.4a B is smooth (S) iff for each x_ in 5,

%ﬁ?o(llxo + hx'l - ||x°|| )/ h exists for every x in B.

Definition 1.5 The norm in B is gtrongly differentiable at the
ggiggﬂxo in S Cwritten: B is (Str) at xOJ iff the limit in Def=
inition l.4a is attained uniformly over x in S. We say that B is
(Str) iff B is (Str) at every point x, in S.

It is evident from the above definitions that u.c. implies
l.u.c. implies (R), and (Str) implies (S).
Definition 1.6 The norms ||---|| and ||---||l are equivalent iff
for any sequence {x }, it follows that lim'lxnll = 0 iff

11a 5, |I, - o-

It can be shown that a necessary and sufficient condition

for ll---ll and Il---l'l to be equivalent is that there exist

A

numbers a,b with O <a = b < @ such that




a |lx]] s ||xlly = ° ||x]| for a11 x.
We shall also need Minkowski's inequality:

If p>1, and if {a 1, [b ] are sequences of real numbers for
which ¥ 2 ~1 |an|p and 2: |bn|p are finite, then
{ z--:n=l lan * bnlp}l/p - { 2:;21 'anlp}l/p + Z:n‘:l'bnp)}l/p

and equality holds iff, for some t > O, a, = tbn for all n.
We list below two theorems due to V. Smulian Cl1l0J] which

will be used extensively throughout this paper.

Theorem 1.1 B* is (Str) at f_, ”fo“ = 1, iff from

lim £ (x, ) = Ilfoll where lenll = 1, it follows that

m %TI“OJ"‘M - %l -

Theorem 1.2 B is (Str) at x ||xo|| = 1, iff from

lim £ (x ) = llx ll where £ in B* and 'lfnli = 1, it follows

that o, ;Llﬂnm”f - f‘n”

Several well-known Banach spaces are mentioned in this

paper, and for convenience we define them:

m : the space of bounded sequences x = (xl, xz,--- )
. - i
with |lxl| = sup, lx '
C, ¢ the subspace of m consisting of those sequences which
converge to zero.
1p for p 21 : the space of sequences

= (x%, x%, x3,+ ) for which 2: |x1l
is finite, with rlxll = i=l le' Pl/p

C C£0,1] : the space of continuous functions x on the interval

[0,13, with ||x|| = sup {|x(¢)]: ¢ in r0,11].




CHAPTER II

Midpoint Local Uniform Convexity

Geometrically, lovaglia's l.u.c. states that if the mid-
point of a variable chord having one end point fixed on the unit
sphere approaches the unit sphere, then the length of the chord
approaches zero. We now wish to investigate another type of con-
vexity, which, for lack of any other appropriate name, we choose
to call midpoint local uniform convexity. Geometrically, the
latter states that if the midpoint of a variable chord in the
unit sphere approaches a fixed pcint on the unit sphere, then the
length of the chord approaches zero. Formally, it is defined as
follows:

Definition 2,1 B is midpoint locally uniformly convex (m.l.u.c.)

iff given € > 0 and an element X, with l,xo|| = 1, there exists
o€, x,) > O such that ”x t+y - 2xo” z & whenever
I - vl) =€ ama || = ]y =2 -

Again, since much of our work in this paper will deal
with sequences, we list the following equivalent formulation of
MeleusCo
Definition 2.la B is midpoint locally uniformly convex
(meleusc) iff l'xn|| = ||yn|| = ||xol' = 1 and
limllxn + oy, - 2xo|| = O implies that ',Lim”xr‘1 - ynll = 0,

Lemma 2.1 The final implication in Definition 2.l1a may be re-

slaced by sithar ||, - | = 0 sz lin]|y, - %] = 0.
Proof: First note that 1im“xn - x0|| = 0 iff

limllyn - xoll = 0 under the hypothesis lim”xn + Y, - 2xo,| = 0,

which follows immediately from the following two inequalities:

6




l l yn x0 | l xn yn 2xO JcO xn l I
+ -
2%, || + [ %0 = %]
- ’i' -
2x, + x, yn',

2% || * |1 ¥n = %l

l = O implies 1lim llxn - yn|l = 0

s +
n T Vn

Hi
o
o]
+
3
fn

llxn = xo“

+
s xn yn

The fact that lim“xn - xol

follows from the above, and
|'xn - yn|| - l'xn - Xt X, - ynl'
N ENER NI FAEEN |
That lim“xn - ynll = 0 implies lim”xn - xOII = 0 follows
from the hypothesis, and the inequality

” *n - xo” =2 ||xn - xo” = ||2xn - 2xo“
- ||xn Ty -2t x, - ynll
s len * oy, - 2xo” + llxn - yn” . QED

Theorem 2.1 If B is l.u.c., then B is m,l.u.c.

Proof: Suppose B is l.u.c. Choose {xn], {yn], and x_

in B such that ||xn|| = I'yn|, = 'lx l = 1 and

ol
lim“xn oy, - 2xo|| = 0, TFor each n,

'lxn * ynll - |,2x0“

= 2= ||t yy| 2O

v

llxn vy - 2xo”

Since the limit of the left side of the above inequality is zero
by hypothesis, we thus get

(1) limllxn 4 ynll =2
For a fixed n, consider the plane P determined by the points O,

X9 and Ve Let Zs Zy and Zg be the points on the chord from
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X, to y, defined by (3x + y )/, (x + y )/2, and (x + Byn)/h,
respectively. Let El’ 52, and ?3 be the corresponding points on
P~S (the unit sphere in the plane P) determined by the rays rys
) and r3 from O through Zys 2y and z3, respectively. Let L
be the line through ;2 parallel to the chord from X, to Yo and
let Uy and us be the intersections of L with ry and ry, respec-
tively.

Day (C2], page 112) has shown that B is (R) iff every
two-dimensional subspace of B is (R). Therefore, B is l.u.c.
implies that B is (R) implies that PAS is (R). Hence, L either
is tangent to U at 52, or it cuts U on one side or the other of
Ez. In either case, at least one of the points Uy, Ug is outside
u.

Suppose Ilulll > l. Consider the similar triangles with

vertices at 0, z,, 2,, and 0, u;, 22. Then,
20l 7 [1Z2]l = 11220l 7 [l el » or
Wzl = Cllugl) < 220l 27 02201 = el 12201 > 1]zl

which, by definition of the z's, says

||(3xn + yn)/%|| > ||(xn + yn)/2|| « Thus we have
(2) l'(an + yn)/2|| > len + yn|| for each n. E

We now have for each n,

2= 1ll * 1% ll = 1% * %l
= ||x, + (xn + Yn)/'2 - (x, + Yh)/Q * xo||
= ||x, * (x, + v )/2 - Uxy +y,)/2 - xo}ll

& xn + (xn + yl'l)/2 “ = “ (xn + yn)/z - xO”




- ll(an + yn)/QII - "‘xn * Vg - zxo)/2||

> ',xn + ynll - l'(xn T ¥y - ZxO)/Z"
As n becomes infinite, both limits on the right exist, the first
by (1) and the second by hypothesis, so
2 = lim||xn + xo|| z lim illxn + ynll - |l(xn ty, - 2x°)2'|]
- simj, * gpl] - 1m0y + 3, - 22002
= <
Therefore, lim ||xn + xo|| = 2, But B is l.u.c., so this implies
that lim”xn - xoll = 0.
In the other case, if ||u3|| > 1, we could show by a sim-
ilar procedure that ||23l| > ,,zzll and thus that
lim”yn + xoll = 2. Then, B is l,u.c. would imply that
lim“yn - x0|| = 0, ~
Thus, in either case, we find that B is m.l.u.C., by
Lemma 2.1. QED
It is evident from the definition of m.l.u.c. that m.l.u.c.
implies (R). We now give an example to show that m.l.u.c. is
stronger than (R).
Example 2.1 Let o be the Banach space of sequences converging to

zero; that is, if x = (xl, x?, x3,---) is an element of c_, then
,lx,l = suplxil. In c,, we define a new norm1|-°° I,l as follows:
lxlly = ll=ll + LE 2t

