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ASYMPTOTIC SPECTRA FOR WEYL GEOMETRIES
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1 Preliminaries on Weyl structures. A Weyl siructure W on a
smooth (") manifold Af of dimension m > 2 consists of a torsion free
connection V. called the Weyl connection, a conformal class C = {h} of
semi-Riemannian metrics (here and in the following we identify metrics in
C which merely differ by a constant positive factor), and a class 7 := {6, |
h e C} of I-forms satisfying the compatibility conditions

(1.1) Che=200hi=28,0h

The compatibility condition described in equation (1.1) is invariant under
so-called gauge transformations

(1.2) hs h# =gh, 60 6% =04 5dlgB,

where 0 < 3 € C=(M). Wecall (M. W) = (M, V,C,T) a Weyl manifold.

It is well known that a Weyl structure W can be generated from a
given pair {h,8} (where h is a semi-Riemannian metric and where § is
a 1-form) in the following way. Let u,v,w,... be vector fields on M, let

Vv := V{h) be the Levi-Civita connection of h, and let @ be the vector
field defined by

(1.3) (8, v) := 6(v)
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The construction Vv = V- {é(u)b + G{v)u ~ hiu,v}8} gives a torsion
free connection V which, together with {h,8} ., satisfies the compadtibility
condition given in equation (i.1). We use equation {1.2) to generate the
classes € and T from the given pair {A, 6} and thus get a Weyl structure;
see for example [11, p.125] or [4].

For h € C, Weyl introduced the 2form Flv,w) = d f,(v, w) as a
gauge invariant of a given Weyl structure. He called it the length curvature
or distance curvature [11, p.124]. We denote by 2 the curvature tensor of

the Weyl connection V¥ where we adopt the sign convention of [8] for the
curvature tensors. We have that F and R are related Dy the equation

(1.4) h(z, Rlu,v)z) = Flu,v)h(z, )
Weyvl defined the directional curvature K by
{1.5} Ku,vhw = Riu,vyw — Flu,v)w

Relations (1.4) and (1.5) imply the orthogonality relation h(K{x,v)w, w) =
0 forany h € C and for any vector field w. Moreover, F and K satisfy the
following symmetry relations R(F(u,v)w, z) = h(F{u, v}z, w), and skew-
symmetry relations R{K (u,v)w,5) = —h{K(u,v)z,w0}. As a local result
the following is known: if the Weyl connection W is metric, then the length
curvature vanishes identically. Conversely, i F = df, =0, equation (1.2)
implies that the cohomology class [Gh{W)] € H'(M) of the closed form
d,(W) does not depend on the choice of a metric in W. Higa [7] has shown
that the distance curvature F and the cohomology class [B,(W)] are the
obstructions to having V be a metric connection:

1.6 Proposition (Higa}. Let ¥ be the Weyl connection of a Weyl
structure W on M . Then the following two conditions are equivalent:

a) We have F(W) =0 and W) =0.

b) There is a Riemannian metric b in C(W) such that Vh=0.

2 Weyl structures and Codazzi structures. In this section, we
shall investigate the relations between Weyl structures and Codazzi strue-
tures on M . We introduce the following notational conventions. Recall
that two torsion free connections V and W# are projectively equivalent if
and only if there exists a 1-form 7 such that
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(2.1} V#y — Vv = 7(u)v + 7(v)u

or equivalently if the unparametrized geodesics of V and V# coincide, see
[3. §32] for details. The projective class P(V) is the set of torsion free
connections which are projectively equivalent to V.

There is an interesting relation between a projective class 7 of torsion
free connections and a conformal class C of semi-Riemann metrics, defined
via Codazzi equations, see [9, §3; 1, §6; 10, §1.6]. We call P and ¢ Codazzi
compadtible il there exists a pair {V,h} with ¥V € P and with h € C such
that both satisfy Codazzi equations

(2.2) (Vyh){v,w) = (V h)(u, w);

we shall call {V,£} a Codazzi pair. This relation is preserved under a so
called Codazzi transformation

(2.3) hoes h# = Bh, V= V¥

where V# satisfies equation (2.1) for 7 = dlog(3), with g € ¢ (M) and
3> 0. A Codazzi structure {P,C} consists of Codazzi compatible classes
P oand C.
2.4 Remark. The class P need not to be Ricci-symmetric, in this case we
don’t have a pairing in general, but only an injective mapping c—P.
For a given Weyl structure W = {V,C, T}, we consider a fixed pair
{h,é} € C x T satisfying equation (1.1). We use equation (1.3) to define
the symmetric (1.2)-tensor field ¢’ = C’(h.,é) and the associated totally
symmetric cubic form C = C(h,8) by

Clu, w) := B(v)w + 8(w)v + h(v, w)d
Clu, v, w) i= B{C (u,v), w) = f(u)h{v, w) + B{v)h(w, u) + 8(w)h(u,v).

