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Abstract :

A critical analysis of the problem of Pxistence of

‘doint prubablii%j distributions for ﬁncompatible k¢antum |

randon variables is givem . All "non-existence" i.corems

-

gre discusaea on @& common basis with conclusion , that none

of them “cally preclu&eb the existence of quantumr joint

distriouu*uus o Fwom the &1scubslon follows also that in

srder to iuvlude Joint probabilities ‘neo quantum'@echaniCQ it

is necesssry to enlarge the later . An example ol cuckh

4“

genergligation i3 constructed ,» leading to & non-irivial
quaﬁ%um pr@ba@izlmy ﬁheory with Joint probability distribu=-
tions for ichMPﬂaihle variables ° |
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1 . QUANTOM PROBABILITY THEORY .
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{.1. The problem .

=

/ ‘
"~ Writings on foundations of quantum mechanics are full

- of impossibilities ’ cemplementarities y Uncommeasurabilities

end dilemmas , often stated in a strangely dogmatic form ,
Almost all these mtatements are based on a simple fact of
axistence of nan»u;mv??ing pairs of aelf~adjoint opeérators ,
and nre mmuifamhmtxmuu of dirffioultiien with a reoconollisme
tion of this fdrM&l feature of quantum mechanics with the

C Ommon probébilistic iné%pretﬁtion‘of its formalism‘. Hénce
the problem arisea about the existence of Joint probability
distributions (JPDL) for quantum variables represented by

non-commutlng operators ., The problem is not solved up to N

‘now and one of goals of this paper is to demonstrate that .

We are going to show , namely , that :
(i) there 13 no convincing reasons to reject a p0381bllity
of existence of quentun JPDs { see Section 2) ; and

@J)‘ there is no example of a satisfactory extension of

&
qQuantum mechanics up to defing JPDs for uncompatible var-

iables (see Section 3)

Noreover Y im seems that (see Section 4)
(iii) there are som@ ‘(pﬂzhaps;not guite doubtful) grguments
which encourage attempts to look for such an extension df |
quantum mechanies H and
(iv) there exist a simple but not trivial model of sucn

an extension (pezhups not quite academic) .




1,2. A law of Wature 2 ‘

=,
‘\

The prevailing attitude towards the problem of JPDs

in quantum mechanics ,,mote or 1ess echoing ideas of the
Ccpenhagen School » reduces to an a priori negative answer-
there is no jeint ﬁeasurementa and no JPDs for Jmcomp@tibl@
quantum//ariables ¢« The basis for such soluticn of the prob=-
lem form : though%@xperiments ’ like the Heiaemberg microse
cope , and soﬁe unclear philosophicel ideas , like comple=
- mentarity . The reéulting view is in some regpects extremale
ly conservative and claims essentially s that quantum mechae
nics is & finite theory , unable to develop . Particularly
= the difficulties in introducing quantum JPDs are treated
a8 &‘ménifestatiom of something like a law of Natﬁre‘. I Will
" not discuss the Papunhageu views here , see e g, Popper
(?967} and Bunge (&967) for a,ﬁerious critiqme » confining
myself to an obvioua remark ’ that tnis papex contradicts

RV

some o; ide&s of the Copenhagen 1ntrpretatiom .
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‘@eﬁ, ﬁ task of expcrlmenﬁﬁﬂs o

Gh il .

Concernin@, "amti-JP]ﬁ&x“ *hhough"i experiments , I will
not study them here , mainlyubeeanse they prove nothing ,
like thoug%%experim@nta at all . They could have only a
heuristic velue , suggesting attempis to find a proof of
nonuexistemce of qmantum JPD& s 80 it is rather more re&so-'

,nﬂble to analyse such proofs (oectlon 2)

I do not worry myself azbout semantics of joint measu~
rements as well ; Like e.g. quantum theorists do not worry

themself aboﬁ» a p@ﬂsibility to build up lnstrumentb COTYes=

ponding to the wthe uncountable set of self~adjoint opera~
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Yors on the gquantum Hilbert‘épace o If it will appear pos-
sible to formulate an exten&cd qpantum theory with JPDs ,
then it will be a task of experimenters to find if the
JPDs are megsurablef, and how to measure them ,

1.4, A short exposition ,

The rest of'this Section is devoted to a short expo=
sition of fundamentals of clgssical and quantum theories
of probability (provide& the later may be called a theory);

The classical probability dheory in the traditional

formulgtion rests an a triple ,_consisiting of a sample spa-

ce , & Boolean algebra of auhﬁe%s of this space , and a

probability measure on it o It can be defended , however ,
that the ssmple space is essentially a redundant element ,
and thatfbasic notioms of the classical probability theory
cen be definmd by mesns of an abstract Boolean &' -algebra
end probability messures on it CZoé 1954) . This spproach,
a little generaliztng‘the traditional one , is especially

appropriate for our considerastions ,

1,5, The clssaical prob&bility'théorg_.y

So the clagsical probhbiiity theory is based on an
gbstract Boolean ©7 =zl gebra ef of events ,; with elements

&, Dy ses0o Probability is a @' -gdditive homomoxphlsm =
(probability measur@4,_staﬁejb from aﬁk into the real 7
wnit interval {0,1}“ , Where be:»thpz and {0,1) are cone
sidered in the natural way as ortho~r*’17ur B aortiiomp 0.
~sets o The family of 2ll such homomowphisms is a éfncon—

vexr set , denoted by Cfﬁ o & clasaleal random varisble

{?an&om funetion , observable) A , based on a measurable'

s
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‘8Pace é§ 8&33)1@ defined as & ¢ -additive homomorphism

from o@[x&)lnto v&, 3 the family of all classical random
variables will be denczted by (9 . Obviously a composition

o, im ®oA of & random variable and a gt.ate is a proba-

‘ bility measure on the measurable space cozfre:sponding to A .

The simplest random variables are based on the two-
-¢lement subset {Onf} oz R! . They will be called ele~

mentary random variables , and are in & natural {-{-correg-
pondence with elements of mﬁ » We will not distingulsh bew

tween an elementary random varigble and the corresponding

element of nﬁé R

4665 2:Clagsical joint probability distributions .

Any two cle‘nasiwl random variables , say 'A?:g%[@)faaﬁa

AQ: ﬁ(@?wb aﬁﬁc- » are compaiible in the sense , that there
is @ third reandrdm variable , J (A‘? :,11,,5 , based on S= Qﬁ"‘@

xe ué(&’} Te Lﬁ(@) " ihe random veriamble J (A,ﬁ,ﬁ,,)

"will be called th«& classical joint random variable (goint

ocheservable , JRV) ol Aﬁ end ﬁxz « It can be proved , that
the @i& ~valued function on (@(\5 )x.ﬁ?(g},give.a by
s(xx1) = (X) A AZ,(Y) , can be uniquely extended %o VBQO-
olezn ¢ -glgebra ‘%(@5 ?ﬂéﬁ%) generated by -@(~§}X %(g)g
to form & ¢’ waddlthG homomorphism into mf, . Hence for’
any tw /ohbssical random variables there exists cne and only
one classic&:l ;}pim; reandom varigble .

For & classical JRV , like any random variamble , one
can define f:‘éoﬁ ' t w ot ©J C‘ﬁ‘f"‘z’} o This composition

i 2
(called the classicel “Awint probability distributicn  JPD,




for A‘_? and A2 in 'awb) is obvig&usly & probabllity measure
on *553 "_é’}; « Some of properties of lrclassical‘ JPDs are lis-

ted below .

1.7, The margingl proverty ¢ .

