INFORMATION MEASURES: A CRITICAL SURVEY
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1. INTRODUCTION

A key feature of Shannon’s information theory is the discovery that the colloquial
term information can often be given a mathematical meaning as a numerically
measurable quantity, on the basis of a probabilistic model, in such a way that the
solution of many important problems of information storage and transmission can
be formulated in terms of this measure of the amount of information. This informa-
tion measure has a very concrete operational interpretation: roughly, it equals the
minimum number of binary digits needed, on the average, to encode the message in
question. The coding theorems of information theory provide so overhelming
evidence for the adequatness of Shannon’s information measure that to look for
essentially different measures of information might appear to make no sense at all.
Moreover, it has been shown by several authors, starting with Shannon [35], that
the measure of the amount of information is uniquely determined by some rather
natural postulates. Still, all the evidence that Shannon’s information measure is the
only possible one, is valid only within the restricted scope of coding problems con-
sidered by Shannon. As Rényi pointed out in his fundamental paper [32] on general-
ized information measures, in other sorts of problems other quantities may serve,
just as well or even better as measures of information. This should be indicated either
by their operational significance (pragmatic approach) or by a set of natural postulates
characterizing them (axiomatic approach) or, preferably, by both. In this mainly
expository paper, some functionals of (complete) probability distributions meeting
both criteria will be discussed, with a tendency of giving priority to the operational
significance (which, however, need not be connected necessarily with coding).

Some new contributions included in the paper are the postulational characteriza-
tion of f-divergences in Section 3 and the tentative application of f-informativity to
estimate the reliability function of noisy channels in Section 4.

* This work was done while the author was visiting professor at Bowling Green State Univer-
sity, Bowling Green, Ohio, U.S.A.
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For an exhaustive treatment of the axiomatic theory of information measures
from the point of view of functional equations, see Aczél-Dardczy [1]. It should be
noted that interesting axiomatic theories of information not based on the concept
of probability also exist but, as far as this author knows, they still have to meet the
“pragmatic” criterion.

There is an operationally justified information measure which will not be discussed
in this paper since it arises in a rather special context. This is Fisher’s information,
familiar to statisticians for a long time. Let us remark, however, that it can be derived
from the information measures considered in Section 3, see Kullback [27] and Vajda

[38].

2. SHANNON’S AND RENYI’S INFORMATION MEASURES

Let P = (py, ..., pi) be a discrete PD (probability distribution). Let us designate
by X a random variable with distribution P and by Y another random variable;
set P(X=x;, Y=y} =r;, 12i<k 1<j<1 and P, = (ryy/ps .- 7l P)s
1 £i £ k. If X and Y are independent, this will be designated by X ind Y.

Shannon’s measure of the average amount of information obtained when ob-
serving X, or of the uncertainty before this observation, is the entropy

(2'1) H(P) = H(X) = — 2 pilog, p;.
The conditional entropy defined as

(22) H(YI X) = ;Pi H(P) = — 'z;, Fij logzr—i{'

has a similar interpretation, and the mutual information
(2.3) mxm=mm—mﬂn=zwmgi(%=zw
i,j idj i

is a measure of the amount of information obtained from observing X with respect
to Y.

Some standard properties of Shannon’s entropy with obvious intuitive meaning are
(2.9) H(Y|X) < H(Y), equality iff X ind Y,
(2:5) H(X,Y) = H(X) + H(Y| X) (strong additivity)
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and their consequences

(2.6) H(X,Y) < H(X) + H(Y) (subadditivity) ,

(2.7) ‘ H(X,Y) = H(X) + H(Y) if X ind Y (weak additivity) .
Also, for the mutual information

(2.8) I(X;Y)=1(Y;X) 20, equality iff X ind Y.

The simplest operational justification of the interpretation of Shannon’s entropy
as information measure is provided by the elementary coding theorems for memo-
ryless sources, one for variable length codes (requiring exact decodability) and another
for fixed length codes (requiring decodability with arbitrary small probability of
error). In both cases, the entropy is the infimum of the achievable coding rates
(average number of binary code digits per message symbol).

