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ABSTRACT

Let M be an Abelian W¥*-algebra of operators on a Hilbert
spacc ¥. Let MO be the set of all lincar, closed, densecly defined
trans{ormations in ¥ which commutce with every unitary opecrator in
the commutant M’ of M. A well known result of R. Pallu de Barridre
states that 1f © 1s a normal positive linear functional on M, then © is
of the formm T = (Tx, x) for some x in¥, where T is in M. An elemen-
tary proof of this result is given, using only those properties which
are consequences of the fact that ReM is a Dedekind complete Riesz
space with plenty of normal integrals. The techniques used lead to a

natural construction of the class M,, and an elementary proof is

Ol

given of the fact that a positive seli-adjoint transformation in M, has

0

a unique positive square root in M, It is then shown that when the

algebraic operations are suitably defined, then M, becomes a com-

0
mutative algebra. If ReMO denotes the set of all self-adjoint clements
of MO’ then it 1s proved that ReM, is Dedekind complete, universally

0

complete Riesz space, which contains ReM as an order dense ideal. A
generalization of the result of R. Pallu de la Barridre is obtained for

the Riesz space ReMO which characterizes the normal integrals on tne
order dense i1deals of ReM,. It is then shown that ReM, may be iden-

0

tiiied with the extended order dual of ReM, and that ReM, is perfect
in the extended sense.

Some secondary questions related to the Riesz space ReM are
also studied. In particular it is shown that ReM is a perfect Riesz

space, and that every integral is normal under the assumption that
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every decomposition of the identity operator has non-measurable
cardinal. The prescnce of atoms in ReM is examined bricfly, and it
1s shown that ReM 1s finite dimensional if and only if every order

bounded linear functional on ReM is a normal integral.
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INTRODUCTION

This thesis will be primarily concerned with those properties
of an Abelian W*-algebra M which follow from the fact that ReM is a
Dedekind complete Riesz space. Of fundamental importance will be
the rBle played by the normal integrals on ReM or alternatively, the
ultraweakly continuous linear functionals on M. Wherever possible,
techniques from the theory of Riesz spaces will be used, although it
will be often advantageous to use techniques from the theory of
operators.

Part I provides a short summary of background information
from the theory of Riesz spaces, together with some results from
operator theory. In II, von Neumann algebras are defined and itis
shown that a W*-algebra with the Riesz decomposition property is
necessarily Abelian. In III, attention is focussed on the order dual
of ReM, where M is an Abelian W*-algebra. In particular, it is
shown that every integral on ReM is normal except in a very patho-
logical case, and that if M is not finite dimensional, then non-zero
singular functionals exist. The presence of atoms in ReM is examined
ot tetly.

The crucial result of R. Pallu de la Barri€re is obtained in IV,
which characterizes the normal integrals on an Abelian W* -algebra.
In V, it is shown that the real part of an Abelian W¥*-algebra M is a
perfect Riesz space; this is used to derive the well known result that
"M is a dual space as a Banach space, namely, M is the Banach dual
of the Banach space of ultraweakly continuous linear functionals on M.

In VI, the space MO of (unbounded) closed transformations
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which ""belong' to the Abelian W*-algebra M in a certain sense, are
defined. An elementary proof is given that each positive self-adjoint
element of MO has a unique positive square root in MO. The algebraic
structure of M0 1s examined in VII. It is necessary to give a lemma
which replaces the spectral theorem for general self-adjoint trans-
formations so that some crucial results of von Neumann and Murray
are available within the framework developed.

It is shown in VIII that ReMO may be endowed with a partial
order in which it becomes z Riesz space which contains ReM as an
order dense ideal. IX shows that ReMO 1s a Dedekind complete, uni-
versally complete Riesz space. A generalization of the re sult of
R. Pallu de la Barrieére is obtained in X which leads to a characteri-
zation of the normal integrals on the order dense ideals of ReMO.
The extended order dual of ReM is examined in XI,and it is shown that

ReMD 1s perfect in the extended sense.

Finally in XII, the results obtained in VI are used to give an
elementary proof of the fact that any positive self-adjoint transforma-

tion in ¥ has a unique positive self-adjoint square root.
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1. PRELIMINARY INFORMATION
Riesz Spaces.

A partially ordered real linear vector space (L, <), with
elements f,g, . .., is called an ordered vector space if the partial
order on L is compatible with the algebraic structure of | T Y

(1) f < g impliesf + h < g+ h for every h € L

(ii) f = 0 implies af 2 0 for every real a > 0
An ordered vector space L is called a Riesz space if, for every pair
I, g € L, sup(f, g) exists in L.

If L is an ordered vector space, the subset L+ = {feL:f=20} is

called the positive cone of L. Elernents of L+ are called positive. If

L is a Riesz space, we will write sup(f, g) = fvg, inf(f, g) = f AE.

£ = £v0, £ = (-£)V0, |f] = fV(-f). We have = £ -7, |f| = 14", If
|f|A|g| = 0, then f and g are said to be disjoint and this is denoted by
f 1g. If Dis an arbitrary subset of a Riesz space L the set

]f){i = {feL:f1D} is called the disjoint complement of D. If p is a norm

on the Riesz space L such that p(f) < p(g) if ‘f] < ‘gl, then p is called

a Riesz norm on L. Note that p(f) = p(‘f‘) for any Riesz norm p on L.

A Riesz space L has the Riesz decomposition property: if

+

O<uc<z, + =z z .z _El,

: +
1 5 12 Z5 , then there exist u uZ € L such that

l.l'
u = ul+u2, and a, < Z1s U, < Z,.
The indexed subset {fT:T ¢ {r} } of the ordered vector space L

is called directed upwards if for any T s Ty € {t}, there exists TSQ{T}

2

such thatf_=>f_ |, f 2f_ hold simultaneously. This is denoted by
"'3 L T
f T If f T and f = sup fTexists in L, we will write fTTTf.
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The linear subspace K of a Riesz space L 1s called a Riesz

subspace of L. whenever, for every pair f, g in K, the elements

fvg, fAg are also in K. The linear subspace A of L is called an(order)

ideal in L if A is solid, i.e., f€A, g€L, and |g| < |f| implies g€ A.

The idcal A in L is called a band whenever it follows from 0 < fTTf,

iT€A for all 7, that f€A. If D is an arbitrary subset of L, then the
intersection of all ideals (bands) containing D is again an ideal (band),

in fact the smallest such containing D, and will be called the ideal

(band) generated by D. It D consists of a single element f of L, the

ideal (band) generated by f will be called the principal ideal (band)

generated by f. Any band in the Riesz space L. such that A & Ad = L

holds is called a projection band.

The Riesz space L is called Dedekind complete if every non-

empty subset of L which is bounded from above has a supremum.
Equivalently L is Dedekind complete whenever, given the upwards di-
rected set OSfTTT < gin L, it follows that there exists f€ L such that

| f"r TT fin L. If L is a Dedekind complete Riesz space then every band
1s a projection band.

