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LINEAR FUNCTIONALS ON ORLICZ SPACES
BY

TSUYOSHI ANDO

§ 1. Introduction. The main purpose of this paper is to obtain
the general form of bounded linear functionals on Orlicz spaces.
As is pointed out in [4, p. 263], until now the general form has not
been found except under certain conditions. As every Orlicz space
is a modulared semi-ordered linear space in the sense of H. NAKANO
[7, § 35] and the structure theory of modulared spaces was discussed
fully by him [7, Ch. VII-X], the theory may provide a powerful
tool for our research. In the present paper, following the idea of .
the preceding paper [1], we shall succeed in representating each
bounded linear functional by a pair of a function and a finitely
additive measure, and in describing the functional norms.

The body of this paper is devided into six sections. In § 2, the
definition of Orlicz spaces and some known results are stated. In
§ 3, each bounded linear functional is represented as the sum of
two linear functionals, one of which is of function-type and the
other is singular (Theorem 1). In § 4, singular linear functionals
are put in correspondence to finitely additive measures, and the
functional norms are evaluated (Theorem 4). In § 5, the principal
theorem is obtained. In § 6, singular linear functionals are charac-
terized in terms of their functional norms (Theorem 6).

§ 2. Prelimunaries. 1f M (&) is a real valued convex function such
that M(0) =0, M(§) = M(—¢&) and M(&)/é — oo as & — oo, then
it is called an N-function. The complementary function M () of an
N-function M (§) is defined by the relation:

M(S) = Sup—OO<77<oo {‘577 - M(’?)}
Then it is known (cf. [4, § 2]) that M (&) is also an N-function and
M (§) is the complementary function of M (). By definition, M (&)
and M (n) together satisfy the so-called Young’s inequality:

|én| < M(§) + M(n) forall & 7. (1)



2

Let A be an abstract set and ug be the (non-negative) countably
additive measure defined on the (infinite) o-algebra B of subsets of
A. We assume that 0 < uo(d) < oo and po is complete, i.e.
uo(E) = 0, F CE implies F €B. E, F, G, ... denote elements of B.
M denotes the set of all real valued finitely additive measures
(neither necessarily countably additive nor non-negative) on B
such that supgg [P(E)| < oo and »(F) = 0, if uo(F) = 0. M is a
linear space with the usual addition and scalar multiplication. It is
known (cf.[9]) that 9 is a lattice with the usual ordering:
»1 > ve, if and only if v1(E) > »e(E) for all E € B. In fact, for any
ve M its positive part v+ and the negative part v— are given re-
spectively by

vH(E) = supg,pc g ?(F) and »~(E) = —infgpc 5 v(F).

We have » = »+ — 9= and the absolute || =»t 4 »~. M is a
Banach space with the norm: |[7|| = |»| (4). Throughout the
paper, elements of M and real valued B-measurable functions on
A are called simply measures and functions respectively.

Now we consider the functionals defined by

M(f) =/ M(f) duo and M() = / TL(f) dpo,

where / denotes the integral on 4. The Orlicz space L*yr defined by
the N-function M (§) is the set of all functions f such that
M(af) < oo for some « = «(f) > 0, (note that our notation differs
from that in [5] and [6]). L*j is a linear space with the usual
addition and scalar multiplication. By Young’s inequality (1) we
have

[1f-gl duo < M(f) + M(g) forallf,g. (2)

Furthermore corresponding to mutual complementarity between

M (&) and (&), it is known (cf. [4, § 14]) that
M(g) = sup,ze,, {/f-€duo — M(f)} forallge L’y  (2)
and L*3; is exactly the set of all functions g such that
S1f-g duo < oo forall fe L*y.