The connections V* 1= V4 and V ;= V —C' are torsion free and depend
on the given pair {h,0}.

2.5 Proposition. The class P = {V" = V| {hE)elCxT
satisfying equation (1.1) } is a projective class generated by the gauge trans-
formations described in equation {1.2) of the Weyl structure. Furthermore,
we have P* = P{V}.

The lollowing two propositions deal with the relations beiween Weyl
ctructures and Codazzi structures on a manifold M. For that purpose.
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we sketch how to construct a Weyl structure from a given Codazzi structure
{P.C}. Consider a fixed pair {¥,h} € PxC and the Levi-Civita connection
V of h. Define the symmetric (1.2)-tensor ¢ = vV -V and a l-form 8
by its trace {m + 2)8 = Tr(c). According to section 1, the pair {h,é}
generates a Weyl structure, and then a C'odazzi transformation of {P,C}
induces a gauge transformation in W.

2.6 Proposition. A Weyl structure W = {V,C, T} on M induces
a Codazzi structure {P*,C}. where P™ = ’P(Yu"’) is as above. We call it the
canonical Codazzi structure of W. A gauge transformation as described
in equation {1.2) induces a Codazzi transformation as defined in equation
(2.3).

2.7 Proposition. Let {P.C} and {P.C} be two Codazzi struc-
tures. Then we have
a) There is a unique, symmetric (1.2)-tensor field ~ such that for any two
Clodazzi pairs {V,h} and {V.,h} we have Ale,w) = Vow — Vyuw.
b) The Codazzi structures {P,C} and {P.C} define the same Weyl

structure if and only if 4 is polar. This means that Tr{u— y{u,}} =
0.

3 Second order differential operators on Weyl manifolds

3.1 Definition. Let ¥ be an affine connection on M .

a) Let f e C™(M) and let u and v be tangent vector fields. The
Hessian Hy [ is the (0.2) tensor field given by (Hessy fi{u,v) =
u(v(f))—df (V,v). We have that the second order differential operator
Hessg is symmetric, i.e. (Hessy f){u,v) = (Hessw f){v,u) if and only
if V is torsion free.

b) We say that a second order partial differential operator D on C(M)
is of Laplace type if its leading symbol is positive definite and thus
defines a Riemannian metric h on M . This means in any system
of local coordinates that we may express [) = ~(h¥8,0; + A'9; + B)
where we adopt the Einstein convention and sum over repeated indices
1<i,j<m=dimM.

¢) We follow the sign-convention of [8] for the Ricci tensor Ric(V) of V.
Let p(V) := L(Ric(V)(u,v) + Ric(V){v, u)} be the symmetrization of
Ric (V). We say that V is Ricei-symmetric if Ric(V) Is symimetric
on M. Wesay w is a parallel volume form if and only if Vw=0; V
is Ricci-symmetric if and only if V locally admits a parallel volume
form w .
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d) Let ¥V = V# be a projective transformation as in equatlon (2.1). We
use [3; p.159] to relate the Ricci tensors:

~(Ric¥ = Ricij) = m(V,7, — rimj) = (Vi = 747

note that the sign conventions for the Ricci tensor differ in [3] from those
used in our paper.
3.2 Lemma. Consider a projective transformation V v+ V# as in
equation (2.1,
a) We have that p(V#); = p(V)iy ~ (m = DV, 7 + Vir) /2 — iy}
b) Il 7 = dlog(;3) for some function 0 < 8 € C°(M), then

p(V#) = p(V) + (m — VpHv (™Y,

3.3 Differential operators of Laplace type. Let V be a torsion free
connection and let h be semi-Riemannian metric. Let f € C™°(M). We
define the second order operators H{V)} and D{h,V):

H(V)f := {Hessy + (m — l.)_lpv)fan(lDf = D(h, V) f = =Trp(H(V)f).

Clearly the operator 17 is of Laplace type if and only if & is a Riemann
metric. We refer to [9] for the proof of the following Lemma; there the proof
is given for Ricci-symmetric connections.

3.4 Transformation Lemma. Let 7 = dlog(/). We use equa-
tion (2.1) to define a projective change V ~ V# . Then H{(V#)(Bf) =
BHN)(). IF h# = gh, then D(R#* VENBS) = DA, VIS).

