Institute of Theoretical Physics ' Wroctaw,January 1977

‘University of Wroclaw . Preprint No 397
Wroclaw, Cybulskiego 36,Poland

RELATIVISTIC SYSTEMS WITH A CONSERVED PROBABILITY CURRENT

by
Andrzej Borowisc
and
'Arkadius z Jadezyk

Abstract
Relativisf:ic wave equations describing localizable rela~

tivistic systems have been investigated by many authors

/see e.g. [4 - 7] /, however no sufficiently general and

systematic their investigation is available. Usually one con-

siders only linear Hsmiltonians without giving any proof

of imposobility of other forms /see e.g. Gelfand etal. {1]/.
' It is our aim to start such a systematic treatment based on

the sssumption that the system is localizable and admits

& conserved probability current. A most general form of the

Hamiltonian corresponding to two partially overlapping sets

of assumptions is given. The finite — dimensional represen-

tation of the Hamiltonian relativistic algebra /HRA/ are

classified, and a particular infinite - dimensional represen-

tation is described. Finally we give some comments concerning

the relation with the Lagrangean approach.
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1, Restriction on Hamiltonians om_the badbility current
conservation
Tet us consider a localizable quantum system /either Gali-
jesn or relativistic one/. In barticular, for each instant

of time x* there 18 a apectral measure Fz," on \R that
defines position operators .A. < X )

Xixy = Sa_g d Exe () i

We assume that we dedl with a reversible system, so that for
every pair (X°,Xx*;  there is a unitary operator Ut x% x*)

such that
¥
Y cxn = Uereaes Laam Uoe, e 1.2
and I’ { -\-., )"‘c‘ ) Sa‘bisfy:
' PR N
i/ LXF.XT) — Uixe 2 X*) is strongly continuous,
17 T, xoy = Ulx, x9

iii/ TJ(X«)’ 7_5!) TJ(I“‘; qu) - Ul X' ' ‘"

It follows from ,i/ ~ 1ii/ that the Hamiltonien Hi?’d‘ '

. @ . ve
Hon = -ign Ul x| 1

Ll

is selfadjoint. For the velocity operator 3_(; (**; we then

get:

-

. .o s ‘ ‘
Xcxe) = i—,&;x”)— L Hom, oo,

P
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It is also convenient to introduce time operator ')(,°',x" N ;x:"»1
so thet X (%) =4

’ Now, instead of spectral measures E x*® it is conve-
nient to introduce an operator valued distribution 5‘1(7.{;_;.:

such that for a function -[- - R— N

. - S R W s . -
Sarm'x.)g—(x)d X = V{'(é-)dt;“‘«l) - o
R = . J ‘ N . .5
= -i»‘ I_k)i')) = {—x_e
In other words, g(f’i", O] may be considersd as an operztor-

valued Radon-Nikodym derivative of E.x; with respect to the
Lebesque measure on P\s +« In order to mske this definition
mathematically admissible, we must assume that E.xo is agbso-
lutely continuous with respect to the Iebesque measure. In
fact, in the course of our argument we shall need a stronger

assumptions

Assumption 1 For every xX° , the spectral measure E. x°
and the ILebesque measure are mutually continuous, i.e:
Ceeld) = O if and only 12 N« W 1s of the A
Iebesque measure zero,

Physically, it means that thére are no forbidden regions
for the system and that we are not dealing with too singular
external fields /like surface J - potentials etc./.'

Owing to the assumed unitary evolution, it is enough to

~

satisfy the above assumption at % = o .
Tet us proceede to define a probability current ' * [ x),

S ¥
In classical hydrodynamics we find an expression

3'(;):3(.7.) 5 3(1)= LX) G Ox),
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where @ is a density and U - velocity of particles

at X . In quantum theory (¥.¥) 8 of a rather obscure
meaning, so we replace (X} by the velocity 6perator

ZC__ LX), 1% gives us information concerning velocity distri-
bution in space by its expectation values ( \y, i( 2%y ]
in 1tcalized stabes Y . However, the operator Xéx‘)ghf-)
is, in general, »not Hgmitian. Therefore we replace it by its
HBermitien part, and define

. -4 VR P 2
j"uu- z()(.(x)?u.)a-.gu.;f.u.)) 1.6

t

It is our second assumption that the current }l‘ is conser-

veds

' 1]
Assumption 2 The ourrent 1"‘ defined in 1.6 1is conserved:

B"u-j"(lﬁ = C L2

Theorem 1.1 With the above assumptions the Hilbert space
1" of the system can be identified with |* (W’ ¥ dox ),
A being a Hilbert space, in such a way that L (0)

become multiplication operators

(X ) o = xs g .
and H10) 15 of the form:
Hioos E0ATP0 ¢ PWOR « RE R

+P;Q~') + A
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where

Y cy o= - .