By means of the functionals M(f) and ﬁ(g) we introduce two
norms on L*jr by the relations:

fllar = supFigy<1 /-8 Ao (the first norm), @)
Iflllar = infyegy<q 16172 (the second norm). (4)
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The first norm is also defined intrinsically by Amemiya’s formula
([8, § 83], also [6] and [4, § 10])
1 4+ M(&f)

|/l = infg_ = (39

Then with each of the two norms L*j; is a Banach space, and they
are equivalent, i.e. |||f|llax < ||/l < 2|[Iflllar (ct. [5, Ch. 2, §2],
[7, § 40]). Furthermore L*p is a lattice with the usual ordering
(cf. [7, App.]). The positive part f+ and the negative part f— of
f € L*y are defined respectivily by
f(&) for f(t) =0, - —f(t) for f(t) <O,

1o = { 0 elsevffhere, amd = { O( ) elsevgfl)lere.
Then it is clear that f = f+ — f~and |f| = f+ + [~

A bounded linear functional ¢ on L*j is said to be positive and
is denoted by ¢ >0, if ¢(f) >0 for all 0 < fe L*py. ¢ > p means
that ¢ — 9 is positive. From the theory of semi-ordered linear
space [7, Ch. IV] it is known that with this ordering the set of all
bounded linear functionals on L*js is a lattice, and any bounded
linear functional ¢ can be represented as the sum ¢ = ¢+ — ¢,
where the positive part ¢+ and the negative part ¢~ are defined re-
spectively by the relations:

o (f) = SUPg<g<y ®(g) and ¢~ (f) = —infos;/sr @(g) forallf >0.
The sum ¢+ + ¢~ denoted by |¢p|. From the definition, it is easy
to see that

lgl (I7]) = supg <y plg) forallfe L*y. (5)

Bounded linear functionals are denoted by ¢, v, ...
From (2) it follows that each function g € L*3; can be considered
as a bounded linear functional on L*3; under the interpretation:

¢(f) = /1. dpo. (6)

It is known [5, Ch. 2, § 2] that the functional norms of ¢ in (6)
are given by the first and second norms of g in L*3 i.e.

sup ¢(A)/1Ifllar = lllglliaz  and  sup @(A)/1lIflllar = llgllzz-  (7)

By this reason we use the following notations for the functional
norms of a general bounded linear functional ¢

llpllaz = sup (/I and |llglllzz = sup (/)/lIflla-  (8)
We conclude this section in describing some properties of the
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functional M(f) and the norms, which we shall use without any
mention: |f| < |g| implies

M(f) <Mlg) and |[Ifllar < llgilar (Ifl1laz < [llgllIn2)-
The similar inequality holds for the functional norms.

§ 3. Decomposition. For any function f and E € B we denote by
fe the function f.yg where yg is the characteristic function of E,

_ /@) forteE ©)

fe(l) | O elsewhere.

Ey denotes the closure (with respect to the norm topology) of
the set of all essentially bounded functions in L*3;. Eps is a linear
space such that |g| < |f|, f € Ep implies g € Epr. Functions f in Ep;
can be characterized by the condition that ||/, ||az — Oas uo(Ex) —O.
Also it is known (cf. [5, Ch. 2, § 3] and [4, § 10]) that fis in Eps if and
only if M(af) < oo for all & > 0. A bounded linear functional ¢ is
said to be of function-type, if it is expressed in the form (6). ¢ is
said to be singular, if (f) = O for all f € Ey.

Corresponding to the decomposition of a measure into the
countably additive part and the purely finitely additive part
(see [9]), we can state (cf. [5, Ch. 1, § I, Th. 2]):

Theorem 1. Any bounded linear functional @ can be expressed
uniquely in the form ¢ = @. + @s, where @, is of function-type and
@s 1S singular.

Proof. The real valued function »(E) = ¢(yg) on B is a measure,
absolutely continuous with respect to ug, because

le(rm)| < ll@llzz-lllxmllle ~0 as  po(Ex) — 0.

Then by the Radon-Nikodym’s theorem [2, § 31] there exists u-
niquely an integrable function g such that ¢(yz) = /& g duo for all
E eB. Defining ¢, by the relation ¢q(f) = /f.¢dpo, as in
[5, Ch. 1, §1, Th. 2], we can prove that ¢, is a bounded linear
functional on L*p and ¢(f) = @e(f) for all feEp. Writing
s = @ — @, from the definition of g, it follows that gg(f) = 0
for all feEy, that is ¢g is singular. Thus a decomposition is
obtained. If ¢ = @1 4 @2, where ¢; is of function-type and ¢z is
singular, then ¢, — @1 (= @2 — @s) is of function-type and singu-
lar at the same time. Let % be its representation function, then
JE b duo = (pc — @1)(h) = 0 for all E € B because ¢, — ¢; is singu-
lar, hence # = 0, i.e. o = @1. Thus the uniqueness of the decom-
position is established.

