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SMOOTH POINTS IN ORLICZ SEQUENCE SPACES
AND GEOMETRY OF THE DUAL AND THE BIDUAL
OF ORLICZ SPACES

-SHUTAO CHEN, HENRYK HUDZIK AND MAREK WISLA

ABSTRACT. Smooth points of Orlicz sequence spaces equipped with the Orlicz norm are char-
acterized. Criteria for smoothness of hg’ and lg’ are deduced. Next, geometry of the dual and
the bidual of Orlicz space for both (the Luxemburg and the Orlicz) norms is considered.

0. INTRODUCTION

In the sequel IV, IR and IR, demnote, the set of natural numbers, reals and nonnegative
reals, respectively. The triple (T, %, u) stands for a nonatomic o-finite complete nontriv-
1al measure space or for the space of the counting measure with 7 = IN,% = 2V and
p(4) =Card (A) for any A C IN. L° = L°(u) (resp. 1°) stands for the space of all (equiva-
lence classes of) X-measurable functions defined on T (resp. of all real sequences). A map
®: IR — [0,00] is said to be an Orlicz function if & is vanishing and continuous at 0, left
continuous on the whole IR, , even, convex and not identically equal to 0. Given any Orlicz
function @, we define on L° (resp. 1°) a convex functional Is by

Io(a) = [ 2@y (resp. Ia(s) = 3° B(1)

for every z € L° (resp. z € 1°). Then Is is a convex modular on L° (resp. 1) , i.e. Ip is
even, convex, I¢(0) = 0 and z = 0 whenever z € L° (resp. I°) and Is(Az) =0forany A >0
(sec [26]). The Orlicz space L% (resp. I®) is defined as the set of all z € L° (resp. z € 1°)
such that Iy (Az) < oo for some A > 0 depending on z. When u is non-atomic, the subspace
E? of order continuous elements is nontrivial if and only if ® is finitely valued. Then we
have 2 € E" if and only if Is(Az) < oo for any A > 0. In the case of the counting measure
the subspace of order continuous elements is denoted by h® and it is alwavs nontrivial
aralcd it equals to the set of all z € I° such that for any A > 0 there is m € N satisfying"

2 ®(Az,) < co. We have h® #£ {0} for any ® and E® # {0} iff & is finitely valued. We

n=m

will consider the spaces L%, E®,1® and h® with the Luxemburg norm
Izlle = inf{} > 0: Is(z/X) < 1}

as well as with the Orlicz norm

23 = sup{] /T 2()y(t)dul-y € L° (resp. 1°) and g (y) < 1},

Where & denotes the Orlicz function conjugate to @ in the sense of Young, i.e.

®*(u) = sup{|ulv — ®(v)} (Vue R)

v>0
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(see [22], [23], [24], [26], [29] and [33]). In the sequel L®1* E® and h?® stand for Orlicy
spaces (and their subspaces of order continuous elements) equipped with the Luxemburg
norm and LE,[F, E® and A2 stand for the respective spaces equipped with the Orlicz norm.
There holds the following Amemiya formula for the Orlicz norm (see [22], [29] and [33)):

l=lle = inf %(1 +Is(kz)) (Vze€L® (resp. [?)).

If additionally @(u)/u — oo as u — oo, then for any z € L® (resp. I%) there is k = k(z) > 0
such that (see [7] and [33])

0.) lells = 201+ Lo (ka))

Denote by Kg(x) the set of all k > 0 satisfying (0.1). It is known (see [29] and [33]) that
defining
K (@) = int{k > 0: - (p(kla)) > 11,

E™(®) = sup{k > 0: Is- (o(k|z}) < 1},

where ¢ denotes the right derivative of &, we have Ky (z) = [k*(®@),k**(®)]. Denote by >
the left derivative of ®. The subgradient of ® at w € IR is defined to be

0®(u) = [p_(u), p(u)].