T'he order dual of a Riesz space.
S T e B a1 E8E &) i

The real linear functional ® on the Riesz space L is said to be

positive whenever o(f) = 0 for all fEL+. The real linear functional o

on L is said to be order bounded if for every uEL+, the number

e ——

sup(!cp(f)l:'f] < u) is finite. The set of all order bounded linear func-

tionals is denoted by L. Under the natural definitions of addition and
scalar multiplication, L is a real linear vector space, partially

ordered by setting ©, “acpz whenever -0, 2 0. With respect to this
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partial ordering L™ is a Dedekind complete Riesz space.
The order bounded linear functional © on the Riesgz space L is

1d t - Iinteg: -l —
sald to be an in egral whenever it follows from 0 < u J, O that cp(un) 0

L

a4s n = . The collection of all integrals, Lc’ 1s a band in L. The

L ™

element €L~ will be called a singular functional if ¢ 1V for all € Lc'

The set of all singular functionals L: 1s a band in L and L™= L:@ L:

The order bounded linear functional ¢ on a Riesz space L 1s said to

be a normal integral if u'r\l"r 0 implies infT Icp(uT)] = 0. The set of all

normal integrals on L will be denoted by L:. L: 1s a band in L: and

L e e d
we set L = L @ L .
C C, sn n

For any subset A of a2 Riesz space L, the Riesz annihilator A°

is defined by A° = {Q::CpELN, ©{f) = 0 for all fcAl}l. For any subset B in

g

L. , the inverse Riesz annihilator °B is defined by “B= {f:fEL, ¢o(f) = 0
—t o2 dhininilator

tor all p€B}. If A is anideal in L, then A® is a band inl s B

an ideal in L, then °B is an ideal in L. If (L, p) is a normed Riesz

space, denoted by Lp’ L: will denote the Banach dual of Lp' Lp* is an

ideal in L:' For any subset A - Lp the (Banach) annihilator i" 1s

the set of all Cp‘ELp* satisfying ®(f) = 0 for all fEA. Similarly for

B & LP#J the inverse annihilator *B is the set of all f¢€ Lp satisfying
————e e o lAOY D

©(f) = 0 for all € B. If A is an ideal in Lp, then A~ is a band of L;.

If Bis an ideal in L;, then B 18 an 1d8es] is Lp.

For any w€ L™, set Ncp « el ,'r,ol(]f‘) = 0}. Ncp 1s always an

1deal and is called the null idqeal of ¢; if & denotes the band of L

generated by ¢, then NCD = . Define CED’ the carrier of v, by setting

Ccp & (Ncp)d. If 1. is Dedekind complete, and if o, \JJELM, let d,¥ denote

n

the principal bands generated by ¢, ;¥ C ¢if and only if Ofb G V.



6

For a more complete discussion of Riesz spaces, the reader

is referred to [9], [10], [11].

Topologies on 4 (¥).

Let ¥ be a complex Hilbert space with elements x,v, z, ... ;
by {¥) denote the algebra of all (bounded) linear operators on ¥ with

elements S, T, ... . £&), equipped with the usual operator norm, is

a B*-algebra. £({®) may be endowed with a variety of locally convex

topologies which are important in the study of operator algebras. The
coarsest locally convex topology on %) for which the maps T = Tx of

¥} into ¥ is called the strong operator topology. The locally convex

topology on {¥) generated by the family of semi-norms T = (Tx, y) is

called the weak operator topology. Let SR STIREE be a sequence of

oc
elements of ¥ which satisfy iZ"l ” X, " . <ow. The collection of all semi-
20

1
norms of the form T - {1};1 “ Txi n 2} ° defines a locally convex topology

on £#) called the ultrastrong topology. Similarly, the collection of all

o oC

Socemi—norms of the form T ~ I 174:1 (TXi’ yi) l, where %::l ”Xi “2' < 0

Tizl H Y: “2 <, defines on £{¥), the ultraweak topology. The algebraic

J

structure of L(¥) is not in general compatible with any of these to-
pologies. However, the maps S = ST, T - TS are continuous in each
topology, while the map T — T* is continuous in the weak topology and
in the ultraweak topology. If 511 %) denotes the unit ball of £®) in the
uniform operator topology, then on & ¥), the strong operator topology
coincides with the ultrastrong topology and the weak operator topology

coincides with the ultraweak topology. For a more complete discus -

sion, see [1].
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The spectral theorem for self-adjoint operators

Let A be a self-adjoint operator of £&). A will be called

positive, written A 2 0, if for every x€g, (Ax, x) 2 0. To every posi-

tive self-adjoint operator A, there corre sponds a unique positive

self-adjoint operator B such that BZ= A. Biscalled the positive square

1
root of A, written A%, If S is any self-adjoint operator which com-

1
mutes with A, then S also commutes with A2, For any operator

SEL(¥), denote by N(S) the null space of S and by R(S) the closure

in ¥ of the range of S. If A is a self-adjoint operator in £(¥), set
1

IA' — (AZ)Z, A+ x %‘(A+|A| ). For each a, -w<a<+w, denote by Pu.

the orthogonal projection on R({ (aI—A)+), where I denotes the identity

operator in ¥. The system {Pa] 1s called the spectral faznilz of A,
and has the property that each Pa commutes with every self-adjoint

operator that commutes with A. If ¢ > 0, a, b are real numbers such

that al < A < (b-¢e)I, let 7 = -rr(ao, T qn) be a partition of [a, b] and set
R e sR% o ey 1 i

s (m;A) = Zk:l uk—l(Pa I ), t{w;A) = Ek=l uk(Pu P ). From

k %k-1 k k-1
the properties of the system {Pu}’ s(m;A) < A <t(mA). Let ,n=1,2...

Il
be a sequence of partitions of [a, b], each of which is a refinement of
its predecessor and such that lwn| LHO. Then "A-—s('rrn;A) “ =,
“A-t(frn;A)“ — 0 asn—=w. This is the spectral theorem. As a general
reference on operator theory see [127. An elegant exposition of the
spectral theorem may be found in [9] where it is shown that if B ()
denotes the set of all self-adjoint elements of L&), then any subset of
B(%) which is an Abelian algebra that i s closed in the weak operator

topology, and contains the identity I, is a Dedekind complete Riesz

space. The spectral theorem is then deduced as a special case of the



T has a unique decomposition

(the polar decomposition of T) of the form T = U!T[ where U is 2
—— o PsAIon

partial isometry waose initial space is R(ITI ). The relations

U*T = |T], | T*| = u|T|uU*, |T| = U* |T| U are vaiid.

Notation: If Mis a linear subspace of &, [M]

will denote the norm

closure of Min¥. If M is any subalgebra of £(¥), % any subset of ¥,

then E

When necessary, the real numbers will be denoted by R, the

complex numbers by (.
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II. INTRODUCTORY REMARKS ON VON NEUMANN ALGEBRAS

Let ¥ bea complex Hilbert space; £(¥) the algebra of all bounded

linear operators in¥. Let S be an ar bitrary subset of £(%). Let
S'= {TELW): TS = ST for all S€S}. 8'is called the commutant of
S. Itis clear that we always have § c 8",

A subalgebra M of £(¥) will be called a % - subalgebra of £(¥)

(or a self-adjoint subalgebra of LW) ) if SEM implies S* ¢ M.