The true significance of Shannon’s information measure becomes apparent,
however, in the more complex problem of reliable information transmission over
noisy channels. Here the mutual information plays the key role; we return to this
point in Section 4.

In contrast to the “pragmatic” approach concentrating on the operational signi-
ficance of the measure of information, the “axiomatic” approach starts from some
a prirori desirable properties such as (2.4)—(2.7), and looks for the possible functions
of PD’s possessing them. The most standard postulates are that H(ps, ..., p;) be
a continuous, symmetric function of the p;’s for every k = 2, normed by H(}, 3) = 1,
and satisfying the following specialization of (2.5):

(2.9) H(tpy, (1 = 1) pys P2y -os Pi) = H(pys -, ) + Py H(t, 1 — 1)
0<r<1);

of course, (2.5) itself is a direct consequence of (2.9) using symmetry.

By a theorem of Fadeev [15], these postulates imply that H(py, ..., p;) is of form
(2.1). As a point of mathematical interest, the assumption of continuity can be
essentially weakened; it suffices to postulate only Lebesgue measurability, as shown
by Lee [28]. A very interesting recent development is Forte’s result [ 16] (for a further
improvement, see [2]) according to which Shannon’s entropy remains the only pos-
sible information measure even if instead of strong additivity only subadditivity and
weak additivity are postulated.

To substanciate the significance of this achievement of the axiomatic approach
also for those whose interest is centered mainly on the pragmatic side, let us mention
that in a very remarkable recent work of Ahlswede and Korner [3] on complex
coding problems just the subadditivity and weak additivity of the entropy function
were essentially used. If some other function with the same properties could have
been found, their methods might have lead to strong rather than weak converses to the
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proved coding theorems. Forte’s theorem shows, however, that this way is not feasible.
If only weak additivity is required, there already exist functions of PD’s other
than Shannon’s entropy with this property such as

(2.10) H[P) = log, Z PP O<a<lora> 1)‘.

1 —a

The quantities (2.10) have been introduced by Schiitzenberger [34] and extensively
studied by Rényi, see e.g. [32]. Rényi has called them entropies of order a; they
include Shannon’s entropy in a limiting sense, namely H,(P) - H(P) as o — 1. For
this reason, Shannon’s entropy may be called entropy of order 1. Rényi’s main
motivation for considering these generalized information measures appears to be that
he wanted to use them for proving limit theorems following an idea of Linnik [29].
Later he has demonstrated that a-entropies naturally occur in the solution of certain
search problems [33], and Campbell [6] has shown that the variable-length version
of the elementary coding theorem carries over to a-entropies, if in the definition of
average code length one considers exponential averaging instead of the standard
arithmetic one. a-entropies do have some significance for fixed length codes, too:
for the optimum binary encoding with rate R > H(P) of messages of length n from
a memoryless source with distribution P, the error probability p,(e) satisfies

1l -«

(2.11) limllogz - max
n->w N Pa 6) O0<e<1 o

(R — H,(P)).

This is an equivalent formulation of a theorem of Jelinek [23]. Of course, since H,(P)
is in a functional relationship with the moment-generating function of the “informa-
tion density” Iy (defined by Iy = —log, p(X), p(x) = P{X = x}), every formula
involving this moment-generating function can be rewritten in terms of w-entropies.

Clearly, entropies of order o do have a reasonable operational significance even
if not one comparable with that of Shannon’s entropy. As regards the axiomatic
approach, Rényi [32] did suggest a set of postulates characterizing his entropies but
it involved the rather artificial device of considering incomplete distributions
(3p; < 1) as well. This shortcoming has been eliminated by Daréezy [13]; his
main postulate in addition to weak additivity is that the entropy be of form
Y[ pap(—log, p;)] with some continuous, strictly monotonic function .

For operational purposes, it seems more natural to consider instead of Rényi’s
entropy the simpler expression Y pf as an information measure, as e.g. Havrda and

Charvét did in [21] (up to a constant factor). This quantity permits simpler postula-
tional characterizations, too, see [14], [17], [21]. The characterization given by
Forte and Ng [17] seems the most satisfactory; their main postulates are that H(X, Y)
be a function of H(X) and H(Y) if X ind ¥, and that H(tp,, (1 — ) py, P2y - i) —
— H(p,, ..., py) be a function of ¢ and p,, a weakening of Fadeev’s postulate (2.9).
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3

Quantities depending on two or more parameters and reducing in special cases
to Rényi’s or Shannon’s entropy have also been proposed as generalized information
measures. Since at present they do not have any operational significance, we omit
mentioning them.