This also means that if u > 0 and _(u) = co then 0®(v) = {co} for v > u and if u < 0
and p(u) = —oo then 8®(v) = {—o0} for v < w. It is easy to see that

0% (u) = {v € [~o0, +-00]: ®(u) + &*) = uv}
= {k € [-00, +00]: ®(v) — ®(u) > k(v — u) for all v € R}

for each u € R. If z € L?® (resp. I%) define by 6(z) the distance of z from E?® (resp. h?®).
It is known (see [2] and [5]) that

6(z) = inf{A > 0: Io(z/)) < o0}

for a nonatomic measure whenever & is finitely valued and we can easily check that

8(z) = inf{X > 0: Z@(xl/’\) < oo forsome j € IV}

1=

for the counting measure and & being arbitrary. It is known that #(x) is the same for both
(the Luxemburg and the Orlicz) norms (see [2]). Recall that an Orlicz function & satisfies
the As-condition at zero (at infinity) if there exist positive constants K,u, and u; such
that 0 < ®(u;) < co (2 = 0,1) and the inequality ®(2u) < K®(u) holds true whenever
ul < v (u] > ).

The suitable As-condition means the Ag-condition at zero for the counting measure
space, the As-condition at infinity when u is nonatomic finite and the As-condition at zero
and at infinity simultaneously when yx is nonatomic infinite. We indicate this by ® € Aa.

We have for finitely valued ® (see [1], [26], [29] and [33]) that

(LCD)x — L@* @S,
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ie. any z* € (L?)* is uniquelly represented in the form z* — & + 1, where v € L¥
and & (r) =< v,z >= [v(t)z(t)dp for any z € L? and 9 is a singular functional over
T

L?, ie. t(z) = 0for any z € E®. If L® is equipped with the Luxemburg norm, then
I2°1 = €0l + 191l = liellg- + ]l for o = € + % with v € L%, 9 € 5. Analogous
representation holds true for the dual space of (I%)*. Of course, in this case we need to
replace E® by h®. Such additivity of the norm does not holds in the case of the Orlicz -
norm. However, for any ¢ € S, [|#|| has the same value for both (the Luxemburg and the
Orlicz) norms. .

For any Orlicz function ® we define a function ITg: [0,00) — [0, 00) by

Me(a) = inf{t > 0:®*(p(t)) > a} (inf 8*'co).

For the geometric notions such as smooth point, smoothness (S) rotundity (R), local
uniform rotundity (LUR), midpoint local uniform rotundity (MLUR), unform rotundity
in every direction (URED), (H)- property, non-squareness (NSQ) and local iniform non-
squareness (LUNSQ) we refer to the monographs [6], [23], [27], [29] and [33] as well as to
the papers [2-5], [7-21], [25], [30-32] and [34]. We are mainly interested in these geometric
properties which does not imply reflexivity automatically. Hence such properties as uniform
rotundity, uniform smoothness, B-convexity and weak uniform rotundity are omitted.

1. AUXILIARY RESULTS
We start with the following theorem.

Theorem 1.1. Let ® be an arbitrary finitely valued Orlicz function such that
®(u)/u — 00 as u — oo. A functional z* = &+ (vel® e S), z* £0, is norm
attainable at z € S(I2) if and only if for some (equivalently, for every) k € Kg(zx) there
hold: ;
1 To-(o/ |z (1) + |||/ l|l2*]| = 1;
27 |[¢l] = b(ka);
3% <kz,v/|lz*|| >= Is(kz) + Is- (v/||z*|]) (equivalently v; 0®(kz;) for anyic IN).

The proof proceeds in the same way as the proof of Theorem 2.3 in [3], so it is omitted
here.

Corollary 1.2. Let & be a finitely valued Orlicz function such that ®(u)/u — oo as
U —2oc. A functional &, with v € 1% is a support functional at € S(I2) if and only if the
Jollowing assertions are-satisfied: d
) Ie-(v) = 1;
(i) v; € 8%(z;) for anyi € IN, where k € Kg(z).

Corollary 1.3. Let @ be a finitely valued Orlicz function such that ®(u)/u — cc as
U= andz € S(I?). Then Grad (z) C {&:v € IT°} if and only if: _
1) 6(z) < (kg (2))1;
(i) Ts-(o_(kj(2)/z)) = 1.
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For the proof see Corollary 1.6 in [3].