Definition 2.1: A % - subalgebra M of £(&) will be called a von Neumann
algebra (briefly a W*-algebra) in & if and only if M = M,

We summarize briefly those properties of a von Neumann

algebra M which will be neeéded most frequently in the sequel. The

pProof of these results and a complete list of the fundamental properties

of von Neumann algebras may be found in [17.

If M is a von Neumann algebra, we shall denote by Re M the set

of all self-adjoint operators in M. ReM is a real linear vector space,

partially ordered by defining A < B for A, B € Re M whenever (Ax, x)

< (Bx, x) holds for each x €¥. By (Re M)+, or simply M+ we shall de-

note {TEReM: T 2 0].

(i) If AEReM, and if f is any real valued continuous function of

a real variable, then f(A) also belongs to ReM. The spectral family of

A belongs to Re M.

(1) Each operator in M is a linear combination of unitary oper-

ators 1n M.

(11i) If M is any # - subalgebra of £(¥) containing the identity
operator I then M is a von Neumann algebra if and only if M (or Ml’

the unit ball of M in the uniform operator topology) is closed in any one
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of the weak, strong, ultraweak or ultrastrong topbologies.
Remarks: (a) (i) implies that if A €(Re M)+ then A%e (Re M)+.

(b) It follows from (ii) that an operator AcL(¥) belongs to M
if and only if TU = UT for each unitary operator U in M, .

(c) (iii) provides a purely topological definition of a von

Neumann algebra.

The order structure of a W* alge'bra

We are primarily interested in the role played by the order
structure of a W*- algebra. If @ denotes the set of all self-adjoint
operators in £(¥), then it has been shown by Kadison [ 6 ] that if A, B
are elements of 8, then AA B exists in R if and only if A 2 B or B > A.

On the other hand, if the W™ algebra M is Abelian, then ReM is a
—_— T e o T e pebra V1S AAbellan, tnen ReM 1s a

Dedekind complete Riesz space. For an elementary proof of this

result see [9], Chapter 5. The proof is elementary in that it does not
depend on the spectral theorem for bounded operators, which is then
derived as a consequence of the Riesz space structure of Re M.

If the hypothesis of commutativity is deleted, then the Riesz
space structure disappears. It has been shown by Sherman (18], that
if N is a C*-algebra (a iiniformly closed self-adjoint subalgebra of
£(®) ) such that ReN is a lattice, then N is commutative. It is possible

to obtain a relatively simple proof of this result in the special case of

a W*. algebra.

Theorem 2. 2: l.et M be a W*-algebra. Assume that ReM has the
et e — - — — i
Riesz decomposition property. Then M is Abelian.

Proot: It is sufficient to show BP = PB, where P is any projection of

M, and B€ReM satisfies C <B <I. Observe that if Q is any projection
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of M, and A€ (ReM)", then A < Q implies AQ = OA. In fact A < Q
implies N(A) 2 N{Q), and R(A) C R(Q). Thus N(Q), R(Q) are invariant

under A so that AQ = QA. From O < B <1, follows B< P+ I-P. Thus

B=B, +B, with O < B, < P, O<B, <I-P. Thus B P = PB

BZP —- PBZ hence also BP = PBRB.

l.l'

Corollary 2. 3: Let M be a W* algebra, and assume that Re M is a

- Riesz space. Then M is Abelian.
e e Tt e v A8 s DCan,

Proof: Since ReM is a Riesz space, 1t has the Riesz decomposition

property. For other results of this nature, see Ogasawara [14], and

Fukamiya et. al., 47.

We shall frequently use the following result [1], Appendix II.
Let M be any W*- algebra. Let 8 € Re M, and assume S is directed
upwards in Re M. Suppose further that there exists a Te€ReM such

-_— o tiere exists a 1C€ReM such
that S < Tfor each S€ S. Then sup S exists in ReM.
e e 0N I S D

It should also be observed that if Mp denotes the collection of
all projections in a W*-algebra M, then M is the smallest uniformly
closed %- subalgebra of £¥) containing MP. Further, M 1is a com-

plete lattice under the natural definition of A and V — namely, if

ml’ ???2 are subspaces in ¥, let [77‘{1, ??22] and 7)21 ﬂ??lz denote respectively

the smallest closed cubspaces of ¥ containing 'ml, 77(2 and the inter-

section of 9721, mz; il E?R ; EWZ denote the orthogonal projection on
] 2

b th V E = E d E,. AE,, =E .
these subspaces, en E,m1 mz [mr‘ '/Wz] an ml mz 7721”7’?2
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I1I. LINEAR FUNCTIONALS ON A W*~ALGEBRA
For any von Neumann algebra M, we shall denote by M"lﬁL the set
of all complex linear functionals on M, by M¥* the Banach dual of M,
and by Mn the set of all ultraweakly continuous linear functionals on

M. An element o € M# will be called positive and we shall write o =20

if (T) = 0 for each T€(Re M)+. If 0 <€ M#, cher: it follows imme-

diately that, for eachS, TE M

(i) co(T*) = (T)

(S*S) o (T*T) (Cauchy-Schwartz).
In particular each positive linear functional on M is uniformly bounded,

with norm ¢@(I) where I denotes the identity operator in ¥.

Definition 3.1: A positive linear functional ® on M will be called normal
_—— T PP Ve aAtal functional @ on M will b

if 0 < Lo TTT in (RE:M)+ implies sup, cp(TT) = T,

T'he notion of normality is related to the ultraweak topology of M via

Theorem 3.2: Let ¢ be a positive linear functional on M. © 15 normal

—_—————— e - X T e

if and only if © is ultraweakly continuous.
e e . s i i o sl Mmoo s o

For the proof see [1].

It x,y €%, we shall denote by wx, Y(I\/I) the canonical linear
functional T — (Tx,y), for TEM. It is clear that the canonical func-
tionals wx, x(M) are normal, where x €%.

We will now assume for the remainder of this chapter that the
w. algebra M is Abelian. Equipped with the usual operator norm,
ReM is a normed Riesz space which is Dedekind complete and norm
complete. We shall denote the set of all (real) linear functionals on
ReM by (ReM)#, the Banach dual of ReM by (ReM)*, the band of normal
integrals on ReM by (ReM):, and the order dual of ReM by (ReM)"~”

The Riesz space notation and terminology will be as in [10].
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Lemma 3. 3 (ReM)™ = (ReM )*
e ————— =TT

Proof: If v ¢ (ReM)™, then ¢ = P, -, Pps®, = 0. By the Cauchy-

Schwartz unequality, cpl,cpz are uniformly bounded, hence o € (ReM yk,

If © € (ReM)*, then supf | (S)|: SEReM, 0<S<|T|} <l|lo]l | TH;

herice ¢ is order bounded.