(1%
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By this theorem, we can characterize bounded linear functionals
of function-type.

Corollary. A bounded linear functional ¢ is of function-type, if
and only if the measure v(E) = @(fg) on B is absolutely continuous
with respect to po for all f e L*y.

Proof. According to Theorem 1, ¢ is of function-type, if and
only if ¢ = ¢, Let ¢ be of function-type, corresponding to
g € L*py. Since f. gisintegrable, itsindefiniteintegral ¢(fg) = /&f.gduo
is absolutely continuous with respect to uo. Conversely let the
measure ¢(fg) is absolutely continuous with respect to uo for all
f € L*y. For any f, writing Ex = {t; |f(!)| < &}, we have |f5 | < |f|
(k=1,2,...) and po(d — Ex) -0, hence lim,_, /5. (£) = f(?)
almost everywhere. Then by the Lebesgue’s theorem [2, § 26] we
have [ f.g duo—=/f.g duo = @¢(f). On the other hand, since

k—>o0

o) = oltm) + ¢(fa—m) =5 [-8dpo + ¢(fs—g) (k=12 ...)
and ¢(f,_z,) — 0 by hypothesis, we have ¢(f) = @.(f).

This corollary means that the mapping ¢ — ¢, is the projection
onto the set of all contimuous linear functionals in the sense of
H. Naxkano [7,§19], hence it is a lattice-homomorphism (cf.
[7,§5]). The same holds for the mapping ¢ — @s. In the following,
we shall use only the facts |p¢| = |p|c and |ps| = |¢]s.

Between the set of all bounded linear functionals of function-
type and L*3s the mapping ¢ — g in (6) is linear, lattice-isomorphic
and the norm preserving. Thus bounded linear functionals of
function-type can be fully described by their representation
functions. On what condition is every bounded linear functional
of function-type? The necessary and sufficient condition is that
M (&) satisfies the so-called (42) condition: Tﬁé_m M(28)[M (&) < oo,
or equivalently L*pr = Eps (cf. [5, Ch. 2, § 3]). As to singular linear
functionals, circumstances are more complicated. The essential
difficulties originate in the fact that, contrary to the above co-
rollary, for singular ¢, ¢(fg) is generally neither absolutely continuous
nor countably additive, so the Radon-Nikodym’s theorem can not
be applied. This is the reason to consider finitely additive measures.

§ 4. Singular linear functionals. First of all we describe some
properties of functionals M(f) which facilitate the proofs of this
section.

Lemma 1. (@) For any e¢>0 and 0 <felL*y such that
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M(f) < oo there exists E € B such that [g € Epy and M(f — [5) <e.

(b) For amy sequence of mom-negative functions {fx}7 such that
P M(fx) < oo, there exists g such that g > fr (k=1,2, ...) and
M(g) < 2 M(fi).

Proof. (a) Writing Ex = {¢; f({) < &k}, we have lim,_,, /5,(f) =
= f(#) almost everywhere and |f — /5 | < /| (k= 1,2, ...). The
Lebesgue’s theorem [2, § 26] guarantees M(f — f5) — 0. Thus for
some n M(f — [z ) <e.

(b) Writing gx(t) = Max {f1(), ..., fx(f)}, we have

s ...

By induction, we can prove that M(gz) < S¥M(fn) (kR =1,2, ...),
hence from the Lebesgue’s theorem it follows that

M(g) = limy_,,, M(gr) < Z7° M(7x),
where g(t) = sup;_;,. .. gx(t)-

We begin with deriving some important properties of functional
norms of singular linear functionals.