2. SMOOTH POINTS AND SMOOTHNESS IN [

Smooth points and smoothness of Orlicz function spaces equipped with the Luxemburg
norm were characterized in [5] and [7]. Smoothness of L was characterized in [2]. Criteria

for smooth points of L§ were given in [3].

Theorem 2.1. Let ® be a finitely valued Orlicz function vanishing only at zero, smooth
at zero and such that ®(u)/u — 00 as u — oo,z € S(IY) and k = ki. Then z is smooth if
and only if one of the following conditions is satisfied:

() To-(p—(klz[)) = 1;
(il) O(kz) < 1 and either Ip-(p(k|z|)) = 1 or the set A = {j € IN:p_(k|z;|) <
w(k|z;])} contains at most one indez.

Proof. Sufficiency. Assume first that condition (i) holds true. Then, by Corollary 1.2,
z has a unique support functional £, with v = @_(k|z|) sgn z, i.e. = is smooth. Assume
now that 6(kz) < 1 and Is- (o(k|z|)) = 1. Then ¥(kz) < 8(kz)|[¢|| < |¥1], so condition
2° in Theorem 1.1 satisfles no ¥ € S. This yields by Theorem 1.1 that z has regular
support functionals £, only. Now, the condition Ig- (w(k|z])) = 1 and Corollary 1.2 yield
that v = @(k|z|) sgn z, i.e.  is smooth.

Assume now that A = {i} and 6(kz) < 1. Then we get again that at = there exist regular
support functionals only. Let &, €Grad (z), where v € L®". By Corollary 1.2, Is- (v) = 1.
Clearly, v; = w(k|z;]) sgn z; for any j # i, and so, Ig» (v) =1 and Corollary 1.2 imply

v =(9%)71(1 - Z ©*(k|z;])) sgn ;.

3#i

This means that v is uniquely determined, and so z is smooth.

Necessity. Assume that (i) is not satisfied, i.e. Ig- (p—(k|z])) < 1. Then we need to
prove that condition (ii) must be satisfied. Assume the contrary, i.e.
a) 8(kz) =1or
b) Is-(o(k|z])) # 1 and Card (4) > 2.
Consider first case a). Since ||z[|3 = (1 + Is(kz)) = 1, we have Is(kz) = k-1 < oc.
Therefore, |z;| — 0 as ¢ — co. Consequently, there is i, such that sup |z;| = |z;,|. Hence it

follows that there exists a permutation (i) of IV such that

(1'1) 'xh' 2 lzi: 2z |xul 2 I"I"ik+ll el

Define

A= {i17i37-~~ 77:2k—1;---} ’
B = {iz,i4,... ,%08,... }
for k=1,2,... and put 2; = zl4,z; = zlp, where 14 denotes the characteristic sequence

of 4, i.e. 1 stands on any place of A and 0 on any place outside A. Then conditions a) and
(1.1) yield that

0(kz1) = 0(kx2) = 8(kz) = O(k(z; — z2)) = 1.
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Therefore, there exist linear continuous singular functionals 1, 12 such that |[¢1] = ||[¢2] =
1 and o;(kz;) = 8(kz;) = 1. So, we have

1+ ’l/)l(kxz) = ’¢’1(’CLL‘1) :twl(kaa) = 1/11(]6(1131 + 1‘2))
< O(k(z1 £ z2))[|90 ]l < [l¥ull = 1,

whence it follows that ¢, (kz2) = 0. We can prove by the same way that 12(kz;) = 0. This
means that ¥; # ¥, and 91 (kz) = ¢2(kz) = 8(kz) = 1. Denote

o = Io- (- (klal)).

We have by the assumption that 0 < a < 1. Define two functionals z} = &, + (1 —a)¥; (i =
1,2), where v = p_(k|z|) sgn z. Then z} # z4 and, in virtue of Theorem 1.1, we have
z7,z5 €Grad (z). So, z is not a smooth point.