The following extension theorem will be found useful. We

tollowing properties:
(i) There exists a map #£: N = N which satisfies, for all f, gEN,
AeQd
@) £3=1  (B) (MP=T £%  (c) (f+g)* = fhegh.
(ii) If (N, p)is a normed linear space, then p(f) = p(t%) for all
f €N.
(iii) If (N,7) is a locally convex linear topological space, then
*: f+>f{%*ist_continuous.

Set ReN = {f€N: f = f*}. Any f € ReN will be called self-
adjoint, If fis arbitrary in N, set f = fl + 1 f2’ f1 - %(f%—f*), f2,= Z%—- (f-f%),
We will write N = ReN + i ReN. Denote by N#(respectively (ReN)#) the

set of all C-linear (respectivelyR-linear) maps ¢: N - (B(respectiwely

©:ReN-~R. If % GN"E, then for f € N define B*(f) = 3F*). It follows

easily that ¢ * EN# and that the map #: N# - N* satisfies the conditions
of (i) above with N replaced by NJ". If $ =%%, then naturally & will be

called self-adjoint.

Theorem 3. 4; (1) Let § in N# be self adjoint. The restriction of $ to

e i T B ——— RO

ReN is an element of (ReN)#. ConverselzJ if EQE(ReN)#, then ¢ may

be extended uniquely to a self adjoint element § of N#.

———
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(ii) If (N, p) is a normed linear space, and ch(ReN)# is

p-bounded, then its

s

self-adjoint extension § € N“ 1s p-bounded and

s e,

satisfies ”EE”P = H@ ” p-
(i11) If 1 is a locally convex linear topology on N, and o € (R eN)'u

1$ T-continuous, then its self-adjoint extension 3 EN-’! is alsoT-continuou
& 1 e o SRR GO IR EXTE

Proof: (i) Let & GN# be self-adjoint; if f€ ReN then

& (f) = 3%(f) = §(f%) = §(T).

jeaas i

Hence the restriction of & to ReN 1s an element of (ReN)#.

Conversely let E(ReN)#. For f€ N set §(f) = co(-é-(f+f*)

- iqn(%(f—-f*)). It follows easily that 3 GN#, ¢ is self-adjoint and & is

an extension of @. That $ extends w uniquely follows from the fact that

N = ReN + 1 ReN.

(ii) Iff€N, then [3(f)| = §(af) where a = exp(-i arg 8(f) ).
Thus #(af) is real; 8(af) = 3(3 (af) + T(al) ) = %(3(af) + 3%(a £%) )
= 8Gf+af%) ) = p(iaf + TH) ).

Observe that p(f) < 1 implies p(;—lg(af + a f*) ) < 1. Hence ”@ Hp < HcpHp

and since the opposite inequality is obvious we have H@ Hp = ||:p”p

(iii) follows immediately from 8(f) = p(3(f+£%) ) - ; co(F(f-£%) )

and the fact that #: N =+ N is T-continuous.

We will therefore identify each o E(REN)’IL with its corresponding

self-adjoint extension 3 € NJ"

Corollary 3.5: Let M be an Ahelian W¥*-algebra: Then

(i) Re(M*) = (ReM)*  (ii) Re(M*) = (ReM)* = (Re M)™
RStV )= ReM) (i) Re(M*) = (ReM)* = (ReM)™

- (iii) Re(Mn) = (Re M)‘: (iv) Re( (Mn)*) = ((Re M)':)*
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In_tegrals and normal integrals in (Re M)

Recall that a linear functional w€(ReM) is called an integral,
whenever it follows from 0 < T_ |, 0 in Re M that inf |o(T )| = o.
» €(ReM)  is called a normal integral if T'r LTO in Re M implies
inlecp(TT)l = 0. If®is a normal integral on ReM, hen D = cp+ -

+ - ¢ 4 5 ; ;
where ¢ ,® are positive normal linear functionals on M. We have the

>

following decomposition:

(ReM) = (ReM)S,C D (ReM)c, . @(ReM)n
where (ReM) | (ReM)™ , (ReM) denote respectively the band of
n C, Sn S, C

normal integrals on ReM, the band of integrals which are singular with
respect to normality, and the band of singular functionals (cfT11] Note
XVA). Itis natural to ask whether every integral is a normal integral
and it is obvious that we may confine our attention to positive function-

als. If 0 <p€(ReM) , then ® 1s a normal integral if and only if, for

each family pairwise disjoint projections of M, {Ei}ieﬁ' it follows that

p(Z Ei) — 5 q:a(Ei) (cf [1] p. 65). From this it follows easily that if
1€ g i€y

M is g-finite, i.e. if every family of mutually orthogonal projections

of M is at most countable, ther the notions of normal integral and

integral coincide. In particular, if ¥is separable, then every integral

18 normal. It is the aim of this section to show that, except in a

certain pathological case, every integral is a normal integral for an

- Abelian W*-algebra M. This result is hardly surprising in view of the

more general result of [7]. However, the proof in the present case is

more algebraic in nature.

We first examine some relations that exist between the alge-

braic ideals of the Abelian W*-—algebra M and the order ideals of the
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Riesz space ReM. As usual a subset N of M wiil be called an alge-

braic ideal in M if N is

in Chapter I.

Remark:

Let N be an algebraic ideal in M, and let SEM. From the

polar decomposition of S, it follows immediately that SEN &) S*cN

= |S]EN. It should

. Notation:

For any subset D of the Riesz space ReM we shall denote

by (D), (respectively {D}), the order ideal, (respectively band),

geénerated by D.

It N is any subset of M, we shall denote by N the closure of N

in the weak operator fopology.

Theorem 3. 6: (i) If N is an al
o e i i B

gebraic ideal gresEectivelX weaklz closed
—_

algebraic ideal) in M,

then ReN is an order ideal (respectively band)

in ReM.

(ii) If K is an order ideal (
—a2 o oraer id

resEectively bandz in ReM! then
__E&+ 1K is an algebzaic ideal (re spectivel

y weaklz closed algebraig

ideal) in M.

(11i) If N is an algebraic ideal in M then NV = iReN}+i{ReN].

(iv) If K is an order 1deal of ReM, then {K1} = RemhK)w.
(v) If P 1s any Projection of M, then (P) = {P].

(i) Let N be an algz=braic ideal of M. From the above remark

Proof:

1t follows immediately that ReN is a Riesz subspace of ReM. Assume

> €EReM satisfies 0 < ]S] < T, where TE(REN)+. By a generalization

of the polar decomposition for

bounded operators ({17 p. 11), there
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1 1
exists a unique element AEM which satisfies ’S | = AT?, Thus

S| = (A*A)T so that |S| € ReN; hence S+,S_, S =8'.5" all belong to

(ii) If K is an order ideal in ReM, then K+iKis certainly a
linear subspace of M. Suppose that TE€ K+iK, and that U is a unitary
element of M. From the uniqueness of the square root follows
| UT]=]TI6K. From |ReUT|, |ImUT| < | UT| follows Re(UT)eK,
Im(UT)EK so that UTEK+iK so that K+1iK is an algebraic ideal of M.
If Kis also a band in ReM, let N denote KRR Y. in particular N is
an algebraic ideal of M. Let 0 < TEN. From[1], P. 45 there exists a
family 0 < T 1 T with 0 < T €K. Since K is a band, T € K. Thus
K+iK is weakly closed.