A further operationally justified entropy concept will be discussed in Section 4. |

The concept of entropy (both Shannon’s and Rényi’s) has a remarkable short-
coming: it cannot be naturally extended to the non-discrete case. The obvious reason
is that a random variable with a continuous distribution cannot be described by
a finite number of binary digits thus it should have infinite entropy. In a sense, it is
still meaningful to define the (Shannon) entropy of a random variable X taking
values in an arbitrary measurable space with respect to a given measure A on the
same space by

(2.12) H)(X) = — J-p log, p dA
A

where p = p(x) is the density function of X with respect to 4 (if the distribution of X
is not absolutely continuous with respect to 4, we set H,(X) = —o0). The generalized
Shannon entropy (2.12) measures the average information content of X “apart
from an infinitely large additive constant” in the following sense: For a partition </
of the range of X, let X be a corresponding discrete approximation of X (for each
atom A of &7, let X* equal a fixed element of 4 if X € A4); let 5(7) be the supremum
of the diameters of the atoms of &/ (here the range of X is assumed to be a metric
space). Then, for partitions with atoms of equal interest, i.e., of equal A-measure
¢ = g(of), we have

(2.13) lim {H(X“) — log

()= 0

under a weak regularity condition. If X is an n-dimensional random vector and 1
the n-dimensional Lebesgue measure, the regularity condition is fulfilled if H([X]) <
< oo where [X] denotes the vector of the integer parts of the components of X
(corollary of theorem 1 of Csiszir [11]). A similar statement holds for the entropy
of order «, as well.

As indicated above, no direct coding justification of entropies of non-discrete
random variables can be hoped for. The main importance of generalized Shannon
entropy (2.12) lies in the fact that it can be used to calculate mutual information to
the analogy of (2.3). Another pragmatic approach leading to the generalized Shannon
or Rényi entropy H,(X) or H,,,(X) is the following (Csiszér [11, theorem 3]): If the
range of X is quantized by a finite partition o/ = (4, ..., 4,,), let the average quan-
tization loss be measured by a mean value of the (4;)’s of form

(2.14) M) = (S P(X €43 2N (8> 0)
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(2.15) M(s#) = exp, {iiP{X € A;} logy M(A)} 5

here the range of X is assumed to have finite l-measure.
Then, if 2 and the distribution of X are non-atomic measures, the minimum-loss
m-quantizations &, satisfy

(2.16) lim {log, My(/,) + log, m} = H,,(X), o= 1_+_ﬁ

provided that §(#,,) — 0.

Postulational characterizations of generalized Shannon entropy have also been
suggested. Here we do not enter this question, only mention that the most elegant
result of this type is due to Fritz [18].

3. INFORMATION-TYPE MEASURES OF DISTINGUISHABILITY
OF PROBABILITY DISTRIBUTION

Let P and Q be PD’s (measures with total mass 1) on an arbitrary measurable
space and suppose that the distribution of a random variable X is either P or Q. The
quantity

dpP dpP dP
log ~—dP=j—10 g,—dQ if P<Q,

+ if P«&Q

introduced by Kullback and Leibler [26] will be referred to as I-divergence. It is
nonnegative and vanishes only if P = Q.

A standard result attributed to Stein (see Chernoff [7]) asserts that testing the
hypothesis P against the alternative Q from n independent observations on X, if the
best test of any fixed level 0 < « < 1 is used, the probability of second kind
error satisfies
(3.2) lim - logzﬁl ~1(r| Q).

n—=w N n

Hence, I(P || Q) is an appropriate measure of statistical distinguishability of P and Q.
It should be emphasized that the I-divergence is not a metrlc (ILE_leon symmetrlc
ay;iﬂgtnangle mequahty is not true ather) still, | it is p0531ble to formulate certain

“geometric” propositions for PD’s, the I-divergence playing the role of squared
Euclidean distance, see Csiszar [12].
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I(P | Q) can also be interpreted as the measure of the average information provided
by one observation on X for discriminating in favor of P against the alternative Q,
if Pis the true distribution. Though this information measure is conceptually different
from Shannon’s, there is a close relationship between them. Formally, I(P | Q) is
minus the generalized entropy of P with respect to Q, see (2.12). What is more
essential, the mutual information of two random variables X and Y with distributions
Py, Py and joint distribution Pyy can be represented as

(33) I(X; Y) = I(Pxy || Px x Py).