Lemma 2 (cf. [1]). Let ¢ and y be arbitrary singular positive
linear functionals. Then

(@ llelllz = llollm = suPmp<e P(1)-
(b) For any e > O there exists g = 0 such that

Mg) <& and |lollz = ¢(g).
© Mo+ vllz = llellz + [yl
Proof. (a) From the definition (8) it follows that

elllsz < llellaz = suPmp <1 o(f) < SUPM(f)<oo o(f).

Thus it suffices to prove that supy ;<. @(f) < Illelllzz- Let f =0
be arbitrarily chosen such that M(f) < co. According to Lemma 1,
there exists 0 < A € Eyrsuchthat 0 < # < fand M(f — %) < e. Then
by Amemiya’s formula (3') ||f —Allzz <1+ M(f—5h) <1+ e

On the other hand, ¢(f) = ¢(f — &) + ¢(h) = @(f — &), because ¢
is singular by assumption and /4 € Ey;, hence

o(f) = o(f —h) < (1 + &).0(f = B/If — Akl < (1 + &) |llllam

Since ¢ > 0 and f > 0 are arbitrary, this establishes the desired
inequality. In the process of the proof we have seen that for any

e >0 |lgllz = suPmy)<e 9(/)-
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(b) As above, there exists a sequence of non-negative functions
(7 such that M(f) <e/2¢ and |lglly < olfe) + 1k (k=
— 1,2, ...). By Lemma I there exists g such that M(g) < X7° M(fk)
<eandg >fr (k=1,2,...). Then we have

ol < @) + Uk <llollmz + 1/k (k=12 ...),

from this it follows that ¢(g) = |||l

(¢) According to (b), there exists g > 0 such that M(g) < oo and
llp + vl = ole) + @) I () + v <llolm + llvllm (say
@(g) < |l¢l|3), again by (b) we can find # > 0 such that M(#) < oo
and ||g||5z = @(#). Then by Lemma 1 there exists f >0 such that
f=>g f=hand M(f) < M(g) + M(h) < oo. For such f we have

lp + vllm = (@ + 9 > o) + v = llo + vl
This contradiction establishes the assertion (c).

The set of all singular linear functionals constitutes a lattice
under the induced ordering. Lemma 2 (c) shows that the set of
all singular linear functionals is an abstract (L)-space in the sense of
S. KAKUTANI [3].

For any function f and E € B, fg is the result of restricting fon
E. The notion of restriction can be extended in the natural way
over all bounded linear functionals of function-type. In fact, if ¢
is of function-type, corresponding to g, then its restriction gg is
defined as the functional, corresponding to gg. In what way can
we extend the notion to general bounded linear functionals? The
answer is quite simple. The restriction ¢ is defined by the relation:

vu(f) = olfs) for feL'y. (10)
When ¢ is of function-type, this definition is in conformity with
the old one. If @ is singular and En F = 0, then by Lemma 2 we
have
llpe U rllar = llge + orllz = lleella + llorlla
Thus we have obtained a measure.

Lemma 3. If ¢ is a singular positive linear functional, the

function v, defined on B by

vo(E) = llgEllm (11)

is a (non-negative) measure such that v,(A) = ||@|l57-

In this manner each singular positive linear functional is put in
correspondence to a (non-negative) measure. Our next task is to
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see how we can reconstruct the original functional by means of
the corresponding measure. For this purpose, we introduce the new

functional p(f) on L*3z by
p(f) = infyeen<co 16172 (12)
Lemma 4. The functional p(f) has the following properties:

(@) plef) = la| p(f) for all veal «,

®) lgl < I implies p(g) < p(f),

(¢) f.g =0 dmplies p(f + g) = Max {p(f), p(g)},

@) p(f) <1, if and only if M((1 — &)f) < oo forall 1 > ¢ >0,
(e) p(f) =1, of and only if M((1 + &)f) = oo forall ¢ > 0,

() p() =0, if and only if f e Eyy.