(iii), (iv) follow readily and the proof will be omitted,

(v) It is sufficient to prove that {P} < (P). Let Tc{P]. By

9], lemma 26.5 R(!Tl) C R(P). Thus IT[ < AP for some constant )

so that [T[ € (P), therefore T ¢ (P). Hence (P) = {P}.

Lemma 3.7: Let 0 < C(ReM)~ Let N {TeEReM: o(|T])= 0}.

%——“\
Then o€ (ReM) if and only if N

0 1s 2 band in ReM.

Proof: Identical to [10], Note VIII, Theorem 7.5, and will be omitted.

Suppose now that P is any projection of M. A decomposition of

P is a collection of projections {P ]} such that P £ p P if
a‘a€ a ul a,
al = O’Z and Vu Pa = P. The cardinal of the index set G 1s called the



cardinal of the decomposition. A set X is said to have a measurable

 cardinal if there exXists g Countably additive measure V on the collection

Then ¢ is a normai integral.
—_— o Fplral,

_Proof: Let 8 denote the family of all collections {Pﬁ} of mutually

Oorthogonal projections PB such that cp(Pﬁ) = J. R is inductively ordered

Let {P} denote the Principal band geénerated by P in Re M.

By theorem 3.6 (v), {P} coincides with the Principal ideal (P) generated

{P} =N = {’I‘E ReM: rp(ITI) = O]. Observe that if TG{P} - (P), then

there exists an integer k such that [T’ <k P. Thus qo(l T])= 0 so that
(P} EN*’:D' On the other hand, assume T€ ReM and (| T[)= 0. By the
 spectral theorem, there exists a sequence Sn = Ziznl ; S
with a. >0, an) Projections in M such that Snln,Tl in ReM. w([T])= 0
implies @(Qin}) = U for eath 1 5. Thuye an) € {P} hence Sn c{P} for
each n. Since {P} is a band, | T] € {P) and go P} = NCQ, and © is

normal.
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Singular linear functionals on ReM
—J*____-—-—-——--—-___._____________

Following the discussion of the preceding section, we will

write

functionals (ReM): .

Lemma 3.9: (i) Letpé€(ReM)™ N = {TEReM:kpMT!):O} is an

s, n’ P

order dense idgal in Re M.

(ii) Let (ReM)® = {TcReM: [Tl 25 | 0=3 IENIEKR
— - .
and (ReM)“"= {T€Re M- | T| = B, 1To -—) HsT]]lTo}

Then (ReM)® = (Re M)2™ =1 (Re M)~ ) .

5 Consequently (Re M)? is an
—_— —
ideal in Re M.

Proof: The proof of the lemma is contained in [11] Theorem 50. 4

and Theorem 53. 7 (11) of Note XVA.

Definition 3.10: Suppose P is a non zero Projection of M. P will be
S i o Wi

called an atom if, for any projection Q of M,0 < Q < P

'_

implies either

Q=90o0r Q= P.

Lemma 3.11: Let P be an atom in M; then P€ (Re M)an.
—_— T s \neM) .

Proof: For any SEReM, 0 <S <P implies S = AP for some real ),

0 <) < 1.

This follows readily either from the spectral theorem or

as in [ 9] page 55. Now observe that )\nPln

if \_ | 0. Thus also | AP o.

G, 0 < X, < 1if and only

Theorem 3.12: (i) Let Pc(Re M)2™

be a projection; then P = Eif—l
—— e T— =

—T — e T

1 B

N

{

where the Pi are disjoint atoms.

—e———

Ty, —r e

=k
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o0
(ii) Te(ReM)*™ if and only if T = Ei—l )Li Pi’ where the

R — e e e S

., are disjoint atoms and !}\il - 0 as i~ 0.

= L A e .
Proof: (i) Let P¢(Re M)an be a projection. Assume that P does not

P, i=1,2,.
1

dominate a single atom. Assume that pairwise disjoint projections

Q Qi h b defined i sfying 0 # <de < P
1>°++» <k have been defined satisfying Qi P an Z’L:l Qi :

k
LetE, =P - % Q:;. Note that 0 # k. < P. By hypothesis there

exists a projection Qk+l satisfying 0 # Qk+l < Ek , It follows irmtrie-

diately that Qk+1 is disjoint to Qi’ i < k and Zil_:‘;l Q. < P. Observe

that P>F_ =V Q. Wehave F_#0, P>F _ | 0. Since
m nem n m m vm

IIF_ || = 1 for each m, this contradicts the fact that P€ (Re M)2™.

Therefore, it follows that there exists an atom Pl satisfying 0 # PlgF’.

If P-Pl # 0, there exists an atom l:"2 satisfying 0 # ]:'3'2 < P-P The

1"

argument in the first section of this paragraph shows that this pPro-
cedure breaks off after a finite number of steps, and the statement of

(i) follows.

(ii) Assume first that T = % f_'ol J\i Pi" where the Pi,i:l, 2, ...
1-.-.-

are pairwise disjoint atoms and |)\i| »0ast=ow. If SEReM satisiies

0<S < |T|, thenS =57, s; P, with 0 < s.<[).], and “S”:Supisi_ It

tollows readily that TEE(ReM)an

= (ReM)?. Conversely, assume

0 <T € (ReM)an. By the spectral theorem and (i) it follows that

T = ‘2130 A. P. where 0 < )\. < HTH, and P, is an atom: i=1, 2, --. Assume
=1 "1 "1 1 1

P # 0 i=1,2,... To show A; * 0 asi- o assume lim, X\, > 0; by

choosing a subsequence if necessary we may assume that, for some

620, \. 26>0fori=1,2,--. Set Q = E‘i_w P.. Let N denote the inte-
1 =] "1

gers, PN the Stone-Cech compactification of N and choose acBN-N
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(see for example [5] ). For each S € ReM denote by fS the element

of ,em(N) defined by (fs)n = {S X xn) n=1,2,.. where X € % has been

chosen to satisfy P x = x | ”x H = 1. Denote by f. the extension
n n n n S
of fg to a continuous function on BN. Define ¢ G(ReM)# by setting
w(T) = 'fs(a) for each S€ ReM. Observe that ® 1s linear and that
“fS)nl < ”SH Then also ‘cp(S)l < HSH so that pc(ReM)* = (ReM)™.
It is also clear that ¢ 2 0, and that ©(T) 26§ > 0. Since TG(ReM)a =
(ReM)an, it is sufficient to show that cpE(ReM): i Observe that

P(Q) = 1 = o(I) so that ©(I-Q) = 0. Write I & cps + ®, where 0 < *:ps -

(ReM):n, 0 < P €(R aM):. Since the :Pi are atoms and by the defini-

tion of o, 0 = PP+ ...+ P )= cas(Pl+...+Pk )+tpn(P1+...+Pk)
=@ (P,+...+P, ) for k=1,2,...,. Thus ® (Q) = 0; also 0 = p(I-Q)
.-:cpS(I..Q) + cpn(I-Q). Hence ch(I-Q) = 0 so that tpn(l) = 0. By Cauchy

Schwartz ¢ = 0. Hence ©¢ (ReM);" _ and the proof is complete.