Then we have, for eagh X,
=l s |1xl]y = lx]] + LE St 2134

Sl + (D Sy touplt] i 112022



10

= =] + 1 T2l 2212102

ol 3/ (E [ WYl b

= (1 + 245 ||x]] -
Therefore, ""'Ill and ll---ll are equivalent norms. Let B be the
space ¢ renormed with 'I"'|l1° We first show that B is (R).
Let x and y be any two elements of B such that ||x||1 = |'y||1 = ]
and ||x + yIIl = ||x||l + |Iy||1. Using the definition of the

norm and the Minkowski inequality, we have
Ixlly + Hylly = 1=+ ¥lly
= Ilx+ y|| + | zi?__oqui + yi'/21-1)2]1/2
s |x+ yl] + | Eifli(lxil + lyil )/21-1]2]1/2
s|x+y|] + LSt 2032
b L L2 (5 i3
x| + ||¥]| + 1 Z S (x| et-1133tr%
NI et
=] =l + lIvll;

Equality throughout forces equality in the Minkowski inequality,

RA

which in turn implies that x = y. Hence, B is (R). We now show
that B is not m.l.u.c. Let x = (L/2, U, O, O, °°° ), and for
each n & 2, let x = (a,, 0, 0, ¢o¢ , 0, 1/2, 0, O, o-e ) and

¥, = (ay,, 0, Oy ¢¢¢ , O, -1/2, 0, O, == ), where 1/2 and -1/2

are the nth coordinates, and where a, is determined by the rela-

tion a2+ (1/2")% = 1/, so that a_ = L/2(1 - 14""1)1/2, For

each n, a_ s 1/2, so it follows that ||xn|' = ||yn|| = 1/2. Also,

n
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it is easy to verify that for all n 2 2, we have

"xnlll = ',yn'll - ||xo|ll = 1. From the definition of a
above, we see that 1lim a, = 1/2. For each n,

X, ¥+ ¥, = 2x = (22, -1, 0, 0, O, ¢~ ), from which it follows

n
that 1lim len * Y, - 2x°||1 = 0, But for each n,
X, ~ ¥, = (0, 0, Op ¢, 0, 1, O, O, ¢e¢ ), and thus we see that
for each n,||x, - y,|| = 1. Therefore, len - yn|'1 z 1, so B is
not m.l.u.c. This concludes Example 2.1l. |

Next, we give an example to show that l.u.c, is stronger
than mel.u.ce.

Example 2.2 Let l2 be the space of sequences

x = (x1, x%, x3, +¢+ ) such that Z:iia (x1)¥ is finite, and
with the norm defined as usual by lell = | ijiii(xi)z}l/?. We
want to determine an equivalent norm"--- l'l in the space such
that this new norm is m.l.u.c. but not le.u.c. The plan is to
pare down the original unit ball in the direction of the first
coordinate axis to get a "hyper-ellipsoidal' convex set symmetric
about zero, then use this set to define a new norm. The set is
best defined in terms of its sections with the coordinate planes
and the hyperplanes x1 = constante.
Let U be the unit ball of 12, and let

X = (xl, x4, x3, eee ) be any element in U, In each coordinate
plane xt x xj, j 2 2, use the 1_ norm, where p = (2j - 2)/(2j - 3)
that is, if x is of the form x = (x%, 0, O,+++, 0, xJ, 0, 0,¢++),
then define the functional m by

(1) m(x) = |Ix||p = (lelp + 'lep)l/p’ where p is defined

as above. [Note: Throughout the remainder of this example, p
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will always be defined as above. The value of p depends on the
coordinate j, and thus should be written as py or p(3); however,
the notational dependence of p on j will be omitted in an effort
to simplify an already cumbersome notation.J In each coordinate
i X xj, where 2 = 1 < j, use the 12 norm; that is, if x

i: 0, Oy¢ee, O, xjo o, 0:"‘)9

plane x
is of the form x = (0, O,¢++, 0, x
then define m by

(2) m(x) = || x]| -
Note from (1) and (2) that if x consists of just one coordinate,
then m(x) = le ” .

Now, if x does not lie in a coordinate plane, we know

that |x1| <1, since x is in U, so for each J, J & 2, choose
tJ > 0 such that -

(3) |x1|p+t3p=1.

In each hyperplane xl

= constant, we can take 1 l/tj,
J=2, 3, 4yeee as the ends of the semi-axes and determine the

"hyper-ellipsoid"

x* 2 x> 12 xJ 1% + -
[W] +[T7E;-] +...+[-]7{‘,J_] ooo_l’
or 2:;:2 tg(xj)z = 1, Thus, in this case, define m by
() mx) = (T2, t3xd)22

Note that if x1

= 0, then by (3), each ty = 1, so by (4),

m(x) = le ” s also, (2) is just a special case of this last
result. Since (1) and (4) are the necessary defining relations
for m, we combine them into one definition for easy reference.

If x is in U, define


http://notation.il

||x||p if x is in the plane x* x xJ

(5) (x) =
m (L2, t5x))2112  otherwise

where t, = (1 - | x| P)=1/P for each }

and  p = (2§ - 2)/(2) ~ 3)
The functional m has the following properties:

(a) m(x) 20, and m(x) = O iff x = O,
Thig'follows immediately from the definition.

(b) m is symmetric; i.e., m(-x) = m(x).
This also follows immediately from the definition.

(¢) For each x in U, m(x) s +vZ .

To prove this, we first need the following lemma.

Lemma 2.2 If a and p are real numbers such that 0 < a <1 and

1 <ps 2, then (1 - aP)?/P z 1 _ a.

Proof: From the restrictions on a and p, we have
aP sa, sol - aP 21 -a. Hence, log (1 - aP) z log (1 - a).
Since 1 <p s 2, we have 1/2 = 1/p <1, so
1/p log (1 - aP) 2 1/p log (1 - a) 21/2 log (1 - a), or
log (1 - aP)1/P > log (1 - a)l/Q, which in turn implies that
(1 - aP)I/P 2 (1 - a)}/?, and squaring both sides then yields
the desired result. QED.,

Now, to prove (c), we have for each x in U,

(xd)? | 172
= J 2,1/2 - (0]
m(x) { £J=2 J(x ) ] / { 23:2 (1 - ' llpT
2 1/2
s 2:;:2 () }‘/ by Lemma 2.2

l - le

13
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= {22 (x~) ] since x is in U
2 x| -1
D2 o2 M lxll? - 12 | 12
ﬁlxll - lel lell - 'xll
- Ul 1D = [ 2 2
(d) m is continuous on U
Let {xnl be a sequence of elements in U and x an element of U
such that 1lim X, = Xe For each j 2 2, choose tj > 0 such that
'xllp + t}p = ], and choose tn,j > 0 such that
lxi'p + t;?j =1, n=1, 2,3, *** . Convergence in 1, implies

i
n

each i =1, 2, s« , Since for each n and each j = 2, we have

coordinatewise convergence, so it follows that 1lim x_ = xi for

t. . = (1 - 'xilp)'l/p. it follows that for each j 2z 2,

n,J
2 = 3 lp-1p= 1p-lp=

lim tn,j lim (1 - Ixnl =1/ (1 - Ix I )=/ by Now,

for each n, we have 0 = mz(xn) s 2 by (a) and (¢), so [mz(xn)}

is a bounded sequence of real numbers, and hence must have at

least one cluster point. Let y be an arbitrary cluster point of

{mz(xn)}, and let {m?‘(xn )] be a subsequence of lmz(xn)] which

v
converges to y. Then, since {xnv} is a subsequence of {xn], it
follows that 1lim xiv = xi for each i =1, 2, 3, ¢+« , and also,
lim tnv’j = tj for each j 2z 2. Thus,

y = lim mz(xnv) = 1m L. tﬁv'J(ng)z

@ . 2 J 12
s §:j=2 lim {tnv’j(xnv) }

14
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= ®© {1im t2 .} [lm (x] )2
L2 lmof 5} flm (x] )%)

® .2/ J\2
2 =2 t j(x )
= m2(x)
We want to show that equality must hold in the above inequality.