These are immediate consequences of the definition (12), and we
omit the proof. By the way, we remark that p(f) is nothing but the
norm in the quotient space L*3/Ep; (the quotient norms produced
both by [|f|[a»x and [||f||[s»x coincide with each other). Since, as
mentioned in § 2, the existence of non-trivial singular functionals
results from L*p # Ep, to introduce the functional p(f) is natural
to treat singular linear functionals. We shall use the following
immediate consequence of Lemmas 2-3:

19115z = sup ¢(A)/p(f) ~ for all singular g, (13)

For any non-negative » € I we define the functional ¢,(f) on the
set of all non-negative functions by

Pulf) = inf X7 p(fg,) .»(Ex)  for f =0, (14)
where the infimum is taken over all finite disjoint partitions
{Exj1 of 4. (In the following, any partition is composed of elements
in B).

Lemma 5. The functional ¢,(f) has the following properties:

(@) @,(«f) = a,(f) for all non-negative real o,

(6) 0 <f<g vmplies ¢,(f) < ¢,(g),

(© @l + 8 =olf) + o),

(@) 0 <o) <plf).»(4).

Proof. (a), () and (d) are evident from Lemma 3. In order to
prove (c), we first treat the case f.g = 0. Writing E = {¢; f() > 0}
and F = {t;g(t) > 0}, we have EN F = 0. Let {Ex}? be an arbi-
trary finite disjoint partition of 4. Writing

C_{EnEk B=1,2; .::;m)

T FNEw  (k=n+1,..., 2n)
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we obtain a finite disjoint partition such that

(f+g)Ek:fc'k+gck+,, (k=1,2,...,n).
Since f¢,-g¢,,, = 0, by Lemma 4 we have

2 o((f + &)m) ¥(Ex) = X0 Max {plfe,), p(ecy,)}-#(Ex) >
> 33 pli) #(Ca) + 3 pleo,) -»(C).

Since the partition {Ey}} is arbitrary, this establishes the inequality:

Pl + 8 = o) + 9.(8).
Now let {Fg}}* be another arbitrary finite disjoint partition of 4.
Then, as above, we have
1 P(fg) V(Ex) + X p(r,) -»(Fr) =
= X1 p(fg~m) V(E O Ex) + X' pgpnp,) - »(F N Fr) =
= 21" p((f + 8)p,) -»(Dr),
where Dy=ENEp (k=1,2,...,n) and = F N Fp_,
(k= n+1,...,n + m), consequently we have
Pl + 8 < olf) + 9.8).

Thus we have proved that (c) is valid for f, g such that f.g = 0.
Coupled with (b), this yields that for any finite disjoint partition
{Ex}t of 4 and non-negative numbers {oz}? we have

(pv(zrll o‘kak) = E;L ak(pv(fEk)'
Next we shall treat the case that 0 < g < f. Since g/f is an es-
sentially bounded function, for any ¢ > 0 there can be found a
finite disjoint partition {E}} of A4 and non-negative numbers
{ox}? such that

21 onxm, < glf < XY (ok + &)y,

ie. 21 okfm, < g < X (ak + &)fg,
Then by the above result and (b) we have

P(f +8) < of + 21 (e + &)f,) =

= @21 (1 + o + &)fg) = Z7 (1 + ox + g, (fz,) =

= (1 + 8o, () + 9(ZT axfp) < (1 + &), () + 2.(0),
and similarly

?(f) + o.8) < (1 + &)o, ( + g).

Since e > 0 is arbitrary, we get to the conclusion that (c) is valid
for f, g such that 0 < ¢ < /. Finally we prove (c) for general f, g.
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Writing

E={;ft) =g} and F={t;f() <g@)}
we have ENF =0, hence f + g = (fg + gg) + (fr + gr). Since
fe > gg and fr < gr by the definition of E and F, the foregoing
results can be applied

olf + &) = olfe + gB) + o(fr + ¢r) =

= ¢,(f8) + ¢,(ge) + @.(fr) + .(gr) =
= o,(f) + @.(9)-

This completes the proof.