There is & ngtural. ¢ ~embedding I, of ﬁ(ﬁ Jinto

" B(S, » :553) s taking elements of cﬁ(uﬁ,) onto vertical stri-

pes on §4X X B(S ) 2 X > X *52_6'3(5;"53).

It can be egsily éxeen s that | cLéJ (A?’AZ)» 2[1 is a pro=-

bability measure on @4 s called a marginal distribution

for %A?’A2 o« Of course , ‘% - J (AT,A‘?) °I1 and

of, ua cx,& A < LJ + The sgme ‘concems the Becond random
’ .

A
¥
varigble ﬁg o Su we have the full comformity between margi-

nzl distributions <k.,_d individual ones . We will refer to this

property as to the marginal property of JPDsj o

j08. A Functional closeness ,

Voi‘(A gbove , aﬁd f‘%;“: @QE?@ W\% ‘ defined by f (:»:,,x Y= x,

The madfginal property is a special ccse of a more ge-
nergl one ., Ii‘ T is a measurable function irom & m@auura‘ole
space @ t0 @& measurable spae.,e T, then with any randcm
variable 4 on § we can &ssoeiate a random varisble om &
vy & (VX)) , xe @(‘E} Thw random varisble will be de~
noted by £{(&) , This means , "i:hat the family (4 is funce-
tionally closed , If we consider now a JRV J (A‘E ,AQE instead
1
instead of a general f , then we obtain f (J (A?, 2‘&4, « A,
as IT = fﬁ ;‘ We will use g shorter notation : ;(1‘5 gzwﬁzj_}m

(A? sho) .

529, A functiongl independence ,

Let us take two measurable functions £, 2 §w "0 ana




»

gi“-)%_ﬁ; « We can defﬂLne a function I £, @
Sax% —> 'ﬁ;‘ x’ﬂf; by £, x 1, (x,y) = (f,’(x), fz(y)),
X & § ) yle ~§§ « It is also » measurable . From JRV
J (A@’AZ) e can now obtain a new classical random variable
: -1 -1
J (f (A )s 12(A2)) - J (Aﬁ’AZ) (f X f2) This: proper‘ty
of JRVs and JPDs will be called the functional independen=-

ce o

1.710., Determining sets .

The functional closeness (1"98.) of (g leads to the
- following problem : find a set of functions from 554 x 51

into -@‘;

. asures a&ﬂf(fs?,ﬂ‘?) on I determines <y

sg@; 'thaft the corresponding set of ’probability me

Wiy °
.The classical probabillty theory offérszex“’*ples of

solution of this problem in gpecial cases . Two of them
are the following : |

(1) ir § = § = T = @3&,’3 with the slgebra of Borel
sets , then .%zll‘ linear funcitions from @2 to Egd'form such
determining set for any probgbility meésure on ﬁa
{the theoren of Cramér and Wold , comp. Urbanik ‘%96"{} .
{_ii} with mezsursble spaces as above , the Xnowledge ‘of
mean values only for all monomisls of two variebles suffie
ces to determine & probagbllity measure on ?.é%a (*ckx@ theoren

of momen‘cs} °

{0t z‘t atriking enalogy .

In the formgl &yparatus of the elementary guantusm
theory one can 4l "s‘si*lguiuh & structure in some respecte
similar %o mffﬁc « 1%t is the "quantmm logic™ néf;;
ortho-moduler €' -ortho-lattice , being an sbstraction of

< o) e ]
§ w9 il
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the lattice of a%il projections gcting on thé'. separable Hil=
bert space , which underlies the quantum description (Jauch,
1968 ; Mackey , “E963) « There is & striking analogy between
the basic structure of the claaéical probability theory and
the fundsmentals of quantum mechsnics viewed from the "quan-
tum - logiéawl” point of view o The basic noi‘c_ion&s of the
claseicel jpro‘ba}_:vj:lity theory , reviewed in‘ 1.5, 5 can be
silmost literally —Eféﬁsferr&d into the quantum theory , Jjust
substitntln,g —JZ.JQM in the pl:ace of .ﬂ « Thus the quantuum
probab:.]i\:*g is described by & ﬁ‘nadditive homomorphism ol
(state N probabilmty measure on mgw from ag: into the
real inter*ml (O,*ﬁi-) « & quantum random variagble {observab-_- :
le) & , based oun a measuréxble spa&:e (@ %(5);} is a

¢’ -additive homomorphiem from %[\ﬁ)i %o a£“ (gt,neraili
spectral mesgsure , zm -valued measure on S ) + The compo=-

gition &’L@ =e,of 1is & classical probability meassure on

$ ( Mackey , 1963 3 Jauch , 1974)

c

1,12, The Hilbertien realization ,

‘ g §A}
If we Haku the standard realizaticm of uz,.a as the

lattice of orthogonal projections acting on a sc.yara’ble Hilw
bert space 9%, » then the set of quantum states C‘;}g ~becomes
identical (the Glease»n t_hemrem) with the set of zll linear
gelf-ad joint non-negative "i;ﬁcace class operators oun ‘3{3’5
(stw’cis%ic&l operators , dwmty matrices§ o On the other

A .
hené , any quantum razndom variable based on {3 derines &

- . . ‘ & g
self-ad joint linear operator on % (the spectral theoxrem

Also the Borel funciions of %" ~based quantum rendow var-

izbles are well defined in the Hilbertian frame , leading

k4
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t0 thke von Neumaan - Stone functional calculus for self-ad-

joint operators .

4,13, Serious obstacled .

The close analogy of the gquantum and classical proba-
bil *ies cannot be carried too far . Serious obstaclezappes

ara 4us‘t when we try to d@flne quantum JRVe and gquantum JPDs.
)]

Q
role in the quantym probability theory as «f_ does in the

Indeed » 1f we believe , that GZi plays exactly the same
classical one , tkeu we should define quantum JRV J <ﬁ1,A2)

@8 & random variablﬁ based on S%X ﬁ%, and such that

J (A?,ﬁz}(}m 1) = & (x)aap(Y) e B(S), re BLS,).
This is , however , impossible , bnguse the set function

TR v A, () A 'AE!(Y} defined on \@C@ﬂmé@(@)g cannot
be , in @ general case , extended to an @fgnwvalued measure
(see 2,3) . Thus ve come up against the problem of guantum

JPDs

Tetd, COmpatibility .

| We call two elements &, b of azi com@gtib“e s and

T ° b?
such"oh :céa ,cé?oq',asi1$b1',ana,1vc3‘babﬁvc.

