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ABSTRACT OF THE DISSERTATTION
Duality for Weights on Covariant Systems
and its Applications
by
Trond Digernes
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1975

Professor Masamichi Takesaki, Chairman

The main objectives of this paper are to establish the duality
theory for weights on covariant systems in its full generality and
to apply this theory on the study of crossed products.

With each faithful, normal, semi-finite“weight on a covariant
system we associate a "dual' weight on the corregponding crossed
product. With the aid of the modular cobjects associated with this
dual weight we obtain the commutation theorem for crossed products,
which in turn yields a description of the crossed product as the fixed
point algebra of a certain action of the given group. When the group
is abelian, this fixed point algebra description is further refined
into giving a Galois correspondence between closed subgroups of
the dual group and certain subalgebras of the crossed product. Also,
when the group is abelian, the relation between the second dual
weight and a naturally associated tensor product weight is determined,
yielding the socalled "twisted' Plancherel theorem for weights on

covariant systems,
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Introduction

*
Crossed products of W -algebras by locally compact groups have
received increasing attention over the last years as a means of
*
expressing given W -algebras in terms of simpler objects. Among

important results in this direction we mention: every III, -factor,

A
0 < A<1, d1s the crossed product of a type ITL W*-algebra by a
single automorphism (Connes [5]); every properly infinite W%-algebra
is-the crosged product of a semi-finite W*-algebra by a l-parameter
group (Tskesaki [15]). It is even hoped that any factor can be
obtained by amodified version of the usual group measure space
construction (that is, with the introduction of an additional 2-
cocycle). The group measure space construction, a special case of
the crossed product construction, was also used already by Murray and
von Neumann to show the existence of non type I factors.

The crossed product construction is based on the notion of a
covariant system, that is, a triple {M,G,0} of a W*-algebra mn,
a locally compact group ® and a homomorphism ¢ : © — Aut(h), the
latter being continucus with respect to the pointwise o-strong*
topology in Aut(Mm) = the automorphism group of M. If M is
realized as a von Neumann algebra on a Hilbert space ¥, the crossed
product M Satg is realized on the Hilbert space I?(@; H) and
may be viewed as a generalization of the left regular von Neumann
algebra of @ (see §l). An analogous notion of a ¢ -covariant

*
system and C -crossed product also exists, but we shall be solely

3
concerned with the W -version here,



flor the study of W*-algebras in general, the positive linear
functionals, or, more generally, the weights, together with their
associated modular objects, have proved to be efficient tools. For
example, the algebraic invariants S(M) and T(M) of Connes [5]
are defined in terms of such objects. For the analysis of the type
and structure of crossed products it is therefore of importance to
be able to exhibit weights, along with their modular objects, on these
algebras. In the first part of this paper we show that given a
covariant system {M,8,q} and a f.n.s.f. (= faitﬁful, normal, semi-
finite) weight ©® on In, there is a natural way to obtain a f.n.s.T.
weight % on ﬂl@%x@g the socalled dual weight of ¢. The modular
objects of '5 are expressed in terms of the relative modular objects
associated with @ and its translates @ o Qé, g € 8 This detailed
knowledge of the dual weight helps us gain insight intc the nature
of the crossed products itself. First of all, with the aid of the
unitary involution associated with $, we obtain the commutation
theorem for crossed products, which, in the case of a covariant
representation (¢,I'} of {Mm,8,0}, says that the commutant of the
crossed product is canonically isomorphic to the (right-handed)
crossed product of the commutant o{(Mm)' of o(h) by the action
g+ Ad{T(g)) of @ on &(M)'; in general, the commutant of the
crossed product is a reduced algebra of such a (right-handed) crossed
product (Theorem 3.14% and Remark 3.15). This in turn allows us to
identify the crossed product itself with the fixed point algebra of
the action g ade® ® Ad{p(g)) of @ on M 8)8(1?(@)), where p

is the right regular representation of @ (Theorem 5.1). When



the group @ is abelian, a Galois type theorem for the correspondence
between subgroups of & and certain subalgebras of M @atg results
(Theorem 5.3 ). - The formula for the modular automorphism group of the
dual weight also gives a sufficient condition for the semi-finiteness
of the crossed product (Remark 3.16).

When the group ©& is abelian, an algebraic duality theory for
crossed products exists which identifies, in a canonical manner, the
second crossed product (M ®a &) ® @, i.e., the crossed product
of M® © by the dual action & of & on m ® O, with the
tensor product M ® B(I?(@)) (see [15; §4]). It is therefore
natural to compare the second dual weight %l with the tensor product
weight © ® Trace on M ® ﬁ(I?(@)). It turns out that the Radon-
Nikodym derivative (D9 : D(p ® Trace)) is évdirect integral of the
individual Radon-Nikodym derivatives (D(g o Oé) : Dy} (Theorem 4.2).
This may be viewed upon as a kind of a twisted FPlancherel theorem
for weights on covariant systems, the twist being measured by the co-
cycles (D(p o Qé) : Dp).- As a consequence, the weights T and
© ® Trace commute in the sense of [17] if and only if © and @ o oé
commute for all g € @ (Corollary 4.3).

The results in this article extend some recent results by
Takesaki in [15], where the dual weight construction was carried out
for a socalled relatively invariant weight, that is, a weight @
such that for each g € @ there is a positive number *(g) with
P e aQ, = X(g)o. When this condition is removed, an application of
A. Connes'! relative modular theory for weights becomes necessary;

in particular, we need to perform a spatial analysis of the relative



modular objects (see §2).

Some of the results in this article have been anpounced in [7].-
Recently A. Connes and M. Takesaki, among others, have obtained some
further applications of the above mentioned rssults (works to appear ).

The organization of the paper is as follows. In §1 we collect
some basic facts and results, in particular from the theory of weights
and left Hilbert algebras. In §2 we develop the relative modular
theory for weights within the spatial framework and provide a spatial
analysis of the relative modular objects. Some additional results of
general character are also furnished.

In §3 we construct the dual weight. This is done by first
constructing a left Hilbert algebra which is dual to that of the given
weight in a certain sense, and whose lef?t voﬁ Neumann algebra coin-
cides with the crossed product. The dual weight is then defined to
be the canonical weight associated with this left Hilbert algebra.

The modular objects of the dual weight 5 are expressed in terms or
the modular and relative modular objects associated with the given
weight ¢ and its translates ¢ © o%, g € @ As an application

the commutation theorem for crossed products is shown.

In §4 we tonsider the case when the group @ 1is abelian and
investigate the relationship between the second dual weight % and
the tensor product weight ¢ ® Trace on @)ﬁ(l?(@)). The socalled
"twisted Plancherel theorem' for weights results.

Finally, in §5 we apply the commutation theorem from §3 to obtain
the description of the crossed product as the fixed point algebra of

the action g a, ® Ad{p(g)) of @ on M S)B(I?(@)) and next,



when the group © is abelian, to show the Galoils type correspondence
between closed subgroups of 8 and certain subalgebras of @a @.

A note on notation.

The symbols R, € stand for the real and complex numbers,
respectively. For a locally compact group & we use () for
the space of continuous functions with compact suppert and & =
modular function of @&, All other notation and terminology is either
explained in the text or conforms with standard usage (as set forth

in, for instance, [51, [8], [14], [15]).



§1, Preliminaries

In this section we recall some facts from the theory of weights
and left Hilbert algebras, give the basic definitions in connection
with dynamical systems and provide scme lemmas concerning vector-
valued integration. Some notation will also be fixed. General
references for this section are [1], [2], [3], [4], [8], [1k], [15].

A weight on a V¢*-a1gebra M 1is a mapping o : mr — [O,4]
such that o(x + v) = o(x) + o(y) and ¢(x) = ap(x) for x,y en’,
A >0 (with the convention that 0. = 0). We denote by 2, the
left ideal {x e My m(x*k) <ew} of M and set M = m* .M. M is

© © ® ¢
then the complex linear span of the set {x e M'; p(x) < o} (see [4];
p. 50). The extension of ¢/m; to a linear functional on W& will
also be denoted by .

@ 1is said to be:

(a) Semi-finite if ﬂ% (or equivalently m®) is o-weakly dense

in .

(b) Faithful if x e M’ and x # 0 imply o(x) > O.

(c) Normal if there is a family {mi} of elements from m;
such that o(x) = sup wi(x), x em.

If o 1is normal the family [wi} in (c) may be taken to be an
increasing net so that wi(x) T ol(x), x ¢ m+ ([3; lemma 1.9]).

et ¢ be a f.n.s.f. (= faithful, normal, semi-finite) weight
on M. The mapping (x,v) € ﬂw X mmta»w(y*x) ¢ C is an innerproduct
on mw, and the Hilbert space completion of mw under this inner-

product will be denoted by H$. Letting A_cp : mm —>ﬁ¢) be the



canonical injection and denoting the innerproduct in ﬂ@ by (",
*

we have then: <A¢(X)’A@(y)> = o(y x), X,¥ € m®. A faithful normal

representation ﬂ¢ of M on ﬂ@ is obtained by defining

ﬁ$(X)A¢(y) = Aw(xy)3 xel, y e m@. The linear subspace ﬁ¢ =

¥
Am(mw N m$) of H@ becomes a #$- algebrs under the operations

¢

* *
the conjugate linear operator: Aw(xj PiAﬁﬂx ), X € m¢ n m¢, is pre-

closed in H@’ and %¢ turns out to be a full (achieved) left

AW(X) . Am(y) = Am(xy), Aw(x)# = Aw(x*), X,y € o m@. Furthermore,

Hilbert algebra with these operations and we have RE(M¢) = ﬁ¢0h)
(Rg(ﬂ): left-regular von Neumann algebra of the left Hilbert algebra

%). The closure of the operator € e Uw ﬁﬁ.e U in ﬁ¢ will be

denoted by S@, and we let Squ = qué/g be its polar decomposition,
where Jcp is a conjugate linear unitary involution (J2 =I) and
. < . . -1
Am is positive, selfad301nt, non-snlgularf We have J¢&¢I$ A@ s
LKk
Jcpstcp(m)JCP = ﬁ¢0n)r and J$ﬂw(x)J@ = ﬂQ(X) for x € z(m), thus the |
repregentation x_ of M 1s standard. Also & ﬂ m)A 7 (I

for all t € R, hence a continuous one-parameter group of automorphisms
it -1t
(6P} on M is obtained by setting = o(x)) = A% (x)a tl.
. ¥ g wplog(x)) = o (x)a,
*
have @(gf(x)) = ¢(x), x eM", and {Gf} satisfies the KMS -condition

We

with respect to ¢, that is:

% ,
for x,y ¢ m@ NN there is a complex function

P

F = Fx - defined on the strip B = {z ¢ C; 0 < Im z < 1}
, = =

which is analytic in the interior of B and continuous

and bounded on all of B such that: F(t) = @(Gi(x)y)

KMS stands for XKubo-Martin-~Schwinger, after the physicists who
first introduced this conditicn in theoretical physics.



and

Pt + 1) = ®(yoy(x)) -

A function such as I above will be referred to as a KMS-function
and the set B will be called "the strip."” The one-parameter auto-
morphism group {cgﬁ is called the modular automorphism group of ¢
at it is characterized by the two above conditions: namely, if {Bt]
is & continuous l-parsmeter automorphism group of M such that
$(5t(x)) = o(x) for x em' and if [Bt] satisfies the KMS-condition
with respect to @, then g, = fcp, t ¢ R (the continuity of t Hofcp
refers to the pointwise o-strong* topology in Aut(m) = the group of
*¥-automorphisms of M, namely: the function t € R Fiof(x) eh is
o—strong* continuous for all x € ).

Conversely, a full left Hilbert algebra % gives rise toc a f.n.s.f
weight @ on &E(M) by, for x e Rﬂ(ﬂ)+, defining $m(x) = |lgl@
if x = ﬂﬂ(ﬁ)*ﬁﬂ(ﬁ) for some £ e U and @M(X) = +w otherwise.

(Here and elsewhere ﬂﬂ denotes the left regular representation of U
on the completion of 9, viz. ﬂﬂ(i)n =€ for £,me W If

A = M@ for some weight ¢ we will also sometimes write ﬂi for

nﬁ, thus Ty = xt o A on m@). Taking U to be the m¢ above

¢ P
£ * *
we have: e T = and (¥ )= (M N )=0_nNN_. Thus
Pt Ty = Y (Bp) = (T 01 ) Doy Py

we have a canonical one-to-one correspondence between the f.n.s.f.

' *
welghts and the full left Hilbert algebras assoclated with a W -
algebra M.

In what follows we shall make frequent use of vector valued

integration. As regards the notions of measurability and integrals



of vector valued functions, we use the definitions of Bourbaki

([1; IV, §5, def. 1] and {2; VI, §1, no. 1]J). If M has separable
predual, the Hilbert space ﬁ@ of a f.n.s.f. weight ¢ 1is separable.
Hence if @ is a locally compact group, a function £ : @ —>H® is
measurable if and only 1f the functions g € @\ﬂ-(@(g),q) are measurable
for all 1 € ﬁ$. We denote by IF(®; ﬂ®) the Banach space of all
measurable functions € : @5—>ﬁ¢ such that f® lE(e)F dg < e, with
the norm HEHP = (f@ “ﬁ(g)Hp dg)l/p. The space I?(@t H$), endowed

with its usual operations, is then a Hilbert space canonically

isomorphic to ﬁ$ ® I?(@) under the map:
2 2
5®Fe31CP®L(@)»—>F-geL(@; :ﬂq)),

where (¥ - £)(g) = F(e)e, F ¢ 12(0), £ ¥,

An element € ¢ L;(@; ﬁ@) is integrable in the sense of [2; VI,

§1, no. 1] and the value f@ £(g)dg 1lies in ¥ If A is a bounded

(P.
linear operator from H@ into a locally convex space E, the function

g € @ Af(g) ¢ E is integrable for every £ ¢ I}(@; H

A(Jg E(g)dg) = [ AE(g)de.