The functional ¢, is defined only for non-negative functions. It
can be extended in the natural way over all L*p.
Lemma 6. The functional ¢, defined by

o(f) = @ (f1) —o(f) for fel'm

is a singulay positive linear functional such that |||z < »(4).
Proof. It is easy to see that g, (af) = ag,(f) for all real «. To
prove additivity, remark that

t+ot—(+eg =f+eg=H—-f+g"—¢,

hence (f + gt +f +g =(+g + 7 +gh Applying Lemma
5, we obtain

e(f + 81 + o) + 9le7) = (f + 97) + w1 + oule™),

accordingly

p((F+ )1 —o,((f+2)7) = i) — () + o.le") — @lg),

hence ¢,(f + g) = ¢,(f) + ®,(g) by definition. On the other hand,
evidently ¢,(f) = O for all feEy, so g, is singular. Finally by
Lemma 4 we have

7 (Nl < @) + @(17) = @(lf) < p(f)#(4),
so by (13) |lg,/lm < #(4).

Now that we are in possession of a method to construct a
positive linear functional from a measure, we can reconstruct the
original linear functional by means of the measure defined by (11).

Theorem 2. Let ¢ be a singular positive linear functional and v
be the measure defined by (11). Then we have ¢ = @,.

Proof. Let {Ez}? be an arbitrary finite disjoint partition of 4.
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Then
o(f) = 21 elfg) = 2% ¢zfe) <
< 31 e(fe) llegllsz = 27 p(fw,) -»(Ex),

hence according to the definition (14), ¢(f) < ¢,(f) for all f >0, i.e.
@ < @,. On the other hand, by Lemma 6 we have ||p,||5 < »(4) =
= |lgl|zz, hence |lg,|l5z = [|¢ll5z- By Lemma 2 we have

llg, — @llaz = ll@ullzr — llellzr = 0,

because ¢, — ¢ >0, ¢ >0 and ||g,|l57 = [|¢ll5z, hence ¢ = @,

The corresponding reflexivity does not hold for the mapping
» — @,, combined with the mapping ¢ — »,. In order to obtain the
reflexivity, we must restrict the domain of the mapping to the
proper subset of M. For this purpose, we introduce a new notion:
v € M is said to be in the class M, if there exists a disjoint sequence
{G#}¥° such that |y| (4 — U7 Gg) = 0 and

X7 M(R) - po(Gr) < oo, (15)
ST M((1 + 1n)k) . wo(Gk NE) =00 (n=12,...) (16
for all E € B such that |»| (E) £ 0.

From (16) it follows that |v| (Gg) =0 (R =1, 2, ...), accordingly »
is purely finitely additive in the sense of K. Yosipa and E. HEWITT
[9]. The set of all measures in the class M constitutes a linear
sublattice of It .To introduce this notion is justified by the following:

Lemma 7. If ¢ is a singular positive linear functional, then the
measure defined by (11) is in the class M.

Proof. From the proof of Lemma 2, it is easily seen that
llpell3z = @(fg) for all E € B, where f > 0 satisfies the condition
that M(f) < coand ||p||57 = @(f). Writing G = {£; & + 1 > [({) = &}
(k=1,2,...), we have a disjoint sequence. Now we shall see that
{Gr}?° satisfies (15) and (16). In fact, first v,(4 — UY Gg) =
= @(f4-u, @) < P(xs) = 0, because g is singular by assumption.
Next

X7 M) - po(Gr) < ZF Ja M(f) duo < M(f) < oo,
hence (15) is satisfied. Finally if »,(E) = |lgrllzz # 0, by (13)
lleellsr = @(fe) < p(f&).||@El||37, consequently p(fg) = 1. By Lemma
4 this in turn implies that M((1 + ¢)fz) = oo for all ¢ > 0. Thus
we have
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o M((1 + 1n)k). uo(Gr N E) =
=25 M((14-1/2n)(k+1)) . po(Gr N E) =33, [ M((141/20)]) dpo=
— M((1 + 1/20)f) — S¥=1 [ M((1 4 1/20)f) dpo = oo,

because (1 + 1/n)k > (1 + 1/2n)(k + 1) for & > 4n. Thus we have

(16).

For the measures in the class M the desired reflexivity is
guaranteed.

