J. BUB

CONDITIONAL PROBABILITIES IN NON-BOOLEAN
POSSIBILITY STRUCTURES

The thesis that the transition from classical to quantum mechanics is to
be understood as the transition from a Boolean to a non-Boolean pos-
sibility structure of events raises several problems concerning the repre-
sentation and interpretation of probabilities, since classical probability
theory is essentially a Boolean theory. The problem I want to consider
here concerns the interpretation of conditional probabilities relating
incompatible properties.

To illustrate, consider a system associated with a 2-dimensional Hilbert
space. | denote magnitudes of the system by 4, B, ..., possible values
by a,, as; by, by ..., and corresponding eigenvectors by oy, o} Bis
Bs:....Suppose the system is represented by the vector o, (i.e., statistical
operator P, ), assigning unit probability to @, and zero probability to a,.
The statistical operator P, assigns probability, p, (&) = Tr(Py, Ps,) =
|(B1, x,)|> to the property b;, and probability Pa,(b3) = Tr(PalP,,z) =
(B, a,)|? to the property b,. Informally, these probabilities are under-
stood as conditional probabilities in some sense, i.e., the probability

Px,(b7) is understood as the probability of the property b; conditional on
the property a,. But, evidently the probability assigned to b; when the
system is known to have the property a, is not a conditional probability
in the sense of a probability proportional to the joint probability of a,
and b, — such a joint probability does not exist.

For example, «, might represent a spin eigenstate associated with ‘spin
up in the direction a’. Then p,,(b,) is the probability assigned to the
property ‘spin up in the direction b’, given that the spin of the system is
up in the direction a; and p,,(b,) is the probability of the property ‘spin
down in the direction b’, given that the spin of the system is up in the
direction a. 1 do not think that this problem of interpretation disappears
if we simply agree to speak in the conventional idiom of ‘the probability
of finding spin up in the direction b if a measurement is made on a system
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210 J. BUB

in the state x,”. For the property ‘spin up in the direction a’ is surely
presumed to obtain if the system is in the quantum state «;, and the
probability in question is now presented as a rather more complicated
conditional probability: the probability of finding spin up in the direction
b conditional on (i) the property ‘spin up in the direction a’ for the system,
and (ii) an appropriate spin measurement. However the notion of
measurement is construed here, we still have the problem of understanding
the sense in which this is a conditional probability, i.e., the sense in which
stipulating ‘spin up in the direction a’ for the system, together with an
appropriate measurement, conditionalizes an initial probablity assign-
ment to yield the probabilities p, (b)), p,,(b>) for the alternative spins
in the b direction.

The comment that the probability p, (b;) cannot be represented as a
conditional probability in the usual sense (i.e., proportional to the joint
probability of a; and b;) requires some elaboration. Ultimately the non-
existence of hidden variables underlying the quantum statistics depends
on nothing more than this elementary feature of the theory.

The question at issue is whether the probabilities of the 2-dimensional
case are representable as conditional probabilities on a classical probability
space (X, 7, p). Let X,,, X,, be two mutually exclusive and collectively
exhaustive subsets of X, which partition X into two regions associated
respectively with the two possible values @, and a, of the magnitude A.
Similarly, partition X into X,, and X, for the magnitude B, and so on.
The sets X,,, X.,: X, X,,: etc. generate the field #. The problem is
whether there exists an initial measure p assigning equal probabilities to
any pair of alternative properties a,, a, or by, b,, etc. (i.e, p(X,) =
w(X,) = 31 (X)) = p(X,,) = &, ete.), with respect to which the family
of probabilities py (b)), py(a;) for all i, j, and all magnitudes 4, B, ...,

i

can be represented as conditional probabilities in the usual sense, i.e.,

'LL(X(“ M th)

B = (8. 2|2 =
putbi = (B 0l = 20

Now, for any pair of magnitudes A, B there exists a measure p such
that

WXy, O X, ) = ‘“_2’9”_

(Notice that |(«, B = [(B;, 2)|*.)
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Since
Xa,- = Xn;m (Xbl U sz) = (Xa,- N Xbl)u (Xa,-m Xbl)
it follows that

.U-(Xa,-) - |(9¢i52/31)[ + |(0‘ia232)|' = é

(assuming o is normalized). Similarly, p(X,) = }. Thus, it is possible to
represent the probabilities p, (b)), py(a;) (7, j =1, 2) as conditional
probabilities in the usual sense:

B . PL(X".' A Xbi)
Pa(s) = |(B)y )|* = oY)
ppla;) = (s BOI? = X+J)X)

if we consider only a single pair of magnitudes A and B.