"denote ‘@~ Db , if there exist three elements‘c ) &

Two quanﬁumﬁranﬂ@m variables A% and A2 are compatible 1iff
‘évery-element of \%{ %(@%3} is compatible with every element
of 4,(B(S,)) . This definition generalizes the commutati-
vity of operators on ?% + Two compatible quantum randon
~~~—»¥a%%&%ieﬁw&@e~cempﬁxible in the sense of 1.6. and vice-verss,
s0 uhe p roovlem of quantum JPDs arises because of the APP LT EU~

ce of mncoqna tible queantun random variables , i,e., because

1N

&2
=




(4)
e

The common dttitude towards the problem of gquantum

of the non«Booiean character of czi

JPDS uccepvs the impcwsxbility to define quantum JRVs in

the classical sense of 1.6, From this point of view the lat-
o , ,

"tice struciture of mz' is unegssential : to define zll the

baS¢c notions it aufflces to take an ortho-modular &'-ortho-
ﬁeﬂ
~P.Osw3et , Sa¥ JLQ

&) {2)
(Jih « The approach baﬂed oneﬁi generalizes the proceeding

(%ompare'Mackey , 1963) instead of

one , for there @g@¢ortho-modular g’ -ortho-p.0,~s8ets which

are not laﬁti&gs o
"'/
2. ARE QUANTUM JOINT PROBABILITIES POSSIBLE ?

2o7s I8 the qu@nﬁum me@hanics vossible ?

. mhere is no theorem %o state th&t guantum JPDs for
hncompatible guantum random variables do exist o But there
is @ lot ones claiming that guantum JPDs cannot exist ., A
general scheme of such a theorem is the following ¢ one as-
sumes some ofvtné 1isted @bove Csee T.6 to 1“?0:) PrOPET=
ties of classical JPDS t0 hold for hypothetical quanium JPDs,

znd then demonstrates that the assumed properties cannot be

‘satisfied in the frame of s%aﬁdar@'(ﬁilbei@ian} quantum me=

chanics , Such asrguments hardly tell something concerning

the very question of existence of quantum JPDs  They tell

merely which classical properties cannot be ascribed to
quantum JPDs ., In the same manner one could arguae , that
the quantum mecheandces ig impossible , starting from obsere

vation , that some of properties of classical mechunics

V4
, {f.g» orthogonality of any two pure states) do not hold

therein ,




»

2.2, Two properties ,

Throughout this Section we azgsume the two following
properties of quantum JPDs ;3
(13 ¢, "
, 1272 g
ding product space 45 X
(ii) esf,& 4, (x28,) = a& (x) )
s g RCERIEN (Y) Xe B(S), 1eB(S,)
§°72 - :
(the morginal property of 1. 7}

is & probability measure on the correspon-

4 ‘
,All the congiderations below concerng W\ ~based ralm

dom variables , nany of tﬁnem can be proved on\ly for the
‘ g,m {3
Hilbertiasn realization of c‘oﬂw (or «aﬁ ) o This restric-~

tion do not limit @ssen'l;ialli.y a generality of results , be=-

cguse for our pun:*po:aes it suffices to demonstrate that some

of classical properties cannot be stisfied by quantum JPDs

o

£

lewst for one triple ﬁ,g, R A2 , % in one concrete reali=-

£4)
sation of df)

2.3, Can aguantum JRYs exist at . all ?

_ Let uws begin with a closer.ezzzmination of the guesg= '
tion it qwmfmm JRVs can exist at all , _
Returning to the remark in 1,13 , it is indeed impos=
. 1"7“’ ' . .
gible to find J(E“ﬁz,ﬁz) 1?* Cﬂé with property : J:(A,ﬁ 5;&2} (ng‘)
= £ ,{X‘)Aﬁi (Y? Por X , ¥ & %(?‘24), vwhen‘ A,‘ ;. A2 qre ;:an;om»-
patible ,» It would imply , namely , that P& (X)Aﬁ; (Y}Ev
L .
[a,(a 2,(% N )] v A (&N X)Af&z{ }]v{ﬁ;‘i(i"{ N XA by (]
= & (vhe mazirml element of .8 ) , what cen be achieved
only if A‘%.(XE e A,., (Y} (icr @& proof see e.g. Pivon, %976 s

Po 25} o Thuz if there exiat e quantum rzndom varigble

3(agyh,) on 8 suen that J(éj,ﬁzz‘}(}(x 1) = 4, (%A 5,07)




et
. g

for zm:ﬁ*)iq/'f/e/: ﬁ('ﬁ‘),then A? o AZ m'(compa;re e.g. Gudder
’?968;%;/, Theorem 3.1 or Jauch ‘3974).

So let wus rev;ivact the conpidered propexrty of quanitum
JRVas and try to find J A%L,i,fxz) Just among ﬁ%@'-based quantum
random variables ., Unfortunately , we fall at once into conw
flict with the rather natural 'marginaal p:roper’isy‘ » Since it )
is easy to demonstrate , that the assumption : J (ﬁ,,g,ﬁé?)é (%H
together witﬁ the m:wrgin&l propersty imply ,A1 NA (see
e.ge Gudder ?‘968& ," Lemma 2.1 . and Varadaraj.an $1962 , The=

orem 3, 4) Thus we see , that quantum JRVs cannot be quan=

tum variables (in the sense of ‘?.ﬁ} .

7(1’
?

It becomes clear frow now , that any further a&ttem'qﬁ'

2edo Ex *%zmding ()

to disprove the hypothesis of existence of guanium JPDG, as
well as zmy attempt to find them , must initially cssume a
ffmneravzlizatim of ﬂze stmd&rd structure of quantur mechaw
‘nics , at leasst byf@x ending ‘-9 ﬂ, because JPDs without
JRVs look rather queer ,
Thus ===s, one can hope 1%@ avoid %he comt‘rad%*ion of

2,3 relaxing assumpiions com.@rning J@? ,Az){so going beyond
C.ﬂm) o If we take , however » into account the general age
Sumpmm of this See* *hi@n » that rs&"J(Ag, 2} is & probabiliw
ty messure on ﬁ?i for angr ol & Cﬁg “ s thyen it appears thet we
are still uncomf«c»rm{bly close to the case J('A&,A )’ @(’é?
For excmple ,1 if we assume s that J(A ’ 2) defines an

{4) 2
@ffx -vglued funetion on Borel recta«mgles on R s such that

A : 8
ol © S’{ﬁf 9122} generates & proba’biiity measmre en B » then

J(ﬁ,ﬂ,b J must essentiaglly belong to (0 o This observation




- %

togetherfwiﬁh the marginal ?rﬁperty for J(@13A2) can serve
zs a basis for fmrther "imposﬁibility proofs"‘for guantun

JPDS °

2,5, Correspondence rules ,

_ The matn idea of another kind of theorems concerning
auentum JPDs originates from the known property of classicel
JPDs , mentioned in 4,10. Thus , if we only could guess
f(é?pﬁz) for all fungtioms from some deterﬁinig set'an& for
every pair Ag ? AQ
problen of JPDs would be solved .

of quantum rendom variazbles , then the

Any postulate ,'which defines quantum rendom variabe
les f_(ﬁ,?,Az) : ("30‘2% — QZ’,:’ for a given pair 4, , A, of
@?ubased quean tum random varisbles snd for & determining

" set of Borel functions from R* to R , is called tradi-
ticnally & correspondence rule , As an example of such a
rule can Bérve the known von Neumann’s additivity postulate

”'“{?anvﬁeﬁﬁéﬂﬁf?955 , see also Park eand Margenamv, 1968 , for
& critical &nél§ﬂis)y other examples are provided in numew
rous 1i%eréture on this subject ’see €.g. Shewell,1959,

,Mﬂ—aﬁﬁaﬁg@ﬁéﬁgamﬁgﬂahﬁm,~1967, and 0thers) o

2.6, The von Neurann®s rule .

3

There is = nice szquence of theorems by von Neumann

{ﬂ955) , Urbanik {ﬁ96?) ’ Vaﬁadarajan (%962 , Proposition
\ ]

4.2}; eﬁd‘KeISOn‘{ﬁ967) based on the von Neumann’'s corres-