(P, y)ex vaxt W 1,78
H;’ A ,

and R are multiplications by functions of X

which values are “Hermitian operators in i{ .

Proof /During the proof we dismiss everywhere the argumert

3= T +« /BY “1.1=5 and A2 we have:

LiH L i) oy e = 0

and snearing out with a test function -E—

1—*\ = gi\ix})B'u;(»,c)c\’.x

-

Then 1.6 leads to
A . Ve

A AT I B I R RS

The condition 1.8 restrict a possible form of 4| . In order

50 find a most general form of -H compatible with 1,7 , it

ia convenient to analyse 1.8 for s particular .‘ . ditd
.ik)_u 2 XX X" we get from 1.8

LXS (X, %] =0
Introducing _
A= LU,

we get, from the Jacobi 1dehti&y,

[ R EU (A



and 1.9 glves
LX'K,QA".JJ . 0 . 1.0

Now, we make use of the Assumption 1 and deduce { 2 ) that
there is & Hilbert space J{ such that F. can be identified
with \*( R ¥ ,d°x) in such a way, that E  becomes

2 canonical spectral measure /i.e, £ (D) becomes multipli-
cetion by a characteristic function of the set /) C Ry
or, in other words, that 4.7 holdse, With \3; s defined sas

in .72 let
VYo o AP Pan)

It follows that \/' = V' * and H": v ‘.Vv, XJl. Therefore

B = Y- v

i

(40 =¢ A=A

)

T g T e : l-{ ’ ] q P M
Pirally, since s M and are Hermitian and commutbe
d - : - - H 2 . 2 - - . A

sith N s it followg thzt cthere exist functions q (x)

W), A(}‘ with values in Hermitian operztors in "'{, such
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(Q""\p)n_n = 9;"cx>\l"°—" ste. L

‘Remark 4 It is €asy to see that with M as in the above

' Theorem, 1.8 is satisfied for every -F / and not only

for a particular choice of {, . We have used/,

Remark 2. It should be observed that the functions A7 W H
are unique only up to a gauge transformation. In fact, an
identification of with L*( :Rs, M ,‘pl ) is not unigue,
and different identifications lead to P, =S that differ
by a /\L H

L

N2 Wexs 00 Tows

) 3
where -UUE) is a function on R » With values in the

.
unitary group of J’{ N

Remark 3. We notice that in a relativistic case a quadratic
term in H should vanish, In fact, if the theoi-y is to be
relativistic, the velocity operators should be bounded. By

applying unitary transformation U(\_}) z cbxp{-'b!'k‘ § to Xt

we £ind that X' is unitarily equivalent to X° t f°’ I
It follows, that 1f H"(X)Z 0,the numerical range of

{ (v, ivky 7 Y= 4 _} coincides with R y SO

cannot be bounded,

2. Relativistic localizable systems

In this section we cohsider a localizable system with
a Poincare symmetry. Let f'» be a Hilbert space of the SyS-
tem, and let U(a ,N) bea unité_.ry /in general projective/
Trepresentation of the Poincare group in h » Selfadjoint




3 W L: - é w L L M ,L 3
ez 5 .
5 - 10 - L e

- = ' L 1)
. N v - :’ LQ
cenerators P_p s m | \} of the representation satisfy

+he commutation relations

g TMy Py B w7 LN P

= .\.SL:, \3,
sy LML BT = 0 vis UN, BT = W F,
R TR A ERE T TV T MRS AP

720 AN P SR PR VA R Y

/Tre metric we use is (3,,_\, = diag (= ,+ ,+ ,+) / A ~
e szsume that the system is localizable i.e. there are
s2lf=4joint operators T«b /corresponding to a localization
cf & distinguished point of the system on X' = 0 hyper-

=lane/, satisfying

ix/ L X, ,X31=0
x/ \)L.,‘V\X ‘:‘.pru
w/ L0, X0 = 85

Atk ™) defined as before we mske the following assump-—

Assumption 2.1, There is a four-vectar current 3""' guech . ©

that

VAR (O} T 9027

/ea/ Quyhxy = 0 _
/aaa/  Ute,NY 3"(1;)‘}(0- f\) f\ ‘\, \’(-f\xr-*"?.')
Jnder these aSSIlmp'bth we proceede to find a most general
form of the Hamiltonian ~ = \3;, .