This measure cannot, however, be extended to three magnitudes 4, B, C.
[t is easy to see that any measure satisfying the required conditions must
violate what might well be termed a ‘condition of coherence’. For any
subsets X, X,, X, of X any measure p, we have:

pXNX)=pX,NX,NX)+pX;NX,NX.)
,"L(Xsan) :.U'(Xszuan) +.“'(X§mXumX;)
MX N X)) =p(X N XN XD+ p(X, 0 XN XY

and so ’

w(XsN X,) < p(X,0 X,) + (X0 X)),
Hence, taking s = a,, t = ¢;, u = b,, it follows that
p(Xa, N X)) < (XN X)) + (X, N X))

nU‘(Xn) N Xc.) S Iu(’\/ﬂz M Xh,) B I-“(Xm N sz)'

But this condition cannot be satisfied in general for all triples of quantum
mechanical magnitudes A, B, Cin #,, i.e., there exist vectors a,, 81, Ba, ¥
such that

’(‘/17 Wz)‘z |(B|s 9‘2)’2 + |(Vuﬁz)|2
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or, alternatively, there exist directions a, b, ¢ in real space (corresponding
to the directions of the spin magnitudes A4, B, C) such that

sin? 30, = sin? £0,, + sin* 36,
(where @, is the angle between a and ¢, etc.).

From this standpoint the central interpretative problem of quantum
mechanics may be expressed as follows: The probabilities associated with
pairs of properties in quantum mechanics (e.g., the probability of spin up
in the direction b, given spin up in the direction a, etc.) cannot be repre-
sented as conditional probabilities on a classical probability space. Yet,
in some sense, a probability like p, (b)) is to be understood as the con-
ditional probability of b; given a;. How do we make sense of this probability
as a conditional probability?

11

I want to sketch a representation of classical probability theory as an
operator calculus, analogous to the operator calculus of quantum
mechanics, and show that the classical conditionalization rule in this
calculus is just von Neumann’s projection postulate (actually, a corrected
form of this postulate first proposed by Liiders)." This construction will
lend support to the claim that von Neumann’s projection postulate (more
correctly, the Liiders rule) is the appropriate rule for conditionalizing
probabilities in the non-Boolean possibility structure of quantum
mechanics. The sense in which p, (b;) is the conditional probability of
b, given a; is just this: p,(b;) is the probability assigned to b; by the
application of the Liiders conditionalization rule to the a priori
equiprobable measure represented by the normalized unit statistical
operator I/Tr(/).

Consider, for simplicity, a countable classical probability space
(X, #, w). 1 shall label the atomic events or elementary possibilities by
Xy, X3, . ... These are associated with singleton subsets X, X5, ..., or
indicator functions (characteristic functions) /,, 7,,.... I shall label
other, possibly non-atomic, events by a, b, . ... Thus, the: set @y, @y «+ «
might denote a set of non-atomic mutually exclusive and collectively

exhaustive events (O I, = I; 1,1, = 0, i # j).
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Now, for any probability measure g, it is possible to introduce a
‘statistical operator’ W = ziwil,-, where Ziwj =1, w; 2 0, for all , in
terms of which the probability of an event @ may be represented as:

pul@) = w(Xp) = 3 (D widix) ) 1,6x)

I shall write py(a) for p,(a), where W corresponds to p, i.e.
pw(a) = z W(x )1 (x;).
J

To simplify notation, I shall abbreviate this expression as

Pw(a) = Z Wlus

where a summation sign without an index is understood as summing over
all the atomic events x;. This convention will be used below.