pondence rule , This rule 9 motivated presunably by & suge

gestive but miﬁle%&ing enalogy , identifies the sdditivity
fln the-sense of ;wE}} of quantur random variagbles with the

ad@itivity of corresponding operaters in the Hilbertisn re-

iresentation oo 4 .
presentation , Starting from this assumption one cun hope
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to deduce &b, , from all eLeC?i.A,‘ + o 1‘2) “with « ¢ C’g ,
) g052 4

%”f‘é 2" , the gddition corresponding to the operator one .

it is not surprising , that such obtained zﬁ% A is & pro-
1772

babllity measure fioi‘ eny o € Cgmonly if A,g. o A2 o In the
aﬁher'caae it is overdefined , as can be checked on elemen=~-
tary examples , aﬂd does notvexist .

A proof of this theorem is simple for Aﬁ » ﬁQ with
purely discrete spectre , and is bazsed on observation

{ﬁrb&nik 0 ﬁ96$} » that in this case one can always find

. S,
igay funct

b
L4

[¢)
ol

a 1i on from WRE o R' waien separates all points
of the direct product-of spectra of A, and A, . Omée such

= function is done ; we find easily., that there must

exist a,mapping of4§g(@£) into a£2f{ and the argument of 2.4
enéa the pr&of ; In the case of A? R Az with continuous speC
tra @ proof is more complicated {see e.g. Varadatajan ,?962}
but in some sensge wupérflucu& » as the self-contradictory
character of %he von Neumann ‘s rule (%ogether with the two
aasumptiona‘@f 2;2} is alreazdy evident ,

2:7. Correspendence rules are impossible .

The most known correspondence rules concern position
end momentum variables , and' taeke into sccount the class

%;pym 5 n,m’m 0,?g29.°.} ‘@f‘Borel functions ., This choice

of guantun réndom variableéﬁis cauSe&fby‘a tendency to find
& phase=gpace description éf{qaan%um phenomena , wherees
the specific elﬁés of functions follqws just from the clasgw
sical t@eer@m of moments . In order to determine JPDs it
is necessgry , howewver , %o haove a correspnndence rule Wore
king for any pair of gunantum random variaebles , at least

4 , ; s
for R -based ones . We will prove , that any such "univers
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sal® correspondence rule is impossible ,

For %his puzpose let us take iwo incompaztible elemenw

: Q)]
tary random v&ri&b €8 @, h & OZ , 8uch that the corres=
pon&ing pro;}ectoru P wad P.b on '&;he Hilbert space % Proe
;ec’tt on one~dimensional subspaces P1 and P.f) respectively ,
Ainy correspondence rule of the menticned type assumes thean ,
that there is a linear operator , say G , such thet
&% ( {3 ) J‘M}
Gé,@ﬂ}f?,m) = Tr ?& ¢y for any ol €& Q Where q«&

is the statistical operator correspending to o« . We will

d'emondtra'te , that resnictions 1mpc>ser1 on & by the two

guch G lmp@seiblez ",, .

Because. of 0 & %mb(“?,%) € 1, the operator G
ig self-azdjoint , with spectrum inside of the unit interval N
€0,1> . Moreover , {1) and (1i} of 2.2 ‘imply that if o
{a) =0 or (b} =0 then o;{.ai’b(?,{) « 0 , so the

point O belongs tov the discrete part of the spectrum of G,
o A

o 14

and P Pg are contained in GO (eigen-subspaées COorresw

ponding to the eigen~value 0) o Of course , the closed li-
near span Pg @Pg of Pg end Pg is also contained in 60 R

- On the other hand ', the twcwfiimension&l subgpace P; @P,‘i
contzing one-dim@usional subspaces 'Pg e} (P; (4] P% ) and

, Pg f ('P% &P ?> s These su’oapaces differ from Pg and P;

gs @ @nd b are incompatible , nevertheless ‘P‘g & I"g =

fp n {P’f o=»l) } ® gphn (P” P“)} This means , _that
Pa@Pg is also cgggt;?}ned i.:nvGO end we obtain & contradic«
tion , becamz@@ the 'tw'd %ssmnpﬁions" cf 2,2 imply that if e.g. .
afz) = ¥ then ,«zz;&”h@,,ﬂ = ot (b)) .
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»

2,8, What exaétly nas been proved ?

What exactly has been proved in 2.7 is : any corres-
pondence rule concerning & fnnction fx,y) such that
£{0,0) = £{0,1) = £{(¢,0) = 0, and applicable to elemen=-
tary random varisbles , contradicts (1) end (11) of 2.2.
Observe also , tﬁat the argument of é,? applies to
the ﬁon Neumsnn °s correspondence rule ,‘It%applies also to
eny conjecture , that quantum JPDs , satisfying (i) end (i1}
of 2.2 could be‘mbtained from linear opezaiora‘, hence pro=-
vides @& simplified veréien 6f the Wigner‘s fheorem on quane
tum JPDs (Wigner s @971) . And it is also closely connécted
"with the known theorem of Cohen (Max:genau and Cohen , 1967;
Srinivas end Wolf , 1975 ; Cartwright , 1974 ; Cohen , %966).

Tet us stress once more , that results of this kind do not

'7”Psove—%heALal‘ege& "impossibility" to define quentum JPDs ,

‘ but demon&trate mwrely , that the properties listed in 2, 2

——————;

are incompatible with correspondence rules

- A;ngthé;wag,lex;ms remark , that correspondencé rules
‘are by no means such "naturzl" and plausible , es it is
‘often stated on the ground , that "quantum mechanics is
comnitted to repregeﬁiiggrsuch qpéntities by operators™
(Car%wright ’ §974 ’ po?31) o fictually just this assumption,
i.e, the correspondence between guantum measurable quanti-
ties and c;&;ﬂ-val'wd measures is to be 'brbke:n when we are
going to spe@k ab@m%/correspondence rules , Indeed , if we '
want tO/proceed echtly along orthodox lines , we must ase
sume the existence of quentum JRVs , what contradicts (i)
and (ii) of 2,2 @ee 2m3) . ?he whole idea of correspone

dence rules was invented %o overcome this trouble and %o
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find quantum JPDs in én indirect way . If we try to built
up something like the quam"tmﬂ JRV on the basis of any corres-

pondence rule , we find & semi-spectral measure , which is

"beyond the standard formalism , Actually » the proof above

s well as the theorem of Cohen , state that this generalle
zation of thie‘notiom of qman’ﬂ;um random varisble also contira-

dicts (1) and @1}) of 2.2,

2.9. Another obstacle .

Another o‘bmtatcl‘e we meet if we assume the "fuctional
independence" (1,93) of classical JPDs to hold in the quan
tum cazse , We cannot formulate this property by means of a
JR‘V becsuse of the proceeding resultis , b"u"t cnly as @ pProe
perty of JPDs : :'ﬁ(vf? ( A?) £, (A,,}(X" Y) = A A (f“'?qxjxf"i{"ﬁj
for sny Borel functions f? and f2 s any m «-based quantum
random varisbles &, and A, , and for any x Y ¢ B(RY,
This property is especially plausible from: the point bﬁ

view of the standard quairtum mechanics , aé functions of

\self-zzzdjcint operators are we]l defined ,

\
L)