Suppose by way of contradiction that y < mz(xl‘.t Let

€= mz(x) ~ y > 0, Choose a subsequence of nv's such that

mz(x) > m“?(xn ) + €/2. Choose J so large that
v

';,2 t:.g(xj)2 > m?(x) - € /4. For each j, we have
lim tﬁv'j(xgv)z = {lim tﬁv’j} {lim (xgv)zl = t'.?(x'j)2
Hence, for each j = 2, 3, ¢« , J, we can choose N\,j such that for
all n, z Nj, ‘
240025 Fudi? - g5

Then, for all n, such that n, = max {NJ.: j sdl,

2 2 - 2 Y
mlx) > wlx, )+ €72 = I tnv’j(xgv) + €2

5 .
= Ljez ta,,3(m,)° + €22

>7F Jep W32 - €581 4 €12

a 0d 20,012 _ = J
23=z £5(x)) ZJ=2 {€/5'1 + €2
>nf(x) - €/ - L3 €759+ €12
amz(x) + G/h - 2322 €/5j

= n?(x) + €4 - €N

Since the strict inequalities in the above are impossible, we
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thus get a contradiction. Therefore y = ma(x). But y was orig-
inally chosen as an arbitrary cluster point of [mz(xn)l. Hence,
[mz(xn)] has a unique cluster point, and 1lim mz(xn) = mz(x), or
lim m(xn) = m(x). Therefore, m is continuous on U.

(e) For each x such that lell'< 1/2, m(x) <1l. Note that
lIx|} <1/2 imp11es that |x'| <1/2. GChoose ty >0, 3 z 2, such
that lelp + tsp = 1. Then, for each j we have
6P =1 - [P >1- [ >1-1/2=1/2, s0tB <2. But since
tJ % 1 for each j, and since 1 <p s 2, this implies that tj <2

for eaéh Je Thus,
=2+ L 232 5 20]|x|| <2012 = 1.

(f) m is a rotund function; that is, for
x = (xt, x%, %3, «e+ ) and y = (y*, ¥%, ¥, *e+ ) in U,
m {(x+ y)/2}] <1/2 {m(x) + m(y)}.
The result follows immediately in case x and y lie in the same
coordinate plane, since m is then an lp norm for some p ~> 1,
which is (R): also for xl = yl = 0, since m is then the l2 norm,

which is (R). The remaining possibilities are considered in two

cases,
Case 1. |xl| = Iyll
Ir x! = yl, then (x% + yl)/Q = xl, so x, y, and

(x + y)/? lie in the same hyperplane x1 = constant. The tj's in

(3) depend only on the first coordinate; thus x, y, and

(x + y)/? have the same tj's. Using the Minkowski inequality,

we thus get
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mitx+ ylj2l = (L2, e((xd + y3)2)2)1/2
=12 [ L2, (el + o yy))3)HR
2(.jy211/2 2 211/2
s 1/2 (] 2322 tJ(xJ) 12+ ijz tj(yj) j1/2)
= 1/2 [m(x) + m(y)]

Ir x! = - yl, then (xl + yl)/z = 0, Thus, x and y have the
same tj's. and the corresponding sequence for (x + y)/? takes the
value one for each j. Using the fact that for each j, tj =1,
and the Minkowski inequality, we get
m{(x + y)/2} = !ijz((xj + y‘j)/z)zll/2

= 1/2 ) J°=°2(x3 + yJ)2}1/2
12 LL 2, t30ad + y3) 2172
2}1/2

UA

=12 { ) j‘fz(tij + tjy")
211/2
12 1L 2yepd] + e 990311/
211/2 2:1/2
s 1/2 ({zjjg; Itjle 12 4 {ijg; Itjyjl }1/2)
=12 (1L 2, t?(xj)z}l/z + 1T tg(yj)zll/z)
= 1/2 {m(x) + m(y)l.
Note that equality in either of the above inequalities would force

HA

equality in the Minkowski inequality, and this in turn would force
Tx = yo Thus, if x and y are distinct, then the strict inequal-
ities must hold.
case 2. | x| 7 |vY
Without loss of generality, we may assume that

Iyll > lxll. Choose ty >0 such that |xl|p + tsp =1, 85> 0 such

that lYllp + 83p =1, and ry > 0 such thatl(xl + yl)/le + rsp =1

1

Since in each plane x™ x x:j we are using an lp norm with p > 1,

which is (R), we have for each j, 1l/rj > 1/’2(1/’t;:j + l/bj), or
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(6) Ty < ZSJtJ/(sJ + tJ) for each j.
Note that |y1| > lel implies that S5 > tj for each J. We first
prove the following lemma.
Lemma 2.3 Let a, b, ¢, d, be four real numbers such that
0sa<l,0<b<l,cz1,d>1; also, a=b iff ¢ = d and
a<b iff ¢ <d. Then (a + b)/(c + d) =1/2(azd + bsc).

Proof: We consider three separate cases.
(1) ¢ =4d. Then, (a + b)/(c + d) = (a + b)/2d
= 1/2(a/d + bsd) = 1/2(a/d + b/c)
(11) ¢ <d. Then, a<b, soa/d <afc <bsf. Sinced -c >0,
(d-c)ad<(d-c) b
(L -cpd) a<(dee-1)b
(d/c - 1) b -(1-c/d) a>0
- db/c - b -a+ca/d>0
at+b<dbse + ca/d
2(a + b) <a+ b+ dbjec + casd
2(a + b) < (c + d) (a/d + bsc)
so, (a + b)/(c +d) <1l/2(azd + b/c)
(1ii) ¢ >d. Then, a >b, soa/d >b/d >b/c. Sincec -d >0,
(c - d) a/da > (c - d) b
(¢fd - 1) a>(1-dse)b
(¢fd = 1) a=-(1-4dfe)b>0
ca/d - a-b+db/c >0 same as step b in (ii). QED
Now, returning to the proof of Case 2 of (f),

m{(x + Y)/Z} = | Z;iz r?( (xj + y‘j)/2)2] 1/2
{ 2322( “ﬁ8§t2:j/(sj + tj)‘?}{(xj + yJ)/z}Z)]l/z
by (6)

A
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= LI 2, 85ed (I + yh)stey + 213122
s | ZJ=2 2 2 'x’j + yJ| /‘53 + tJ)lzll/z
s 1 L,2, s 2 2 (W] + [¥3D sy + £ 1322
< [T 2, s 2 [l/2('le/sj + lyJ,/tJ)}zll/z
by Lemma 2.3

= T2 0 S xI|2/e% + 2fxdyd| syt
+ Y2 1/2

=1/2 | 2: (tzlxalz + 2s L, lxj J, + szlyjlz ]1/2

=172 { T 20e|x3 + s lle) j1/2
s1/2 [ | ZJ__:Z(tjliI) AR iz.j=2(sj|yj|)2}l/2]

~12 [ 1 T8 22+ (T2, E(yh)2)2 ]

172 (m(x) + m(y)}.