In the terms of the statistical operator, the conditional probability
(relative to an initial measure p associated with the statistical operator W)
of an event b given an event a;, may be represented as:

_ z Wi, I,
pw(b | a;) = _zl—a

( z W I(x)] b(xj))
i€ .

pw(bla) = [Z' W(x)1i(x;)

To see this, simply notice that
P'(Xa- N Xb)
b | ) = ———
28] w(Xa,)
B z wi, I,
- z W[";
Thus, the transition
po
on conditionalization with respect to @; (where p’ is defined by

X, X,
B = 'M(—) = p,le | @;) for any event e)
w(Xa,)
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may be represented as the transition
wi,,
> WI,

W—W =

so that
pwib|a) = z W'l

The statistical operator construction allows the replacement of the
measure function w, which is a set function whose domain is the field of
measurable subsets of X, by a corresponding random variable W, a
point function whose domain is X. If we regard the probability space as
associated with a physical system with magnitudes A, B, etc., whose
possible values a,, a,, ... ; by, b, ..., etc. correspond to the possible
events represented by the field %, then the statistics of this system is
now represented by a physical magnitude W belonging to the algebra of
magnitudes of the system. The advantage of this construction is that it
provides a purely algebraic way of representing the statistics of a system,
which is appropriate whether or not a representation of the algebra of
magnitudes as real-valued functions on a space is possible. I want to
suggest that we take W as representative of the statistics in a primary
sense — the measure function w exists only if the algebra of magnitudes is
commutative. In this special case, the subalgebra of indempotent magni-
tudes forms a Boolean algebra, which has a representation as a field of
subsets of a set, by Stone’s theorem. The measure function defined as a
set function on this field is essentially the ‘Stone representative’ of the
statistical operator W, which is the element in the algebra of magnitudes
incorporating the statistics. Bearing in mind the possibility of non-
commutative algebras of magnitudes (i.e., non-Boolean possibility
structures), it seems appropriate to represent the transition corresponding
to conditionalization with respect to an event a; by the symmetrical
expression:

>, L,

W W =
L, wI, ;

Now, this is just von Neumann's projection postulate (in the corrected
Liiders version). In quantum mechanics, the statistics of a system is
represented by a statistical operator W which may be represented as:

W= Z w;i Py,
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where P,, are projection operators onto atomic events (i.e., projection
operators onto I-dimensional subspaces spanned by the vectors «;). In
terms of this operator, the probability of an event b may be represented
as:

pw(b) = Tr(WP,).

Notice that the trace of an operator O is just the sum of the eigenvalues
of 0, i.e., the sum of the possible values of O at each atom in the maximal
Boolean subalgebra defined by O. Thus, the operation Tr in the algebra
of operators of a quantum mechanical system is completely analogous
to the operation X in the commutative algebra of magnitudes considered
above.

The conditional probability relative to an initial measure associated
with the statistical operator (W) of an event b given an event c; is:

pw(b | Cf) i Tr(W’P',)
where

_ P.WP,
~ Tr(P, WP.)

g

This expression is due to Liiders.? In the following section, I shall deal
in detail with the relation between the Liiders rule and von Neumann’s
rule. Here I wish to point out the following: If we assume an a priori
probability assignment given by the statistical operator W = I/Tr(J),
representing-an equiprobable initial distribution over every complete
set of orthogonal atomic properties (associated with the possible values
of a maximal magnitude), then the conditionalization with respect to an
atomic property c¢; yields the transition

W—>W =P,

where P, is the projection operator onto the I-dimensional subspace
spanned by the eigenvector y,, say, corresponding to ¢;. This means that
the probability of a property 5 conditional on ¢; (where b may be incom-
patible with ¢;) is to be computed according to the rule:

pwlb|e) = T1(Pe,Py)-
If b is atomic, corresponding to the vector 3, we have

pw(b ]| c) = (B, v)|%
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Thus, the probability assigned by the ‘state vector’ y; (representing the
association of the property ¢; with the system) to an incompatible property
b, according to the quantum mechanical rule, may be interpreted as the
conditional probability of the property b given the property c; relative to
an initial probability distribution which is equiprobable with respect to
every complete set of atomic properties of the system.

[

Von Neumann introduces the rule which has become known as the ‘pro-
jection postulate’ in Section 3 of Chapter III of his book Mathematical
Foundations of Quantum Mechanics. In its simplest form, the postulate
states that if a measurement of a maximal magnitude 4 with eigenvalues
a,, a,, . . . and corresponding eigenvectors a,, o, . . . yields the result a;,
then the initial quantum state of the system is transformed to the state o;.
Von Neumann goes on to consider the case of a non-maximal measure-
ment. If the eigenvalue @; has multiplicity k;, then the corresponding
eigenvectors span a k-dimensional subspace .%',,, the range of a projection
operator P,. Yon Neumann argues that after a measurement yielding the
result a;, the system is represented by the statistical operator

i/ itk pi

TP
Note that this represents a mixture, not a pure state. In the general case
of a magnitude A represented by an operator with a continuous spectrum,
he concludes that after a measurement yielding the result a € S, relative
probabilities are generated by the unnormalizable statistical operator
P(S), where P,(S) is the projection operator in the spectral measure of
A corresponding to the range S (4 = [rdP4(r)).