Let us take sn elementary random variable a € @ﬁ!

; )
- and & state oL € «JP o To any D e—ﬁ corresponds now

& number ot (@)~ ot oby b(ﬁ 1) € 4{0,1) and this correspon-

“uy .
dence is = probabili‘w measure on c«ﬁ » @8 cen be easily

~-demonstrated , Indeed » 1ot &, , &, ....; ‘be any coun~

4}
tehle sequence on" pairwise orthogonal elements of o&

There is a qu&mtwm random variagble , say A , such that this

sggm@;@é;;g belongas to. ’fi (@ fﬁ@} ) + From the assumed funcitional

"independe-nce we conclude that if e.g. A(X) « a, , then

»g
%@}’A {‘i‘}' ® X) - @ﬁa;,aa% (‘i,,‘ﬂ) and so on . Thus if we take

R

Frl
=




-

into account that quantum JPDs shoul“d be classical probabie-
lity measures , we see that %(a)'1 ‘ a b(? 1)) does belong

{(*)
to C}a . Let us 4rumote this state by o It is easy to

=)
c_:neck s tnat irf me,(b) = 7. .then at. (b} = 1. Now if we

take 'the apeciai case of 4*heﬂ Hilber‘tian representation of

4)
uf;%, then g.t becomes evident , that if o is a pure state
hen &, . = , and ﬁx’/aﬂ,@'ﬁ) = (@) ot (b}, Applying

zgein the functional indepenc‘ie:ace we reach the conclusion
thet the quantum JPD for & pure state should be a product

distribution (‘Bugajﬁmi ’ ‘i976j’) The sanme conclusion could
Ry

(4) be i @
and Cf would equipped in some additional properies .

be obtained also in nmore general sche,m@s y 1T only @ﬁ

S@ we have c>bi.ained the j"ollowing result : the pro-

perties (i‘) and @1) oi’ quemth JPDs together with the

"independence" property elim:n_ma e all possibilities for JPks

e}zcep‘a the trivial product uiﬁtributions N

2,70, Trivisl solutions . o
We_ see , that no one of' simple properties of clessical
JPDs can be gdded to the assumed in 2,2 ones ., The proper- |

ties of 2,2 glone can be satiaszi’ied‘in ylénty of meanners ,

-for exsmple by i‘;he trivial prk!aduct distributions s Or by

equally trivial it‘ormula : K A i is the product distribu=~
1272

tion for 1ncompatib1e quantum random variables , and the s‘%an»

dard distrib tiomvof %.‘M for compatible ones , If we recw
1ize » that even these trivial solu‘ti'on‘s of the problem of
guantun JPDs demsand an extension of the quantum formelism

{se«e 2@4} u&@n._i\huv becone mnaccep table , for ome¢ can hope

~that going beyond the standﬁrd' formalism one can find more.

interesting solutiong .
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2.1+ A tempting idea . : |

- . )
So we should frankly recognize , that o 0 &nd the

whole standard formalism are %oo narrdw to embody & gquantum
probability theory with JPDs (thls was in fact assumed in
204 = 2, 9) A ﬂ,emp'tlng idea is to enlarge agm (we will
use ﬁ:)instead of J’ because the lattice propertles of
the later are now unessenﬂtiml) up to a Boolean F-algebra
end try to definé. quantum JPDs in this context . So let us
mssume » "chat auan tun theary is in fact described by means
of some Boolean wr’-lattiee , 8a8Y Jatg), which pleys the ro-
- le of »g:”. In order to assure a correspondence with the
““mvrows*ﬁamrxpﬂan we should have a mapping e of aﬂ “

502 oﬁm Q
into 02; o With such a mapplng we can define an -valued

Q
function on a meaﬂurable E&p&“é‘: (@jg{,g)) relsted to an @wba-‘
- 2) ¢2) _
ced quantum random vax':ie.a]e A y bys A = &) PA s, a8 well
(2) '
a family of real functions on og corresponding to a

2 ez) ¢x)
gquantus state o by tet, ¥ ol oo,

Observe , thmt ca.;f:; - ac‘;mg., and f(Afa.’)u woz(a”)
with eny measurabla function £ , so the necessary condi-
tions for éj'smootm“ exﬁension of the standard quentum fore
malism are fulfilled . It means ,‘th@t what we look for
is not & new theorw » but only an extended forma-ism , fully
compatible with the. st&ndard one » Both above rel&tioms &Pw
pear toc be also neuess&ry condltions of Kochen and Specker
(@967) for &.suacemful introduation of & hidden variable
theory . Wlth one reservation ¢ it is still not decided

) @ . (3
if &4 ° eamad ot elong to @ f respee‘_tively .




..

2,92, 0O,1-states ,

If we went to have ;a kmd of a hidden variables theory -
we have to assume co o &2 ¢ (:7 for any ﬁw)l& (ﬂa,) i, e.
that ﬁw)w wvﬁcw is a classical random vz;,riable on a&
It is impossiblc » however s @8 can be easi]y demonstrated , |
’because then o ig forced to be a cr‘-addltjve homomorphizsm

€2y

~of ortho=-p. c.-set:s; » @nd & restriction to ca(.z of any state

m € C}P‘f} definzd by ¢ %va.i mlﬂ" w o, is a siate on uﬁw)
iny Boolean e-lattice has & B@parating set c»f 0,1-states
( @"-naddi%ive homomorphisms from the lattice to the two-
- ~elenent }Boolem lzzaut'tice), 80 mzzcz)must have such a set
as well , But it launﬁradicts; the Gleason theorem , so we

(2)

gonciude , that ewe i r‘anne)*t generally be» & classicsal
random varia#ble . Scme. "antﬁ.mhidden variable"s" theorens
rest on theae simple facts md follow this line of reaso-
ning (Kochan and Specker , 1967 3 Bugajska and Bugajski ,
1’972) . Sorw other such theorems meke more nr less impli=
cit wssump*tiiom that &) is & é%"-additive homﬁmorphj;sm and
demonstrate them th@.t ag‘”c&nnot possess "%too many"
O,f=-states , .[t concerns e.g. results of Jauch end Piron
{1 967} ) Gudder (‘5%8‘0) , Zierler and Schlessinger (‘? 965) «
‘The failure of introduéilng 't:hé hidden variables the-
ory with Tbe:i.ng & ffaddi{:ive homomorphism cen be also
viewed as an impo:ssi‘bility of solving the problem of quane
tum JPD8 in ]pu:rel:? alassic@lé;tems « Proposed models of
hidden vamalplw violate in an essentisl way the reguire-
ments of 2,1¥ and cannotl help to solve our problem o Thug
in the model of Ochs (@970 ’ ‘!97?) there is no mappin_
)

as the coi‘rezapondence £V, A’@) is one-~to-many , whereas




' , o (3)
in the mod@l of Bohm end Bub {}966) there is no af;Q at

a11 (Gudder , 1970) .

2,15, Concluding rémarks .

We have discusmed 21l theorems which al]egedly prec-
lude quantumAJPDs from the existence . Any of such theorems
complements properties of 2,2 with anotheriones and obtains
a contradiction , It restricts seriously p§ssible pProperties
of quantum JPDs , leading to trivial solutfons .

On the other hand , such properties as g.2. bthe zxige
tence of qﬁantum JRVs (2.3) or the functionél independence
of aqumantum random‘variables (?09) are 80 nafufélv,‘that
their absence could cause g desperate agbandonment of quantwm
JPDS @t a2ll . Observe , however , that in all contradicto-
 ry sets of properties discussed above appears the ¢ ommon

- part : properties (1) and (;i) of 2,2. It becomes evident