Suppose now that Is-(p—(k|z|)) < 1 and b) holds. If additionally 8(kz) = 1, then as we
just proved, z is not a smooth point. So, we can assume that 8(kz) < 1. But, in this case
we can argue as in the proof of the sufficiency that any support functional at z is regular.
This means by the Hahn-Banach theorem and Corollary 1.2 that there is v € {®” such that

o (klzi|) < vi| < p(klzi]) (Vie V)

and Jg+(v) = 1. Therefore, assuming that Is-(p(k|z|)) # 1, we have Ip-(p(k|z|)) > 1.
Since Kg(z) # 0 and A contains two different numbers j, k € IV, we can find two sequences
v = (v;) and w = (w;) of nonnegative numbers with v; # wj, v # wy and v;,w; €
[o—(k|z;:]), p(k|z;i])] for every i € IN and Ig-(v) = Ig-(w) = 1. Then, the sequences
v = (v;) and w = (W;) with ¥; = v; sgn z; and W; = w; sgn z; determine, by Corollary 1.2,
two different support functionals at z. So, z is not a smooth point. This finishes the proof.

Theorem 2.2. Let ® be a finitely valued Orlicz function vanishing only at zero, smooth
at zero and such that ®(u)/u — 0o as u — co. Then:
(i) h$ is smooth if and only if ® is smooth on the interval [0,115(1/2)) and
o (p-(11s(1/2))) = 3;
(ii) I$ is smooth if and only if: (a) ® satisfies the Aq-condition at zero, (b) & is smooth
on the interval [0,T15(1/2)) and (c) ®*(v_(I5(1/2))) = 3.

Proof. If ® € A, at zero then I§ = h$ and if @ ¢ A, at zero, then I is not order
continuous, i.e. there is a sequence (z,),0 < z, \, 0 such that ||z,[|3 > § > 0 for any
n € IV., Consequently I§ cannot be smooth (see [6]). So, we only need to prove (i).

Sufficiency. Assume that ® is smooth on the interval [0, TIg(1/2)) and
@ (o_(MMg(1/2)) = L. Take an arbitrary z € S(h2) and define k = inf Kg(z). If
Iy-(¢_(k|z|)) = 1, then in virtue of Theorem 2.1, z is a smooth point. So, consider
the case when Ig-(¢_(k|z|)) < 1. Then there is at most one index j € IV such that
® (e (klzj])) > 3, 1e. for all i € IN,i # j, we have &*(w_(k|a|)) < 1. By the definition
of the function TT4 it follows that ¢ is continuous at k|a;| for © # 3, so in view of Theorem
2.1, = is a smooth point. By the arbitrariness of z in S(hJ) we conclude that A2 is smooth.

Necessity. Assume first that @ is not smooth at some point a € [0,11(1/2)). Let
@ = 5(o_(a+ (a)). Thereis u > 0 and s € @®(v) such that 28*(a) + ®*(s) = 1.
Define g = (@, e,u,0,...). Then Is-(o(|z])) > 1 and Is-(w—(|z])) < 1. This shows that

Ky(2) = {1}, whence llz|} =1+ Is(z) > 1. Defining y = z/||z||%, we have ||y[|3 = 1 and
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Ks(y) = ||z||3Ke(z) = {||zl|3}. In view of Theorem 2.1, y is not a smooth point, so hE is
not a smooth space.

Assume now that ®*(¢_(Ilg(1/2))) < . Then it follows by the definition of Il (1/2)
that it is a point of discontinuity of ¢. Take s > 0 such that ®*(p(s)) > 0 and

(22) 287 (p-(Ila(1/2))) + 27 (e(s)) <1

and define ,
z = (Ils(1/2),II6(1/2),s,0,...).

We have by (2.2) that Ig-(p_(z)) < 1. Moreover, by the definition of IIg(1/2), we get

[
Ia-(p(2)) = 287 (0(I2(1/2))) + 2 (0(s)) |
> 1+ 8 (p(s)) > 1. J

|

So, we have Kg(z) = {1} and |zl = 1+ Is(z) > 1. Defining y = z/||z]|}, we get
llyllg =1 and Kg(y) = {|[z[|3}. Hence, in virtue of Theorem 2.1, y is not a smooth point,
and consequently h$ is not a smooth space. This finishes the proof.