Now, quite apart from any objections to a measurement postulate of
this sort, it is generally agreed that von Neumann’s rule can only be
correct for maximal measurements. The accepted rule was first proposed
by Liiders.?® The Liiders rule states that a (possibly non-maximal) measure-
ment of a magnitude A yielding the result ; leads to the following tran-
sition in the statistical operator W of the system:

P, WP,

W W= o
Tr(P, WP,)

(Luders)
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and not
B

W W =—4_
il T(Pe

(von Neumann)
~ What is the difference between these two rules? The two rules agree in
only two cases: (i) if W = I/Tr([), where / is the unit operator, and (ii) for
maximal measurements, i.e., when each P,, is the projection operator onto
a (different) 1-dimensional subspace spanned by the vector «;.
Case (i) is immediately obvious: W — W’ = P, [Tr(P,). For case
(11), the von Neumann rule yields:
W— W =P,

for the transition corresponding to the result @;. The Liiders rule yields
this transition too, by Lemma 2 (see Appendix):
P, WP,
WosW =—%""x _p.
F Tr(P WPy) ™

To bring out the difference between the Liiders rule and the
von Neumann rule, consider an initial pure statistical operator W = P,
and a non-maximal measurement, i.e., where the projection operators
P,, are not in general I-dimensional.

The Liiders rule yields

Po.PyP,,
Wie B oosppre piaie e
# T Tr(P,, Py Py)

Let P,, 4 = 8, then for any vector ¢:
Pa,-Px//Puﬂ!’ T Pa,-PW(Pn,-(i’)

= Pni(‘pl’s Pa;qg)‘)b
= (Pu.-‘!’: d))@t
= (‘9i¢)‘9i
= Py ¢
i.e.
Pa‘_P(ﬁP,,‘_ = Pgi.
Now,

Tr(Pa‘-PqﬁPa,-) = ”Pu,-‘n[‘”z = ”HEHZ’

and so
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S R
e
where
9 = i (by Lemma 5).
S el
The von Neumann rule yields:
W=P,>W = Pay
Tr(P,,)

According to the von Neumann rule, W' is a mixture which does not
depend on the initial quantum state . According to the Liiders rule, W’
is a pure state 0;, which does depend on the initial state 4. In fact, 0; is
the normalized projection of ¥ onto the subspace which is the range of
Py, ie., 07 = Pa i l|Pabll.

v

In the previous section, I contrasted two proposed rules for a transition
in the state of a quantum mechanical system following a measurement on
the system. On the basis of the analysis in Section II, I want to suggest
that the Liiders rule is to be understood as the quantum mechanical rule
for conditionalizing an initial probability assignment (specified by a
statistical operator) with respect to an element in the non-Boolean pos-
sibility structure of the theory. It is crucial to this conception that we
understand the quantum mechanical specification of a system by its state
vector as a statistical specification, i.e., the state vector i determines a
statistical operator P, which is to be understood in the sense of Section II
as the algebraic counterpart of the classical measure function p (which, of
course, does not exist in this case, since the possibility structure is non-
Boolean).

[ shall illustrate this conception of the ‘quantum state’ (pure or mixed)
of a system, and the associated interpretation of the Liiders projection
postulate as the conditionalization rule, by analyzing the 2-slit experiment
as a problem in conditional probabilities. I shall show that the von
Neumann rule actually gives the wrong result — no interference — while
the Liiders rule interpreted as a conditionalization rule gives the correct
result.
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We have a screen with two slits, 4 and B, and a second detecting screen
or photographic plate. A photon in a pure quantum state represented by
a plane wave moves towards the slits. Each slit can be regarded as localizing
the photon to a region, 4, or 4y, in the plane of the slit screen. In other
words, there is a magnitude M, representing position in the slit screen
plane, and the passage of a particle through a slit is a measurement of the
magnitude M, in the sense that a range, 4, or 4y, is assigned to M for
the photon at the time of passage. We are interested in the probability
that the photon will arrive at a certain region on the detecting screen,
conditional on localization to a certain range of values of M. Localization
to a region 4 on the detecting screen is a measurement of a magnitude N,
representing position in the detecting screen plane. N may be taken as the
same magnitude M, if the regions 4 are the same size as the slits, or at
least as compatible with M otherwise.