that one of them is responsible for all these failures‘,
© Teontre ary to often expressed views , that the guilty is one
of corr@spondence principles (Park and Margenau , 1968).
Indeed , in none attempt €0 introduce quantum JPDs these
~»—*$wﬁ~@repe¥%iea ~holdy—what is demonstr&ted in the next Sec=

/

tion R
3, HAVE BEEN QUANTUM JOINT PROBABILITIES FOUND ?

3.1, Two groups .

There is z good amount of proposzls to complement

quen tun m@fh«ﬂi&ﬂ wx*h @emethin% s which eouid be eslled
/
g s uhﬁf” N o Any one of them rejecta one nf aasemp Ll ong




. _ - avd Hll (4654
of 2.,2. , except the conjecture of Margenau é}'ﬁ that @ll

gazgntum JPDs are the produet cnes o, This trivial solution

cennot be , however ; geriocusly *i;aken for granted , Other

preposals can be schematicelly divided into the fhrst zmd
- thie second groups ','rejecfaing the first or the second Pro~
perty of 2,2, respectivély ., Let us make some remarks on

them .

—FEly-Inner-measures o

The simplest non~trivial proposael was done by Jauwch ,
(Jrach 4594}
who at the end of his paper M remarked , that the fun -
ction to (& (X) A Agﬁw}‘ 2tor X , ¥ ¢ D (RY, &, AZ@C%M
zad e & cj;m "represents in faef*c the probability that in
& given state the vw‘ia‘nle Aﬁ assunes var-lu@s in the set X
while at *“ch@ szme 'time _the varisble Az &ssumes values in
the set ¥ , Thisg- %uppnsi%ion enables us to define mcrely
efjwavuix:;& funciion on Borel rectangles on @i » which
ccamot be é,if A,y ’ .&‘-2 are incempa&tible) extended to & me-
@sure f(:aee 2.3,} ¢ This function cgn be , however , congi-
dered @3 an @%’iwu—w}aﬁ.@ed inner measure on %2 N restric‘teﬁb

to Borel rectan gles , So we see 5 'th&u the Jau«,h proposal

néqj *@)
implies & bwa&ﬁmim’ of {} to the set of all imner ﬁ—

W@) £4) CEY]
~valued measures , say % (tha_ sets @é and ng e

main m&“hmged} ‘Th@ ressultmg JPDs for 1ncomp@tible raNe-

dom varisbles are normed inner measures s Whereas for come
. A .

patible ones conform the standard gquantum mle {'% @‘Ma:? °

4
et us observe , that if cm@ is convinced , that gﬁi@’

b

with its lattice structure is indeed the quaer tum count2re

part of G,é; % then the Jauch’s approach appears to be the
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¢ caly possible -,

Becazupse the usuzl measures are just a2 special kind

N - o
of inner memsures , the set a of standard random variabe
les is contazined in é? o This means that the Jauch’s bra~

zdening of the standard foxm&iiﬂm does not affect any nu-

i

mericgl results of it

3% T00 enpty¥ o

I stead of ane Tysing further the reaultnng genergli-

,,,,,

zation of clasmical probability theory , we point out some
its fea tﬁ;;’, which makes the whole &pproach doubtful ,

It is rather eawsy to see , that the quantun JPDs
spprearing in the Jauch’s ﬁheerylmre in some sense "{o0o eme
pty" , or th&t’%hey'map "too many™ Borel rectangles on O .
Jaeuch himself was @wﬁre of it , and demonstraﬁéd it on am

" exazmple of two ramdom varisbles forming & Weyl pair {;.g.

€

S quan tum @os1tion mmd momentum variables for a free particle}

‘For such & pair Ag » &, Jauch proves , that 4 'X}ﬁ;MZ{Y§ =
(he lezst element of W;’ ,‘3 for any X , Y € S3(RY

with finite Lebesgue measure . I% is hard te reconcile

this fact with the Jauch’s stetement quoted in 3626 , foT

it wonld mean , loosely spe@kiﬁg » that quaa an particles

have no position amd mementwm at all .

B4 A new condition .

This unplausible feature of the Jauch’s proposs

zn be demonstrated jn o more persugsive v nner . Let us
cf “
toke o pure state €@ O wmnd aszume | that there is ome

€@3
and only one atom of g q ¢ 5&F @ , with property se¢{ade 1.

{This is GVld@ﬁtiF true in the Hilbertian repreaent&t;bnj
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Then we congider @& quentum ramdom variable A‘i such that

@ & A {%5@?}. It cen be proved , that A‘,? (z) is & point
of R‘«E%'% , 58Y X « Thusg if we produce the state & in & laboe
ratory , we know @ priorl that the value of A‘i in & is

1
exzetly x , or that the probalbility measure wc% is cone

centrated in x . Having the state o produced we can meg-

gure any other quamtum random variable , say A2 y with

Y
resulting probgbility measure e, on R" . This a little

Ay
/ .
trivisl example can be viewed as a joint measurement of A’t

and A2 in ¢ with resulting qmmtmm JPD %A P CONC €Ne
' S -y 172
trated on ﬁxgﬁ@ &"ﬂﬁﬁ)md equal %A on it . this
2

scheme can bhe end@nﬂy gener&liz:ed to any state st «.‘nd

any me&aumblb subsue'h X of ’éfi + Hence it is natural to es-

swae the foilow,mg regtriction on guantum JPDs @
if @vA is concentmuwa on X & %tw , then dﬁ‘!‘é")(xx Y) -
= @‘”A {Y} for every Y & W B (RY. “

This condition is not esm‘cisfled by the Jauch 8§ qUOTe
tem JPDs o Indeed , 1t leads to an. implication 3

@) =35 = ofpad)= () for eny c&éﬂ.}l ’ a,bea&m.v
In the Hilbvertian "elﬂszesenmhuon it means that (aab)Ab
is ort&ogonml to & , 80 & md b are compatible ,

It cen be argued , thet th«r‘ above scheme does not
prmjiée % joint measurement of % and A2 R becaase of the
time gesymetry of the ':Labora-ihory operations corﬂrespcmding-
to the meamnremen%a of A, =md A2 ® Similzzr arg,mnent.a are

¥
set forth since yesrs sgainst the t_hmcm»o.mflig,ht joint mem
(85_ Povele omb Mmﬁ“lddggy o
gsurements @ompwre & discussion ‘;m..“@z_;j PDe 244-—2&3 .
This kind of arguments does not deswor our example , &s

essentizlly the same experiment could be realized by = core




relation-type arrangement » With exactly simultanecus e
%suremggt;cfiﬁ% {@ random variable correlated to & ) on
one of correlated @ubsystemg s a&nd A2 on the other . In-
deed , one of the "paradoxicel" aspects of the Einstein ,

Podolsky and Rosen experiment is the possibility to obtain

simul teneous values of two incompatible quartum rendom vare
iables iu a stzte beeing a mivture of eigen~states of one
(Lorle and M&wegc:wuu; 4368,
of them ‘{Bee €oe %@? Y 244..,.245} .
Thus the &bbve}condi%ion seems to be substantiated ,

what is en srgument against the Jauch’s prbpos&l .

5ebs Negative probaniiiﬁies o

lherﬂ is @ cluss of proposals which violate {i) of

020 in & much more: drastic mamner then the Jauch’s BPPT G

o

eh o I mean this quantum probebility theories s which 28~

{3

sume JPDs to be sigred messures , as for example the known

LL Mowa, , 4959 ) “
Wigner-Moyal ﬁnproawh<$@¢§ y generalized to a whole family

fsnm\wu‘; awd Wolf, 4975, Mongumon omd Cohow, 496}1 |