CP) and

A covariant system is a triple (M,®,q) where I 1is a W*-algebra,
® a locally compact group and ¢ : ®@ — Aut(m) a continuous homo-
morphism, Aut(h) being equipped with the‘pointwise o-strong*
topology. Civen a covariant system (M,®,a) and a faithful normal
representation w1 of M on a Hilbert space H, the crossed product
R(M,c,x) of M by «a based on the representation xn, is defined
t0 be the von Neumann algebra on I?(@; H) generated by the set

o~

{ﬂq(a),i(g); a e, g ¢ @ of operators where T and A are given



by
(xo(2)E)(8) = n(c(2))E(e)

(M()E)(e) = t(u™8), £ eIF(G H), aem, gh e,

If another faithful normal representation =n, of M had been taken,

1
the resulting crossed product R(m,o@ﬂl) would be isomorphic to
R{M,q, ) (see [13; Prop. 3.4]). Thus we have a well defined crossed
product of the abstract W%-algebra M by & namely the W*-
isomorphism class of all the ®R(M,q,n), and this will be denoted by
&(m,a) or by o Qa ®, The representation of M @a @ on I?(@; H)
corresponding to the representation = of M on H will be denoted
by 1w, thus w(l ® ) = RN, ).

A covariant representation of the covariant system {M,@,c}
is a pair (#,U) where = 1is a normal representation of M on a
Hilbert space H and U 1is a strongly ceontinuous unitary representation
of & on ¥ such that K(Oé(x)) = Uéﬂ(X)U;, xel, g € @ Under
the canonical isomorphism between I?(@; H) and H Q® I?(@) the
operator A{(h) transforms into I ® A(h), where A is the left
regular representation of @ on I?(@); hence h+ A(h) is a
strongly continucus representation of € on I?(@; H)., Also, ﬂa
is a faithful normal representation of M on I?(@; H); the faith-
fulness is straightforward, and the normality is seen as follows:

Let {ai} be a bounded increasing net from M such that
1im a, = a € W and let £ : @—~H be a continuous function with

compact support. Setting Fi(g) = (ﬁ(oél(ai))é(g),E(g)) the family

10



{Fi} is an increasing net of positive continuous functions, hence by

[1; Ch. TIv, §1, Th. 1]:

i

(@) = | (@)t e, o)

'al

1 | (n(e (a;))E(e) E(8))de

Il

1

lj:-m (T[Oé(ai)g’ €) .

The boundedness of the a,'s then implies (ﬂa(a)é,é) =
limi(ﬁa(ai)ﬁ,g) for all € ¢ 1?(@g H), proving the assertion.

A simple computation shows that
(1.1) (0, (2)) = Ne)m (ali(e)*
. ﬂa aé a)) = Mg)n fa)Mg)

hence (nofi) is a covariant representation of the dynamical system
(M,®,0) on IF(G; ¥).

Unless otherwise stated we shall consider our W*-algebra M to
be equipped with the o—strong* topology throughout this article, For
the convenilence of the reader we recall that this topology is the
locally convex topology on M geperated by_the set {pw; Ve m;}
of seminorms, where pw(a) = ($(a*é) + ¢(aa*))l/2, a < . o-strong*
bounded sets are norm bounded, and if M is countably decomposable,
bounded subsets are g-strong* metrizable. Furthermore, the *—operation
is c—strong* continuous and multiplication is o-strong* continuous on
bounded sets, Hence X(& M), the set of U-strong* continuous

Tunctions from © to I with compact support, is a *-algebra under

i1



pointwise operations. The c-strong* uniform structure on M is
quasicomplete, i.e. bounded subsets are complete, hence for x € X{®; M)
we have f® x(g)dg € M. The usual laws for commuting continucus linear
maps under the integral sign are wvalid; also, if p : I ->R" is a
o-strong* lower semicontinuous seminorm we have p(f@ x(g)dg) <

Jg P0x(8))g, in particalar ||jg x(e)ae] < [ x(e)llde, x € (& M)

(ref: [11, [2] and [3]).

Remark 1l.1l. Returning to our dynamical system {M,8,0} we note
that if x € H(®; M), then so is the function g hao%(x(g)); this
is immediate from the relation (1.1) and the faithfulness and normality
of ﬂO[

The following polarization identity, valid in any *-algebra B,

will be used repeatedly:
2 ifa+ i) (a + i), apem.

For the sake of reference we also prove the following:

Terma 1.2. Iet B(M)T denote the cone of positive g-weakly
continuous linear operators on M, endowed with the pointwise g-weak
topoclogy, and let @ be a locally compact group. Further let
b: 8@—->8M)" be a continuous mapping such that g e [[b(g)] is
bounded, Then for any bounded Radon-measure pu on © the linear

map: a € ﬂlk?f@ bg(a)dp(g) e is g-weakly continuous.

Proof. We may assume p 1s positive, hence it suffices to show

that the map is normal so let {ai} be a bounded, increasing net from



m* such that lim a, =a¢€ Mt and let 4§ e m;. Setting Fi(g) =
¢(bg(ai)) the family [Fi} is an increasing net of positive continucus
functions on ®, and by the boundedness condition on b the functions
gf—)bg(ai) are u-integrable; hence by [1; Ch. IV, §1, Th. 1] again:

w( S r@m@) = [ o @0 - [ am vivy(a st

= 1lim “l‘l(\jp@ bg(al)dp(g)) . Q. E. D.

The next lemma gives a link between integration with respect to

various topologies on M.

Lemma 1.3. ILet @ be a f.n.s.f. weight on M and assume M
has separable predual. Further let x e K(®; M) be such that
x(g) e mcp’ g € 8. Then the function g e @HA@(X(E)) e ¥ is

%
*
measurable., If in addition the function g o(x(g) x(g))l/2 is

integrable, we have f@ x(g)dg € mcp’ and Acp(f@j x(gldg) = f@ Acp(x(g))dg.

Proof. Since licp is separable it suffices to show that the

functions gw (Acp(x(g)),g) are measurable for all £ ¢ :Hcp' Now,

®

the polarization identity and the normality of ¢, a linear combi-

if a e M, the function gw (Acp(x(g)),j\cp(a)) = Cp(a*x(g)) is, by

nation of lower semicontinuous functions, hence measurable. By

taking a sequence {an} from ‘RCP such that Acp(an) £, the first
*

assertion follows. If in addition the function g ¢(x(g) x(g))l/2

is integrable and setting a = f@ x(g)dg, we have:

13



i

v [ )
a,*a, =J x(g) ng x(h)ah =j x{g) x(h)dgdh ,
G & <@
thus for‘any W € m‘;:

w(a"2) = | u(x(s)"x(n))asn
&

-

% 2
< [ e x(g))l/eng
VoS

Ietting {wi] be an increasing net from m‘; such that o(x) =

lim wi'(x), x elt, we get:

_ % T . 12
p(a*a) = limw, (a'a) < Lin U w, (x(e) x(g))2ag
it 1 e * _

% 2
- [ [ 1m0, (x(8)" () 2ae

ok 2
=[ f p(x(e) x(g))l/ﬂ <o,
0

proving the second assertion.
As for the last assertion, let b ¢ mcp' By the polarization

identity we may assume bsx(g) elM™ for all g € ® Then:

<Acp<f® x(g)dg),ﬂcp(b> = @(b*<f@ X(g)dy)) = cp(fb*X(g)dg)

:Jﬂ 1im wi(b*x(g))dg = P cp(b*x(g))dg
® i J

1k



*f@ (8(x(&)),,(0)) e

= ax(e))aga (0).
Jo @ P

This holding for all b € ERCP, the last assertion follows. Q. E. D.

15



§2. Relative modular theory

In this section we give an account of the relative modular theory
for weights (see Connes [5, §1]) from the spatial point of view, and
prove some additional results needed for the construction of the dual
weight. The spatial approach roughly means that we string out Connes'
o w 2-matrices to 4-vectors in the associated Hilbert space, thus
obtaining the relative modular objects as elements of 4 % 4-matrices
over this space. This allows us to arrive more directly at the results
needed for our purposes. For the state case, Connes himself gave a
spatial interpretation of the relative modular objects in [6].

We start by recalling the definition of the "mixed" weight (or the

*
sum-weight ) of two f.n.s.f. weights on a W -algebra (see [5; §I1):

*
Definition 2.1. For two f.n.s.f. weights ¢ and ¢ on a W -

algebra M the "mixed" weight 0O = 6(wp,4) of ¢ and ¢ is the

weight on P =M ® Mé (Mé = the algebra of 2 X 2-matrices) defined by:

6(x)

Il

for

%1 %12
X = e P
+
*51 %o

Tt is then shown in [5; Th. 1.2.1] that 6 1is a f.n.s.T. weight

on P. From the definition of € it follows that:

16



I T
(2.1) 7, = ( L ) ,

! T
‘ch o

where the matrix notation is self-explanatory. Since the *-operation

in # is given by:

% < P *
X X
11 %1 11 1
1 o 1o oo
we have:
2N . TN on
I ¢ P O
(2'2) 919 N me = _
¥ *
TN M n N m
L A

From (2.1) it follows that the Hilbert space H, of 6 may be

written as

. H. =H @&@H & H oH
(2.3) g = Hp@H BN @ U
The imbedding AQ : ‘Jte —>Jie is then given by:
X X
1 e \ ,
(2.4) Ay . € Ty (Atp(xll)’Acp(Xgl)’Aq;(Xle)"\w(xeg)) € ¥,
vopl ng j

0 g‘t* m - d » . m* i]‘t s
Since AQ( 5 N 9) is dense in Hy, so is Acp( ) 0 cp) in Jiq)

Furthermore:
1t A I
*
(2.5) fﬁt:ﬂt-mz(m P L A

v ‘R(P) is dense in :ﬂcp (since _/\_8(9]&9) is dense Bie). _
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We denote by SCp " the densely defined operator from ﬁl to ﬂ@
L] W

given by:

* *
(2.6) S@,vA*(X) = A¢(X ), x € m@ n m¢

Writing operators on he as 4 x 4b-matrices according to the

decomposition (2.3), we consider fhe densely defined operator @ on

He given by: -

8 0 0 o

¢

¢ 0 S 0
(2.7) Q= Y :

0 S 0 0

4, P
R 0 s, |
. I * 0 3 - -

with domain U, = Ae(me n me). Since Q coinpcides with S, on %>

Q@ 1is preclosed, hence so are the matrix elements S¢ m A vector
2
L3 £ - * - 4
7 = (“1’"2’“3’“u) € By is in the domain of @  if and only if the

mapping
é = (€1,€2:§3:€4) € %b F’(Qﬁ,ﬂ>

= (S ) + (B By ) # (8, ofaon) + (S8,

is a bounded linear functional on Me. Since the non-zerc functionals
on the right-hand side of this equation are linearly independent,
congidered as functionals on mé, the mapping §£ € ﬂwrﬁ (Q€,m) 1is
*
bounded if and only if each of the functionals El € A_(P(‘.TtCP N NQ) —
*
S e A M NM ) (5 ete. is bounded, It follows

that dom(Q,*) = dom(s*) ® dom(s* ) & dom(s* ) @ dom s* and that:
P Ps ¥ ¥, P v

18



rs; 0 o o ]
*
0 0 S 0]
* P
Dy
*
_O 0 O SIB—J

Denoting the closure of an S by S again and repeating the argument

we get: - -
S 0 C O
@
0 0 S 0
2 _
(2.9} S, =@ = P4 ; dom(S ) = dom(S.) & dom(S )
0 0 s 0 0 - @ P
P ® dom(S,. ) @& dom(S )
o 0 0 g P> ¥ v
| 4
since Se =Q on ﬂe and ﬁb is a core for SQ.
. P 1/2 - _ .t
Tettin 3 = J A be the polar decomposition of S
& S,y = T4y P P P, 4
. . . P .
where J : H =4 is conjugate unitary and AY : H —H is
oy S Ty T e JHe v v T
positive, selfadjoint, nonsingular, we get the following matrix
expression for the modular operator a@ of 8:
[ o 0 o1ls. o 0 o |
@ @
*
: 0 O S ) 0] 9] S 0
*
(2.10) &, = 8.8, = N P ® ¥
0 8 0 0 0 S 0 0
P, 4 1, P
%
0 O O S 0 O @] S
L 4 L ¢_J
A 0 o o]
P
o a¥ o o
_ ¢
CP -
] 0 A 0
¥
Q 0 0 A
| N
\ -1 -1 ~1
Since B3 = (3 = (A J h J S =
o1 = (By,0) (8) (3 o) 75 we bave T, .S,
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Py-1
J‘l’: CP(ACP) (J"IUCP P

unitary); hence by the uniqueness of polar decomposition:

)_l, a positive operator (J11I
k]

being conjugate

1 1o
5.11 7 (AW g N
( ) $,¢( CP) ( ¢,®) )
and thus:
(2.12) J= (3 )7
v, ® P, v
From the relation
~r
11 %12 Y11 Yo *11 *pil Y1 Jip
o Ag =y j
21 ¥ o1 Yop 51 TopJl Yo Va2
A [F0711 + F12%10 11712 * *12%22
= Ny
Lxélyll X5 Vo0 KoY Koo
for
Py %15 Y11 Y12
% el ® Mé, e me s
L%1 %o o1 Yop

it follows that in the 4 X Y-matrix notation the representation Ty

associated with 6 i1s given by:
ﬂ@(xll) n@(xl2) 0
-
{ 0
as) x, T T2 || TP )
. ol X 0 0 n (x,.)
L 21 o2 g1l
| 0 0 ﬂw(le)

20
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setting

Y11

|

and using the fact that

Y12 } 6 { 11 XE]
= O't
Voo | 21 oo

j : ; :
o] *1 *12|} it L Fi Fe | -it
“eif’t[x . [ =8 L . %
Vol® Tl 21 %2
we get by the above formulas for A@ and Ty
o (717) (1, ) 0 0
t (v,1)  w.(¥,,) 0 0
(2.14) P2l ¢ree
0 0 “11,(3’11) ﬂ¢(y12)
L 0 1 (1) 1)
A lt «it
ACP T :Xll)ACP Cp Cp( )(A ) 0 0
¢it it it ¥y -1t
Pyit ®©\it . p\1t -it
0 0
(89, ey YO, (477, G, 07
0 0 it o) 1t 1t -it
| By i (B0 T (0 0A
. . -1t
This gives ﬁ®(yll) = ot n$( ll) o CP( t(Xll) and ﬂw(yég) =
-1t -1t
Awl Hw(Xée)A¢l = ﬂw(ct(XEE))’ hence 1y , = c@( ) and Vop =
¥ ] ¥yt §y-it
Gt(xéz)' It follows that = (o (X )) (A ) ﬂ@(X22)(A ) and
ﬂ$(cf(xll)) = (/_\.Cp)lt 11I( ll)(A@) , hence there is, for all t € R,
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a unique unitary u¥? ¢ m such that = (uw,@) _ (A¢)1u&~1t. The
¢ Pt » o
strongly continuous mapping 1t ag’@ is called the Radon-Nikodym

derivative of ¢ with respect to ¢ and is also denoted by

b @ . . .
: : =u’" ", t
(Dw D@), thus (Dm DCP)t u, From the above matrix eguation i

PPy LAt Py-it Pyit, -ity* Py Yy * .
follows that ﬂ¢(ut ) = A¢ (&w) = ((A¢) A¢ ) = ﬂ$(ut ), thus:
VP PPyF

(2.15) u’ " = (ut )
Furthermore, from the definition of ug’® we geb:
(2.16) PR LR 34 (uw’@), t.,t. ¢ R
tl+t2 tl tl t2 1’2
and
(2.17) cg(x) = ug’$of(x)uf’¢, t e R .