First of all, let us observe that analogously as in
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Sec.1, cen be identified with L' { R’ ¥ d°x) in suen
- a way .that

(PL y) e

\

P', \¥ ¢ E)

. © 9 .
(XL y) o Cap WD)
Moreover, i1f a Hermitian operator Q comnutes with P; -5

then

Ay)ipy = Apy 4o
where A (D) is Hermitian in H for /slmost/ all D
In particular, if 3 commutes with the Xi -3 z;iso,
then W if%? A is a constant Hermitian operator in Ho.
To demonstrate this kind of arguments let us define YW by

w = M - X "E

It follows then from /i/, /vii - xi/ that Lwn X1=lw ri=F
and so, T, can be considered as Hermitien operatoes in ﬁ/ .
By /ix/, we get ‘

lmi m;l = «elje e 2.1

.

To obtain further restrictions let us write the relevant
equations /a - ssa/ in an infinitesimal form:

LH el - | % ,-'l'w;n)] = . pua

SENDguel = 4 jrem x LR gunln
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TN Pee]E a i goo s L T )a e

By sub=’cituting y (X) from 2.3 into 2.2 &and smea-
ring out with a functicn * we get

RIS C R P R SRS IR IR

Let us define Yi Dby

N= -2 (XH » HX) + nu 2.6

It follows than from /v/ that [_ o, ﬂ; ]‘z 0 so that
. o= N ) and substituting 2.6 into 2.5 we have

IR IR RS IS LRI A S I

A perticular choise .gt’xv) = X X))  leads to

\ )(,] ¥ &_‘t’ls‘l}l = 0

: A

and so

E— 1 y | —¢- L 3 =
s “t\\_’) + »“""PJ,“{"Q) 0

4 general solution of these equations has the form:

my = 4Lt o+ an 2.8
- . ’ J .
where (., and &, are Bermitian operators in 3{, s, With
»n
21, = =0} . A the nexXt step we take } LX) = XiXj X .

4

The left-hand side of 2.7 becomes then 31X, 1X; 1XiMilf
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and the right-hand side wvanishes, Since, by /Vii/, H s
& function of the momenta, it follows that a depéndence of
H on P; - 5 i8 at most quadratic:

4‘—\= %F\u)\jb\jJ + ﬁ;‘jz r 2.9

»

where A.', , A} and A are Hermitian in X, and A . ”‘; v
Its is easy to see that with N as in 2.6 and 2.8 ,

end with ¥+ given by 2.9 , the relation 2.7 is satisfied
automatically for all -; « As a next step we shall demon~
strate that, owing to 2.4 , the coefficients 9;; and 2"
must venish. To show this, let us notice that by 2.3 ,

2,6 and 2.8

' " %—_("L¥§cz)':¥. ggz)iu) + La.‘;[p'.gwl

)KL})
or, after. smearing out with a test function -} :
U CN o1 1y e
TR AU T B SN © 9 B OE R

2.10

.

Now, since 1; is linear iu the momenta, we have

A

b e s X)) v o} = Jutdey 2m
By substituting 2.10 and 2.1 into 2.4 we obtain:

LA+ U s 2

W
T
.
iy

and 2.12 reads.
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4

B A0 ST P 111 R R RN R Do laf ) 23

= v
The terms: quadratic, linear, and constant in the momenta,

must vanish separately. For a quadratic term one gets

% [l-ﬂiv‘J,ﬂulB “%‘{ﬂ)l’ .ﬂl"]g 4 i \ A-“c ,{‘\Nj +

4

.1 " -3 z Y . . t -
+ 4.’ \ &, Qul.j T lz ‘-(‘\att'ﬂﬂjj + T‘_ \_U-vll.A,l-J - O

i - AR ﬁ\
with k=1,l*) | and teking into account that A )= 8
and &, = ~u;, » We deduce that:

4’2 ‘ﬁ"“ + :\2: ‘\ A, QS')S =0 _
end so, A} =0 , Now, since 7 A\P1R g0tz QL'} SR

and substitution of these expressions into 2.12 1leads to

oA e “‘iwﬂ ibv(n;.}ulh% 2.

, .. = vk ‘;’
The /symmetric/ coefficlent of S;;{ is proportional to

Grr . & Oy A1y  and so,
N !