3. GEOMETRY OF THE DUAL AND THE BIDUAL OF ORLICZ SPACES

Theorem 3.1. For any finitely valued Orlicz function ® when p is nonatomic and any
Orlicz function ® when p is the counting measure if ® does not satisfy the suitable A,-
condition, then the dual spaces (L®)*, (1%)*, (L2)* and (I2)* are neither smooth nor
non-square.

Proof. Since the singular parts of the dual of Orlicz spaces for both the Luxemburg
norms and the Orlicz norm are isometric (see [1]) and by the assumption that & ¢ A, these
parts are nontrivial we can restrict the proof to the Luxemburg norm only. Taking.two
functionals t2,%2 € S of norm 1 and with disjoint supports, we have by Lemma 6 in [4]

l1 + ol = ||t — 9ol = 2,

which means that (L?)* and (I%)* are not non-square. If ¢ A, then L%, LE (resp. 1?,1F)
contain an isomorphic copy of I° (see[11], [20] and [30]), whence it follows that the duals
(L®)" (L))" (resp. (1%)*, (1)) contains isomorphic copies of (I°°)*. Since it is well known
that (1°°)* can not be renormed to be smooth, we get that our duals are not smooth. |'

We will also present here a short direct proof for the necessity of ® € Ay. If @ € As
take 41,92 € S with disjoint supports and ||4]| = |[¢2]] = 1. There exist f, fo € (L®)*
such that supp fi Csupp %s,supp f» Csupp 9 and fi1(¢1) = fo() = 1. Then we have i
fi(2) = fa(i1) = 0. Let L = Span(¢;,v2) and the functional f over L be defined by

flavy +Bv2) =a+8 (Vo,B € R).

Let us extend f by the Hahn-Banach theorem to the whole (L®)* in the norm preserving
way, denoting this extension again by f. Since supp %N supp %2 = @, we have by Lemma 6
in [4] that [[ay; + Bya|| = |a| +|8]| for every o, 8 € R. So, assuming that ||at; + Bl £ 1,
we have |f(ath + B¢2)| = |a+ 8| < |a| + |B] < 1. Moreover f(32) = 1 and [[s]l = 1
whence || f|| = 1. This means that ¢; is not a smooth point of (L®)*.
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As an immediate consequence of this theorem, we get the following result.

Theorem 3.2. Under the assumptions of Theorem 3.1 for every geometric property A
which implies smoothness or non-squareness we have that (L®)*, (LE)*, (1%)*, (I&)* have
property A if and only if ® € A, and Lg",L‘I’*,lf)I" and 1% (respectively) have property A.

Theorem 3.3. Let @ be an Orlicz function satisfying the assumptions of Theorem 3.1
and let L denote one among the Orlicz spaces L®, L% 1% 12 and L*, L** denote respectively
the dual and the bidual of L. Let A denote one among the properties LUR, MLUR, HR, R,
H and S for both the Luzemburg and the Orlicz norms, and in the case of the Luzemburg
norm also URED, LUNSQ and NSQ. Assume in the case of the property S for the Orlicz
norm that ®(u)/u — oo as u — oo and ®(u)/u — 0 as u — 0,. Then the following.
assertions are equivalent:

(i) L™ has property A;
(ii) L has property A and L is reflezive;
(iii) L has property A and ®* satisfies the suitable Aqy-condition.

Proof. Consider first the case of the Luxemburg norm. If L** is R then L is R as an
isometric subspace of L**, and so (see [10], [14], [21], [25], [32] and [33]) ® satisfies there
suitable Ay-condition. Thus, any among the properties LUR,URED MLUR and HR also
implies the suitable A,-condition for ®. It is known that the H-property (see [7], [12] and
[33]) and the property S (see [2], [3], [7], [L5], [34] and Theorem 2.1) for L also implies the
suitable As-condition for . Moreover, if L** is LUNSQ then L** is NSQ and consequently
L is non-square. Since, we consider only the Luxemburg norm we also have the suitable
As-condition for & (see [9]). So, in any case, property A for L** implies the suitable A,-
condition for . Hence, we have L** = (L®")* (resp. (I27)*). Since R of L** implies
S of L*, we have that also everyone among the properties LUR,URED , MLUR, HR for
L** implies S of L* = L?" (resp. I2"). But this implies the suitable A,-condition for ®*
(see [2], [3], [5], [7], [15], [33] and Theorem 2.1). Note that in virtue of Theorem 3.1, &*
satisfies the suitable As-condition if L** is LUNSQ or NSQ. This finishes the proof of the
implication (i) = (74) for the Luxemburg norm, because reflexivity of L means exactly the
suitable As-condition for & and ®*. The implication (i7) = (ii%) is obvious. Since property
Afor L implies the suitable Ay-condition for ®*, the implication (¢47) => (i) is also obvious.