Remark: The proof of (ii) of theorem 3. 12 shows that if the dimension

S

. In
S, n

of M is not finite, then there exist non zero elements of (ReM)

fact, let {Pi} 1=1,2,... be a system of pairwise disjoint non zero pro-

Jections of M. Let 9 € (ReM)™ be defined via the P. as in the proof of

(ii) above. Let F V Pn' Observe that cp(Fm) = 1 for each m.

m n=m
Since Fm J/m 0, it follows that CM;’(ReM)Z, so that the singular part of
0 1S non zero.

Let 7 denote the set of atoms in ReM. In general the ideal
generated by the atoms of ReM is not equal to (ReM)®. However if

{6?} denotes the band generated by the atoms in ReM, and {(ReM)a’}

denotes the band generated by (ReM)a, then we have the tollowing
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Corollary 3.13: {7} = {ReM)an}
Proof: {@} ¢ {(ReM)?"} trivially. On the other hand & < (ReM?)d

by
the above theorem. Therefore {7} = ddd =5 (ReM)a)dd = {(ReM)?}

We may write ReM = {ad} & {a’}d where @ denotes the Riesz
space direct sum. {&Z} will be called the atomic part of ReM, {(]}d
the non-atomic part. It seems appropriate to call M purely atomic if
{@} = ReM, and purely non-atomic if {g} = {0}. Following ([ 9]), an
ideal N in ReM will be called a maximal ideal if N # ReM and if there

is no ideal in ReM properly contained between N and ReM. In addition

if N is a band, then N will be called a maximal bard.

Theorem 3.14: (i) If N is a band in ReM, then N is a maximal band

if and only if there exists an atom P in ReM such that N = (P d.
—_— e Pe e aom ~ 1n RelM such that N = (P},

(ii) If {} denotes the atomic part of ReM, then {a}d =N (N:N is

a maximal band).

_-—_—'-__-_—'_——-—_—_—_-q_—___,—__.

Proof: (i), (ii) follow exactly as in ([9] p. 57).

(iii) {@}= ReM if and only if ReM_ _ = ((ReM)*)™.

(111) If (ReM): x & (ReMa)l_, let Pe{d}d, P a projection and

assume P # 0. Choose xcd such that Px = x and consider the canonical

normal functional ¢ . From W
X, X X

»

1 I ;
XEC?’ ; L"’X, XE {67} . In particular wx’ "

(ReM®)*. Hence oy = 0. It follows that {7}% = {0}, hence {Z}=ReM.

s

Conversely, assume {7} = ReM = {ReMa}. Observe that we

always have (ReM):n C (ReMa)‘L. Assume @E(ReW)+ satisfies

3

®(T) = 0 for all TE€ReM". Write g = ¢_+ o, where 0 s¢_ €(ReM)T

0 < P G(ReM):. Since P vanishes on (ReM)a so also does N By

normality and the assumption that ReM = {ReMa}, it follows that

P = 0. Thus ¢ = P and the proof is complete.
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We conclude this section with some remarks on the case when

M 1s finite dimensional

Theorem 3.15: The fallowing conditions on an Abelian W*-algebra M

are equivalent:

(i) ReM = (ISeM)f'n;

(ii1) M is finite-dimensional.

(iii) M is a reflexive Banach space.
(iv) (ReM) = (ReM): .

Proof: (i) - (iv) : Assume M satisfies (i). From ReM = (RvaM)El
= (ReM)an it follows immediately that every positive linear functional

on ReM is a normal integral.

(1v) — (1): Since the only singular order bounded functional on

ReM is the zero functional, ReM = ((RE’:I‘\/[N)S n)l = (ReM)an.

(iv)=y (ii): It has been observed in the proof of Theorem 3. 12,

that if the dimension of M is not finite, then there exist non zero ele-

L

ments of (ReM)

S, n

(i1) = (iii) is obvious.
(iii)=é (iv): Assume M is reflexive as a Banach space. Recall

thatM_c M* and that M_ is norm-closed in M* ([ 1] p. 38). Assume

that Mn;f M*, Let0# ¢ppeM* satisfy ch’Mn- By the Hahn-Banach theorem
there exists u € (M*)* such that u{n) ¥ 0 but that u(c_,_;X y) = 0 for each
W, yG Mn' Since M is reflexive, there exists TEReM such that

u(u_yx y) = (Tx, y) for all x,y €¥&; u(wx y) = 0 for all x,y € ¥ implies

2

T =0. Thus u(p)=®(T) = 0. This is a contradiction. Thus Mn = M*,

consequently (ReM)Zz ReM .



24

IV. NORMAL INTEGRALS ON AN ABELIAN W*_ALGEBRA

It © is a positive linear functional on an ar bitrary W*-algebra
M, then it is well known that @ is normal if and only if p= Zi:jl Wy, x5
where the system {xi} € satisfies:.L__Z{f‘.ﬂ@1 ” X "2 <o (cf [ 1], p. 54 Theorem 1).
On an Abelian W*-algebra, however, the result of R. Pallu de la
Barriere [15] states that every normal positive linear functional © 1s
of the form @(T) = Wy x_(T) for some x€%. The original proof of this
result depends rather heavily upon representation theory and it is
desirable to obtain a proof which uses the order structure of the
Abelian W*-algebra more fully. Dye [3] has essentially treated this
Problem in a more general context and we shall give a short discussion
of his results later, [see p. 29]. In the Abelian case, the situation 1is
especially simple and in this section we shall present an elementary
proof of the R. Pallu de la Barriéere result which will be fundamental

1n later sections.

T'he support of a positive normal linear functional

In the following, it will be assumed that M is a general

W#%*-algebra.

Lemma 4.1: (cf [1], p. 61) Let® be a normal positive linear function-
ks et s e 577 e 2 e e e e ————

al on M. There exists a unique projection E in M with the following

properties:

(i) If E is a projection in M such that ©(E) = 0, then ]-IJ:L:TI--EQD .
__'-_‘—-__—'——_—-_—q-h—-u-—-p-——-_—-—___._____ o - .

1i) F h TeM T)=(TE ) =o(E T)=oo(E TE ).

(1) For each Te€M, o(T) = o o) = PELT) = o o o)

(iii) For each projection Fin M such that EQQFECp?g 0, then(F)#0.
S P S S .. . WL . LA
(iv) If M is Abelian, let I-P be the component of the identity in
0. i e ol esin” i

the band N{:D of ReM where NCD & {TGReM:Qp(IT' }=0}. Then P = EQO.
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Proof: Let Q= {EEM: E is a projection: p(E) = 0} Let {Ei}ié.ﬂ be a

maximal set of pairwise disjoint projections of G. Set I_EQC’:Z'

1E .PEi'
By the normality of o, I-ECPGG. Suppose that E is any member of G
and that E # I-Ecp. Set Ef = EV(I—ECQ) - (I_ECD)' Observe that EV(I-EQP)
1s the projection on R(E+I'Ecp)' From cp(E-i-I-Em) = 0 and the spectral
theorem for positive self adjoint operators it follows that EV(I-E )€qG.