More exactly, in the discrete case (3.3) is clearly equivalent to (2.3) while in the general
case (3.3) may serve as the definition of mutual information. The I-divergence plays
an important role in coding theory not only through eq. (3.3) but on its own right,
as well. Namely, it can be effectively used to describe the asymptotic behaviour of
error probability both in channel and source coding; a well readable exposition of
this method is Omura’s paper [30].

Concerning postulational characterizations of the I-divergence, see €.g. [24].

Returning to the problem of testing whether P or Q is the true distribution of X,
it is intuitively clear that replacing X by a statistic ¥ = T(X) one cannot increase
the available information. Indeed, as shown already by Kullback-Leibler [26], we have

(34 et | o) S (P | Q)

with equality iff T is sufficient statistic for the pair (P, Q) (or the left hand side of
(3.4) is infinite).

A broad family of information-type measures of difference of PD’s having the
above intuitive property has been introduced by Csiszér [8], [9], and independently
by Ali and Silvey [4] (and rediscovered by Zakai and Ziv [39]). If f(¢), 0 < t < 0
is any convex function, the f-divergence of P and Q is defined as -

(35) 1@M@=ﬁ4@u

where p and q are the densities of P and Q with respect to a dominating measure 1
(the choice of 4 is clearly irrelevant). In (3.5), undefined expressions are understood

as f(0) = lim (1), 0£(0/0) = 0, 0f(p/0) = plim ¢ f(1/t). The choice f(t) =tlog, t
t—0 =0
gives the I-divergence, f(f) = (+ — 1)? the y*-divergence

— 2
69 el =[P
q
and f (t) = lt — 1| the variation distance

(3.7) |P - ¢ =J‘|p — q|dA.
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More generally than (3.4), if IT = {P,} is any observation channel, i.c. a family of
PD’s such that P,(B) is a measurable function of x for every measurable B, the
output PD’s PIT and QIT defined by (PIT) (B) = [P.(B)dP, (QIT) (B) = [P(B)dQ
always satisfy

(3-8) I,(P1I || 1) < I(P | Q)

if f is strictly convex, the equality holds iff IT is a “sufficient channel” with respect to
the pair (P, Q), see [8], [9]. This property can be used for proving ergodicity
of Markov processes, as done first by Rényi [32] and in a more general context
by Kendall [25]; the limit theorem for convolution powers of PD’s on a compact
group has also been proved in this way, see Csiszar [8a]. An interesting further
development of this method, for reversible Markov processes with general state
space, is due to Fritz [ 19]; unlike the previously mentioned papers, he uses specifically
the I-divergence.

The f-divergences can be used for estimation, as well. Suppose that X is a discrete
random variable and its distribution is known to belong to a convex set & of PD’s
P = (py, ..., p)- If the empirical distribution in a sample of n independent observa-
tions on X is Q = (ny/n, ..., m/n), one can choose that P € & as an estimation of
the distribution of X which minimizes

(39) P10 =% —f(l) .

Convexity ensures that the minimizing P is unique (if f is strictly convex).
For f(f) = — log, t we have

i i 1 ni
(3.10) I(P] Q) = Z% 10g2’% -~ log; [1 21",

hence minimization with respect to P e & gives just the maximum likelihood esti-
mator of P. Another familiar method, based on the y2-statistic, is obtained by the
choice f(f) = (t — 1)?, while f(r) = tlog, t gives the minimum discrimination
information method advocated by Kullback [27]. Observe that the maximum likeli-
hood method is also equivalent with an I-divergence minimization, but with that of
I(Q || P) rather than of I(P | Q) where Q is the empirical distribution.