Gar @y 4 Gk = 0 ~

or, with l-‘-‘K..;):t, O %i=0 . Therefore W;= Q. = const , and
2.4 reduces to

£ 400400 v Ta A < G

Loy hel= £ 4R A0 - i

2.15
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Now, with H = R, P: 4+ and N = -3 X MY e
.the relations /iii/, /ii/, /vi/ and /vii/ lead to

0

v £l AL

Lw, a3
L w801
Lw, vl = 1 e Yk Vg

Lwi,31 = & {a A

4

"

Loyl = - veipemye + & Ta a0
The a‘bove considerations can be summarized in the following:
Theorem 2.1. Let Wi H ,H be Hermitian operators in a Hil-
bert space JA  satisfying 2.1 , 2.15 and 2.16 s let
P = p: ,)(;=L>§‘P- ;o H o= AL B, A and
M = X x E +wm, N=-3 X MYy« . Then /i - xiy
and the Assumption 2.1 are satisfied. Conversely, every
solution of the relations satisfying the Assumption 2.1
is of this form . |J
The vectors in j{, correspond to internal degrees of free-
dom of the system, According to the above theorem, relativi-
:stic‘syvstexgs with a conserved probability current are in
1 =1 »corrgspondencé_ with répresentations of the commutation
x'elations ' 2.1 , 2,45 ., 2.16 by Hermitian operators
acting onﬁ . This set of commutation relations is not
a'Lie algebré,‘ ,simrzeA we have anticommutators ws well as
aomxtat‘&'_s, nevertheless we shall call it the Hamiltonian
Relativistic Algebra /HRA/, If . 1e infinite - dimensional
one has, strictly speaking, to deal with domains of unboun-
dnd 'Opgrétora etc, In the finite ~ dimensional case the pro-
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blem of finding representations of HRA is pure algebraic.

3. The case of finite - dimensional '-“— .

Here we briefly show how to get the most general repre-
sentation of HRA by Hermitian operators acting on a finite-
~-dimensional space ﬂ, . First of all, observe, that every

of the operators "™ , M B A  has , complet

orthonormal set of eigemvectors, If A, ¢ = A ¥
phen 0= € b, Lny AT y) = by, (-4)4) = c(NT-A iy,

A. < 1 . . &\A\
It follows that ' ‘4 o With this in mind, one can first

1]

get, for v %) , O

TR AR T

"

"

Lvi, 37z LA, Ln A0) =
LA Ay . It follows,

that { AL & §

2 &, and therefore [ 1, A, J:=

©

for all- k,lL . On the other hand, one easily gets U = o f

- - . .q A ‘“(";:{ S

STr(Lw, AAAD) = ¢ Tr (ARAA « %) =T (LA ASY) . o ;zﬁi
since 4 @.,Ay* » 0, it follows that {A. 4)=0. "
Therefore we get:

Ln., 83 = In, A = 0
Let us now introduce Hermitian operators 2Dy by

6'0:,» A = 'tLH*-“Jl _

™

It ic easy to see that L %, 5,3 = 4 € B
and v_\_n =W - A also satisfy {'ﬁ'\;_ ;ﬁ'lsjz l&;;)u'\:;:\u,
L., 15 DA TR PR S S W o Lne vmyl= - Lé'v;m Wiy
The Hermitian operators 'vf\g » 3 satisfy therefore

the commutation relations of the Lorentz group. How, since f‘ﬁ
is finite — dimensional, it follows that 4 = Mt = 0

Ve can state therefore the following:
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Theorem 3,1 PFinite - dimensional representations of HRA are
in one -~ to - one correspondénee with representations of the
algebrds

VVAREED O PON: P B A
ny LR AY =00
Then
W, o= "“r €.5« Ay A , M.= 0 u

How, let A*= }'ET AL p;, be the spectral decomposition
of A* , AL % 0, AL «A, for .¢) . The subspace
K, c P.J  sre then invarient under A ana & y SC
we can reduce the problem tc the case of A 1. = A4
1t A=0 s then, what remains are the anticomrutators
I A Ay =2 S;', The most general representations is of

the form:

A= (86 ) e (evi-Cyy
In the case of Az 0 y with o = A, ,‘;"’“Q we gett

-~

Ldo doy = 28

i.,e, the Dirac algebra. There exists only one irreducible

representation; by standard Dirac Matrices, so we ‘finally get:

Coriollarry 3.2 The most general finite dimensional repre-
sentation of HRA is of the form: i \ -
e\

Ho= Ko Kie (03, o
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=
£
o
&

her worés, we get a Qirect sum ‘gf ten opolycnel o

Peuli and Dirac representatlions.

. M infinite - dimensicpzl representation of HRA

Tn twis szetior we consider a particular solution of

“he sermutation relstions 2,1 4 2315 4 Z2.16 with
soroutins vels2ity components Q_; /a similar, but different, .