©
Further E' # 0, E'€ég and E' I-E(‘p' This contradicts the maximality

of {El} and so we have (i). For any T€éM we have T=TE +T(I'Ecp)'

1€] ©
By Cauchy-Schwartz cp(T(I—Ecp) ) = 0. The rest of (ii) follows similarly.

Uniqueness is immediate from (i). If F is any projection of M, then
p(F') = 0 implies F < I-Ecp so that F(I_Ecp) = F. Thus F Ecp = 0 and also

EFE = 0.
P @

Finally, if M is Abelian, let I-P denote the component of the
ldentity in the band M = {TEReM: cp(' Tl) = 0}. Observe that both

I-Ecp, and I-P belong to M. Thus P = Ecp'

Definition 4. 2: It © is a normal positive linear functional on M, the

projection E  of the above lemma will be called the support of ¢, and

will be denoted by supp(y) or simply, E .

e

§
Remark If 9= (M) for some x€, then E, = EY . Infact, if

k. is a projection of M such that i, X(E) = 0, then Ex = 0. Thus

! !
EM'x = 0 so that E Ej{ = 0 so that (I_Ecp) < I-Ex . On the other

I Ml Mt
hand ((I-E )X, %) = 0 so that I-E <]J-E . Thus E = E ;
X X &) g X

+
Detfinition 4.3: Let®, ¥ € Mn . We will say that { is absolutely con-

Sy =

—-—--——:——-—-I_

tinuous with respect to ¢, and write ¢ <p if E, < Ecp'

A )
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Remark In the special case that ¥ <®, it is clear that V <¢. If the

Wx-algebra is Abelian, then V <@ if and only if {is in the band gen -

erated by . (cf Chapter I and lemma 4. 1, (iv))

Definition 4. 4: A projection E of M will be called o-finite, if, for each

family of mutually disjoint projections {Ei}iGJWith Ei sE for all i, it

follows that Ei # O for an at most countable set of indices.

Lemma 4.5: Let ® be a positive normal linear functional on M, E

D

A e gien T T A28 1 o

.the support of ©. Then ECP 1s O-finite.

— . = b—

Proof: Let {Ei]iGJ be any family of mutually disjoint projections of

M with Ei < Ecp for each i€ If Fis any finite subset of & then

CD(ZiEEEi) S Cp(ECp) < +oc
Consequently the number of indices i€ for which Cp(Ei) < -}1- 1s at most

finite. Thus for all except a countable set of indices 1, Cp(Ei) = 0. By

lemma 4.1, it follows that Ei = 0 except for an at most countable set

of indices.

Proof: This follows from the fact that Ecp 1s O-finite and [1] p. 20.

It 1s immediate from lemma 4. 6 that if ®1s a positive normal

linear functional on an Abelian Wx*-algebra M, then there exists an

XE€X such that © < w :
3, X

We now prove the following special case of a more general

theorem of S. Sakai [16].
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Lemma 4.7: Let@ V be positive normal linear functionals on an

T

Abelian W*-algebra M which satisfy ¥ < There exists H_E M with

0 sH <1 such that y(T) = 9(TH) for all T € M.

Proof: Let Ecp denote the support of . The Abelian W*-algebra ME

P

becomes a Hilbert algebra if we set (A, B) = ®(B*A) for A, B € ME,

([11, p. 66). For A, BE€ ME, set (A, B)\P(‘i V(B*A). From V <o '
follows
(A, B) | = [WB*A)| < (v(B*B) )7 (WA%A) )2
< (v (B*B) )2 (p(A%A))? = |B I 1Al

Thus (A, B)q/ defines on the Hilbert algebra ME a bounded, positive,

P

sesquilinear Hermitian form. There exists a positive self-adjoint

operator, {l, defined on the completion of MEcp

= (Q A, B)cp' For any C in MEcp’ let R~ denote the

defined by R.(A) = AC for

with respect to (, )cp’

such that (A, B)\y

(right) multiplication operator on MEcp

A€ MEcp' To show that {lis given by multiplication on the left by some

element H of MECp’ it is sufficient to show that RCQ -~ QRC for each

CEM (L1, p. 69, Theorem 1, and n. 57, Prop. 1). Let A, B be

arbitrary in MEED. Then

% 3%
% = {{) = %k —
(R A, B)Cp (QA, R~ B)Cp ((A, R~ B)cp (A, BC )cp
- W (BC*)*A) = y(CcB*A) = yB*AC)
= ({1 AC, B)tp ~ (QRC A, B)cp
Thus RCQ = QRC holds for all C in ]i‘«.ff[E[:p and the proof is complete.

LLemma 4. 8: Let M be an Abelian W*-algebra and let x € X. Then

4

B =v{EM:w _— (M)}.
X Z Z, Z X, X
M’ M’
Proof: For each z € ¥ such that w = W (M), E = E Thus
— ’ : Z, Z % % Z, " X
EME 1D M . EM so that V {EM: W = (M)] < E ., On the other
Z Z X Z 7z, Z X, X X
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hand, let F be any projection of M’ which satisfies F ZEI::[ for each
z €¥ such that wz, " wx, X(M). Observe that aUx U'x = wx’ X(M) for
each unitary operator U’ € M’. Thus U’'x€ R(F') for each unitary
/
operator U'€ M’. Thus R(F) 2 [M’'x]). Hence F ZE:l:I and the lemma

follows.

We are now in a position to proceed directly to the result of
R. Pallu de la Barriére [15], which is the principal goal of this
section.

Theorem 4. 9: Let pbe a normal positive linear functional on an

N T T R T o T mwwarmecey:

Abella.n Wx*-algebra M. There exists y € ¥ such that © =

Proof Let ECp be the support of ®. Choose X € ¥ such tha.t E M Ecp'

It follows that ®belongs to the band generated by @ w Hence

}

¢ = Vn(cp A n wx x)' Observe that \Lrn =P An W o has the properties

that (i) q;nTn (i) ¥, <nw  (iii) for each 0 ST €M YT) = lim___V (T).

By lemma 4. 7, there exists a sequence {Hn} of positive operators of

4
M which satisfy Hn(I-EI:[ ) = 0 such that \lfn(T) = (T an, an) for each

T € M. Let z €& satisfy @ = W . Then also ¥ (T) = (TH z, H z)
Zi, 2 X, X n n n
for each n and for each T € M. Since \Kﬂ\ it follows that H EM«?H B
: n ’ n z m z
for n 2 m. From lemma 4.8 Hr‘lE}I:/I 2 H EM for n 2 m. Thus H T
From W{I) = 11m || an” . it follows that the sequence of real numbers
=00
"an H 1s a Cauchy sequence. We now show that the sequence {an}

is a Cauchy sequence in%. In fact, for n 2m,
2 2 2
e x-m =% = flm <[+ H_ x|®-0 < H_x-H_x, H x)
2 2
= "an I "me“ “Hn% me)h(me’ me)
= 1 - 1 ) 2
n m

—> 0as n m — .
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There exists y € & such that y = lzlrznn_MJc H x. Hence, for each T €M

W(T) =lim _ (TH x, H x) = (Ty, y)

=Wy T

and the proof is complete.