The f-divergence minimization method gives best asymptotically normal estimates
of P, for any choice of f, as long as f (t) is twice differentiable. This follows, e.g., from
[36]. Thus, it is not possible to pick an optimal f on the basis of asymptotic
properties; unfortunately, little is known of the small sample properties. From
a computational point of view, the y*-method might seem the simplest, but as
demonstrated e.g. by Ireland and Kullback [22], the I-divergence method often has
a definite computational edge. The reason is that in most cases of interest, the
constrained minimization problem can be solved numerically by a simple iterative
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algorithm; a general formulation and convergence proof of this algorithm is given
in Csiszér [12].

One theoretical advantage of the minimum I-divergence method when compared
with the more standard maximum likelihood or minimum y2-method is that it admits
a successive adjustment of the estimator to additional contraints: in case of &; > &,
where &, is a linear manifold, if P, minimizes I(P | Q) for P € &, and P, minimizes
I(P || P,) for Pe€&,, it follows that P, also minimizes I(P | Q) for Peé, (see
Csiszar [12]).

Concerning other statistical applications of f-divergences see e.g. Perez [31].

Now we turn to an axiomatic approach and prove the following.

TueoreM 1. Let F(P || Q) be defined and finite valued for discrete PD’s consisting
of the same number of probabilities p; > 0 and g; > 0 (i = 1,..., k; k arbitrary).
Suppose that

(i) F(P || Q) is invariant under simultaneous permutations of the p;s and gs;
G
F(P1 + P25 P3s -5 Dk " qy1 + g2, 935 -+ ‘Ik) = F(pl’ <ees Dre || qis s Qk)
with equality if p;/q; = P2[d2;
(iii)
F(tpis s tPls (1 — ) Py oo (1= 0) 2T | 45, s 2k, (1—194gi...0—1)q])=
= tF(phs oo By || 4o oo i) + (L= O F(PL, s p7 [ 41,0 ai) (0 <t <1).

Then there exists a convex function f such that F(P | Q) = I(P | Q).

Here the postulates (i) and (ii) are particular cases of the property (3.4). Postulate
(iii) requires that if two experiments can be performed with outcome governed by P’
and P” under the null hypothesis and by Q' and Q" under the alternative hypothesis,
then from the “mixed” experiment consisting in performing the first one with proba-
bility 7 and the second with probability 1 — ¢ we obtain information in favor of the
null hypothesis against the alternative equal to the weighted average of the in-
formations furnished by the two “pure” experiments.

Proof of Theorem 1. For given P and Q, let u be the atomic measure assigning
mass u({u}) = Y ¢; to the possible values p;/q; of u. Postulates (i) and (ii)

i:pi/gi=u

imply that F(P || Q) depends only on p, i.e., F(P | Q) = F(u). Moreover, in view of
postulate (ii),

(3.11) Ft' + (L —)p") =tF() + (1 — 1) F(u").

For signed measures of form v = ap’ — Bu” (2 2 0, B = 0), put F(v) = a F(i') —
— B F(y"). Using (3.11), one easily checks that F(v) is uniquely defined and it is
a linear functional on the linear space of the v’s of the said form. Extending this
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functional to the linear space of all atomic signed measures on the positive half line,
set /(1) = F(0,) where 3, designates the unit mass concentrated at ¢. Then, using the
linearity of the functional F(u), we have

(3.12) Kol 9 - ) =T as(Z) = 1421 9).

It remains to check that f(¢) must be a convex function, but this is an immediate
consequence of postulate (ii).

It should be noted that although postulate (iii) is a very natural one, there exist
operationally justified information measures not fulfilling it. E.g., in hypothesis
testing, if instead of the second kind error for fixed test level we are interested in the
minimum of the sum of the errors of both kinds, then the role of I(P | Q) in (3.2)
will be played by the Chernoff information number

(3.13) D(P, Q) = sup {—log2 fp“ql’“ dl} ;

O0<a<1

cf. Chernoff [7]. The latter information measure plays an important role also in
problems with more than two hypotheses, see e.g. Vajda [37].