By the matrix equation (2.14) and the definition of ug’$ the modular

automorphism group {oi] of the mixed weight © 1is given by:

) Py b
(2.18) o 1 iz | SMENY w0l (%,
| t - 4P _P ¥
X1 Fon EMACMETDIEHEY.

Finally, if X 1s a third weight on T, +then the following

chain rule holds:
(2.19) (Dx @ D), = (DX : Dy) (Dy = DP), .

This is easily verified by considering the welght 6 on M M3

defined by: 6(x) = @(xll) + ¢(x22) + X(X33) for

22



X1 %5 XlBW
+
x=| %, %, x| € (h ® MB) .
| %31 T2 33

Proposition 2.2. A g-strongly continuous mapping u from the

real line R into the unitary group of M which satisfies relations
(2.16) and (2.17) above, coincides with the Radon-Nikodym derivative
(DY : DP) of ¢ with respect to ¢ if and only if the following
KMS-condition 1s satisfied:

For =x ¢ m* NR, ye m*'ﬂ mw there 1s 2 bounded complex function

U ®

T = Fz’i, holomorphic in and continuous on the strip B = {z € C;
» N

0<Imz <1} such that:

F(t) = $(u,0,(x)y)

F(t + 1) @(yutof(x)) .

Proof. If u, = (Dy : Dqﬂt, then

t
- ¢ * v
I RS oglxgy)  agop(x,)
t - © ’
X Xy utct(le Gt(XEB)

hence since 6 satisfies the KMS-condition with respect to Oi,

*
there is for x € mw N m@, y el

the stated properties such that:

*
NN, a complex function F with

¢ U

0 0 0
F(t)_e<o§( . ) i Z }=¢(utof(x)y>

and
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F(t + 1) = 6

0O v o 0 0
x 0

4
); = $(yutOf(X)) .

Conversely, if {ut} satisfies (2.16) and (2.17) and if we define

By Y
P * ¢
o 10 % || Oglx) LEMEPY
b a ¢ ¥
X1 Fap utot(le) Ut(XEE)

then tr—sst is a strongly continuous l-parameter automorphism group
on In 8>N% under which & 1is invariant, and the KMS-condition

imposed on {ut} implies that [Bt} satisfies the KMS-condition with
respect to ©, thus g, = oi, t e R. It follows that u = (Dy : D@)t.

Q. BE. D

Corollary 2.3. If g is an automorphism of M and ¢, § are

as above, then
(D(¥ ° g) : D(o * B)), = p™((Dv : DY), ) .

Proof. Since gi°5 =gt oi o 8 for any f.n.s.f. weight X

(as is readily seen by checking the KMS-condition), we have for
*

8]
%€ Mg M Rpeg

- B'l(m: nm) and y e L 5'1(m$ n M

(‘Doﬁ woB ):

)
v oo (™ (b Mol Pla)y) = w(ud % (6(x))p(r))
and

o o plye (W )PP (x)) = alply)ud %l(aix)))

thus taking a KMS-function corresponding to p(x), s(y) for ug’@,
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the assertion follows. X.E. D,

*
It P, is a f.n.s.f. weight on a W -algebra mi, i=1,2, the
tensor product weight @l ® ¢é is the unique f.n.s.f. weight on @
on ml ®]W2 satisfying:

P Q, i
¢ _ - 1 ® o 2
t Tt t

(see [5; 1.1.2]).

(») o

Iemma 2.4, If Ps ¥y (resp. s ¢2) are f.n.s.f. weights on

*
a W -algebra ml (resp. mg), then:

(Do, ®9,) : D4, ® v,)), = (Do : D), © (D, : Dy, -

Proof. Let ¢ = ¢; ® Py ¥ = i ® we and sgt v, = (Dcp1 : le)t ®
D
(D,
*
to {OE] and that Gf(x) = vtci(x)vt, xe @ m2 (using (b) above).

: Dwg)t. It is then clear that t v, 1is a cocycle with respect

It remains to show that {Vf} satisfies the KMS-condition with respect
to ¢ and ¢ (Proposition 2.2). For this it suffices to consider

*
elements of the form: x=x, ®x , y = ¥y ® ¥, where X, € Tooa%n

o2 AR

* *

, , i=1,2 (since (M N2 )@ (M NN )=
*

QM n n
LY

® ® ) with algebraic tensor products ). We have:
1 % oo

2
Py ¥y ¥ RN
o [v,0d(x, ® x,) 1y, ®v,1) = @ (a0, 0y ), (0 % () )y,)

and:

Pt U Pty U
Wy, ® v, 10veole ® x)1) = 4 Gy Yo, (0.7 20,5 (%))
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thus, if Fy and F2 are KMS-functions for {ut } and [ut 1,
regpectively, F=1F, * Fé is a KMS-function for {vt]. Q.E.D.

We shall need some results concerning the natural cone P
associated with a f.n.s.f. weight ¢, which plays an important role
*
in the spatisl description of W -algebras (see [6]). We recall the

definition:

’g- »
PCP = {x (ﬁ)JCPEi: é. € M(P

oK -

=AM nR )}

where the closure is taken in the Hilbert space ﬁ$. The cone PCP
is self dual in the sense that an element € ¢ ﬂ¢ is in Pcp if and

only if (g€,n) >0 for all 1 ¢ P¢. Moreover, if ¢ and { are

f.n.s.f. weights on I apd if © : ﬁqgm) —>ﬁ¢(m) is an isomorphism,

there is a unique unitary U® : Hq}—aﬂw which preserves the natural
- *
cones and implements ¢ (i.e. U®P¢ = Pﬁ and ¢(x) = UQXU®,

X € ﬂ@(m)), the so called canonical unitary implementation of @&.

For a covariant system {M,8,0} we also have that the mapping g*%'Ug
_is strongly continuous, where Ué is the unique unitary on ﬁ@ such
that UéP¢ = PCP

continuous homomorphism U : @}~9ﬁ(ﬂ@) will be referred to as the

and ﬂ@(oé(x)) = UgﬂQ(X)Uz’ g e® x eM This

canonical unitary implementation of & on H@ (see [11; Corollary
3.111).

For the analysis of the conjugate unitary operator J appearing

¥ P

in the polar decomposition of S¢ o we shall need the Tact that PCP
>
coincides with the following apparently larger set, namely

£ .
= ; = . I i t of
Qcp {n (&)J@ﬁ, £ ¢ ﬁ@ A@(m®)} or this we invoke a result o
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Haagerup [11] concerning the possibility of approximating, in a suitable
manner, elements in the full left Hilbert algebra ﬂ¢ by elements in

themaximal Tomita algebra ﬂw 0 contained in M@ (we recall that
2

Uy o= (€ € My & e dom{Aa®) and A e Uy 1l z € C} is a Tonita

2

algebra which is a sub-Hilbert algebra of m¢ and is equivalent to m¢).

It is shown in [11; Lemma 1.4] that for each £ e N¢

such that gn - £, Eg-ﬁ gﬁ,

*
=AM NA

$( O @)
there is a sequence {in] from mQ’O # #
P £ £ £ £ £ £
I NS @M, «*(e) » «*(€) ana «*(£%) »x"(£%) (tne 1atter
two in the strong topology), and hence P¢ = {g-qu; £ e ﬂ@ O]-' In

. 3
our case we only know that € € Am(m¢), thus the statements concerning
the #-convergence do not make sense. However, we still can find a

4 £
sequence {gn} from ﬂ@’o such that ﬁn.—>§, || (&n)ﬂ<§ e (&)]]
and nﬂ(ﬁn) *9ﬂﬂ(€) strongly. For the proof of this we proceed
exactly as in the proof of [11; Lemma 1.4]: for each n ¢ Z¥, we
_t2/2n?

let Fn(t) = e , t € R, and set gn = Fn(log A)E.  Then by
[12; Theorem 13.24b)] £ e dom(Aé) for all z e C; also, Azgn =
G _(log A) where G (t) = exp(zt - t2/2n2) is linear combination
n,z n,z
of continuous positive definite functions (as is readily seen by
Fourier transforming Gn Z), hence there is a bounded Radon measure

2
ist . it
o= un,z on R such that Gn,z(t) = IR e “du(s). Since A¢
. . £, At ¢, £
leaves A (T invariant and «"(A = 7 for e A_(M
oT) (65°8) = of(x"(£)) & e hy(R,),
we have for n € W = the right Hilbert algebra associated with ¥

(see [14], Definition 3.1):

IGage dnll = llle, ,(10g n)eln|

H J; (5156 Yma(s) guf”'nﬂﬂ(a)n-nnudm(s>
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= Jul- =€) Inll

where Hu“ is the total variation of pu. It follows that Azg is
C=n

left-bounded for all z e C and n e Z+, hence ﬁn € M$,O for all
nez". Since Frl is positive definite and the Radon measure corre-
sponding to Frl has total variation = 1, we get by a similar

argument that Hﬁﬂ(ﬁn)H-S Hnﬂ(ﬁ)H, neZ'. Since Fn(log A) converges
strongly to the identity, we have & — £, and since the ﬁﬂ(ﬁn)‘s

are uniformly bounded, we also have ﬁﬂ(gn) —>ﬂ£(€) strongly (by

testing on the dense set W of right-bounded elements). Conbining

these three facts we get o (gn)Jcpgn - (F;)Jcpﬁ, thus
e85 & 6 2,0 € (K (£)7fs & < 8, )T C Ry
and we have proved:
Lemma 2.5.
P, = (€748 € € 0 (317 .

The next proposition relates the unitary part J in the polar

4P
decomposition of the mixed #-operation S1II o to the pure unitary
3
involutions JCP and J¢ and will be used in the computation of the

dual unitary involution in the next chapter.

Proposition 2.6. Let ¢, ¥ be f.n.s.f. weights on I and let

V¢ ® : ﬂq)—aﬁw be the canonical unitary implementation of the iso-
2
morphism: ﬂ®(X) 5 ﬂ®(m) Fiﬂw(x) € nw(m), x € M. Then with notations

as above:
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e
mixed weight 6 = 6(,4) of ¢ and ¢ on P=N® NE, it follows

Proof. Since Ae(m%) is a core for the involution S, of the

from (2.5) and (2.9) that A.(% ) is a core for S$ o By the
2

uniqueness of the polar decomposition it therefore suffices to show

that J¢V®’¢ Vo is positive on Am(mzm¢). So let x € mm, yeM

We have:

v

(T, 4%, gl XDy %)) = (T Ve A (£ )50, (57 5%)

(TT, %y O M () (37 ) (x)

T (¥ IV

(m, () (3),,(0))

P, ¢ ] w

(v Py 4 N“J T (x )J T A (y) A (x))

(Vo (T, 6T ) ()7 0, (), (x))

(Tt VN it ()3 4, (), 0,50))

(Yo, ¢ T A )T ()T A (X))

il

(Yo, T A ) (x)T A (x)) >0,

where the last inequality follows from the cone-preserving property

of V . The relation J V =V J has been used already and
P, e T e y
follows from the fact that v¢ oFo Pllr (see [11; p. 34]1). Q.E.D.
>

Returning to our covariant system {M,8,a} we know that for a fixed

g€ € 8, the mapping t € Re> (D(p o o%) : D¢)t is a continuous cocycle
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with respect to {og}. If we instead fix t and consider the mapping
g € @ (Do : Do ° Qél))t’ another continuous cocycle result, this

time with respect to «. We prove:

Proposition 2.7. For a fixed t € R the mapping g ¢ @

- *
(Dp : D{op e aél))t is a g-strong continuous cocycle with respect to

o; that is, setting Uf(g) = (Dp : D{p o aél))t, we have:

U, (gq8,) = Ut(gl)agl(Ut(gg)), 81,8, €6, t eR.

Proof. To prove the continuity we consider the weight ¢ = 0o ®pu
on M®L(G) = 1(® M) uander the action g ¢ @*alﬁg = ® T,
where p is Haar-measure on @ and ¢ is left translation on (®),

i.e. (TgF)(h) = F(g-lh), FeL(®), g,h € ® Define an automorphism

v on L {(®,Mn) by:

(r)(e) = & Mxle)s x € IO M)

We have:

(18, ™ ¥)(e) = o ol o (x(8 7)) = x(n ™)

Il

(@7 )x)(e), xeL(6 M),

Thus 7 ° By = (I ® Th) °© y, h e @, where I denotes the identity

automorphism on M. Setting X = ¢ ¢ 7, we get:

fl

Xep =gy =4°(I@T) ey

Il

(p@n) - (I®7) -y
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=(P®p) o y=Xx,

hence X 1is g-invariant. By the chain rule (2.19) we get:

(D(¥ o Bg) = D)y = (D(¥ o g ) = DX o g )) (DX op )« D),
(DX : D¢)t

-1
By [(Db = DX) 3 (DX & DY),

*
which by the continuity assumption on @ is a g-strong continuous

function of g. By Lemma 2.4:

Il

(D(e o) = Dy)y = (D(9 °a, ®n o) : Do®u))
{(D(p o o) 2 D)y @ (Dl e T,) D)y

CERERER ORLES

1l

hence g € @~ (D(p o Oé) : DCp)t is continuous, for all t e R.
The cocycle identity is an immediate consequence of Corollary

2.3 and the chain rule. Q. E.D.
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§3. Dual weight and the commutation theorem

In this section we construct the dual weight 5 on N Qa & of
a glven weight ¢ on M. The duality between 5 and ¢ 1is expressed
in a formula giving the wvalue of a on certain elemeﬁts of Mn Qatg
(Corollary 3.6) and also in the formulas relating the modular objects
associated with ¢ and E. The formula for the unitary involution
associated with E (Corollary 3.12) enables us to give a set of
generators for the commutant of 8& @ on I?(@b ﬁQ), and this in
turn gives the general commutation theorem for crossed products, i.e.
the description of the commutant of the crossed product, based on an
arbitrary covariant representation, as a crossed product of the
commutant of M in the given representation“(Theorem 3.14),

Before we go into the construction of the dual weight, we fix
some notation. Throughout this section {M,®,0) will be a fixed
dynamical system as defined in §1, and ¢ will be a fixed f.n.s.f.
weight on M. We shall assume that the locally compact group @
and the predual m* of M are separable (these assumptions are only
used in a couple of measurability arguments and may very well turn out
to be unnecessary). We set @g =@ o Oé’ and objects pertaining to
the weight @g will be indexed with g rathgr than with q%; thus:
ﬁtg (:ﬂtcp)z[xem; woag(x*x)<m},'ﬂjtg=m;'%;f& B S |

g g & g g

canonical injection into the Hilbert space Hg of qés Sg = Jg&g/23

t (6%(x)) = N (x)A_lt, x e, ete. (the index e, the neutral
gt g g g
element of @, will be suppressed; thus the symbols N, M, A, H,

S = JA}/E, Oy o ete. without index pertain to the original weight
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®). Similarly for the relative modular objects we shall write:

Sg,h = Jg,h(ﬁi)l/a’ ui’g = (D(op o Qh) : D(9 o oé))t etc. (here, of
course, the neutral element e will not be dropped as an index).