¢f quantum ph@semspmwe d@xrrlpt13“~“§§@~vmaﬁ « The lsck
of peéitiﬁe semi@efini%eneﬁs cannot be reconciled , howe
ever , with fundamen tal intuitiwﬁs‘abaut the notion af DY Cm
ba&ilify » it,is @féuffici@nt reeson to disregard them as
& possible candidates for @ qummtum'prbb@bility theory with
JPDs , Nevertheless we do not deny- their practical ﬁsefﬁlw

ness , ; el

%

4568 )
On thc same shoricoming wui;ers the Prugovedki idea

ﬁa

;é§ to introduce & complex probability calculus , generzw

i

Q‘m
07

lizing the sitandard quantum theory o The reel parts of his

complex measures , intended to represent quentum JFPDs ,
iﬁwgov@{h\. A967)

take on negative values as well«h%ij » This makes the whole




&pprgach unacceptable , desgpite its other interesting fe-

LUres .

%.,6, Coherent states .

: o o : .
It is sometimes stated f 3& , that the standard quan-

tum mechmnlcs 'is not able to describe Joint measurenents .
- °* - o 4) L3 . »
Similar conclusion. could be dr&wﬁufrom considerations of

Section 2 . There is , however , sn original attempt to

'formﬁié%e‘@fthéory”@f“jbin%;me&surements {éndNJPDQE of
incompatible random varlabiea in & manner strictly paralell

to the crthodox %heory ox sin%le me@SLrements end in terms

e

of the s+amdrrm form&llﬁm

14%5}
fﬂer~§§ﬁ3‘@ Surely one of properties listed in 2.2, have

It is a papper of She and Hef~

to be rejec%eﬂ’; gnd in this case it: is the marginal pro-

perty which does not hold .

Like the phase-space descriptions , She and Heffner
= ‘ .
concentrate their attention on @ Weyl pair of quantun rane

dom variables , say position ¢ and momentun p of a free par-
ticle , end went to find their JPDs for any state &, It

&@pears that there is many JPDs correspoending to a given

¢o (12 : ’
,aaéa{%§€ and fixed quantum variables g and p , &ll ha-
Tvimg @ phj&ical lnt@jpreﬁamlon » The sieplest among thenm

is & result of &n”zd&%l measurenent” snd is defined by

; g ; 1 , ) 2
the density fumetion, Pla,y) = i%t {Vx 37 eg | iglx y} on R ;

with g, -~ the statistical operator corresponding %o ¢ in

. the Hilberitian repreuent&%ian ’ W@x,y - coherent state of
Gizuber  Now 1V cant e geen on simple exampies s wact if
@3 gy 5t ,‘,’ f ' ey

%y is concentrated on an interval (x, , '>€:ﬁm then
\%ﬂw§ fm g to be concentrated ‘'on the a%ripe‘ {xi,xé}JJua 2

contrary to the margl @&l property , The property discussed

AT
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v in 3.4, also'doea not hold , as @,conséquence of it

%.7s Conditional distributions .
ol

Every of the gbove appro@ches could be'proyably dem
veleoped up ta,korm & generslized probabllity theory , in-
cluding the quanium probabiliﬁg thedry described in Section
i and sssuming JPDs for mncomp@tihle random variables
However the mentioned unplausible features of the%?iscoun
roge frem this . |

It should be also noted that *cz% mfsl?n:i}:}?\s’jw%%%ig&‘m, h%mm@
in the "operstional® spproach Uﬁ guantum probability ??m@ﬁ -
éﬁ%%‘ This very elegunt and iull~fledgea theory generali-
zes in a “smod%ﬁﬁwﬁénner~the stendard quantum mechanics ,

- wgm%@%ﬁrmaking precise aud solving prob1ems related to quane
um conditioning o From the formal poimt of view thé JPDs
in this theary'&re pr@wability neasures with the marginal

'properuy satisfied only for one of involved varisbles .
It is easy to find , that they‘r@sult from manifestly se-
qaenti&l opﬁr&tiams'g hence it should be better to czll

them conditienel probability distributions ,
4, A -PRCOPOSEL ,

4ot, A ouestion , snd an answer .

I hope , that points (}} and {}i} of 1.4, are now
fully.éemcnstr&%ed ;‘and the field for speculations wvout
quantun JPDs and a full quantum probability ﬁhﬁory iz free,

Perhaps 1% is not too late for a refiection over

the basic question : why to seek & full gquantum probability




w

3

theory which could include JPDs for incompatible variebe

les 2

The most natursl snswer is : just because such @

e
T

' — . . . .
theory is not forbidden , More precisely : because there
is no convincing argument against the possibility of such

@ theory .

4,2, Elementary cases .

The lesck of cwmclu@ive argunents against is not the
only smppertfof the tendency to formulate a full quan tum
probability iheory‘@ There are &lsa &t hand some other re;
asons to do this “,

To begin wi%%.,~1ét us @bserve ’ that thé prevailing
gquan tum dogna ¢ inm@mp&tlbillty means that the joint mea-

surement is imposmi%le , is inpaired by elﬂlent&ry case

of incompatible quantum ramacm;variables having jet comx
proper states , hence well defined JPDs in these states .
‘ Less obvious examples of well defined JEDB for ine

COUMmpET tible variazbles &re'previded by the Wigner-Moval dise=

tributions when they are non-negative . Combining resulis
of56dY " t854)

4

of Urbean vt@%ﬁ end Hudspn g}ﬂ%vwe see , that 1t is achiew

ved only when they are product distributions (}m.accor-
dance with the genersgl result of 2390)

'

4,%, Thought

There is meny nén-formal "anti~JPDs" arguments ba-

god on verloug thoupht experiments o Thelyr only veldune i

Lhaat thay encours wlltempts to find & prooct ol Uhie 1@ Ope

sibility of quemtum JPDs . On the other hanl , agresing

© e o iy
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i
{
i

that such experiments prbve nothing , one could invent
"pro-JPDa" %hoﬁwht experiments and find them encouraaing

to look for. @.iull quan tum prob&bility theory . Such expe~

@aaem%m@ ) 4590, Pawvle ownd Mavnaviown ,4‘3‘3
riments has been gtill mvented COMPATe €Cofe ﬁ-«ﬁ-@-gw% o Pragoval ;4367

The most famous of them are : the Einstein , Podolsky and
Rosen -~ type experiments {éee 3»4.) @nﬁ the time-of-flight
measurements .iﬁhey two have at least one advantage over
the celebr&ted:Heisenberg ?g-r@y‘microscope and Bohr‘mo~‘
ving screens ::they &re just S@pce yéars realized in labo-

ratories ,

4,5, Aesthetic remsons . i

The next reasons to seek @.new extended version of
the qu&htum pfob@bility theory are of.sm,aesthetic nature,
Simply , @/probability:thGOry (?ven & generalized one)
without Joint probagbilities looks uncomely , as well as a
pzoposi%icnal éa&culua without conjunctiun .

More aerlouqu ¢ the development of quantum probabilw%‘

ity theory was stopped almost &t the siarting point ,»be~'

' cauwse such notions » @8 quantum JPDs and quantum conditiom
ning , necessary for any further progress , could not be

_definzd o The genefwlization of,ﬁuantum mechenics made by