Now, we will consider the case of the Orlicz norm. First we will prove that if L** is R
then @ satisfies the suitable Ap-condition. In fact, if L** is R then L*x is S. But, if &
does not satisfy the suitable As-condition, then in virtue of Theorem 3.1, L* is not smooth,
a contradiction. This means that & satisfies the suitable As-condition. Consequently
L= L% (resp. I%). Since L* is smooth this implies that ®* satisfies the suitable A,-
condition (see [2], [3], [5], [7], [15], [28] and [33]).

Since LUR => MLUR = R <« URED and LUR = HR, any among these properties
for L** implies, by the above considerations, that both ® and ®* satisfy the suitable A,-
condition. But then L is isometric to L** and our theorem for the Orlicz norm follows if 4
means LUR, URED, MLUR,HR or R.

Assume now that L** is S. Then L is S and so (see above) ® satisfies the suitable
Az-condition. Therefore L* = L*” (resp. 1%7). But, if " does not satisfy the suitable
As-condition then, in view of Theorem 3.1, L** is not smooth. Therefore, both & and ®*
satisfy the suitable A,-condition. This finishes the proof of the implication (z) = (i7) in the
case of the Orlicz norm. The implications (ii) = (i43) and (iii) = (4) follow in the same
Way as in the case of the Luxemburg norm.
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Theorem 3.4. Let ® be an arbitrary Orlicz function in the case of the counting measure
and a finitely valued Orliez function in the case of a non-atomic measure space. If we
consider property S for the Orlicz norm, assume additionally that ®(u)/u — 0 as u — 0
and ®(u)/u — oo as u — co. Let L be one among the spaces E®, E2 h® and h®. Then:

(i) L** is LUR, MLUR or HR iff ® and ®* satisfy the suitable As-condition and
L is LUR, MLUR or HR, respectively;

(i) L** isURED,R,S,LUNSQ or NSQ iff ®* satisfies the suitable As-condition and
L s R,S,LUNSQ or NSQ, respectively.

Proof. In (i) we need only to prove the necessity part. If & does not satisfy the suitable
As-condition then L has no property among LUR, MLUR, HR (see [4], [7], [12], [17] and
[18], [22] ). So, we need only to prove that ®* satisfies the suitable Ap-condition. But this
can be proved in the same way as in Theorem 1.7. Also (ii) can be proved as in Theorem
3.3.

Remark 3.5. If @ is an arbitrary Orlicz function in the case of the counting measure
and a finitely valued Orlicz function in the case if the nonatomic meusure spuce then (3D
(resp. (h®)** is LUNSQ iff both functions & and ®* satisfy the suitable Ay-condition and
E® (resp. h®) is LUNSQ.

Proof. 'This follows by the proof of Theorem 3.3 and by the fact that the suitable Ao-
condition is necessary in order that E® (resp. A%) be LUNSQ (see [9]).

Remark 3.6. By the results of this section we can easily get criteria for the geometric
properties which occour in Theorems 3.2, 3.3, 3.4 and Remark 3.5 for heigher order duals
of Orlicz spaces. For example, denoting the Orlicz spaces by L we get among others:

(i) L™ is rotund if and only if L is smooth and both ® and ®* satisfy the suitable
Ag-condition;

(if) L*** is smooth if and only if L is rotund and both ® and ®* satisfy the suitable
As-condition.

Recall that a theorem of Dixmier states that a rotund fourth dual is reflexive. It follows
from our results that the duals of Orlicz spaces of order k > 2 which are rotund or smooth
are reflexive.
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