3.6 Heat equation asymptotics. Let M be a closed manifold and let A
be Riemannian. Let {A,} be the eigenvalues of D = D{h, V) where each
eigenvalue is repeated according to its multiplicity and where A} < Az <

If t >0, then e~tP is trace class on L*(M) and

Tr;)z(e_m) = 5,7,
this series converges uniformly on compact subsets of (0, o0) since the eigen-
values satisfy the growth estimate A, ~ v*/™ for v large. As t ] 0, there

is an asymptolic series of the form:

TI‘L’J(f’_“)) ~ &,_Zorl-n(D)f{"”””/z.
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The coeflicients a,{D) are spectral invariants which are locally computable
in the following sense. Let dv = dvp be the Riemannian tneasure on M.
There exist local invatiants a,(x, D) of the geometry of {V, h} defined for
w € M sothat a,(D) = [;,0n(z, D)dvn.

3.8 Application to Weyl manifolds. Let W be a Weyl structure and
let -{P*,C} be its canonical Codazzi structure. Note that in general the
projective class is not Ricci-symmetric; i.e. V* € P* may have a non-
symmetric Ricci tensor. We use {P*,C} to define the class of operators

(D(h, V") | {V",h} € P* % C}.

A gauge transformation as described in equation (1.2) of W induces a Co-
dazzi transformation as defined in equation (2.3); the induced transforma-
tion of operators D(h, V™) — D(h#,V*#) is described by the transforma-
tion Lemma 3.4.

In 1] we studied such operators and their invariants under Codazzi
transformations in case of Ricci-symmetric projective classes. The transfor-
mation Lemma 3.4 is the key for an extension to general projective classes,
This procedure leads to new gauge invariants of Weyl geometries. The fol-
lowing lemma provides the basic formulas that are necessary to calculate
an(D) ; we refer to see [5,6] for further details.

3.7 Lemma. Let h be a Riemannian metric. Let D = —(h**8,0,+
AYH, + B) be an operator of Laplace type on C*(M). Let Thpe” s Ths
lonll» and |R4)| be the Christoffel symbols, the scalar curvature, the norm
of the Ricci curvature, and norm of full curvature tensor for the Levi-Civita
connection defined by h.

a) There exists a unique connection Vp on (**(M) and a unique func-
tion Ep € C®(M) so that D = —{Tr(V%) + Ep). If wp is the
connection I-form of Vp, then we have that wps = %hw;(/-l” e
RH T, wo¥) and that Ep = B—h““(é)ﬂwpv,,—i—wp‘ngsp~wU'ﬁ}";,_,,ﬂ"].
Let Qp; be the curvature of the connection defined by 17,

b) ag(z, D) = (4m)~™/%,

¢) as{w, D) = 61 (4x) "™/ {r, +6Ep}.

d) as(e, D)= 3607 {4m) "™ H{60(Ep ) + 607y + 180( 1 p )Y
+3082p,:5 0.5 -+ 12(7) ik + 5(ra)? — Alpal + 20 RAIP )

We apply these formulas to the settiug al hatid:
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3.8 Lemma. Let D = D(h,V*) = —tr,{Hessy- + {m — 1)7'Ric™) .
Then .
a) A¥ =003, B=(m—1)"hYRY, and wps = —27"{m +2)6; .
bi FEp=4"1{m -+ 2){(m -~ 1)~ Tr,Ric — m{m — 2)x} .
¢l Q[).,'J‘ = 2m1(?11 -+ 2){V(f?,).i95 - V(h)igj} .
We combine Lemma 3.7 and Lemma 3.8 to prove the follewing Theo-
rem. Note that 7, = m{m — k.

3.9 Theorem. [lLet D = DA, V") on C(M). If M is closed,
then

a) agle. ) = (Ax)~™m/2,

D) s, D) = 127 (dm) "  m(d — m)k + 3{m + 2)(m — 1)_1Tth.ic} .
¢} ap(D) = 127 dm)—m/? f{'m{timm)f;—i-.‘i(m-{-'Z)(m—i)mlTl'hﬂhiC}duh.
d) ay(D) =360~ (4x) /2 [{50m{m ~ D+ 6Ep)* + 30|Qp]°

F2( AP ~ Nlonll* Y} dvs
These results lead to the following theorem
3.10 Theorem. Let M be a closed Wey! manifold of dimension

m.

a) am(D) is a global Weyl invariant. Note that a,, (D) =0 if m is odd.

b) If m =4, then the following expressions are global Weyl invariants:

’ Jlon{m — V& + 6EpYduy . [l9plPdvn, [{l|Ral* - llewll® Fdue,
ay (17} .

We dre golng to stady relations between such invariants in [2].
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