the operationazl approawh‘providew zn encouraging example
of overcoming these obstacles What prevents us to make
@ next step and 1&03 for & generalization admitting JPDs?
My last argument for quantum JPDs is the most doubt~
fal one , It is based on twg ﬁnpdpular premises ¢ quantum

mechanics defines not only & probability celculus of its




own , but also }& propositional caalculus of its own 3 @md:
there is @ strcmg connection between probabili‘fsy and logic
with one of connec*tlm_., bridges provided by the known from

clussical theories in"terrelaaﬁom between JPDs and con junc te

iem (compaare alse the Jauch’s proposal , 3.2.) e« It is not

an @ppropriate ;plmze here to defend these statements , let
us only remark ‘, that the firs‘ﬁ;: thesis gains more and more
adherents smong iogicians and philosophers , while the se-
cond is evidently true in the classicel case . Once we are
convinced in tkgem s the need f‘or quanfum JFD8 becomes ob-

vious ,

4,6, A more cagutious manner ,

Let us now sketch briefly how & new quantum prmba‘bil-
23] e8)
ity theory could bz, constructed ia We start from @g (ﬁ
2ed .
amd cf ° f‘onsiclemutlons of Section 2 suggest that aa SUCe
ssful introduction of JPDs .an the quantum 'theory can

€2}
ba achiewed only by emendmg of ﬁﬁ@ to an ortho-modular

: \ S5 . ) ¢53
] ___lattice , say @g The ektension y & 1! @ﬁQ 3 ‘JQ )

@' ®
o €2)
may not losge 1d0ntity of eleme.n‘tﬁ of o » 8O We must asw-

- gume that €9 (2) = . (’,b} impl:ies a=b for any &,b &

¢ay
<

q"° _
Wow if ﬁ@}is @ rendom variable , then ewos(?, Ais)

should be & random variable too 4, Wé cannot s however , dew
fine rendom varisbles|related to @ﬁ;waﬂ & @& -additive ho=
momorphisme , because then el is :forced to 2 @& ~embedding

. lg“ﬂ} ‘33
znd we falld into the discussed case of Glwny s f% . Hence
. . . & !0') ’ . .
we must define random varigbles on in a more ceguitious

()

manner , @8 » homomorphisms from a measurable space into

bt oA e+ e



@ or wor ‘ avle 4G, $
@ﬁé& o In other words , a ramc’fbm variable AV/based on
)
appecars to be an inner megsure on§with values in @f
it implius thqmt o is an embedding . ‘
Cnce e is only an embeddlng {'and not & g%addi-
. . | ' e2) )
tive embeddlng),, any state ob @ c}g deflnes & homomor-~
3]
pnism of w{eﬁ )into <O ?) o We assume te t it can be
&5) 5)
extended into an outer mesmsure on ﬁ « Thus the sect rf

&
‘ &)
will consist of normed outer measures on £ such that

Q
) €2y &8, i 66)
@,gf & ng for any « % ..}J ¢s)
- Like _.Mc‘ we have : ([tmm WBAem% Mw,,q‘” Y
and :+  evo £{& ‘!2") =ffewoe A‘EE)) Thus,in spite of the

vnusual featwres of random variables znd ut&tes we have dew
ep CE}—

:t‘ined on AT
= i’&)

ndard ﬂlecr,g ¢ based on ﬁ

£.7s Outer measures .,

As concexrns JPDs we &ssm«a s that for any two ﬁbﬁ
47
2P éﬁ , the gy 3OV OV 4B} 5o tne tnmer ,ﬁ 4
valued mezzure on én ol s% gemerated by the set func*tlon

which takes XRY into 6)9&5(34*\ A(S’(Y} for any X@%(@)

v ¢ BLS), e IPD related to this JRV is defined in the

wsuzl way @ e m A@ﬁ'}b

] eﬁi ¢6), €53 ¢35
3 (A, A"

and appears to ‘be an ou'ter meagsure on \§X %‘ ® Thus we .

see that the first ;wssumptwm of 2,2, is broké:n o« It is-

not sﬁrpr‘ising s for our.r}theory is not clavssiicezl s S0 it
should be expected that some of classical pro;ée‘:rties will
rot be preserved ,

The possibiliﬂtﬁr of defining JRV for eny pair of

varizbles was achiewed owing to the seenmingly mild relax=

. *&:heré is & proper connection with the sta-
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ation of '*ahva.réstric:“timls placed on @Q( s If &) were a
& ~mdditive en}nbédding 9 jt;hen ‘}‘mr‘«a should obtain the Jauch’s
theory of 3.2, The natural que&tion arises : does our pPro-

posal not suffer the shortage of Jeuch’s theory 7

4,8, Minimal Boolesn extenslon .

~other hend; b2 aab what implgf?sthat a(em(b.)a’ ot

: (D
Obviously it suffices to prove , that ot (a) = 1
5y £6)
1mp11w§ @L”(&Ab}} = a ){b) for any &,Db egﬁa ,a(,'!’% Qf
Let as observe kN 'ith&*‘ ﬁ- &"s Ab)= 0 in this case , We

[£3]
_¢aznnot , however , pre}ceed further till we assune 34.3@ to

be & Boolean €°-~algebra o Then we have : b = (ana blvie Ab)
. “ ‘ g .
and o Xuy € w‘(&wb}i + P lanr) = & ’[&Ab). On the

Thus the property of 3.4, holds owing to the assume%g
A9¢

7&3
distﬁi@xtixi}vgof @% « AB Ziex'ler and Schlesinger ({@%,
catvale ; 494

see &lso g_@ﬂ%ﬁv’ have (@monstrsarted, the ex1stenc«e of minimazl

Eooleam extension for any or‘t&hounmodular @‘-ortho—p.o,-—se*t »

we can chosse gﬁaﬂm be just th«, mmim&l Booleem extenslem
of @g) o Thus our ‘meory bears & resemblance to the (emp»
'&:y}varim%: of hi&den variableas theory mentionecl in 2, 12.,
with ome vi tal difference : our e»mbedding €D :L:s not additi~
Ve . | ; | . :

There is no tz“ouble with auflning funct.mns of J’RVS
:m our scheme B because *che set @ 1sAfuncrbionally clow
sed. , flso the desired independence property of 2,9, is sa~-
tiﬂi‘ied . Thus we see , that our propos&l haﬁ some nice "

features , msking it worth of further studles .




-

4¢9. Main fMturefs .

" Let us recapitulate main 'i‘?eatures of the scheme

outlined &b ove

oa\

{i§ instead of . ,ﬁé’ we ‘bmce its minimel ]300168."1 X
386} -
tensn.on aﬂ?@‘ with the ccmonical embedding S
’ %)
{i_ﬂ we d@ﬁme ‘bz as the se'i; of all inner £@ -va-

@
lued measurum on measurable spaces , and embed @
5
into % by «w 3

S ' normed
{iii} we define <ﬁ @s tne set of all outer measures

?I(

| on @ﬁ%) such that ai oey € ﬁﬁy @ for any atlwﬁ' Cja “
(_iv§ we defina the JRV 4J6}@ G) . Aés)} for any_.&fﬂ ,
e U mam the inn@r ﬁg’—va‘!“ed measure on
ﬁ; »§ﬁ j generat@d by the set function taking &1l
X%Y into zxm{x)/\ A, {Y) with xe@c’r@) Y3568 );

¢8) &
&} the 7D Mﬁam’ﬁ; o © A ?"g"mz@f;ﬁ 3)18 an outer me~

@sure on ﬁ» ‘”"M%) satisfying the marginal proper-
ty . tlhe property of 3,,4. and o*ther discussed in
Section 2 » €xcept the conformity Wlth the stan=-
~ dard JPDs for compatible standard varigbles ;
@i} the mwimg theory , bagad on the minimal Bm"& aan
c:jx twu;s,tk‘m: of w&&;“ gty ¢ Gn‘_mn(}ﬁs.z'xv:f;nfi;imm\si C:Z; 4 cyé )
can {:.-'sérve &S B0 examl,_p‘leé of a generalized full
quénmm theory of prab@bility' o
A lo% of furmmr problems arise about ‘chis schene ,

both fomal emd phymic&l » imcluding the basic one s if i%

has & kind of physicsl interpretation . Perhaps we reach

smswers in the future .
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