On the basis of Theorem 1, it is easy to get a new axiomatic characterization of the
I-divergence; to this end, it suffices to add to (i)—(iii) a postulate of additivity.

4. GENERALIZATIONS OF THE MUTUAL INFORMATION

One of the most useful properties of Shannon’s mutual information is the so called
data processing theorem: if W, X, Y, Z is a Markov chain then I(W; Z) < I(X; Y).
It follows that if a message Wis to be transmitted over a channel within a prescribed
distortion bound, the minimum mutual information needed to meet this bound
(usually referred to as the rate-distortion function) must not exceed the maximum
mutual information between the input and output of the channel called the channel
capacity. The main coding theorems of information theory show that this bound is
asymptotically tight, under reasonably general conditions, but it does not mean that
shifting one’s interest one cannot obtain better results when using some generalized
information measure. As a generalization of Shannon’s mutual information I(X; Y)
the first candidate is, to the analogy of (3.3) the f-divergence of Pyy and Py x Py
(formula (2.3) seems less suitable for generalization, though Arimoto [5] did arrive
at remarkable results in this way, using a new type of generalized entropy to be men-
tioned Iater). In view of (3.8), the data processing theorem is easily seen to remain
true and certain consequences of statistical and/or information-theoretic significance
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may be drawn. This approach was hinted by Csiszér [9] and more fully developped
by Perez [31] and Zakai-Ziv [39].

Another approach which this author considers even more promising starts from
the easily checked identity

(4.1) I(Pxy | Px x Q) = I(Pyy | Px x Py) + I(Py | 2
where Q is any PD on the range space of Y. Thus we have

(4.2) I(X;Y) = I(Pxy | Px x Py) = inn I(Pxy | Px x Q).
This suggests to define, for any convex o

4.3) I(X;Y) = i%fII(PXY | Px x Q).

In the case of discrete X, the properties of I (X; Y) have been studied in detail in [10].
The data processing theorem is valid for I,(X; Y), and the latter quantity can be effec-
tively used to characterize sufficiency of experiments with any finite number of
permitted hypothetical distributions. An interesting feature of the quantity (4.3) is
that in the case f(f) = —1%, 0 < @ < 1, it becomes

(@4 106 ) = = { [ )

where W = (wy, ..., w;) is the distribution of X and pi(y) is the density (with respect
to a dominating measure 1) of the conditional distribution of Y given X = x;.

Setting a = 1/(1 + ), the function in the brackets in (4.4) equals exp Eq(o, W),
where Eo(o, W) is Gallager’s function occuring in the reliability function of the noisy
channel with transition probability densities p{(y), (see [20], p. 322). This indicates
that the a-informativity measures (4.4) might be used to prove e.g. the sphere-packing
bound for the error probability in noisy channels. The method of proof would be to
compare the minimum I, needed to represent the message with error probability
decreasing with a prescribed exponential rate and the maximum I, permissible by the
given channel. Unfortunately, the straightforward calculation leads to a weaker
lower bound for the error probability than the sphere-packing bound. The reason is
that the joint distribution of the original and decoded message minimizing I, at given
error probability corresponds to uniform conditional distribution of the decoded
message in case of error. This cannot be realized over a memoryless channel, because,
intuitively, at the decoder only a few codewords come really into account. This
heuristic reasoning suggests a simple way of proving the sphere-packing bound
which, however, still has to be made rigorous.

Let us remark that (4.3) can also be used to define a’ new concept of entropy,
namely by

(4.5) H/(X) =I1/(X; X).
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This is related to the generalized entropy of Arimoto [5] who has defined

(4.6) H/(X) = igf; p:f(q:)

where p; = P{X = x;}. In fact, substituting f in (4.5) by f defined by f(1) = t f(1]t),
which is also convex if f is, we obtain (4.6) provided that f(0) = 0.

Using his entropy (4.6), Arimoto has defined generalized mutual information
according to (2.3) and obtained interesting applications of this concept.

In this section, only the pragmatic approach was used. The reason is the apparent
lack of “true” postulational characterizations of mutual information, i.e. of charac-
terizations not starting from eq. (2.3). To the knowledge of this author, an axiomatic
approach to generalizations of Shannon’s mutual information has not been at-
tempted yet.
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