This completes the proof of (f).
We thus see as a result of the above properties that m is
a continuous, symmetric, convex function defined on the open unit
ball U°, Therefore, E = m'l((-l, 1)) is open, symmetric, convex,
and also, ES U%, Using this last result and (e), we see that
(g) 12 U°C EC 1°
Hence, the Minkowski functional of E, fE(x), is a norm, so for

each x in 12, define
(7) I'xl,l = fp(x) = inf [r: x/r is in E and r > 0}.
We next note that the following relationships hold:

(h)  ||x||{ s1iff m(x) s 1 and ||x][; = 1 iff
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m(x) = 1. This follows immediately from the manner in which E
was determined from m, and ,"'°"1 from E,

(1) Por each x in 1, le'l s I'x'll 5 2||x||.

This follows immediately from (g).
(j) For each x in E, m(x) = l'xlll
Proof of (j)
2 3

Let x = (xl, x“, x?, ee¢ ) be any non-zero element in E. Choose

k > 0 such that Ilkx'll = 1, Then, |lx|l1 = 1/k, where k 2 1,

and kx = (kxl, kx?

that lelp + t}p = 1 and lkxl,p + 33p = 1, respectively. Now,

’ kx3, see ), Choose tJ > 0 and s‘,j > 0 such

Ikxll z 'xll implies 85 z tj, 80

m(x) = | 2322 t;?(x:j)‘?}l/2 ={) jfz s?(xj)z}l/"2
= 1k K L2, s5(xd) 2L/
= 1/k {ijz ~3§(l<x‘j)?“}J‘/2 = 1/k {m(kx)]
= 2 x|

As a result of (i) above, we see that the norms II---“
and Il"'lll are equivalent. Thus, let B be the space l2 renormed
with ll""'l' Since B is isomorphic to 1,, B is reflexive (C23,
Theorem 1, page 56). Also, B is (R), by (f) above. In order to
show that B is m.l.u.c., we shall first show that B is (A) CSee
Definition 3.1 belowl. To accomplish this, we need two proper-
ties of lim sups of sets of real numbers, which we list below as
lemmas without proofs.

Lemma 2.4 If {an} and {b_ } are two bounded sequences of real

numbers, then

lim sup (a, + b ) = lim sup a, + lim sup b .
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Lemma 2,5 If lc.} and [d ] are two bounded sequences of real
numbers, and if ¢, s d, for each n, then lim sup ¢, s lim sup d.

Now, let {xn] be a sequence of elements of B and x, an

element of B such that w=lim X, = X, and

1im ||xn||1 = || %||1 = 1+ Then, by Definition 3.1, we want to
show that 1lim ||xn - x°||1 = 0, Without loss of generality, we
may assume that llxnlll = 1 for each n, since otherwise we could
first normalize each element without affecting the weak conver-
gence. For each j = 2, choose

Lip s -
tJ & 1 such that 'xol + tJ l, and

(8) L
p =-p = - see
t,,j & 1 such that |xn' tePi=1,n=1,2 .

Let € > O be given. Then, since
1= lrxo|ll = "xo'lf = m2(xo) = Z:JZE t?‘*ﬂ’z'
we can choose the integer J so large that

(9)  Liap t3xd?>1-¢€

Since w-lim x_ = X,0 We have

(10) 1lim xi = xi for i =1, 2, 3, ¢¢¢ , J.

n

Using (10) and (8), we get
- 1ypy=1/p
(11)  lm e, 4= lim (1 - |xn| )=1/
= (1 - lxilp)"l/p = tj for each j.
Then, by (10) and (11), we have

(12)  1im {:j=2 tﬁ’J(xg)z = )} j=2 1im{tﬁ’j(xg)2}

= 3 ‘;=2 {1im tﬁ’j} {1im (xg)zl
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2
= 7 j=2 J(xJ)

Since for each n,
2

= || %,)|§ = m?(x,) = 2;)-2 n, i %

2
- T Ju2 n,;j(xn)z + T jeen tn,;"‘g)z'

we have for each n,

3)2

00 2 e _ J 2 3\ 2
Now, as n becomes infinite, the limit on the right exists, by
(12), so the limit on the left exists, and

(W) lim T 2 2 ()2 = Lim - T g2 t2,56x0)%)

=1-um T, 67 ,(x))?

-=1- 7Y Je2 ¥ (xj)z by (12)
<1-(1-€) by (9)
= €
For each n and j, (xg)z s tﬁ,J(xg)z, so
2J$+1(xg)2 s ) J;‘,?Hl tﬁ’j(xg)z for each n. Thus,
(15) lim sup §° SZJ+1 (xg)z s lim sup de,?,_,_ltﬁ’:](xg)z
by Lemma 2.5
2
= un T, 2 ()
since 1lim exists

<€ by (14)
Also, 1imzj-1 (xJ)2 v =1 lim (xj) - ZJ g)z

exists, so
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(16) 1lim sup ¥ ‘;=1 (xg)z = lim 2‘;,1 (xg)z

= Ejﬂl (xg)z s ”xo”2
Hence,

1im sup “xn”z = 1im sup { z";_l(xg)z + ZJ£+1(xg)2}

s lim sup ). ‘:},,]_(xg)2 + 1lim sup ). J:Hl(xg)z
by Lemma 2.4
< ||%[|%+ € by (15) and (16).

Since this must hold for all € > 0, we thus have
lim sup "xn|| s ||x0||. Therefore, using the fact that x  is
the weak limit of X,» We get
I'xoll S lm inf ||x,|| s Lim sup || %a ]| = leoll’ so
lim lenll = ||x°||. But 1, is (A), whichimplies that
lin ||x, - x,]| = O, and hence, 1lim||x, - x,]|; = O by the
equivalence of norms. QED,

We have now shown that B is both (R) and (A); i.e., B is
(H), according to Definition 3.2 below. Since B is also reflex-
ive, it follows that B is m.l.u.c. by Theorem 3.3 below.

It remains to show that B is not l.u.c. Let
x= (1, 0, 0, O, ee¢ ) and X, = (0, 0, eee , 0, 1, O, ece )
where the nth coordinate is one. Then, for each n,
m(x) = m(x ) = 1, so l'xnlll = lelll = 1 for each n. Also, for
each n, we have, by (j)
len + x||l zm(x, + x) = (|x1|p + |xn|p)l/b = 2'/P where
p= (2n - 2)/(2n - 3) for each n. Thus, since
lim p = lim (2n - 2)/(2n - 3) = 1, we see that




lim l'xn + xl'l = 2. But

x, ~x= (-1, 0, 0,42+, 0, 1, 0, O, *++ ), 80

g = 1y =[x - =) = 102+ @22 = 212
Therefore B is not l.u.c.

This concludes Example 2.2.

Combining the results of Theorem 2.1 with Examples 2.1
and 2.2, we have
Theorem 2.2 For any Banach space, the following implications
hold:

UeCe =» l.uece => m.lou.ce = (R)
Furthermore, none of these 1mélications can be reversed.

We now state some sufficient conditions for m.l.u.c.
Theorem 2.3 If B is (Str) and if linear functionals attain
their maximum on the unit sphere of B, then B* is m.,l.u.c.

Proof: let g, be an element of B* and {f,}, lg,} two
sequences of elements of B* such that
Eall = Hleall = lleoll = 15 and
lim ||£, + &, - 28,|| = 0. Choose x, in B such that “xo” =1

and go(xo) = 1, Then, for each n,

llfn te, - 2gol|

sup i'(fn t g, - 2go)(x)|: x in U }

sup {[£,(x) + g,(x) - 2g,(x)| + x in U ]

uv

Ifn(xo) + gn(xo) - 2go(xo)l

Ifn(xo) M gn(xo) - 2'

11

2 - Ifn(xo) * gn(xo)l

24




2 2 - (| (x)] + |enlxy)])
z 0.
Since by hypothesis the left side of the above inequality

approaches zero as n becomes infinite, equality must hold at

each step, and hence we have
lim ( f.(x,) + g,(x;) ) = 2. But this implies that

lim £ (x)) =1and lim g (x)) = 1. Since B is (Str),
Theorem 1.2 yields the fact that 1lim llfm - n'l = 0, By

m,n-4+o
completeness, there exists f_ in B* such that ||f°|| = 1 and
lim ||£, - fo]] = 0. Hence, lim £ (x,) = £ (x,), so

fo(xo) = 1, Since B is (S), we must have f, = 8, Therefore

lim Ilfn - goll = 0, and hence B* is m.l.u.c. by Lemma 2.1.