Theorem 3. If v is a non-negative measure in the class M, then
1(@)zllsr = »(E) for all E € B.

Proof. First we prove the case E = A. Let {Gz}7 be the
sequence satisfying the conditions (15) and (16), and the function f
be defined by f(t) = X3° M (k). g, The condition (15) guarantees
f € L™y, because M(f) = X3° M(k).uo(Gx) < oo. On the other hand,
from the condition (16) it follows that
M((1+ 1n)fg) = 52 M((1 + 1m)k) . uo(Ge N E) = o0 (k= 1,2,..)
for all E € B such that »(E) # O, hence by Lemma 4 p(fg) = 1 for
such E. Then for any finite disjoint partition {Ez}} of 4 we have
>3 p(fg,) -»(Ex) = »(4), consequently ¢,(f) = »(4), hence by (13)
llg,ll3z7 = »(4). Now we return to the general case. For a fixed
E €B defining the measure »1(F) = »(E N F) for F €B, we can
easily prove that ¢, = (¢,)z, hence by the above result we have

(@)ellaz = llg,,llaz = v1(4) = »(E).

Up to this point we have been concerned with positive linear
functionals and non-negative measures and established the corre-
spondence between singular positive linear functionals and non-
negative measures in the class M. Now we shall extend this corre-
spondence in the natural way over all singular bounded linear
functionals by the relation

Vy = Vyu — V- (17)

where v .(E) = ||pg*|lyy and v, (E) = |lpg~|lz for E€B. By
Lemma 2 it is easily seen that v, = v, + v, for ¢, > 0. By
the arguments similar to that in the proof of Lemma 6 we can see
that the mapping defined by (17) is linear and monotone, i.e.
¢ = vy implies », > »,. Similarly we extend the correspondence in
Lemma 6 over all measures in the class M by the relation

Py = Ppr — P, (18)
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Also the mapping defined by (18) is linear and monotone. From
Theorem 2-3 it follows that the mappings (17) and (18) are mutu-
ally inverse to each other, consequently ¢ > if and only if
v, =7y, hence the mapping (17) is a lattice isomorphism, so in
particular |p,| = |¢|,. As to the norms it follows that

llpllar = Il ol llzz = v, (4) = Ivy| (4).

Summing up the results, we obtain

Theorem 4. There exists the linear isomorphism ¢ v, between
the set of all singular linear functionals and the set of all measures
wn the class M such that ||g|lgz = v,| (4), and ¢ >y if and only if
Vo > Ve

§ 5. The general form of bounded linear functionals. Now we can
describe the desired general form. For this purpose, taking into
consideration the analogy between the definition (14) and that of
the abstract integral, we propose to denote the value g¢,(f) by
M [}y

Theorem 5. Any bounded linear functional ¢ on L*pr can be
represented uniquely in the form:

¢(f) =/1.gduo +M/fdv (19)

where g is a function in L*3; and v is a measure in the class M.
The functional norms of @ are given by

14+ M
el = llgllz + 1 () =infysg —50 1 1 (a), (20)
lllglllsz = inf & forall & >0 (21)

such that M(&g) + &.]v] (4) < 1.

Proof. According to Theorem 1, ¢ may be expressed uniquely
in the form ¢ = ¢, 4 @g, where g, is of function-type and gg is
singular. Hence by Theorem 4 there exist g € L*3; and a measure »
in the class M such that

@e(f) = /f.gduo and @s(f) =M [ fdv.

Thus a representation (19) is obtained. Uniqueness is evident. To
prove (20) and (21), we may assume that ¢ >0, because, as
remarked before, all the correspondences in question are lattice
homomorphic and the norms are invariant under the change of ¢
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into |p|. For any ¢ > 0 by Lemma 2 and (8) there exist f > 0 and
h > 0 such that

M) <1, el < @elf) + &
and M(F) < 1 — M(f), llgsllg < psth) + e.
Again by Lemma 1 we can find 43 >0 such that 71 >/, 71 >4
and M(h1) < M(h) 4+ M(f) < 1, hence

loellaz + llesllaz < @elf) + @s(h) + 26 <
< @e(h1) + @s(h1) + 2¢ < |loe + @sllaz + 2e.