The construction of the dual weight goes via the construction of a
left Hilbert algebra whose left von Neumann algebra colncides with the
realization of M ® & on LE(@; H) (Theorem 3.4) (this left Hilbert

* *
algebra may be viewed as a W -analog of the covariance algebra for C -

covariant systems {9], although it lacks the corresponding universal

property).

Definition 3.1. We denote by M the linear space of continuous

functions x : @ - M with compact support such that:

(a) x(g) e m; n ¢

(b) the functions g 9(x(e) x(g)) amd g+ o (x(g)x(e)”) are
integrable.

For x,y e M we define:

(1) Product (convolution):
G*)e) = [ actemt e, e

(i1} Involution:

*

xFe) = 5(e) M (x(e™) ), g ew.

(Note: the word "continuous" without qualification always refers

*
to the g-strong topology of ).

Proposition 3.2. If x,y € ﬁt then x ¥y and x# are again in

ﬁg and M ‘becomes an involutive algebra under these operations.
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Proof. We show that It is closed under the operations * and 8,

the verification of the usual algebraic axioms being left to the reader.
Let x,y ¢ M and set z = x ¥ y. From §1 it follows that z is a

well defined function from @& intc M. To prove the continuity, let

{gn} be a sequence from @ converging to g e @, let w e m; and let

pUJ be the o—strong% seminorm corresponding to u (see §1). Since the

function of two variables: (g,h) € @ x @5P>oh(x(gh)y(h_l)) el is

continuous, there is a constant c¢ >0, dindependent of h and n, such

that Eﬂ(ah(x(gnh))y(h—l)) <c,he® ne Z". Hence by Lebesgues theorem:

1in g (a(s,) - 2(e)) < 3im | 5 (o (e )y - o (x(en) y(n™)

n n Y& :

=u£; vim 3, (o (el m)y(5™) - op () y (™) an
=0

proving the continuity.
The fact that 2z has compact support follows by the usual
arguments for convolution. To verify properties (a) and (b) of

Definition 3.1 we consider

(6)"2(8) = | (e e (o) g (e

hence for any w € ﬂ&;

w(z(e)"2(2)) =bﬁ;%3cu[(ah(X(gh))y(h'l))*bk(X(gk))g(k'l)]dhdk
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\ 2
< () ey eyt Vo xten) (a7 1 2an)

2
< ([ Ietemiinty ) e

Taking an increasing net {wi} from m; such that wi(x) T o{x),

X € mf, the above inequality persists, thus:
e ) : " _ 2
#(2(2)"2(g)) < ( J g MEn)ll- oty (n Y y(n l>>11/2dh)
r -1 % -1 1/2 2
=g [x(b)|i- [o(y(h™g) y(n™"g)) 1/ “an] ,

which by the assumption on y is finite (g v ||x(g)|| being bounded),

hence z(g) ¢ M. Furthermore, by Fubini's theorem:

~

* N A _ - 2
Jq e e < | ( J g I Lo a™e) lgml/gah) ag

=f () () - [o(y(n ™ e) (™ e)) 12

1/2

(3.1) oy (xte) y (e ) ) 1T/ P dganax

<! o) f( i cp(y(k*lg)*ych'lg>)ag)l/2
J ¢ N\

3 1/2
( /@ cp(y(k‘lg)*y(k‘lgndg) / thdk

2 5 x
([ txtian)” [ ot eee
V@ Y8
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which again is finite (g = ||x(g)|| being lower semicontinuous, bounded
*
and with compact support), thus g ¢(z(g) z(g)) is integrable,

Similarly we get:

~
!

i 2(g)z(g)” f\ . /
Jg 9, (z(g)z(g) " )dg < <J@ |ly(h)||dh> Jq

~

v (x(g)x(e)" ) ,

hence z = x ¥y € i,
~ *
Fipally, if x e M and z = x#, it is clear that =z(g) ¢ %g n 7
*
for all g e @ also, the functions g 9(z(g) z(g)) =
.2 1, -l *
o(g) "o _;(x(e ")x(g 7)) and gm o (2(g)2(g)) =

o8 %, -
&(g) 2$(x(g l) x(g l)) are integrable since

o~ b
{ r

| a(e) e (el xe™) g = | o(e)o, (xle)x(e) g < =

and
.f'\ I
/ - -1.% -1 i *
J 5(g) Co(x(g™) x(g™) )dg = [ o(g)e(x(g) x(e) )dg <«
& Y@
(x having compact support). Q. E.D.

We define a mapping A : ﬁlmil?(@t H)} by

(Ax)(g) = alx(g)) .

By Lemma 1.3 Ax is indeed an element of I?(@t H). We set
A= E(ﬁﬂ and introduce a #-algebra structure in o by transporting
the #-algebra structure of ™ to U via the mapping A. If for

each g,h € @ we define a unitary operator Uh : Hg e S
>

h
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=/ f d if let W : —H D
Uh,gAg(a) Ah(oi—l (a)), a ¢ %g, and if we le (g) : H e
the canonical unitary implementation Q% in the representation =«

(see §2), the operations in A may be written:

t*(e) - o(a) 5 Ee™) = 8(e)s, Vs ™)
€, &g ,¢ ’ ?
(3.2)

(& * 1)(g) f@ W(n )b ((en) W Tm(n ™t )an,  E,qed,

where the last identity follows from Lemma 1.3.
We want to show that U is a left Hilbexrt algebra with the

above operations (and the innerproduct inherited from 1?(@g H)).

Proposition 3.3. U 1s a dense subspace of the Hilbert space

I?(@B H), and it becomes a left Hilbert algebra with the sbove

operations and the inner product inherited from I?(@B H).

Proof. We first show that o * A (and hence %) is dense in

2/ m. B =1, ¥
L7(@; H). Take a;,b, e M, F, o€ K(®) and set Xi(g) = Fi(g)o% (bi)ai,

o~

i = 1,2. Then X, € M because:
w(x, (€)%, (8)) < 17, ()12l [Po(a)a, )
and
Wy ()%, ()7) < |7, (&) |Plle, [Po(e]n, ), 1= 1,2

We have:

(x, * x,)(e) - aél(bi)[j;} Fg(h_l)Fl(gh)%(alb:)dh]-ag
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hence:

(R(x,) * K(x,))(e) =

Substituting for a

from M  such that Hain)ﬂ-il, Hpén)n-g 1, lim agn) = lim

/'\
g

x(a‘lcbjn[ Iy F1<gh>zv2<h'l>ﬂ<ahcalb§>)ahJA(ag) :

(n) (n)
1 and b2 sequences [al }] and {b2 }

RN

*
(o-strongly ) and setting:

,06) = | x(emm, (07 ntoy (M)

we have Bn(g) —>(Fl *‘Fé)(g)-I g-weakly by lemma 1; also from §1:

“Bn(g)H fE(IFl]*lEE\)(g), an integrable function. Now assume

£ e I?(@t ¥) 1is such that (ﬁ,ﬁ(xl * §2)> = 0 for all x., x, of

the above type

0 = <€’K(Xl * x

Tor all n ¢ Z+

1

We have:

2

)

r
= |

/ (é(g),n(aél(bf))Bn(g)A(a2))dg ,

hence by Iebesgue's theorem:

R Y IRCOR G CAINONCRIL:

for all Fi,Fé

't'\

@& n

L} lim (ﬁ(g),ﬂe(ogl(bi))Bn(g)A(ag))dg

I, Eena mDE * 5, (ens, s

e H(©®).

Since X(®) * X(@) is dense in ﬂa(@) it
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- ¥*
follows that (g(g),A(agl(bl)a2)> = 0 for almost all g e @ and

-1, %
for all a_,b, € M. Bubt for all g € & the set {A(Qél(bl)ae);

271
aé’bl €M} s total in H ($§2), hence £(g) = 0 a.e., that is
€= 0. It follows that % * ¥, and hence %, is dense in IZ(®; ).
The boundedness of the map 7m+— £ % n for all £ ¢ A has

already been shown in the previous proposition; namely, setting

£ = A(x) (x e it follows from inequality (3.1) that

e+ ol < [ ttetas ol = [ ecentas]- i

thus H%E(Q)H*S Is Hng(é(g))ﬂdg, where %° denotes the left regular
representation associated with 9.

The verification of the identity (€ * 7,8) = (n, 6# ¥ () 1is .a.
straightforward application of Pubini's theorem and is 1eft to the
reader.

Finally we show that the #-operation is preclosed. Let [én}
be a sequence from U such that En -0, set n, = Ez and assume
nn-+ M. By passing to a subsequence, if necessary, we may assume

gn(g) -0 and nn(g) - n{g) a.e. Then én(g-l)-e O a.e., and since

S 1 is preclosed:
g »¢
5 ¢ (77) >0 a.e
-1 *n T2
g »¢
thus:
-1 -1
ne) =8(e)”U 8 | €(g7)»0 a.e,
e,g g ,e
that is: n(g) = 0 a.e., and preclosedness follows. Q. E.D.
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We are now in a position to obtain a description of M ®a @ on
LE(@; H)} as the left von Neumann algebra of 9. But first we fix
some notation. We denote by S the closure of the # -operation of bl
and let S = 331/2 be its polar docomposition, where as usual I
is conjugate unitary and A is positive, selfadjeint, non-singular. In

"

general we qualify with a tilda objects pertaining to 5[; thus:

?(f’ = left regular representation of 5[; B:t: the associated modular
automorphism group; rCT): the f.n.s.f. weight on Rﬂ("ifl) associated with

the fulfilment of ¥ etc. We also define a mapping = : ?ﬁl—)ﬁ(La(@; H)

by:

%) = | We)n (x(e))ag,  x e T,
) @ o
where (ﬂa,r;\) is the covariant representation of {M,8,a} on L2(@5 H)
based on n (see §1). This notation is consistent with the previous
use of the symbol T (namely as the representation of I ®O& @ on

La(C\j; H)), as the next theorem shows:

Theorem 3.4. The mapping = : ",?R-%B(L2(@; H)) is a #$-representa-

tion of M on Lg(@,' H) and (D" = T(M ®a ®). We have = =
r;rﬁ ° 7\, hence ;(m ®a ®) coincides with the left von Neumann algebra

&E("II) of .

Proof. let x,y € M By Fubini's theorem:

R) = | Mo e)ag | Slodr fvte)an

ho



= l‘/:-—ﬂ (Jfg fi(gh)ﬂa( a};l(X(g) ) )_dg> j'{a(y(h))dh

[ (o007 [ Remgatan™) ) (1)

J‘f"@ X(g)[df@ a(h)—lﬂa(a;ll(x(gh-l))Y(h))th dg

1]

r

[~ -1
- K@yl [ et o) o

fa

=j@ 'i(g)ata((x * y)(e))de

= T[(X * Y),

and:

i) = | o) (x¥e))ae

[@ Xeo(e) M (o7 (x(s™))) a8
- J@ R(e™ (e (x(e)) K e) a

r ( o * f ~ a >*
=J@ n (x(g)) Me) dg = (J@ Me)n(x(e))de

= ?((X)*s

proving the first assertion.
As for the second statement it is clear that (M) - T(m ®a G),

the latter being generated by elements of the form na(a), “g), a e,

b1



g € @ On the other hand, if an element =z ¢ @(Lg(@; H)) commutes

with =(f), it commutes with all elements of the form
* ~
() w0 [ Femfa)Kede  aben T ),
\ @ g

hence with all elements of the form:

[ #e)m (o (2))ile)dg, acm Fexo).
() o g
Taking a net {ai} from M  such that a, = I, it follows by the

polarization identity and Lemma 1.2 that

J/@ F(g)ﬂa(ag(ai)ﬁ(g)dg —x[@ F(g)h(g)dg o-weakly,
thus 2z commutes with all the j@ Fg)ng)dg, F ¢ K(®). But then by
standard group representation theory, z commutes with all the A(g)'s.
Since the representation FHI@ P(g)n(g)dg of H(®) on La(@; H)
is non-degenerate it is now clear from (%) above that =z also
commutes with all the :rta(b), b eml; thus (M) - 7(m ® G)' and
hence ()" = 7(M ®C£ @).

As for the last statement we have for all x,y € 8.

RGO = [ R )y

and:

L2



(50 o Rx)E())(e) = (K(x * y))(e)
A -1
I CACCINICIERI:

- [ w@h )y e
@ h g

_ J; (x (x(1))liy )(n™"g)an

)

RPRGENCENRIBL:

o
By a straightforward application of Fubini's theorem we have:

i

[J/’é X-(h)na(x(h))K(Y)dh:,(g) = Jf@ [(M(n)x (x(0))A(y) l(e)an  a.e.,

and the assertion follows. Q. E. D.

Definition 3.5. The canonical weight E associated with the left

Hilbert algebra 9 (see §1) is called the dual weight of .

~

Corollary 3.6. For x,y € % we have:

o(n(x)n(y)) = o((x * y)(e)) .