Theorem 2.4 If B* is (Str), then B is m.l.u.c.

s
Proof: Let x  be an element of B and {xn], {yn] two

sequences of elements of B such that

llxnll - Ilyn|| = ||K°|| = 1, and

lim ||xn +y, - 2xo|| = 0. Choose f, in B¥ such that
||f°|| = 1and £ (x ) = 1. Then for each n,

g * %o - 2l| = s {[ 0y + vy = 22| = le]] 52}

')

£ (x, + v, - Zxo)l

= fo(xn) + fo(yn) - 2f°(x°)|

= |f,(x) + £ (y,) - 2|

w

2 - |£,(x) + £ (y) |

L
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w

2 = (|g(x)] + | £oty)|)
z 0

Since by hypothesis the left side of the above inequality ap-
proaches zero as n becomes infinite, equality must hold at each
step, and hence we have 1lim ( fo(xn) + fo(yn) ) = 2, But this
implies that 1lim fo(xn) = 1 and lim fo(yn) = 1, B* is (Str),
so by Theorem 1.1 we get

mlgr_nﬂilxm - x “ = 0. By completeness, there exists y  in B
’

such that “yo” =1 and lim “:xn - y°“ = 0, By continuity
of £, lim fo(xn) = £ (y,), so £,{y,) = 1. Since B* is (s),
B is (R), and hence we must have Yo = %o+ Thus,

lim ||xn - xoll = 0, so B is msl.u.c. by Lemma 2.1. QED




CHAPTER III

Duality

We have known for some time ([3], page 518) that in re-
flexive Banach spaces, (R) and (S) are dual properties. With
the introduction of the stronger properties of smoothness and
convexity defined in chapters I and II, namely, (Str), l.u.c.,
and m.l,u.c., it would seem desirable and reasonable to hope
for some sort of duality to exist between (Str) and l.u.c., or
between (Str) and m.l.u.c. Using the results of Lovaglia's
Theorems 2.2 and 2.3, we see that, for a reflexive space B, if
either B or B* is l.u.c., then the other is (Str). However, his
The;;ems 2.4 and 2.6, which reverse the implication, require an
additional hypothesis, which is called weak l.u.c. in B (or weak¥*
lou.c. in B*)., That some such additional hypothesis is neces-
sary is confirmed by Corollary 2 to Theorem 3.2 below, which
answers the question of duality between (Str) and l.u.c. in the
negative. On the other hand, we see from Theorems 2.3 and 2.4
above that for a reflexive B, if either B or B* is (Str), then
the other is m.l.u.c. To date, all attempts to reverse this im-
plication have been unsuccessful, but it is apparent that full
duality is not present. Termed loosely, l.u.c. is "too strong"
to yield full duality with (Str), and, on the basis of present
knowledge, m.l.u.c. appears to be "too weak". Therefore, we
might hope to find some property "between" l.u.c. and me.leu.c.

which will yield the desired duality.
Definition 3.1 B has property (A) Cwritten: B is (A)J iff the

27
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following condition is satisfied: If a sequence {xn} of elements
of B converges weakly to the element x in B, and if

1im llxn|l = "x'l, then 1lim “ X, - x|| = 0,

This is a well-known property of u.c. spaces, and can also be
shown to be a property of l.u.c. spaces. It has been investi-
gated by many people, but we are primarily interested in the re-
sults of Kadec [6], and Fan and Glicksberg C51. Following the
notation used in the latter paper, we will find it convenient to
have the following definition:
Definition 3.2 B is (H) if B is both (A) and (R). It is evident
from the above definition that l.u.c. implies (H). Fan and
Glicksberg have proved the following (C5], Theorem 3):
Theorem 3.1 If B* is (Str), then B is reflexive.

The next theorem is also due to Fan and Glicksberg, but

since they omit a direct proof, we furnish it here.

Theorem 3.2 If B is reflexive and (H), then B* is (Str).

Proof: Let fo be an arbitrary element of B* such that
l|f°|l = 1, and let [xn] be a sequence of elements of B such that
“xn“ = 1land lim f_(x ) = 1. Since B is reflexive, we can
choose x_ in B such that ||x°|| = 1 and f_(x,) = 1. Also by re-
flexivity, {xn] has at least one weak cluster point. Let ¥, be

an arbitrary weak cluster point of {xn] and let {xv } be a sub-
) n

sequence of [x } converging weakly to y,. Then,

£,(y,) = lim fo(xvn) = lim f_(x ) = 1. Thus it follows that y,

has norm 1. But since B is reflexive and (R), we have by duality

that B* is (S), and hence y, = x . Thus x  is the unique weak
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cluster point of {xn}, so w=lim Xy = Xge Then, by (H), we get

lim ||xn - xol| = 0. Therefore B* is (Str), by Theorem 1.1. QED,

Corollary 1 If B is reflexive and (H), then B is m.l.u.c.

Proof: B* is (Str), by Theorem 3.2, and hence B is
Meleusc., by Theorem 2.4. QED

The questien: naturally arises here as to whether or not
(H) implies m.l.,u.c. in the case of a non-reflexive Banach space.
This is an open question at the moment, though a negative answer
seems likely.

Corollary 2 There is a (reflexive) non-l.u.c. Banach space B

with the property that B* is (Str).

Proof: We first remark that if B* is (Str), then B is
necessarily reflexive, by Theorem 3.1. Let B be the space con-
structed in Example 2.2. We showed that B is not l.u.c.; how-
ever, it is reflexive and (H), and hence B* is (Str), by Theorem
3.2, QED.

Theorem 3.3 If B is reflexive, then the following implications
hold:
UeCoe => lewece => (H) => m.lou.ce => (R)

Proof: Follows immediately from Theorem 2.2, the remark

following Definition 3.2, and Corollary 1 to Theorem 3.Z2. QED,
As noted previously, the implication on the left side of
(H) in Theorem 3.3 cannot be reversed, as shown by Example 2.2.
The best we can do at the moment by way of a converse is stated
in Theorem 3.4 below. First, however, we need a definition. The

following is a well-known property of weak limits: If w=-lim X, = %

then ||x|| = lim inf lenll. This suggests the following property:
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(P) If w-limx = x, and if lim lenll exists, then

=[] = 1m [|x4]]-
Definition 3,3 We will say B is (P) iff B has property (P),

We might note here that the space 1, is (P), since in 1,
weak and norm convergence of a sequence to an element are equiv-
alent (C2], Cor. 1, page 33). However, the space 1, is not (P),
since the sequence of unit vectors converges weakly to zero,
whereas the sequence of their norms converges to ones In view of
the hypothesis of Theorem 3.4, an interesting open question here
is whether or not there is an infinite-dimensional, reflexive
Banach space which is (P).