Suppose slit 4 is open and slit B closed. What is the probability that
the photon will be found in the region 4 on the detecting screen ? Accord-
ing to the von Neumann conditionalization rule, the conditionalized
statistical operator for the photon, yielding the photon statistics
immediately after the photon has passed through slit 4, is

0,
Y Tr(Pu(4))
where Py(4,) is the projection operator in the spectral measure of M

corresponding to the range 4. The probability that the photon will arrive
at region 4 on the detecting screen after a travel time ¢ is:

pw, (ne d) = Tr(UZ ' W, U, Py(4)),

where U, is the unitary time transformation associated with the photon’s
motion.
With slit B open and slit A closed, we have

Pwyn € 4) = Tr(U7 ' WU, Py(4)).
With both slits open, the conditionalized statistical operator for the
photon immediately after the photon has passed through the slits is
_ Pu(4)) + Pu(4y)
“ Tr(Py(4,) + Pu(dp)) ’

since Py (4,) + Py(dy) is the projection operator in the spectral measure
of M corresponding to the range 4, U 4. (Note that this depends on the




220 J. BUB

disjointness of 4, and 4, ie., on the orthogonality of Py(4,) and
Pr(45).) Assuming 4, = A4p, i.e., that intervals are equal in length, and
hence

Tr(Pyu(44) = Tr(Py(4dp)) = k
we have:

_ Py(44) + Pu(dp)

Wap = % =W, + W

It follows that:

PWAB(” € A) = Tr(Ur_I WABUIPN(A))
Tr(U7 '3 W, + $WR) U PN(4))
dpw, (ne d) + tpwy(ne d),

i.e., the probability of the photon arriving at region 4 on the detecting
screen with both slits open is simply one half the sum of the probabilities
with either slit A4 or slit B open. This is what one would expect on a
classical analysis, and is contradicted by the interference pattern.

Notice that W 5 represents a mixture which does not in any way depend
on the initial quantum state of the photon. But the initial state is required
to be a plane wave (and not, say, a mixture of plane waves, as might be
obtained by placing a candle to the left of the slit screen) in order to
obtain the interference pattern.

Now, using the Liiders conditionalization rule, the conditionalized
statistical operator yielding the photon statistics immediately” after the
photon has passed through slit A (with slit B closed) is the pure statistical
operator W, = P, ,, where i, is the normalized projection of # onto the
subspace which is the range of the projection operator P /(4 ,). Immediately
after the photon has passed through slit B (with slit 4 closed), the con-
ditionalized statistical operator is Wy = Py, where g5 is the normalized
projection of ¢ onto the subspace defined by P,,(4p). Since ¢ represents
a plane wave, which assigns equal probabilities to equal ranges of M, it
follows that the projection of ¢ onto the subspace which is the range of
the projection operator Py(d4,) + Py(4,) bisects the angle between
r, and 3. Thus, immediately after the photon has passed through the
slit system with both slits open, the conditionalized statistical operator is
the pure statistical operator W,; = Py, where
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. ha + Ps
4 + ¥sll
Since i, and i are orthogonal unit vectors, [, + ¥pll> = [[4lI> +
ls]* = 2, and so
‘ 14 Ya + Pa

0

\/2
With slit A open and B closed, the probability of the photon arriving
at a region 4 on the detecting screen after a time ¢ is given by

pw (n€ d) = Tr(U; Py U, Py(4)).
With slit B open .nd A4 closed, the probability is:

pwyne d) = Tr(U; P, U, Py(4)).
With both slits open, the probability is:

Pw (ned) = Tr(U71PyU,Px(4)).

To see the difference between this result and the calculation based on
von Neumann'’s rule, let

Uv_lPlluUt o Piﬁ;
U‘-IP,!,BUt e P,rf,;
Ur'PU, =Py

and to simplify notation I shall write:

PM(AA) =Py
PM(AB) =P
PN(A) =Q
1Pl = ||Pgibll = L
Then:

pw (ne d) = Q¥4
pwy(ned) = ||Q¢s?
pw s(ned) =00
B i+ P
= iIQ( 2 )\I2
310¢, + Ol
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It is important to notice that

”Q‘/’A + Q‘/’BHZ = ”Q‘!’A”z + HQ‘/’BH2
but

Q%4 + Q¢sl® = 10417 + 1Q¢s]2 +
(@i, Qi) + (O, OP),

i.e., the existence of non-zero ‘interference terms’ depends on there being
a non-zero distance between the slit screen and the detecting screen, and
hence on a non-zero travel time ¢ between the slit screen and the detecting
screen.