Proof. Using the above theorem we getb:

BRR(3)) = HEHEE S E)))

il

At = [ e (e)) %
&



[

=Lj® o(s(e)

o (x(e™))y(e) )

)

J g Pllx(e)ve™ )

o [ a(eteyte™ o)

o((x * y)(e)) ,

I

It

i

where in the second last equality we once again used the polarization

identity and the normality of . Q.E. D,

We now set out to compute the modular objects associated with %.
For this we first define for each t € R a mapping Ty * i — M by:
it e ~
(3.3) (1,x)(e) = a(g)" o (x(g)), =xem,

where we recall that u®’® = (D(¢ o Qé) : D¢)t.

.t

lemma 3.7. The mapping t € R —>T£ is a l-parameter group

of #-automorphisms on .

Proof. We must first show that if x ¢ &, then indeed 7.x e R,

for all t € R. We compute:

o((r,x)(8) (1,x)(e))

i

9o, (x(e))us a8 %, (x(e)))

o(x(g) x(g))

Il

and similarly:

7, ((12)(@)(zx)(8)") = @ (x(a)x(e)™) -

L



By Proposition 2.7 the function g+ (Ttx)(g) is continuous, thus

Ty,

for

ugc*ngxg)=j®

and:

r

1]
|

uJ@

1l

= 5(

Il

(v, ¥(e) -

~ . \it g,h™" h
a(g)” u?

(T,

x € M The group property of the mapping t w7 is clear, and

t

X,y € T we have:

a (v x(en))z,y(n ")an

. . -1
oy, (5(an) uE™ % (x(en)))a(n) ol %o (y(n7h) )

-1 .-1 -1

op  ° oy (x(an))yy %o (y(n™))an

k/@ 5(e)" a8 % o o (x(gn))o, (y(n™))an

g>ituf’eot<hﬁ; ah(x<gh)>y(h'1>ah>

(x *y))a);

*

5(g) o (1 x) (™))

*

I

o =1
5(a) "o (5(2) E %o, (x(e™))

Il

-1
5(e)" o (6(8) Yo, (x(e™) )78 )

Il

5(2) o (a(e) o) (x(a ™)) "

5(e) 8%, (+F (e))

(15" )e)

il



which shows the #-automorphism properties. Q. E. D.

The group [Tt]teR gives rise W a l-parameter group of ¥-auto-

Lo

. N : R !
morphisms {Tt}teR on U by setting T, =4 ° 1 A", From the

relations in §2 we then get for £ = A(x) € %

I

(T, 6)(e) = (& » v (x))e) = A(6(e)"u %0, (x(e)))

il

6(8)it(ﬁi)it€(g) = HétE(g), where Hg = a(g)Ai .

Tt is thus a decomposable isometry on ﬁ, and its unique

extension to a unitary operator on I?(@; H) will also be denoted by

Tt' We now identify the modular automorphism group and the modular

operator of 5.

Theorem 3.8. {T, }

'’ teR is a continuous l-parameter group of

isometric #-automorphisms of the left Hilbert algebra ﬁ, and the

continuous l-parameter group of automorphisms {Sf}teﬁ on Rﬁ(ﬁ)

defined by Et(Zﬂ(g)) = EE(Ttg), £ ¢ ¥, coincides with the modular

automorphism group of 5. The modular operator A of 5 is thus
~it

determined by: A" = Tt'

Proof., The algebraic and isometric properties of the Tt's

have already been verified in the previous lemma. As for the continuity

we have for £,1 € I?(@t H):

(- 0w = [ (" - Do), ae)as
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since  |((E" - T)&(e),n(e))| < 2li&(e)ll- In(e)ll, Lebesguers theoren

glves:

Lin (T, - D& = | Tim (0 - De(e),n(e))ds = 0,
t—0 @ t—0

hence the group {Tt} is continuous.
We now define a l-parameter group {5£} of automorphisms on

Rﬂ(ﬁ) by setting Et(§ﬂ(§)) = %E(Ttﬁ), £ ¢ U or in terms of elements

i~

xoin B G (R(x)) = Fogx). e nave ¥ o G (F(8)(£)) =

S (2,)F(1,8)) = Imel® = £ = 3 (6)F(€)), shus § i

Et—invariant. To complete the proof that {Et] is the modular auto-

morphism group of 5 we must verify the KMS-condition. For this take

X, ¥y € M and consider the functions:

Gt (o, (7(x))7(y)) = o((r,x * y)(e))

and

P((y * 7.x)(e))

§, v e BEREIE,(3)))

It

G (%) @<uﬂ; aé((TtX)(g))Y(g_l)dg>

J[é o(8) ol (o %o (x()) (e ) g

- | 8(0)™ (%, (x(e))a (3™
g

R



and:

ag(t) (1 a(y(g))('r )(g'l)dg)
o

-1

i@a@rmu%wonﬁ 25, (x(e™)) g

=L/; o(e)  Yo(a _y (v(e™ ) %o (x(e)) e
g

We know (Proposition 2.2) that for each g € @ there is a KMS-function

Fg such that:

P (t) - w(g’%@@n%dwmdn>

and
R (6 s 1) = oo (v(e™ ) S0y (x(e))) -
We note that:
7 (o)) < o(r(e™ ) 5(e™) 12 0, (xle)x(2) )12 = g (i)
and

7 (6 + 0] < [oGe(e) x(NTY2 00 ) (r(e™ (e )12 -

g

Nb(g ’

for all t ¢ R, thus setting M= maX{Ml’ME]’ we have
mx{\Fg(t)|,|Fg(t +1)|} <M(g) for all t e R, where M 1is an
integrable Borel function with compact support. By the Cauchy formula
and the boundedness of Fg we have for all 2z in the interior of the

strip B={z e C; 0<Imz <1}:

L8



R
_ g
Fg(z)—jr C“ng,‘

where I' is the boundary of the strip; thus, since the integrand is
Borel as a function of g, the function g HFg(Z) is Borel for all

z ¢ B, For each g € @ we define s KMS-function Gg by Gg(z) =

)**F (z). By the Phragmen-Iindel®f theorem we have:

5
(g .

|G, (2)] 8(e) "l (2)] < 8(2)™ sup |F (2)]

z el

(%)

5(g)™° max{eup |F_(t)|,sup |F_(t + 1)|} < 8(g)"Mg), (s=Im z)
teR 8 teR &
hence g haGg(z) is integrable Borel for all =z in the strip. We

thus get a well defined function on the strip by setting:

G(z) =f@ Gg(z)dg .

Since each Gg is Borel on the strip, so is a, and from the first

part of the proof (continuity of twv T G is continuous on the

)
boundary I'. The two-variable function (g,z) € ® x B —>Gg(z) is
Borel in each of the variables, hence it is Borel as a function on
G x B (8 being separable). Thus if ¥ is a Jordan curve in the
interior of the strip, the function: (g,z) ¢ @ x 7 H>Gg(z)‘ is

integrable (by (¥*) above), and Fubini applies:

. . [ B
u/; G(z)dz :Lfy (L/@ Gg(z)dg)dz :g/@ (u[; Gg(z)dz>dg =0,
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each Gg being analytic. By Morera's theorem G is then analytic in
the interior of the strip. Moreover:
N

|G(z)| <

I 5(g) (g )ag < cll ,

r
¢ (z)|dg < |
g u@j
where ¢ = sup(s(g)™"; g € support M, 0 <s < 1}, thus G is

bounded on the strip. Since G(t) = al(t) and G(t + 1) = Eé(t),

the proof of the KMS-condition is complete. TFinally, the identity

ZAt T, follows from the fact that TETe) = Trﬂ(rrtg) = "&t(?[‘e(g))
for all £ e 9. Q. E.D.

Corollary 3.9. Setting Hg = S(glﬁi and letting F be a Borel

function on the multiplicative group .R+ = {0,»), the modular operator
A of '5 is determined by the following:

A vector £ € I?(@; ¥) is in the domain of F(A) if and only if
£(z) is in the domain of F(Hg) for almost all g € @ and the function

g »—»F'(Hg)g'(g) is in IS(®; ). If this is the case then:

(FR)E)(g) = F(Hg)ﬁ(g) a. e, ;

in particular:

(Z&)(g) = Hgé(g) = S(glﬁiﬁ(g) a.e. for all £ e ﬁ(; dom(2) .

Proof. It follows from the above that g haH;t is measurable

field of operators on I?(@B H) for all t € R, hence the field
gbajF(Hg) is measurable for all trigonometric polynomials F on

the multiplicative group R+, hence for all bounded Borel functions.
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F on R
Iet {E(A)} Dbe the spectral resolution of A and let £,1 ¢
I?(@; H). Then by the previous theorem the following two bounded

linear functionals on L (R'):

Fe L(R) w» (F(A)E,n) =bf\ F(N)A(E(A)E, n)
1R+

and

r

Fe I°(R") Hj” (F(H)&(2),n(e))de
]

coincide on trigonometric polynomials, hence on all of I?(R+); that
s, (FA)E)(e) = F(H,)E(g) awe. for F e I'(R), €« I°(®; H).
Now 1et' ¥ be any Borel function on R+ and set Fn =F . Xrl
where Xn is the characteristic function of the set {A € R';
|F(x)| <n}, n e Z'. Then if £ e dom(F(2)), we have F(L)E =
lim_ Fn(Z)ﬁ by [10; p. 1196]1; thus, by passing to a subsequence if

necessary:

(F(2)E)(8)

Lim(¥ (2)€)(g) = in F (H_)E(e)

= F(Hg)ﬁ(g) a.e.

It follows that £(g) e dom(F(Hg)) a.e. and that g PBF(Hg)é(g) is
in I?(@; H).
Conversely, suppose £(g) e dom(F(Hg)) a.e. and that g h>F(Hg)€(g)

is in Ea(@; H). Then by the monotone convergence theorem:
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[ 1Re0allzei? = | 1am 7 (n)PalEOOElR
J o J g

Il

1imf £ () 2aEG R

R+
lim_/@ lan(Hg)ﬁ(g)ll2dg

[}

| il (8 e(e)lPae
U@

o )
= | ||F(Hg)€.(g)lladg <o,
J @

hence ¢ e dom(F(A)).

The last assertion is now obvious. Qe B, D.

Corollary 3.10. For a e, g € 8 we have:

(1) Gy(n(a)) = n (o,(a)), t ¢ R

(11) 5,(Xe)) = 8(e) R(a)x_(u¥°), t e R.

Proof. Iet a el and £ ¢ LE(@; H); we get:

(1) (@ (n fe)E)e) = (F%x_(a 7" )(e)

]

5(e)" " (8) Fr(or (2))a(e) ™ (45) e e)

l

n(of ° oj*(2))E(e)

o
(crcg

li

oo, (a))t(e)

(n (o(2))€)(e), & ¢

(11) (5, (K(e))E)(n) = T R(&)2 ¢ )(n)
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= e A ) (e )
- B () (g ) 8 B (s
. -1
- s(e) L) T e ) e

. -1
= 5(g) Tr(u %8 i)

T v
. -1
= (&) n(u*® M)E(e™n)

Il

5(g) En(of (oS8 "ete )
. -1
- (6(2) " x (0578 ) (2)E)(n)

= (8() Me)r (W8 °)E)(n), b e®  QED.

Before we compute the unitary involution J associated with 5;
we establish some relaticns between the unitary operators appearing in

the expression for 8. We recall that (S£)(g) = B(g) e z g, ﬁ(g ),

Ma) = 4, (Or H=)),

¢ %, where U + H -3 is defined b
s > g,¢e g Y g,

a e T,

Lemma 3.11. Iet W(h) be the canonical unitary implementation

of Qh in the representation =, and let V : H—>H Ybe the
gs€ g

*
unique conepreserving unitary such that Vé eﬁ(a)Vg o = ﬂg(a), a e
2 3

(see §2). Then with U as above we have:
2
(1) J_ u =1 J
e e -1 -1
28 6> €,8 g »€

(i1) U=V, J(e).

2 2
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Proof.

-1

(i) We have Se,gUé,e =U 48 _, . Thus, since U _, = Ug,e’
€58 g € €,E
the assertion follows from the uniqueness of the polar decomposition
g 02 o 5
e,g S8 & €58

(ii) By [11l; Theorem 2.18, proof] Ué . Dreserves the natural

3
cones associated with @ (= ®) and @g’ and since all three ex-
pressions implement the same isomorphism (namely: ={x) € a(h)
g( 3 (x)) e (m), X € m), the assertion follows from the unigueness

of the conepreserving unitary implementation (V and W being cone-

preserving by definition).

Corollary 3.12. The unitary involution T of E is given by:

(Fe)(e) = 8(e)M2ue™)re(e™) = ale) ™ 2m(e ™ e(e™), € ¢ 12(85 ).

Proof. By Corollary 3.9, the above lemma and the fact that

Toe = Vé, J = JgVé, (Proposition 2.6), we have for ¢ e U:

(Fe)(e) = (BH%%e)(a)

Il

5(e)/2(28) %5 () s e(e™)

e .8 g e

It

s(g) Y/2s w(e e ™)

e,g g e

6(%)_1/2Jw(g_l)€(g'l) = 6(%)'1/2W(g—l)J€(g'l) . Q.E.D.

We define a representation =n* of the commutant ={M)* of

(M) on I?(@t H) by



(n (a)e)(g) = ablg), £ e T°(G; H) .

Likewise we define a second representation Sa of @ on I?(@h H)

by
(5 (£)6)(n) = o(e)Pu(e)e(ba), & e (85 ) .

Tdentifying ﬂg(@; H) with I?(@) ® ¥ under the canonical isomorphism
we have #n'(a) = I ® a and Ba(g) = p(g) ® W(g) where p is the
right-regular representation of ® on I?(@), i.e. ’(p(g)F)(h) =

1/2

&(g)/“F(hg). As an immediate conseguence of the last corollary we

then get:

Corollary 3.13. The commutant of w(Mm 2, $) on I?(@; H) is

generated by the set {x'(a), Ea(g); aex(h), g e @},

Proof. Since {@a(a), Mg); ael, g e ® generates (M @a,@),

2

{Eﬂa(a)ﬁ,ﬁx(g)ﬁg a e, g e ® generates =( Bh:@)‘. For £ ¢ I7(@; H)

apd a e N we have:

(Fx_(a)36)(e) = 5(e) /2m(e™)(x (a)TE )& ™)

il

Il

5(g) (g™ )n(a (=) (FE) (™)

5(e) Law(e (e )x(a)w(s ol ) 2u()ot(e)

Jn (a)3é(g) = (o (In(a)T)E)e),

U

and:

(Fr(m)Te) () = 8le) 2 ™) (im)Te) (&™)
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- 5(e) 2™ (Fe) (n e

-1/2

s(g) " 2au(e ™ )e(nLe ™) /2 w(en e (gn)

5(n)"/Zi(n)e(en) = (B (m)E)(e)

thus (M ®a gy = { (Jﬁ(a)J),Sa(h); aeh he@"=(x (b),Ea(h);

bex(M), he@}", Q.E.D.