Theorem 3.4 If a reflexive space B is (H) and (P), then B is

l.u.Ce
Proof: Let {x ] be a sequence of elements of B and x,
an element of B with |lxn|| = ||x0|| = 1 and
lim ,Ixn + xo|| = 2, Since B is reflexive, [x ] has at least
one weak cluster point. Thus, let Yo be an arbitrary weak cluster

point of {xn}, and let [xv ] be a subsequence of {xn] which con-
n

verges weakly to Yor Since ||xv || = 1 for each n, we have
n

Ilyol' = 1 by (P). Then, since B is (H), we have

Uu |2, = Yo|| = 0. So,
2 = 1lim '|xvn + xoii = lim llxvn =Y * Yo * xOll
s lim (llxvn - Yol + llvo * %)

Ln ) = Yol * 1Yo * %ol

l'yo + xoll = llyoll * 'lxoll = 2.
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Equality throughout implies that |]y. + x = 2, 80
o

ol
llxoll = llyoll - ll(xo + yo)/2|| = 1, But B is {(R) and hence we

must have Yo ™ Xge Thus we see that X, is the unique weak cluster

o
point of {x }, and from the reflexivity of B it follows that {xn]
converges weakly to Xge Using (H) again, we finally get

o|| = O+ Therefore, B is l.u.c. QED

Whether or not the implication on the right side of (H)

lim "xn -x

in Theorem 3.3 can be reversed is not known at this time. How-
ever, a negative answer seems reasonable in view of the dis-
cussion at the beginning of this section, and the fact that the
property (H), which we now have "between" l.u.c. and m.l.u.c.,
does in fact yield the desired duality, as shown in Theorem 3.9
below. We now continue with the results on duality.

Theorem 3.5 If B is reflexive and B* is (H), then B is (Str).

Proof: B reflexive implies that B* is reflexive, so by
Theorem 3.2, B¥** is (Str), which in turn implies_that B is
(str). QED
Theorem 3.6 If B* is (Str), then B is (H).

Proof: Since (Str) implies (S), it follows that B is (R)

by duality. To show that B is also (A), let [xn] be a sequence
of elements of B such that

w-lim x = x_, ||xol| =1, and lim ||xn|| = ||x°||.

We want to show that {xn} converges in norm to x, as n becomes
infinite, Using the notation of Fan and Glicksberg, we thus want
to show that 1lim X, = Xge Choose fo in B* such that

IIfoll =1 and £ (x,) = 1. Then, since x, is the weak limit of
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X,» we have lim f (x ) = f (x ) =1 = ||f°||. Since

lim ||xn|| = 1, there can be at most a finite number of x 's such
that 'lxnll = 0, so without loss of generality we may assume that
for each n, "xn|| > 0, For each n, let y = xn/llxn'l.“ Then

for each n, llynll = 1, Furthermore,
Lim £ (yy) = lim £o(x /||, []) = 1im (1/||x,]| ) £,(x,)

= (Lm 1/||x, ||} (2im £,(x)) = ||£,]] -

n|

B* is {Str) by hypothesis, so 1lim llyh - ¥ | = 0 by Theorem
l.1. By completeness, there exists Yo in B such that

||Y°|' =1 and 1lim y = y,. For eachn, x, = llxn|'°yn’ so

|) (Lim y) = y,.

lim x = lim lenll.yn nI

(1im ||x

Since norm convergence implies weak convergence, we thus have

w-lim Xy = Yo Therefore, y,_ = Xy by uniqueness of weak limits,

0

and hence we have 1lim X, = Xge QED,

Combining Theorems 3.1 and 3.6, we get

Theorem 3.7 If B* is (Str), then B is reflexive and (H).

Theorem 3.8 If B is reflexive and (Str), then B* is (H).

Proof: B reflexive and (Str) implies that B** is (Str),
and hence B* is (H) by Theorem 3..4. QED.

Combining the results of Theorems 3.2, 3.5, 3.6, and 3.8,
we see that we have full duality between the properties (Str)
and (H), which we now state in the following
Theorem 3.9 If B is reflexive and B CB*] has one of the prop-

erties (Str) or (H), then B* [BJ has the other.

Since, in a reflexive B, an isomorphism of either B or B*
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determines an isomorphism of the other, we also have
Theorem 3,10 If B is reflexive, and if B CB*J is isomorphic to
a space which has either of the properties (Str) or (H), then B*

CBJ] is isomorphic to a space which has the other.
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CHAPTER IV

Product Spaces

Let {Bi} be a sequence of Banach spaces. Denote by
“-o-”i the norm in Bi’ Let Pp(Bi) be the space of sequences

x = {x}}, xi

in Bi’ for which E:fflllxillg is convergent, where
isp<ow. Let ||---|| be the norm in Pp(Bi)’ where

x| = ¢ Z 2 ||=Y| 2)PP. 1t is readily verified that P,(B,)

is a Banach space.

Theorem 4.1 For p = 1, Pp(Bi) is (A) if each B, is (A).

Proof. Let {xn} be a sequence of elements of Pp(Bi) such
that w-1lim x, = x and lim ||xn|| = le". We want to show that
lim “xn - x|| = 0, Without loss of generality, we may assume
that ||xn|| = llxl' = 1, for otherwise we could normalize each
element and proceed as in the proof of Theorem 3.4. Then, since

||xn||p = 1, we have I'xn||p 1 and hence llxnII s 1 for each

i, Thus, for each i, {IIxnII } is a bounded sequence of real

numbers. Therefore, by diagonalizing, we can determine a sub-

sequence of n's such that 1lim l'xgll. exists for each i. Now,
i

since x is the weak limit of the subsequence b S it follows that

. i
w=1lim xo

(1) llxilli s lim inf leilli = lim I’xilli for each i.

= x1 tor each i, and thus we have

We want to show that equality must hold in (1) for each i.
Suppose by way of contradiction that for some index j,

”xj”J < lim legllj. Then, since p is finite, it follows that

34
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”xd“g < lim “xgng « let €= (1lim ”xgng) - ”xjng > 0.
Choose a finite set A of indices i such that )
2ie A Hxi“ g >1 - €/ks Without loss of generality, we may
assume that j is in A, for otherwise we could replace A by

A' = AU [j]. For each i ¥ j in A, choose N, such that
“x:“}i’ > “xing - €/5 for nz Ni, and choose Ny such that

“xg“g > ”xjug + €/2 for n Nj' Then, for each n such that

n 2 max (Ni, Nj)’ we have
i,je A

i3
L= ||z )I® = Z21|%llf 2 Sieallalll = IIX?,IIS" * z“““"i“‘i’

J i i 17
> 115+ €2 Tysa I=]|E - €/5h

Jup igp i
= ||x + €2+ ) ieA||x||P - Yier €/5
§+ € Dish||||] - Dien €/

= Tien ||<H|P+ €2 - E%;jA € /5t

>Zien 16|13+ €2- T2 €5

=Ziea =13+ €2- €= Tyen 1|+ €
> l1-€m+€Mh=1

Since the strict inequalities in the above are impossible, we

thus get a contradiction. Therefore, equality holds in (1) for

each i. Each Bi is (A) by hypothesis, so for each i,
lim “xl:}l - xi”i = 0, Hence,

R R [
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din (D [l - Y
~Wn T3 ||xg - =H|DVP s (T2 im [|x; - Y| DVP =0
QED,

Day (C31, Theorem 6) proved that for p > 1, Pp(Bi) is
(R) if each B, is (R), so we immediately have the following

Theorem 4.2 For p > 1, Pp(Bi) is m,l.u.c. if each B, is m.l.u.c.

Corollary For p > 1, Pp(Bi) is (H) if each B, is (H).

Proof. For k21, and n=1, 2, 3, e+ , define

1
xo = (xo, xg’oon’ x](:, x1°(+l' xlo(.'-z’ooo)
+
X0,k = (0, 0,¢¢°, O, xl; l’ xl:-z:'“)

X =™ (x}l, xl'zl’...’ xg. xlr:.*-l, xrlf+2’ooo)

n
b'4 k=(0,0f“,0,xr1,xhgf“)

n, n
Let 'Ixnll = ||yn|| = l'xoll = 1 and 1lim l'xn * ¥, - 2xo|' = 0,
Then we want to show that lim ” X, - yn|| = 0. For each n,
len + ynll s lenll + 'lynll = 2, so we have for each n that
%0 + ¥4 = 2%,]| = Illxn ]l - 2%l = 2 =% * al| = O
But since lim lxn + ¥, - 2xoll = 0 by hypothesis, we thus get
(1) 1lim |xn + ynll = 2

Using the definition of the norm and the Minkowski inequality,

we have for each n,
i i 1l
”xn+yn” ==(Zic:l r11+yn g) /p
- k i, i . @ i i 1l
= (T il * vl §+ Zidel%a * Wl E) /P
i
n

=(Zl;f=1 x

T s * ol
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A

[ z:§=l(|'xﬁ|li * Ilyilli)p ¥ (l'xn,kll ¥ I'yn,kll)pll/p
(T i llxallE + il PP+ CTElIRE + 1y el PP

=l + Hl5all = 2

From this result and (1), we thus get
(2) um (T Uy + (valls??