Evidently, since M and N are compatible magnitudes, P, commutes
with Q and Py commutes with Q. So:

Q44 + Qs> = 10%4* + Q] +
(Q‘ﬁ/b Q!/JB) + (leli’ Q‘le)

But
(Q‘!’Aa Q‘l’s) == (‘I’A- Q¢'B)
_(Pa¥p Py
e T T)
1
= 750l P.OPy)
1
T ;;(#u QPAPB‘/J)
=0
since PyPy = 0.

Similarly: (Qg, Q¢,) = 0.
If t # 0, we have

(O, Q¥n) = (i, Oifp)
= (Uha, QU.g)

[ Pah Py
_(Ut_l—agUt_[_)

1
=5 (4, PAUT QU P).
Although (4, P,QPgy) = 0, it is not the case that (4, P,(U,” ! QU,)Pgi)=0,

since P, does not commute with 0" = U7'QU,, and P, does not commute
with Q".
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This is perhaps physically clear if we assume that 4 is a very small
region, so that Py(4) = Q is effectively a 8-function centred at a point x.
Then [|Q¢||* (which is the square of the projection of the Hilbert space
vector ; onto the subspace defined by Q) may be expressed as |¢(x)|2,
where ¢ represents the wave function emanating from slit 4 at time ¢
(when the wave front reaches the detecting screen). Similarly, Q512
may be expressed as [$;(x)|?, and [|Q0'|* as |(($(4x) + $s(x))/1/2/%
Thus, with both slits open, the probability of the photon hitting the point
x on the detecting screen is:

34(x) + () = Hea* + §ls(¥)* +
$(a(x), $5(x)) + Ha(x), $4(%),
and although ($4(x), #5(x)) = 0, it is clearly not the case that (¢/(x),
$g(x)) = 0, since the transition ¢, — ¢ and ¢ —> 5 represents a
unitary transformation generated by a Hamiltonian involving a momentum
operator which is incompatible with the position magnitude represented
by M or N.

More generally, if P L Pgy, ie., (Puh, Ppp) = 0, then QP i L
QPp, i.e., (QP 43, QPpy) = 0, if and only if the projection operator Q
is compatible with P4 and Pp. This is geometrically obvious if we think of
Q as defining a plane in a 3-dimensional Hilbert space. If the plane 7,
defined by the orthogonal pair P and Pgy is orthogonal to the plane 4
defined by Q, then the angle between the projections of P, and Py into
A is =. If we rotate the plane #",; about the line defined by the inter-
section between ¥ , and ¢, then the angle between the projections of
P4 and Pgyp onto " decreases continuously to /2, when the planes
and "4 coincide (and Q is compatible with P, and Pp). i

This analysis of the 2-slit experiment makes clear the role played by (i)
the initial quantum state, and (ii) the non-zero distance between the slit
screen and the detecting screen.*

The explanation of the interference effect depends on the difference
between the Liiders conditionalization rule and the von Neumann rule.
Von Neumann’s rule

P,
W—-W =_—
~ Tr(P,)
is the analogue of the classical rule
.
W - W = :

2 L)
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representing a conditionalization and randomization of the initial measure
within the subset X,. The natural generalization of the classical con-
ditionalization rule appropriate to non-Boolean possibility structures is
the Liiders rule. Thus, the ‘paradox’ involved in the 2-slit experiment is
resolved by showing precisely how the assumption of a non-Boolean
possibility structure explains the existence of the ‘anomalous’ interference
effects.

APPENDIX

The following Lemmas develop some properties of statistical operators
and projection operators which are essentially trivial, but may not be
familiar to some readers. They are collected here for convenience in
following the argument of Section III.

LEMMA 1
Tr(WPy) = (4, W) .

Let {¢;} be a complete orthonormal set of vectors spanning the Hilbert
space such that ¢, = . Then

Tr(WPy) = Z(‘f’j, WPyé,)
= (%, W).
LEMMA 2
Py WP, = (;, Wa)P,, = Tr(WF,)P,, .