The above corollary expresses the commutant of the crossed product
on the judicially chosen Hilbert space L2(®; H) as a crossed product
of the commutant a(M)* of =x{h). We would like to have a similar
cormutation theorem for the crossed product based on an arbitrary
covariant representation of {M,®,q}. This will be accomplished in the

next theorem,

Theorem 3. 14 (the commutation theorem for crossed products).

Iet (@,I') be a covariant representation of the covariant system
{m,8,¢) on a Hilbert space X. Then the commutant (N ®a @)
of oM ®Ot G) on L2(©; ¥) is generated by the set 8(«,I') =
{(I®a, plg)®T(g); ac o), ge@®, where Lg(@; K) is

identified with IZ(G) ® X.

Proof, We first cbserve that if 1"l is another unitary represen-

tation of ® on XK such that (@,Pl) is a covariant representation
of {Mm,8,a}, then 8(o,T') = S(Q,I‘l) because l"(g)l"l(g)-l e o(l)!
for all g € @ TIetting (m,W) be as above, we denote by T and

¢ (resp. n, and d)a) the representations of m®a@ (resp. of M)

on Lg(@; H) and L2((~3; ¥) corresponding to =n and @, respectively.
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There are three cases to consider, namely according to as whether
o o rt_l is a spatial isomorphism, an amplification or an induction
[8; Ch. I, §, Th. 31.

If ¢ » :r_l is a spatial isomorphism implemented by the unitary
operator R : ¥ — ¥, say, the unitary operator I &R : L2(©) @ H -
LE(CB) ® H sets up a spatial isomorphism between (M ®d @) and
E(m ®O: ®), and the assertion for this case thus follows from the
observation at the beginning of the proof.

Ir ¢ - ﬂ“l is an amplification, i.e. there is a Hilbert space &

such that ¥ =8 ® £ and &(a) = n{a) ® I, a € M, we get:
(Da(a) = rra(a.) ® I ae m
No(8) = AMg) ® L, g e,

on L2((5; H) ® £, where ;\.@(g) = Ag) ® L, on L2(®) ® X, and thus:
s(n e ©) = %(ne 6)ec, .

This gives:

&m%@«ﬁm%ﬁy®mm

(€ @x(n)) v (p®W)(©)'] ®B(L)

Il

H|

[c®x(n) ®8($)]V [(p @ W)(EH)" ®C,]

(C®o(M) ]V [{(p®W®I)NG)]"

[C® o) ]V [(p®I)E)]"

i

8(e,I') ,

o7



where we used the fact that W® I and TI' both implement ¢ in the
representation ¢ = n ® I. (The tensor-product Ui @ U2 of two

representations U, and u, of @ is defined by (Ui ® qa)(g) =

U (g) @ U,(g)).
Finally, if @ o n—l is an induction, i.e. there is a projection

E in =n(M)" such that @o(a) = ﬂ(a)E, a €M, we have:

@Oga) = T (a a e

IR’

and

>‘®(g) = ?\'(g)I®E’ g € @:
and thus:

a(In ®a §) = 7(h & @)I®E .

Since I ® E 1lies in (M 8& ®)' we get:

o(m ®a @) = 7(h ® @)I®E

= [{(I ®x(n)) U (p @ W){O)ligg -

A finite product of elements from the set (I ® n(M)') U (p ® W)(E)
is of the form p(g) ® bW(g) fora g e @ and a b e x(Mh)' (namely,
if g,...,8, €0 and bi,...,b € x(ln)' and setting b =
bW oW, ) +oe Wle b, (W(gy) ++- W(g, 1)), we have b e x(M)
(since ad(W) 1leaves «(M)* dinvariant) and (I ® bl)(p(gl) ®>W(gl)) vee
(re® bn)(p(gn) ® W(gn)) = p(g) ® bW(g)). Since the set
p(g) @ bW(g); b e a(M)', g € 8 is closed under products and involution,

we have by [2; Chapter I, §2, Proposition 1]:
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]

o(h @ 8) = (o(g) ®1U(g); b e x()', g ¢ @ -

((ple) ® biilg); b e n(), g e &) )"

{e(g) @ (bW(g))s b e a(), g e &))"
To finish the proof it therefore remains to show that:

{elg) ® al'(g); a co(h), g e @' = {p(g) ®Db.I(g); b enM), ge @
€ lolg) ® (cW(g))gs c e x(M), g ¢ @

(the other inclusion being obvious). This, of course, will follow
immediately if we can show that for each ¢ ¢ x(n)' and g € @ there

is a b e n(M) such that:

(%) b (e) = (cW(g))y -

Identifying n(m)E (resp. ﬂ(m)h) with n(M)E = x(a)E; a e M (resp.
with Ex(M)'E) and treating the I'(g)'s as partial isometries in X

with T(2)T(g) = T(e)r(g)* = B, (%) becomes:
EbE (g) = EeW(g)E ,
or
EOE = EcW(g)r(g)”

that is, we must show that EeW(g)E commutes with n(M)E for all

¢cen{lh)', g €® But from the consistency relation:

Dledn(a) ()™ = (e)n(me) )y, aeh, g,
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we get, with the same identification as above:
* *
w(g) T(g)eE = aW(g) T'(g)
or:
* *
W(g)T(g) aE = aW(g)l(g) , all aenx(M), g ¢ @.

Thus, for a € na{M), ¢ ¢ n(M)t, g € G:

I

EeW(g)l (g) aE = Beaw(g)r(g)” = Eacw(g)r(g)”

ak - EcW(g)P(g)* . Q. B. D.

Remark 3.15. The statement that "the commutant of the crossed

product is the crossed product of the commutant” means more precisely

the following:
If {¢,I'} is a covariant representation of {In,8,a} on a
Hilbert space X, we obtain an action o of ® on ¢{M)" Dby

setting
*
¢ (2) = T(g)ar(e), aeo(m)
Denoting by U the unitary operator on I?(@; X) given by:

(UE)(e) = D(g)E(a), € e IT(G; X) ,

we get:

U@a(a)U* =1 ® o(a), a €M

(U = AM(k) ® T(k) = Ka(k), k e @
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Uot (a)U* = U(T ® a)U* = @&,(a), a e o(lm)

UBa(k)U* o(k) ® I = p(k), k € @,

il

where

(o7, (2)€)(2) = a4 (a)E(e), = e o) .

Thus defining the fight-handed crossed product of the covariant

system {M,®,a}, based on the representation &, as the von Neumann
alzebra Rr(m,og®) generated by the covariant representation [¢Of5]

2

of {Mm,8,0) on I°(® X), where:

(e (a)€)(g) = oo (a))E(g), a e

(B()EN(e) = 8(k) &(ek), ke®,

we see that the commutant of the‘crossed product R{M,a, ®) is
canonically isomorphic to the right-handed crossed product
9?(®(M)',a',id.) of o(m) by o if o is covariant; i.e.,
UR(m,a,®)‘U* = RT(Q(m)',a',id.).

If ¢ is an arbitrary normal representation of M {(not
necessarily covariant), it follows from the proof of Theorem 3,14
that the commutant of the crossed product R(M,x®) still is a
reduced algebra of the right-handed crossed product of the commutant

of M in some covariant representation.

Remark 3.16. We note that Theorem 3.8 gives the following

sufficient condition for the semifiniteness of the crossed product:

If there exists a f.n.s.f. trace @ on M such that ¢ og =
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B(g)-lq), where & 1s the modular function of @, then the crossed

product M ®og % is semifinite.

Namely, in this case we have cCP = id and o©’F =

t t

(D{p o ag) : DCp)t = S(g)-lt thus by Theorem 3.8 and formula (3.3)
cfcp = identity, for all t € R. It follows that the dual weight 'CTD

of ¢ is a f.n.s.f. trace on M ®a ®, hence T ®C¥ ® is semifinite.
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§h. Second dual weight and

the "twisted" Plancherel theorem

In this section the group ® will be assumed to be abelian,
and © will be a fixed f.n.s.f. welght on TN We shall investigate
the relationship between the second dual weight E of @ and the
tensor product weight © &® Tr on M @)@(I?(@)), where Tr 1is the
natural trace on ﬁ(ﬂa(Q)); or, more precisely, we shall determine the
amount by which the image of @ on I S)Q(I?(@)), under the natural
isomorphism, is twisted away from ¢ ® Tr, as measured by the Radon-
Nikodym cocycle (D6 : D(p & Tr)).

In what follows the W*-algebra M will be identified with its
image in the canonical representation associated with ¢ (i.e.,
ﬁ$ = identity), and the Hilbert space of @ will be denoted by M.
We recall the definition of the dual action & of « (our definition
is conjugate to that of [15] since we use the conjugate definition of
the Fourier-transform):

For each p € @, the dual group of @, we denote by p(p) the

unitary operator on l?(@) given by:

(w(p)E)(g) = (@, p)E(g) £ e I°(6), pe®,

where (g,p) = p(g) denotes the value of the character p at the

point g. Setting p(p) = I ® p(p) on H® L?(@) we have:

(p)n (a)i(p] = npfa), aem

and
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o) neh(p) = (g,p)Me), 8O,

”~

Thus the mapping: D € 8w ad(L(p)) defines an action of @ on

the crossed product R(M,x). We set alp) = Ad(n(p)), and o is
called the dual action of @ Clearly the definition of & is in-
dependent of (i.e., depends functorially on) the particular represen-
tation chosen for M, thus we have a well-defined action of @ on

the abstract crossed product N @a ®. Denoting by 7y the regular
representation of 8 on I?(@) and setting y = I® I ® y on

¥ ® 1(9) ® I°(8), the crossed product (M ® G) & 8 of n®_©

by Q is realized on the Hilbert space I?(@; ﬁ2(®? H)) = I?(@ % @ H)
H® I?(@) ® 2(@) as the von Neumann algebra R(m,a,a) = (r(M, @),a)

generated by the following operators
-1
(r (n(a))E)(e;p) = o, (a)E(g,p), 2 ch
0}

(ﬂA(i(h))ﬁ)(gap) = (h,p)t(g - h,p), k e®
o

(7(2)e)(e,p) = £(e,p - 2), qgc8

We set @(a) = ﬂh(ﬂa(a)), aehh, vih) = nA(X(h)), he® and w(q) =
;(q), q € 8. Inogrder to see more clearl? what the isomorphism
between R(M,q,a) and M ®ﬂ3(ﬂ2(@)) looks like we transform R(m,a,a)
to the Hilbert space L?(@ X @; H) in two steps as follows:

First, letting & : I?(@) —91?(@) be the Fourier transform, i.e.:

(3)(p) = | (HDE(e)ds, £ < K(O)
J s

*
with inverse & :
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* : ,-'ﬁ ~
(37¢)(e) = | (zp)E(p)dp, € ¢ X(O),
\f @
&~ 2 2 2 25
we set F=TQ@I®F : H®IL(G) ® L7(G) -3 ® L7(8) ® T7(8). The
von Neumann algebra ﬁ*ﬂ(m, a,&)ﬁ is then generated by the operators
o (a) = Fo(a)F, a ey v (k) = Fv(0)F, n e 6 wla) = Fu(a),

q € @5 we have:

(‘131(&)5)(8,11) = aél(a)ﬁ(g,h), a e
(v (x)€)(e,h) = £(g - kb - k), ke®
(Wl(p)E)(gah) = (ha.p)g(g:h): P e @ .

Next we consider the unitary operator V on LE(@ x ®; ¥) given by:

(v&)(e,h) = &(g + n,h), £ e I°(® x & ¥) ,

¥ ~ o ¥ *
and set P = VF R(,@@)3V . P is then generated by <D2(a) = V@l(a)V ,

* % ~

a €M va(k) = Vvl(k)v , ke @ We(p) = le(p)v , D €@ we get:

(0,()6XEB) = o, (a)E(gsh), = el

2 > +h 242

(h.1) (v,(k)E)(g;h) = E(gsh - k),  ke®

(WZ(P)E)(g:h) = (h,p)é(g,h), pe@.
This stage of the isomorphism between R(M, o) and W ® IB(LE(@))
will be referred to as the V-representation. We note that vg(k) =

I®I®nk) and w(o) = T8 I®pu(p) on HE 12(6) ® I°(6).

Since the u(p)'s generate the maximal abelian von Neumann algebra

L (®) on Lz(@), an operator in B(Le(@)) commutes with
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{Mglou(p); 2@, pe @} if and only if it lies in L (6) and is
invariant under left translation, i.e., if it is a scalar. It follows
that B = (v,(k), w,(p); k € O, p e & - ¢ ®c ®B(I2(6)) = B(IZ(6))
and consequently P = (P N®') ®@B. Returning to the representation
o, above, it is clear that @l(m) commutes with @&, and by the
comnutation theorem 3 we also have @l(m) C P, thus @l(m) CPNR;
by [15; Lemme k4.4] @l(m) and B generate P, hence P = @l(m) ® B.

The final step in the isomorphism between R(M, ) and W@ B(Lg(@))

is now obtained by defining an isomorphism V¥ : P—-N ® ﬁ-(La'(@)) as

follows:
Y(@l(a.)) =a®1I= @B(a), a e
(h.2) ¥(vy(k)) = T® a(k) = A(k), k<@
¥(v,(p)) = T®u(p) = i(p), pe®

We observe that the inverse of ¥ 1s nothing but ﬂa @I :
L [B(Lg(@)) ~ P, thus for an element x € L (G M) Ch® B(L‘g(@))

we have:

(v Hx)E)(e,n)

]

((, @ I)(x)E)(e,n)
(4.3)

i

o (x(n))E(esh) -

= ) ~
The second dual weight ¢ is constructed from ¢ in the same
way ?p was obtained from ¢. The following proposition shows that

no additional relative modular objects are introduced by passing from

a

?f)to
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Proposition 4.1l. The dual weight ?p is invariant under the dual

. ”~
action .