U k] ] PP = 2

,x; 'i} is a bounded se-

A

For each i, ,,xil'i s ,|xn', =1, so |

quence of real numbers; hence, by diagonalizing, we can deter-

mine a sequence of n's for which 1lim lx; ,i exists for each i.

For each i, let a; = lim leilli. Since
1= ||%[)" = T8 [1%llE + [|%,k]|P» we also have

lim || %, []° =1 - lim L=t =1 - L ¥ tim |]x])®

- k _ .p_ P
L= =325 =M

Now, for each n in the sequence determined above, {llygl’i] is a
bounded sequence of real numbers, so by diagonalizing, we can
determine a subsequence of n's for which 1lim I'yilli exists for

each i. For each i, let b, = lim llyi'li . Since
L= {|valI® = Ziallvall 2+ |vn,xll®s we bave
Lin {|y, o ||P =2 - 2im i ||vallf =2 - Tie 1im [|vq]l3

= k -
=l- 25 b =3B

Using these results and (2), we thus get

2= 1m LE Il + lvmll0®+ ) * (v, lDPVF
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= {5 (a, + )P+ (a + B IPP/P

s(EE al+aD)1/P e (DK P+ BP) =1+ 1 =2

This forces equality in the Minkowski inequality, from which it
follows that ay = bi for each i, and Ak = Bk for each k, or

(3) 1lim 'Ixﬁlli = lim |lyi||i for each i, and
lim ||xn’k|| = 1lim Ilyn’k|| for each k.

For each n, ||x, + v, - 2xo“ = z::lﬂl“x * yi = 2x°l|p)1/b

2 (L 2|11+ wills - 2llglly[ P2
z 0.

——

Since 1lim len ¥, - 2x°|| = 0 by hypothesis, we have

un (L Dl + valls - 2llxglls
the sum of a series of non-negative terms can be zero only if

P)1/P = 0. But the limit of

the limit of each term is zero. Thus,

() Lim ||<t + y2||; = 2||xg]] 4 for each i.
From (3) and (4), we get, for each i,
2[|x]| s = 2 || xq + vally = m (lxglly * (|vally)
- aim [[<E][y + 20m [[52]] = 2 13m [|sd]] g0 or
(5) Lim ||xi||, = ||x}[]; for each i.

We want to show that equality must hold in (5). Suppose by way
of contradiction that for some index j, lim IIxﬁ'ld > ||xg|,j .
Let € = 1lim |'xg'| ||x3||p > 0., Choose a subsequence of n's

such that
(6) “xg“g > “xg“g + €/2 for each n.
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Since‘rlxoll = 1, we can choose a finite set J of indices i such

that
M Lies lIlli>2-€n

Without loss of generality, we can assume j is in J, for otherwise
we could replace J by J' = Jy {jl. By (5), for each i in J we

can choose Ni such that for all n = Ni’
inp ipgp i
(8) “xn“i = “xo“i - €/
Let N = max {Ni ¢ 1 in J}. ‘Then, for all n 2 N in the above

subsequence, we have

L= [l%I® = S li=all? = Sacalixalt = 1122115

* Lied ||xl

iy ]
> =35+ €2+ Basd |l B by (6)
z |||+ €2+ Zi;g (]=2[12 - €54 by (8)
. i i
“limll €2 Lisd |IxliE - Zisd €5

= Licy |I%]|2+ €r2 - Lica €5
17 3
> 1-€n+ €2-L2 ¢/ by (7)

= 1+ €/ - €/4=1.
We thus get a contradiction. Therefore equality must hold in

(5)e At this point we have shown that from the hypothesis

lim len oy, - 2x°|| = 0, it follows that

(9) 1lim leilli = lim IIyil'i = ||x§||i for each i,
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Also, it follows directly from (9) and the second equation in (3)
that
(10) 1im I'xn.kll = 1im l'yn.kl' = l'xo'kll for each k.

We now want to show that 1lim ||xn - yn|| = 0, and we shall do
this by showing that its negation leads to a contradiction. To
this end, suppose there exists a subsequence of n's and a number

r >0 such that ||x, ~ y,|| &r. Then

0<rs||xg -]l = V3R g - wal|DYP
- vall} + Eoayllxn - vall DYP
A HEN[ESEE A (Ll

- y: p)l/b + l'xn, - yn,kll

s 21-1 *n - Yn g)l/p * ”xn,k” * ”ynak“

Therefore, ( Z:g-lllxi - yﬁllﬁ)l/p &r - ('Ixn,k" ¥ "yn,kll)

]
-
™M
%
)
[ar]
S S

- (Zi"l X

SV

s (Liallx

o

Since lm ||xy i || = Lim || vy i|| = |[%o,k|| and, im|[xo || = O

there exist k and n, such that l'xn,kll + Ilyn,k|| <r for all

n 2n.. Then, for this choice of k and all n & n,, we have

o
i inpyl/p
(Zia1 % - wllD1/P 28 >0
Hence there exists an io with 1 51 s k and a subsequence of

n's for which

4 i
% - Vn°||1 2t >0

Now, 'Ixn - yno'li o "x ﬂ'i + "ynol'i and

1lim (“xn "i + l|yn°“i ) = 2 ||x O'Ii « Therefore,




L1

||x°°| i 7 0. So there exists a subsequence of n's for which
o

i 1
IEN j_ 70 and ||yn°||io ¥ 0. Then,

xiO yio iO yio
1im in o = = lim in .
2l Nl ], Iixs °||i T

i i i
= (1/||xo°|!io) lim inf ||xn° - y“OHio

i
=t/ ||%° |l
2t

i
Since Bi is m.l.u.c., there exists(5= 6(t,x°°) > 0 such that
o

xio iO xiO
lim inf 12 + :: -2 ﬁz——— 2
llxn ”io Ilyn I|i° leo l'io io

- 1
Therefore, lim inf ||xi° + yril° -y = 6]1%°s
o) (o]

But then,

lim inf len +y, - 2xo|| = lim inf ( E:j:a||xg + yi - 2x§"§)l/b

i i
1im inf leio + yno - 2x°°||i
0

i
5 11%°lls,

v

v

>0

which ocontradicts the fact that 1lim ||xn + ¥y, - 2x0” = 0,
Therefore, 1lim llxn - ynll = 0, and thus Pp(Bi) is mileuece
QED.



CHAPTER V

Some Isomorphism Results

Clarkson C1l] proved that any separable Banach space is
isomorphic to a space which is (R). Klee (C7], Theorem Al.1l)
showed that every separable reflexive Banach space is isomorphic
to a space which is (R) and also to a space which is (S). Day
(C32, Theorem 4) improved on both of these by proving that any
separable Banach space is isomorphic to a space which is (RS),
that is, simultaneously (R) and (S). Kadec (C63], Theoremiz)
proved the following:

Theorem 5.1 Any separable Banach space is isd%o;ghic to a space
which is (A).

Actually, Kadec asserts a stronger result. Immediately

after the proof of Theorem 2, he displéys a new norm for C, the
space of continuous functions on the interval CO,13, which he
states is (H). Once this is verified, we can use the fact that
C is the universal separable space to extend the result to all
separable spaces. Since we plan to use this result below, we
shall prove it formally, and use a somewhat different method.