Since ¢ > 0 is arbitrary, we obtain
llpellaz + llgslla < llgllm ie. ll@ellsz + llosllaz = llollz-
On the other hand, from (7) and Theorem 4 it follows that

ligllaz + I (4) = llgellzz + llosllz = llollm-

The second equality in (20) follows from Amemiya’s formula (3'),
applied to ||g||3z. Next we prove (21). Let £ > 0, M(&g) 4 &|»|(4) < 1,
and f > 0 be arbitrarily chosen such that ||f||»z < 1. Then by Ame-
miya’s formula (3') for any & > O there exists # > 1 such that
1 + M(nf) < (1 + &n. From (2) and Lemma 2 it follows that

Ep(nf) = Epe(nf) + Eps(nf) < M(nf) 4+ M(&g) + &l (4) <
<M@f) +1<(1+en ie ¢f) <(1+¢fE

Since & > 0 is arbitrary, from the definition (8) we have
|||l < inf &1 for all such & To prove the converse inequality,
we may assume that |||¢|||3z7=1. Suppose that ﬁ(g) + p|(4) >1+6
for some 6 > 0. Then by (2) and Lemma 2 for any & such that
0 < & < 0/3 there exist f > 0 and # > 0O such that

M(f) < oo, M(g) < @elf) — M(f) +
and M) <e 2| (4) < @s(h) + e
Again by Lemma 1 there can be found 43 such that 41 >/, hx > £
and M(h1) < M(f) + M(h) < M(f) + & For such 43 we have

p(h1) — M(k1) = @elf) + ps(h) —M(f) —e =
> M) + |»| (4) —3e >1-4 0 — 3e.

hence 14 M(&hg) < & where & = @(h1) — 0 + 3¢ and he=/M/§,
accordingly by Amemiya’s formula (3') we have ||As||n < 1, hence
lh1llar < @(h1) — 8 + 3e < ||h|lsr — 0 + 3e. This -contradiction

establishes M(g) -+ || (4) < 1, consequently by definition the

right side of (21) is not greater than the left.

15

§ 6. Inmer characterization of singular functionals. Singular linear
functionals were defined in connection with the subspace Ezs. The
question arises whether they are characterized in terms of their
functional norms. Already we know that ||¢||5 = |||@|||l5 for all
singular ¢. The converse is also valid.

Theorem 6. A bounded linear functional @ on L*py is singular,

if and only if ||¢llzz = lllelllar-
Proof. Let ||¢|l5z = lll¢lllzz- To see the assertion, it suffices to

prove that ¢, = 0. Supposing the contrary, we assume that
llpe|l5z = 1. From Theorem 5 it follows that

Nelllzz < Heelllzz + eslllm < llgella + lleslzz = llollaz
hence ||ge|llzz = ll@cllzz = 1, because |[|g[|zz = llgllzz by hypothe-
sis. Let g be the function, corresponding to ¢, in (6), then by the
above result and (7) we have |lgllzz = |llglllyz = 1. Since M (&)
is an N-function, it is easy to see that _M(Eg)/f —o00 as & — oo,
accordingly in Amemiya’s formula (3'), applied to |[[g|l5, the
infimum may be replaced by the minimum, ie. 1+ ﬁ(éog) =
= & ||gllzz = & for some & >1. On the other hand, from
lllglllzz = 1 it follows that ﬁ(fg) > ¢& for & > 1, because of con-
vexity of ﬁ(ng) (with respect to ) and the definition (4), hence
we have &g = 1 and ﬁ(é‘og) — ﬁ(g) = 0. Writing &1 = supgze)—o &, We
have |g| < &1y, 1.e. gis a bounded function. Then since F’l—(fg) < o0
for all £ > 0 and H(Eg) — oo as & — oo, there exists & > 0 such
that M(£5g) = 1 and by the definition (4)

£2 = & ||lglll = |l€egllloz = 1, ie. M(g) =1

contradicting ﬁ(g) = 0. This contradiction establishes the as-
sertion @, = 0.
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