Proof. It is clear that the p(p)'s leave the left Hilbert

algebra ﬁg Le(@; ¥) invariant, and denoting again by u(p) the
operators on I obtained by pulling p(p) back to M via R, we

i~
.
e

have for x,y ¢ W

m

((1(p)x) * (u(p)¥)) (&) o {8+ mEx(e + m)(-p)y(-)an

mn

(&mj@%@@+hNﬂth

It

(h(p)(x * ¥))(e)

and:

() )e)

]

aél((g,p>X(-g)*) = (g,p>X#(g)

(ilp)=*)(e) |

it

i.e., the p{p)'s are #-automorphisms of M and %U. Thus for

€ ¢ U we have:

W ()E) TR (p)E))

B o & (6

l(e)ElP = [lE[° = B(=*(e) 7)) . Q.ED.

it

We also note in passing that the formula in Corollary 3.6 for the
value of @ on certain elements of R(M,q) holds more generally:

namely, it follows from the proof of Proposition 3.2 that X(®; M)
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itself is a #-algebra under the operations of Definition 3.1 and the
representation % or i (Theorem 3.4) may, of course, be extended
to a1l of X{(®; M). By ineguality (3.1) the linear space T =

{x e ¥(®; M), f® Cp(x(g)*x(g)) < ®} 1is a left-ideal in X(S; M)

(the subalgebra M from Definition 3.1 is then nothing but ﬁ# n &),

and Corollary 3.6 holds for elements of M in the following form:

(1) BGET % x) = o7 % x)(0)), wyeh,

thus (M) C M.

To obtaincpa left Hilbert algebra which generates ®(M,0,0) wWe
consider X(® x & M) and set R - {x e X{® x 8 m);
] -(x(g,p)*x(g,p))dgdp <w)., For x e X(Gx & M) we denote by
?c@)%he element of X(& R(M,a)) given by E(p) = ?‘E(Xp), pe @,
where X, denotes the element of X(®; M) given by xp(g) = x(e,p),
ge® pe 6. For %,y € ¥(® x @; M) the product X ¥ ‘f} should,

according to Definition 3.1, be defined Dby:

G*7)e) = | & Gile+ a)f(-a) s

&
and the #-operation:

*

~§

%(p) = a_,((-p)

) .

Pulling these operations back to K(® x @; M) and evaluating at a

point g € & we get:

e

(x * y){(e,p) =‘f (e + ma)g (x(g + byp + a))y(-h, -q)dhdq

Y
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and

x#(g,p) = (g,pm;(X(-g, )™

~

As before one sees that with these coperations M is a left-ideal in

5 #

: ~ ' ] b= & for RS
(@ x @ M) and setting M= N7 and U= A, where (Ax)(g,p) =

Ax(g,p), one shows as in Theorem 3.4 that U is a left Hilbert
algebra whose left von Neumann algebra colncides with the seccond

crossed product R(m,agaﬁ. The representation T of H(@ X @h m)

= f‘s‘!ﬂ 4 . .
such that =n = %" ¢ A on T 1is now given by:

~

i

W(x) = 7(%) = 1 wlq)n (¥(a))dg
@ a
N

oowla)n, (n(x,))d
;e . (x,))dq

o

.f@ w(q)ﬂa(u:@ X(n)a (x () )dh) aq

M

o w(a)n (M(n))x, o = (x(h,q))dhdg
" b a a

- J{p w(a)v(h)o(x(h,q))dhdq ,

thus for x,y € % we have:

PEG ) = oy (en)x(e,n))dedn

L ~

o((5* * x)(0,0)) .
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Since we are mainly going to work in the V-representation of
R(M, @, @) we transform the sbove structure to X(® x @ M) via

the operators ﬁ* and V (we use the same symbols ﬁ* and V for
the mappings from X(G x 8; m) and X(® x @ M) corresponding to
ﬁ* and V on X(®x & H) and X(® x & H), respectively).
Transforming first by ﬁ* we obtain the following structure on

('3’*}6(@5 X & M) NHGx & M) (see [15]):

(x * y)(eh) = GF(Ex) * G))am)

i

P

J‘ ) - l )
I oa(x(g - kh))y(kh + k - g)dk .
(&

and
o) - @@ Nen) - o xl-an - )

Extending these operations to all of M(@ x @ M) and transforming
the structure once more by the operator V, we finally end up with

the following structure on X(G x @; M):

1l

(x % y)n) = (V%) * (7)) (esh)

((v'x) * (Vy))(g + hyh)

;"@ alzl((v*x)(g +h - k,h))(v*y)'(k,h +k - g -~ h)dk

~

;@ “@l(x(g - k,h))y(g,k - g)dk

i

(4.5) and:

V(") (en) = (V0 )e + )

a;h((v*X)(—g - h,-g)") =

X #(g,h)

I
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= ot (x(m, -6)")

= =} ~ =
Dencting again by =« and ¢ the images of =n and ©¢© under these

transformations we have for =x € H(® x & M):
(4.6) T(x) = VE R(FVx)FV

= b, p)v, (p)v, (), (x(g - b,h))dgdpdh
W ~

AL

and for x,y € (Vﬁ%i?t) NX(G x ® M) we get:
(&.7) o(n(y" * x)) = o((3V (y~ * x))(0,0)) .
With these preparations we now prove:

Theorem 4.2. Denoting again by ﬁqJ) the image of the second dual

weight on T ® 03(L2(®)), under the above isomorphism, we have:

(£.8) (D9 : D(p @ Tr))£)(e) = (Mo © @) : Do)kle)

geL2(®;3i),teIR.

Proof. We have to show that the conditions of Proposition 2.2
are satisfied. To avolid cumbersome notation we shall use the same
symbol ?p for the second dual weight, regardless of which represen-
tation we are working in. For t € R, we denote by U_ the operator

t

on the right hand side of (4.8), namely, U, 1is the element of

L(®; M) given by Ut'(g) = uf’o = (D(@ e ag) : Dp),. Since

T L 5w I, we have (ofg’rr(x))(g) = ct(x(,g)) for x e L (@ M),
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thus:

' T 0 ' 0 0
(U, o¥T(u, N(e) = %, (&%) =Pl = U . (e)
11 2 1 1 2 12 12

~
which shows the cocycle identity (2.16). Furthermore, on R(M,a,q),

.~

since @ is invariant under @, we have by Corollary 3.10:

o} (0(a)) = of(n, * e)) = % (ol (e))

=% x (o.(a)) = e(c,(2)); a ¢
(v(6)) = o¥n_(X(e))) = malo?(le)))

@ a
S a&(i‘»(gjﬂa(uf’on = v(g)o(uf”), ge@
and

= .
o, (w(p)) = w(p), ped

Denoting by 0 : R(m,a,&) - ® B(LB(@)) the canonical isomorphism,
we have by (4.3): (8(8(a)))(n) = (n (a))(n) = a}‘ll'(a), a e, and
(6(a(u°)))(0) = (x (68 °))(n) = o7 (7); also 6(v(s)) = X(e)

and 6(w(p)) = n(p), 2 ¢8, p ¢ 8. Thus on M ® B(LE((B)) we have:

(0¥ (2)))(B) = &L (o (), = em

oF(X(e) = e (:50),  eeo
cr%(ﬁ(p)) = 1(p), ped.

On the other hand:
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o™ (x_(a))U7)(n) = % ((x (a))(0))ug"

(U t

l

ay o (a) )"

]

FaiM(a) - o (a)), aem

il

(0,67 G ) () = (UK (e)ue)(m)

DO ) (0 - &) = 00D _ )

@, g(ut “Je(n - &)

Il

(R )x (a2 )E) (n), g e

@

(U o ((p))0E) () = (W(p)E)(n), D&

2

a =]

thus o and Ad(U£) ° 0$®Ir coincide on generators and condition

t

t

(2.17) is satisfied,
It remains to verify the KMS-condition, For this we consider
the following elements of T ® B(I7(8)): Iet a b, e o 1= L2,
and let F.,G, @ X(®) be such that @i has compact support, 1 = 1,2.
Then )\(Fi) = f@ P\(g)Fi(g)dg = convolution by F, on L?‘(@),
M(Gi) = f@ p(p)ai(p)dp = miltiplication by G, on Lg(@) and
A, = u(G.)k(F.) is a Hilbert-Schmidt operator (A.g)(g) =
f g(h)L (g,h)dh on e () with kernel L (g,h) = (g - h)G (g),
i = 1,2. Thus setting Ai = I®A, p(Gi) =I® u(Gi), K(Fi) =
I ® h(Fi), i = 1,2, we have (ai ® I)Ei = (DB(ai)Ki € mcpg’l'r’ i=1,2.
Also, in the V-representation, the functions yi(g,h) =

Fi(g + h)Gi(h )bi’ i= 1,2, lie in T; we have ‘P(?’t(yi)) =
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Y(W(Gi)v(Fi)®2(bi)) = M(Gi)x(Fi)ﬂa(bi) e M, thus
S s ?

(b, ) A9, (a.) e N . Tt suffices to check the KMS-condition
T P17 49318y @R Tr

on elements of this‘form, so we set out to find a KMS-function K

S

Nalid

such that:

wo B GRIE g R Y
K(6) = D(Uop  (xy(0y) K 0,8y )0, (8, ) By (b))
and
K(t + i) = (p® Tr)((DB(aE) An [0, )0 0 (x (by) A1®3(al))) .
For the second expression we have:

(9 ® T) {008, E 7 (0, )0,0% (0 )00, ()

*, %

= (9.® T2)(0,(8, )T, [ (0, 0,07 (o (o, ) Yo (o (2,))) -

If z € L(® M) is of the form z = ¢ ® w(E) for a c eMm and

HelL (®), we have:
(¢ ® Tr)(0,(a,) K 2K 0, (0, (a))))

- aten,(a) Te(au(mA))
(19)

f
i

= J g B8 - B0 () TE - 07, (8)9(a 00, (5 ) Jagdn

'}

=j®><@ 2

(& - n)o,(e)F (g - B)G, (@)0(a,z(n)o, (2, ))dedn

because the trace of the trace-class operator AQM(H)Ai with kernel
L(g,h) = [ BK)L,(g,k)I (BE)ak is equal to [ L(g,e)dg =

g BCR)D, (e, 1)E (g, E)akdg = [g o B(EF, (e - k)6, (2)F (g - ¥)G (eTakde.

T4



Since a, € m@ and Ai € mTr, i= 1,2, both sides of the above

o0
equation (4.9) are g-weakly continuous linear functionals on L (&),
hence (4.9) holds for all =z € L (®M). Thus with z =

! ( )U O@@Tr(ﬂcébl)*)’ we get:

(0 ® Tr)(a,(s, ¥ B (b, )0 08 (s o DEe,(a)))
(k.10)

[ F (en)e, (o) FTEmIE (@ el e L (o, Jul O, (a7 (b, ) ¥, ) aga.
Y GO

To compute the expression invelving % we pull the operators back

to the V-representation (4.1), (4.5) and (L.6). In order to apply
formuia (4.7) for % we shall have-to approximate T"l(U£) and.
Ynl(®3(ai)) = @l(ai), 1= 1,2, by operators of the form ﬁ(x),

x € ¥(® % @ M). For this we observe that if z e I (@ M),

M,N e ¥(O) and x(g,h) = M(g + b)N(h)a (2(n)), then 7(X) ‘tends
weakly to Y~l(z) as M tends, as a bounded approximate unit in
Ll(@), to the Dirac function at 0 and N +tends uniformly on compact

sets to the constant identity function. To see this, let y ¢ 7

and 7 € I?(@ % @ H): we have:

Ge(x Ay )sm) = (Blx * ¥),7)

-~

= | (A[(X * y).(gah)]aﬂ(gah)>dgdh
OGS
(4 5)
- [ ([ wemmnta)agt, (0) (e k-6)ew)  n(e, m asan

= | M(g-km)N(n)(a] (2(h)) Aly(e,k-g)),n(e,h))dkdgdn,
GG '

[



Now when M converges to the Dirac function at 0 € ©, as a bounded

approximate unit in Ll(@), the above integral converges to:

!r‘\ --l . R ‘

| nh){e; (2(h))A(y(e,h)),nle,h))dedh .

v OO .

Next when N converges to the constant identity function, the last

integral converges to:

[ (o (z(0))(y(gsh))snle,k))dgdh = (¥ ~(z)Aly),m) .

Joxe  ©

This holding for all y e 9, 1 ¢ I?(@ X ® H), we see that ﬁ(x)-@

Y"l(z) weakly when M, N converge as prescribed. Now let

N ~ .
M,N, e X(®) be such that N, e ¥(®), i = 1,2,3, and set

Il

x(esn) = M (g + BN (n)ag (a,)s 1 = 1,2

M, (6 + 0N, (n)ay (47

X h

3(83 )

and as before let:
v;(g:0) = ¥, (g + n)G;(n)p,, 1=12.

Noting that by Theorem 3.8 and Proposition 4.1 we have Et(ﬁ(x)) =

T (%)), x € K(® x & M), where (T,x)(g,h) = u¥™™ %0 (x(g,n)),

we get after some computation:

(2,0} %) *x, %2 % 3,)(g,m)

- fj Mi(m+h+g-n)N%ik—£5M3(n-£)Ni(m+h)Né(k-g5N3(n—g)Fl(m)Gl(m+h7

J
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-+ Fy ()8, (keg) R o o font  (6X)g (a))]

_]_ (
E -4-g t

n-g,0, -1 (¥
)ag+ ﬂ_k(ae )bgdkdﬁdmdn ,

thus

& o RS

®(q (Jf(yl) ﬂ(x ))rr(X )ﬂ(x ) ﬂt(y ))

Il

WE (R (7 % %) % = %5k %5,))(0,0))

|

@(df Mi(m—n)ﬁ;CE:?ﬁ%(n~£)Ni(m+h)ﬁ;TEIETNS(n+h)Fl(m)Gl(m+h7

‘ O,n_-1
Fg(k)(}2(k+h)ut oo e o, la (bl)ah+m(a1)]

-1 nth,0 * \
aﬂ-n-h(ut Ja, g h k(ag )badkdﬂdmdndh), .