¢x raz tacrn consicered Ty Corten [ 31 /Sec.19//. In this

~ii gné . are generators of a unitary represzntation
N2 .
n# +he Lorentz groups If one assumes that « & -, and

1

tnare are no eigenvectors of Az coi'responding to the eigen~ mw
value 4 , then, with ?{o:,“ M—e‘}'% and Y} = ,ua iA- 9‘)-;‘

one easily finds that ™, v .,’\T,.g satisfy cormmutation

relavions of the Poincare gfoup; with W'z M. So, we

conclude that for ever"yw;'e;;;gentaﬁion o m W of the

Poincare group, every solution A of the eguations:

I, 83 =0



[
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Y.'n.v.gl"' %{.‘lﬁqk
leads to an admissible wave equation. It should be observed
that the spectrum of R is an excitation spectrum in the
center of the mass system. The simplest representation acts
in K= LM IR, D) gaen W= ﬁ{“w 0= ¢>p and
vz -4 (40°% T°) anere g = o PYARTE
It is easy to see that A= fe-t mdﬂ:xx.ﬁ'l‘ﬁq'z‘ﬂ"l“c%
where Vi = 4 °°*  are sdmissible solutions.
The transition ;rom A to O is an exanmple of the follo-
wing method of generating new solutions from the known oness

suppose that Hermitien operators v ,n A in ¥ satisfy
commutation relationst

Lol wy 3= el My LL’» )QKJ
Lwmimy ) = ¢ &, ( @, A, wog,b)
‘_m;lﬂ‘,lz lé;')\«.gv.

' 4,1
Loy, myd = - ceeme 2 31604
RETUN TR BT A SO VR R
LL 9,7 = | N N I

Tie will search for all Hermltian opera‘cors a tn X ogma-
fillings

Lwi B3 =0 ) v
Lm.,Ad = & A Ay |

(Lo, Bl= b 0P )
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i,

It is convenient to introduce operators L,z m, -
Operators v , L are now generators of a nonunitary
foecause L” =L | @ ¥ 0/ representation of the Lorentz

group. We can now replace 4,2 by

L w. ,83:=0

4,3

Tet us denote the real linear space of all solutions of 4.3

by 4 B
o= 4 d a* = A ,iq satisfies 4.3 B

RN

Tet 1 17 be the commutant of {(w ‘l‘) . Then

-

si/ toreach Ae W ama we (0 LYY

['\I»L/'J LA A & d

/ii/ if there exists ar invertible ﬂ e @ , then every
glenent Ne (1 is of the form

A\ ~ .¥A
- * [ -~

P

, £
for some w € (’\'_\_’I,L_B

This method of generation of new solutions has been applied

e -4 , &G
gbove to S = W', with w= L"- 1" being the Casimir

operator of the representation \ L ,m).

5. Comparison with relativistic wsve eguationms.
Usually relativistic systems are thoughf of as being

described by relativistic wave'equa“bions of the form:



@

.(\B“P,‘@(’,)\.\»(\)):O 5.1

The operators \5“ and | C act in a space 3(. of values of

\,y . From the requirement that Poincare group acts on the
manifold of all solutions of 5.1 one then finds /see e.g.
{11/ thaf there exists a representation K.,\\:'. of the Lo-
rentz group'on H oy K -rotation, L.  -boost genera-
tors/, such that ™ 45 a four - vector, and ( 1is a scalar.
Tet us call this algebra IRA /L for Lagrange eny This approach
is natural from the point of view of the Lagrange’an forme-
lism,

On the other hand, our algebra HRA given by 2.1 , 2.15

2,16 together with the requirement of hermicity is natural
in the fremework of relativistic guantum mechanics with the.
Hamiltonian as a fundamental quantity.

Po clarify the relations between the HRA and IRA we observe

that the following Theorem holds:

Theorem 5,1 Iet (0,0 ,A,8) be a representation of HRA on
L . If there exists a Hermitian, invertible operator G
such that Lm,61= 0 ana [m, GI1=%548.G} then

(Kem ,L=0n-%8 ,B:A6E" 086", (=ACT)

is a repiesentation of LRA, with G =-06"6" for all

¢ & IRA. /In particular, if r  ig invertidle, we can
take G A /. On the other hand, if U_( B0 )

is & répresentation of ILRA, if B is Hermitian arnd invertib-
lo, and satisties 15° G = 0" X  for a1l (f & IRA,then
(vo=K,n=b+5 BB A-0d A:Cd")

is on representation of HRA.
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In particuler, it follows, that a representation of HRA

cannot be reduced to that of LRA only in the case of non-

invertible A . Unfortunately, except of the two—component

neutrino, no example of such representation is known to the

authors.
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