We start with two lemmas, the first of which is obvious.

L .1 IfBis (A), then every linear subspace of B is (A).
Lemma 5.2 I1f B is separable and (A), then B can be renormed

with an equivalent norm such that, under the new norm, B is (H).

Proof: Following the method of Clarkson Cl] or Day

(C3], page 518), for each x in B, define Tx = !fi(x)/ Zi], where

{fi] is a bounded sequence of elements of B* which is total over

L2



b3

B Then T is a one-one continuous linear map from B into 12 .

Define a new norm ll."lll in B as follows:

For each x in B, I'xlll = llxl' + llTxIllz s where I

original norm in B,

---ll is the

This new norm is equivalent to the old norm,

for if K is a bound for the fi, we have for each x in B that

=1l = =2 =

1A

A

=

(L2, (g5(x)y 21222

R AR |[x]] 241712/

(58 (ke [|x]l 292172

Klx]l (42 /e

Y =

x|| + =],
x || +

||+ L
x|| +

x +

x|| +

(1+ k) ||=x]]

To show that II"'l'l is (R), suppose that

=0y = Hylly =2 and ||x+ v][y = [|x]]y * vyl

Then, using the triangle inequality, we get

lI={l2 * 11¥ll2

A

x+y

x+y

x+t+ty

x|| +

|=]] + llvlly

1

-+

eyl + [l )y,
Tx + TY“l2

T"”l2 + ”TY”12

il limeily, = Nl
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Equality throughout implies that
I'Tx + Ty“l2 = ||Tx|l12 + ||Ty||12 « But 12 is (R), so wa

must have Tx = Ty. Therefore, x = y, since T is one-one, and
hence ||---|| is (R). Let us write (B, II---'ll) for the space
B with norm ||...|'1. Then, to show that (B, ‘l"'lll) is (4),
we first note that

(B, ||eee]|q) = (B, |]-==]]) fl (T(B), ||“‘||12’
ST RTE S

1, is u.c. and thus is (A). Also, (B, I"o-ll) is (A) by hypoth-
esis. Therefore, (B, |[+++||) ¥ 1, is (A), by Theorem 4.1, and
hence (B, """'1) is (A) by Lemma 5.1. QED

Theorem 5.2 (Kadec) Any separable Banach space is isomorphic
to a space which is (H).

Proof: 1If B is separable, then by Theorem 5.1, B can be
reqormed so as to satisfy (A). This new space can then be again
renormed so as to satisfy (H) by Lemma 5.2. QED

Fan and Glicksberg have proved the following theorem
(C51, Theorem 6):

Theorem 5.3 If a normed linear space X satisfies (H) and if

X* is separable, then X is isomorphic to a space which is l.u.c.

We are now in a position to improve on this theorem, as

follows:
Theorem 5.4 If B* is gseparable, then B is isomorphic to an

l.u.ce Space.
Proof:  B* separable implies that B is separable,
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(C11], Theorem A4.3-E, page 187), so by Theorem 5.2, B can be re-
normed with an equivalent norm such that, under the new norm, B
is (H). The result then follows from Theorem 5.3. QED

As an immediate consequence of the above theorem, we
have the following
Corollary Every separable reflexive Banach space is isomorphic

to an l.u.c. space.

That separability of B* is not a necessary condition for
B to be isomorphic to an l.u.ce space is evident from an example
by Phelps (€91, page LA7) wherein he renormed 1, with an equiv-
alent norm which is l.u.c., and of course, l; is equivalent to
m, which is not separable.

In general, an isomorphism of B%* may not be determined
by an isomorphism of B, but Klee has observed (L7], Theorem
Al.2) that if B* is renormed with an equivalent norm and if the
new unit ball is w*-closed, then this new norm is the conjugate
norm of a new equivalent norm in B, Using this fact plus
Lovaglia's theorem (L8], Theorem 2.3) which states that if B* is
l.ue.c. then B is (Str), we have
Theorem 5.5 If B* is isomorphic to a space which is l.u.c. and

space which is (Str).

As an immediate consequence of the duality shown earlier,

we also have

Theorem 5.6 If B* is isomorphic to a space which is (Str), then

B is isomorphic to a space which is m.l.u.c.
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Proof: By Theorem 3.1, if B* is (Str), then B is reflex-
ive. Since reflexivity is preserved under isomofphism, we thus
have that B is reflexive. Then by Theorem 3.8, B is isomorphic to
a space which is (H), and hence also m.l.u.c., by Theorem 3.2. QED

One final result is perhaps worthy of mention in this chap-
ter, Dixmier (C4J, Theorem 20') has shown that if the fourth con-
jugate space of B is (R), then B is reflexive. We can draw a
parallel result from this chapter regarding l.u.c. Phelps' example
following the corollary to Theorem 5.4 exhibits a non-reflexive
space B such that B* is l.u.c. However, using Lov;élia's theorem
stated immediately before Theorem 5.5, we have the following
Theorem 5.7 If B** is l.u.c., then B is reflexive.

Proof: B** is l.u.c. implies that B* is (Str), which

in turn implies that B is reflexive. QED




BIBLIOGRAPHY

l. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math.
Soc. vol 40 (193567 pp. 396-L1L.

2. M. M., Day, Normed linear spaces, Ergebnisse der Mathematik,

1958,
3. Strict convexity and smoothness of normed spaces
Trans. Amer. Math. Soc. vol 78 (1955) pp. 516-528, ’

Le Jo. Dixmier, Sur un theoreme de Banach, Duke Math. Jour.
vol 15 (19L8) pp. 1057-1071. —

5. K. Fan and I. Glicksberg, Some geometric ﬁroEerties of the
spheres in a normed liﬁear space, Duke Math., Jour. vol 25

TIOZET ppo 3532508, — o

6. M. I. Kadec, On weak and norm convergence, Doklady Akad.
Nauk SSSR vol 122 (E'g{?'r__pp.ﬁ_-l .

7. V. L. Klee, Convex bodies and ﬁeriodic homeomorphisms in
Holbert é ace, Trans., Amer. Math. Soc. vol 74 (1953) pp.
=li3e

8, A. R. Lovaglia, Locally uniformly convex Banach spaces, Trans.
Amer. Math. éoc. vol 78 (1955) pp. 225-238. ’

9. R. R. Phelps, Subreflexive normed linear spaces, Archiv der
Mathematik vol 8 (1957) PPe Lhlh=450,.

10, V., Smulian, Sur la derivabilite de la norme dans l'espace
de Banach, C» R. (Doklady) Acad. Sci. URSS vol 27 I§§KU)

pp. OL3-6L8.

ll. A. E. Taylor, Introduction to functional analysis, John Wiley
and Sons, New York (1958).

L7




VITA

Kenneth Wayne Anderson was born on February 2, 1924, in
Ottawa, Illinois. He attended the public schools of Ottawa and
Kankakee, Illinois, and graduated from Kankakee High School in
1942. After one year at the University of Illinois, he entered
the United States Military Academy at West Point, New York, where
he received the degree of Bachelor of Science in 1946. As a
result of an injury sustained at the academy, he was given a
medical discharge from the army following graduation. He then
spent seven years in industry, including four and one-half years
in the sales department of the Dodge Division of Chrysler Cor-
poration, Detroit, Michigan, and two and one-half years as
office manager, and subsequently, general manager, of a material
handling firm in Chicago, Illinois. In 1953, he entered the
Graduate College at the University of Illinois, where he received
the degree of Master of Arts in mathematics in 1955, From 1955
to the present time, he has served as a part-time graduate assist-
ant in the mathematics department at the University of Illinois,

while completing the requirements for the degree of Doctor of

Philosophy.

48