For any vector 0,

Pyb = (4, O)¢
and so
PmWPmao = POL,- W(O‘:i’ G)O‘:‘
= (o, B)Pa,»WC”i
= (o, O)(a;, Way)ay
= (Ofl', Wa‘)Pa'B
1.8,

Py WP, = (o, We)P,,, .
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By Lemma 1
Tr(WPF,) = (v, Way).
LEMMA 3

Tr(P!eral) i (‘1['5 Pa;‘p) e []Pa,lpllz-

By Lemma 1

Tr(Pg’/Pa,-) 7= Tr(Pa,-Py’/) 5T (l)l” Pa.-‘n[’)
= (4, P’ Y)
= (Pa,»‘p’ Pa,‘/‘)
= [|Pg, 3|1
If P,, = P,, i.e.,, if P, is a projection operator onto a I-dimensional
subspace spanned by the vector «;, then

Tr(Pr,.’rPa;) = (‘/’: Pa;!p)
= (ai, ‘ﬁ)(ltb’ ai)
== l(ah '?[’)Iz

LEMMA 4

PyPyP, = |($, P)|*P,

For any vector ¢

PyPyPyd = PyPy(s, 0)¢
= Py($, O)(&b, $)¥

= (¢, O)(b, $)(&, )
= |(¢! ¢')|2P¢0

i.e.. P,:,P,;,P,:, = I(Cﬁ, l/l)IZ.P¢,
(This result also follows from Lemmas 2 and 3.)

LEMMA 5

If 6 = /|6, then P,/ 8> = P;.
For any vector 0

Po/1101126 = (6, $)/110120 = (0", $)0" = Py
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NOTES

1 A non-commutative extension of the classical notion of conditional probability (more
generally, conditional expectation) has been extensively investigated by Umegaki (H.
Umegaki, ‘Conditional Expectation in an Operator Algebra’, 1. Téhoku Math. J. 6,
177-181 (1954); 11. 8, 86-100 (1956); 1. Kodai Math. Semi. Rep. 11, 51-64 (1959);
1V. Kodai Math. Semi. Rep. 14, 59-85 (1962)). Umegaki’s theory has recently been
extended to magnitudes with continuous spectra by Davies and Lewis (E. B. Davies and
J. T. Lewis, Commun. Math. Phys. 17, 239-260 (1970)). Nakamura and Umegaki have
shown that von Neumann’s projection postulate is just the conditionalization of the
statistical operator relative to an event in the non-Boolean possibility structure. (M.
Nakamura and H. Umegaki, ‘On von Neumann’s Theory of Measurement in Quantum
Statistics’, Math. Jap. 7, 151-157 (1961-62)). Their demonstration considers only
maximal (i.e., non-degenerate) magnitudes with discrete spectra, in which case the
Liiders rule coincides with von Neumann’s rule. For a discussion of the Liders rule
vis a vis von Neumann’s rule, see Section III.

2 By the properties of the trace operation,

Tr(Pe,WP.) = TH(WP) = TH(Pe, W).

I shall continue to write such expressions in symmetrical form below.

3 G. Liiders, Ann. d. Physik 8, 322 (1951)). The Liiders rule is discussed at some length
by Furry in W. H. Furry, ‘Some Aspects of the Quantum Theory of Measurement’,
Lectures in Theoretical Physics Volume VIIIA, Statistical Physies and Solid State Physics,
University of Colorado Press, Boulder, 1966. g

4 Compare this analysis with Putnam’s discussion in H. Putnam, ‘Is Logic Empirical ?’,
Boston Studies in the Philosophy of Science V, R. Cohen and M. Wartofsky (eds.),
Reidel, 1969. Putnam’s solution to the problem posed by the phenomenon of inter-
ference is to block the application of the distributive law in transforming the conditional
probability on passage of the photon through both slits, to a sum of conditional proba-
bilities for each of the slits separately. This solution is spurious, however, because the
usual classical notion of conditional probability is inapplicable if the possibility struc-
ture of events is non-Boolean. Notice that the initial quantum state plays no role in
Putnam’s analysis, and there is no explicit recognition of the significance of the distance
between the slit screen and the detecting screen (although a non-zero distance is
implicitly required for the non-distributivity of the events considered).