Letting successively N&, N&, N% tend to the Dirac function £ at

0 €@, the right hand side of the last equation tends successively

to:

CP(\/ Metk-,e )Ms(n-ﬂ )Nl(n+h)l\12 (k+h )NB(n+h )Fl(n)Gl(mH)

0, n -1

. F (k)G (k+h)u o Gt[aﬁ(bi)%+n(al)]

".1. ( ul’l+h,

*
@ (B e, h £ (3 )badkdmndh)

L, = e,

cp( f B%(n-ﬂ,)Nl(mh)Ne( Z+h §N3 (n+h )Fl(n)c}l(n+h7

7, (4)6, (o) u halt o oyl (b )a, (ay)]

7



-1

) Odﬂ,-—n—h

( mh O)oh(a )b dﬂdndh)

_J,M3_>EO

cp(fw Nl(m-h)NzZ ik 5N3(£+h)Fl(ﬂ)Gl(ﬂ+h)

o, £ l

- F,(2)6, (4+b)ug [aﬂ(b )05+ﬂ(a )]

ﬂ+h 0

. ah( )ah(a Yo dﬂdh)

Finally, letting N, Né, Né tend to the constant identity function

and changing the dummy-variable from £ to g, the last integral

becomes:

cp(f@b@ Fl(g)Gl(g + h)Fg(g)GE(g + h)ug’g-aél' ° o, ° ag[b;ah(al)]

g)'h

"u -ah(a;)bedgdh)

@(Uﬂgﬁg Fl(g)Gl(g+h)F2(g)Gé(g+h)ot[biah(al)]ug"hah(az)bgdgdh)

_Jf@@ F, ()6, (e+h)F,(g)G, (g+h)e o mh(ah ° O ah[@ﬁh ("0 Jay

O * =1

a0 " (b, ) )dgdn

_ h,0 -1, % % -1

~J oo F ()G (arh)F, ()6, (evh)p (ug” "oy Loy (by)ay Jajop (b, ) )dgdh .
Under the above limiting processes the operators E(xl), ?(xz), ﬁ(xE)
tend weakly to @l(al), ®1(32)’ ¥_1(U£), respectively. Since

s . . -~ &R ¥, &
a(y;) e M, i=1,2, the mapping A ¢ R(M,0) = (o (n(y,) an(y,))
P

is a o-weakly continuous linear functional on R(m,a,&), thus under
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the above limiting processes we have (gt(ﬁ(yl) ﬁ(x ) )7t (x )ﬁ(X ) n(y ))
o R * -1 s
—9QKGt(ﬂ(yl) @l(al))Y (Uf)Ql(%é) ﬂ(yé)). Transporting the operators

back to M ® ﬁ(l?(@)) again we therefore get:

WUog T (g VE 0, ()30, (3, ) B (B,)

il

o, (x () A1<1>3(a:L JU, 2, (2, )" E,x (0)))

I * -1
jw F (@) (), (2)a, (arh)e, (a” o, [of (b7 )a, Jajort (b, ) Jdgdn

I

=JI@;<@ F (5005, (8 ¥, (8-0)a, (e)%, (up” Yo [ (6] ) Jajar (b, ))dedn

i

=j@ F(h)goh(ufcl’ Oct[a};l(bf)al]a;agl(be))dh 2

(4.11)

where we have set F(h) = f@ Fl(g - h)Gl(g)Fé(g - h)Gé(g)dg. From

before we have (4.10):
(0 ® Tr)(0,(8,) 8,7 (0,000 (x (b, ) A0, (2,))
=Jf@ #(n)p(a0r (b, )al o Lot (6] Jay 1)an

We know (Proposition 2.2) that for each h € 8 there is a KMS-

function Kh such that:
K (t) = o, (o> %0 [0 (6] )a, Jasal (0,))
and
* *
K, (8 + 1) = olaja (b, u o [l (])a) 1)
As in the proof of Theorem 3.8 a KMS-function for (%5@ ® Tr,U )

is now obtained by setting %(Z) = f@ F(h)Kh(z)dh, 0<Imz<1, and

9



the proof is complete. Q. B, D,

We recall that two f.n.s.f welghts @ and ¢ on a von Neumann
algebra I are said to commute if 1 is cf-invariant (or, equi-
valently, @ is og-invariant). This is equivalent to each of the
following conditions (see [5] and [17]):

. Pr PPy 4,0

i) Gt(us ) = u’", t,s €R

ii) u:;f = u:’wug’¢, t,s € R
iii) there exists a unigue positive, non-singular self adjoint
operator K affiliated with the fixed point algebra mw of Gf
such that $(a) = ?®(K-a), a € W', In this case we have u
Al) the above conditions are, obviously, symmetric in ¢ and Ge

We now have:

Corollary 4.3. The second dual weight ® and the tensor

product weight @ ® Tr on n @lB(I?(@)) commute if and only if @
and @ o @é commute for all g ¢ @ If this is the case, then the
unique self adjoint operator X affilisted with (M ®'ﬁ(1?(@)))mgmr

such that 9(a) = (o ® Tr)(Ka), & ¢ (M @>ﬁ(l?(@)))+, is given by:

(Kg)(g) = Kéé(g) )

where Ké is the unique self adjoint operator affiliasted with
such that ¢ o @é(a) = @(Kéa), a ¢ m+, and where dom(K) =

(€ e I?(@t H); E(g) e dom(Ké) a.e, and g;k*Kéé(g) is in I?(@k H)l.

Proof. 3By the above theorem we have (D9 : D(¢ ® Tr}), = U,

0 T 0
where U{(g) = uf’ . We have (UEQT (Ué))(g) = ct(uf’ ), t,s e R,
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g €@ thus off@Tr(US) = U, all %,s ¢R, if and only if

(g’O - &0 11 ¢ R G hich, b dition i) above
g, (u] ) = u’’, a 8 € R, g € @, which, by condition i) above,
proves the first statement. The second statement now follows from the

above theorem and the proof of Corollary 3.9. Q. E. D,

Remark 4.4, Theorem 4.2 may be viewed as a "twisted" Plancherel
theorem for weights on covariant systems. We see that the duality
becomes complete when ¢ is (~invariant and has properly infinite
centralizer (the last condition ensures the existence of an iso-
morphism between M and M @)ﬁ(l?(@)) which carries © over in
¢ ® Trace). We also see that % 1is nothing but the weight obtained
from the family (o o Qé; g € 8 by a generalized version of the
"mixed" weight construction of §2 (the situation in § corresponds

to the case when ® is a group of order 2).
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§5. Galoig correspondence

We shall here write down 'a couple of applications of the results
in §3. The first one is a mere restatement of the commutation Theorem
3.14, and gives an alternative description of the crossed product as
the fixed point algebra of a certain action of ® on M ® B(IZ(@)).
As a second application we show the Galois type correspondence between
subgroups and sub-crossed products when the group @ 1s abelian. For
the relation between the two results, see remark at the end of the
section,

We first prove:

Theorem 5.l. The crossed product M 86{@ coincides with the

fixed point algebra of the action: g € @5w>0% ® Ad(p(g)) of ©® on

M @>ﬁ(l?(@)), where p is the right regular representation of @ on
12(®).

Proof. Denoting by Fix(o® Ad o p) the fixed point algebrs

of a®Ad o p we have with notation as in §3:

1l

Fix(a ® Ad » p) = (N ® B(I(6))) n {W(g) ® olg); & & )

= [(woc, Jvwe) ®e(e); gc®"]
L=(®)
= [x(m ®, @) ] = w(h ®, 9) . Q. E. D.

We now assume the group ® is abelian and show, as another appli-

cation of the commutation theorem, the Galois type correspondence



between subgroups of @ and certain subalgebras of M @6{@. For
the case when the action ¢ admits a relatively invariant weight,
this was shown by Takesaki in [15; Th. 7.1)], and the proof given there
carries‘over word by word to our general situation, thanks to the
commutation théorem 3.14k. However, for the sake of completeness we
present a proof here. To that end we first recall from [16] some
facts from the theory of induced covariant representations:

For a closed subgroup @O of ® we denote by @P- the restriction
of @ to @0 and consider the subsystem [m,®o,ap} of (M,8,q}.
A function on ® which is constant on @O-cosets will be identified
with the corresponding function on @V@O, and we let g e @ 3 ¢ @Vﬁ%
denote the quotient map. The Haar measures m and m on ®& and

0

©/8 respectively, are assumed to be adjusted so that for any

03
£ ¢ H{(®) we have:

r\ . . 'lf‘.
[ te@ne=| ai@) [ e s nan)
© 6/, S,
(note that the function g e @)rif@ E(g + h)dm(h) is constant on
0
@O—cosets).
. 0 UO . . . 0
Now, if {9 ,U"} is a covariant representation of {M,q ,@b}
on a Hilbert space HO, the induced representation {o,U} of

{@O,UO} from @O to ® 1is the covariant representation of {I,®,q}

defined by:

the Hilbert space H of {¢,U} is the set of measurable functions

£ : @i—ého such that:

tg - n) = C(n)E(e), €6 neq

3



and

[ le@)IR ande) <o
/8,

where the last integration is justified by the first condition (i.e.
le(e - n)|| = [i&(e)ll, n e 8, & € ®). The representations ¢ and U

are then defined by:

(e(a)e)(e)

It

(e (a))e(e), aem

(u(n)g)(e)

E(g - h)’ h,g ¢ 8.

Il

It is now easy to verify that the operators ¢(a), U(h) actually
leave ¥ invariant and that {0,U} is a convariant representation
of {m,G,a} on X.

The canonlcal system of imprimitivity associated with the in-
duction from @O to @ 1is the von Neumann algebra G = {E(F);

Fe I?(@V@O)} of operators on ¥ where

(M(F)E)(e) = F(g)ile), F e L (§/0,), £ c¥ .

Returning to the setting of §3, we identify M with its image
in the canonical representation on a Hilbert space ¥ associated
with an arbitrary f.n.s.f. weight on M. We see then that the
covariant representation {ﬂofi} of {M,8,q} defined in §1 is
nothing but the covariant representation obtained by inducing the
tfivial covariant representation of {M,{0},a} on H from {0} to
®. We denote by {Té;;?ﬁ the covariant representation of {m,@b,ap]

obtained by inducing the trivial representation from {0} +to the

8L



subgroup © ; the stage theorem for induced representations then
ensures that the representation {Jta,rf\.} of {Mh,8,aq} on Le(@; H)
may be identified with the representation obtained by inducing
{:rtg,?\o] from @O to @. Considered as induced from {ngz,'io], the
representa.tion {ﬂa’X} acts on the Hilbert space LE(@,@Og H) of

all measurable functions £ : & x @O — H such that:

£(g - k,h) = £(g,h - k), g€@ hke @O

and

[

\j ( [ Hi(g,h)Hadh>dﬁ(é) <w,
@/@O S @O

and {:ta,fi} is here given by:

(ﬂa(a)ﬁ)(g,h) = aéih(a)é(g,h), a e

(M(k)€)(e,1)

E(g - k,h), g,k e® he @O ]

li

The natural isomorphism T : L2(®; M) ->L2(@,@5.O; H) is given by:
(Tg)(gah) = ﬁ(g + h): ged he @O .

O)
g ¢ 8 of the commutant of R(M,8,q) are given by (Corollary 3.13):

Therefore on Le(@i,@ s H), the generators {x' (a),Ea(g); a ¢,

Il

(n (2)€)(g,h) = ak(g,h), a e,

(b (x)E)(e,b) = W(g)e(s + kh) = gk e ® he@ .

o) ~0

1
We set W = w/@o and denote by {TEO R pa] the covariant

representation of {',® ,Ad(WO(g))} which generates the commutant l
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of ﬁ(m,@o,ao) on L2(®Og H) (Corollary 3.13). The following is

known [16; Theorem 4.37:

Theorem 5.2. There exists an isomorphism 7y : ﬁi(m,@o,ao)' -

G' n R(M,8,a)! such that:

It

7 (a)) = w(a), ael ,

and

7 (5(n))

]

pa(h), h e @O .

With these preparations we nowrprove:

”~
Theorem 5.3. Let @O be a closed subgroup of @ and let @O

~

be the annihilator of @, in 8, i.e. @O = {p ¢ @; {g,p) = 1
for all g ¢ §). Further let & denote the restriction to 8
of the dusl action & of ® on R{M,®, ). Then the fixed point
algebra h of & is generated by na(m) and {A(h); n e @O}
and is thus canocnically isomorphic to R(ﬂl,@o,ao). Conversely, the

set of p € @ such that &p leaves ﬂa(m) and {AMh); b e @O}

elementwise fixed coincides with @O'

Proof. We have a(p) = Ad(i(p)) where (i(p)¢)(g) = (&:p)E(e),
£ ¢ LE(@; ¥), hence nh = (L(p); p ¢ @O}’ n KM, 8, ). But
(i(p); p e (550}” coincides with the von Neumann algebra of multiplica-
tion by bounded functions which are constant on @O—cosets. That is,
{(h(p); p e @O}” = G, the canonical system of imprimitivity associated
with the induction from @, to ®, so h=a" ne(hG ). Since by
Corollary 3.12 Ju(p)J = p(-p), we have JGJ = G and hence JG'J = G',

thus Jhd = G' N JR(M,G,a)T = G N R(M,8,x)'. By Theorem 5.2 there is
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1
an isomorphism 7y @ R(m,@b,op)’ -G N R(M,®, ) such that 7(ﬂo (a)) =
x(a), a e, and 7(52;h)) = Sa(h), h e 8,. Thus, since by Corollary
. : N

3.13 R(m,®o,op)' is generated by {ﬂo (a),pg(g); aeh ge¢ @b},

InT  is generated by [ﬁ‘(a),EOKg); aeh, gc¢ @%}, hence by Corollary
3.13, h is generated by {ﬂa(a),X(g)g ael, g ¢ @O}.- The second

o
statement follows from the fact that ob(ﬂa(a)) = ﬂa(a), a €M, and

&P'(”i(g)) = (g,p)N(g), & € @ (see §4). Q. E. D.

Remark 5.4, When @ is abelian, the action g € @'%»Qé ® polg) €
Avt(h @ ﬁ(I?(@))) considered in Theorem 5.1 is nothing but the
second dual action of «q (see §4 and [15; Theorem 4.6]). Thus in
this case Theorem 5.1 follows from Theorem 5.3. Recently A. Connes
and M. Takesaki have shown that under certain integrability conditions
on the action «, the systems {M,a} and (M @)ﬁ(l?(@)),o:@ Ad o p}
are isomorphic, and have thus obtained a Galois type correspondence
between subgroups of @ and g-globally invariant subalgebras of M
containing the fixed point algebra of «, when the group @ is
abelian {work to appear). Since Theorem 5.1 does not require the
commutativity of @, it holds promise that a similar result can

be obtained for non-abelian groups, or at least for +the compact ones.
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