In later sections we will show that if M is Abelian and the

o ; . J < =
normal positive linear functional ©® satisfies Cp wx, ot then o wa’ T

where the "Radon-Nikodym derivative'' T is a closed densely defined

transformation which commutes with each unitary cperator in M’. 1In

[3], Dye has shown that if M is any W¥*-algebra, and if the cyclic

/

projection Ex , X €& 1s finite then any normal positive linear func-

tional ® which satisfies ® < _ 1s of the form o = Wy Ty where T

1s a closed densely defined transformation which commutes with each
unitary operator of M'. Dye shows that the finiteness of all cyclic
projections is a necessary and sufficient condition for the universal
validity of a Radon-Nikodym theorem of the above type, that is, as

long as one insists on having closed transformations as '""Radon-
Nikodym derivatives. " However, a partial Radon-Nikodym theorem
holds for the class of W¥-algebras which have no purely infinite pro-
jections. In fact if M is a W*-algebra which contains no purely in-
finite projections, and if the normal positive linear functional o satisfies

P<w, for some x in ¥, then there exists a vector y in [fo]ﬂ[Mx]

such that o = see [3]).
u P yy( i

3



30

V. THE PERFECTNESS OF AN ABELIAN W*_ALGEBRA
Throughout this section, M will always denote an Abelian
W*-algebra. If TE (ReM)+, then T defines an element W(T) of
(ReM); ': In fact for each cpE(ReM): set V(T){wp) = ©o(T) and observe
that 0 < CQTTcp in (ReM):: implies v(T)(cp)=cp(T)=supTQpT(T)=supT v(T)(r:pT).
To each TEReM, QG(REM): set v(T)(p) = ©(T). It .s clear that
v:i ReM - (ReM):,: 1s linear and preserves partial order. Further

v 1s 1-1, since V(T) = 0 implies \J(T)(wx x) = 0 = (Tx, x) holds for

’

each x in%, thus T = 0.

Theorem 5.1: The image of ReM under the canonical map Vv is a

Riesz subspace of (ReM)™” ~. If 0 < T, TT T in ReM, then v(TT)TTv(T)

7

e M

in (ReM)

n, n

Proof: Asin [10], Note VII.

Let 0 <u" E(ReM)n . Recall that u'" may be considered as a

linear functional on Mn and that any canonical linear functional

“y y GMn, X, yeE¥ has a decomposition of the form

wx, y . _{( x+y, Xty wx-y, x-—y)+ 1(w +1y, x+1y wx-ly, X - 1y)}

Observe the following properties of u”(Mn.):

() u'lw, )=t )

y, X’

(ii) u”(wkxjy) = ruw Y),

7

(i) 0oy, )= uley, ) +utle, ),

(iv) |u”(w )| < lu”(ug{ )| lu"'(f.uumy )|

~where )\ is any complex number, x, vy, z denote elements of ¥.
(1) follows by noting that - - oy = W g _—

wx+iy, x+iy = wy-ix, y-1X, (""J{---iy‘Ir X-1y = ajy.{-ix’ y+ix® (ii) and (iii) are
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similar and (iv) follows in the usual fashion of the Cauchy-Schwartz

inequality from the relation Ll“((,ox_i_)‘y ) 2 0 for each complex ).

XtAy

Theorem 5.2: (i) v(ReM) is an ideal in (ReM): : In particular if

0 £a" €£9(T), u”E(ReM): : then u'" = W(ST), 0 <S <1, S, TEReM.
———

(ii) The smallest normal Riesz subspace of (ReM) ~ con-
n, n

taining V(ReM) is (ReM)™” ™

n,n

(iii) v(ReM) = (ReM): ~, i.e. ReM is a perfect Riesz space.

)
5 IR

(iv) v(ReM) and (ReM): : are isometric as Banach spaces.

-

Proof: (i) Let u'" €(R6M)n i satisfy 0 € u'" < v(T) for some TGReM-l:

Then for each x€Y¥, u”(wxj x) < (Tx, x). By (iv)of the previous page,

!uu(wx, Y) ‘1 < (T}i’ x)L:TyJ y) tor all x, v €
It follows that [T*x, T®y] = u”((,,_:K Y) defines on the linear subspace

L
T*/ a single valued, sesquilinear bounded positive Hermitian form.

In view of (i) - (iv) listed above, we need check only the single
i 1

valuedness. If T%x = T®x' then
lu™e, ) - u(w, )%= |u(w )
X,y %!, y :

< (T(x-x'), (x-x") (Ty,y)=0.
Therefore, there exists a positive self-adjoint operator S defined

L 1 1
on the closure of T2¥ such that u”((%{ y) = (Tax,STay) for each

1
X, ye¥. We set 5x = 0 if x€¥ belongs to the null space of T2. Let

A be any element of M'. Then

L 1 1 1
(T*x, AST®*y) = (T? A¥*x ST4y) =

} B (T*x
1
% SATay)_

l.l”(w

3 X, Ay
3

(T



< ¥

1
Hence AS = SA on the closure of T°%. Since the projection on the
1
null space of T? also belongs to M, AS = SA in®%. Thus S€EReM,

and it is clear that 0 €S < 1.

(ii) follows immediately from [10], Theorem 28.2 (ii) of
Note VIII, since the Dedekind complete Riesz space ReM has plenty
of normal integrals, 1.e.,

o (ReM)) = {T€ReM: (T) = 0 for all we(ReM)‘:} = {0}

(iii1) In view of (i) and (ii), it is now sufficient to show that
v(ReM) is a normal subspace of (ReM):,;- Let 0 < \)(TT)TT u'l,

u. EM)n, o For x€%, v(TT)(wX’ x) — (T'Tx’ x) €u (wx, x)' By the
Banach-Steinhaus theorem, Sup_ “T‘T\ <+ ow. Thus, for some
constant K, 0 < TTTT < KI. By the Dedekind completeness of ReM,
there exists T€ ReM such that 0 < TTTT T in ReM. By Theorem
5.1, V(T )T_v(T) in(ReMT 7. Thus u" = WT), and so v(ReM) is a
band 1n(ReIVI);I’ n and by (ii), v(ReM) =(ReM}n, e
(iv) follows by observing, for T €M,
IT] = sup([(Tx, l:lIx]l <1, [yl<D)
; <
ssup (IV(THw, It llo, <D
< sup (|V(T)®): veReM”, [ofl < 1)

< sup (|o(T)]: fells 1) < || T]

By an abuse of notation we shall write ReM = (ReM): :

The Riesz space (ReM): is itself norm complete ([ 1], p. 38).

It is easy to show that the norm of the Banach space (ReM):: .

Riesz norm which is additive on the positive cone of (ReMi:. In

fact let O < D5 ®, E(ReM): satisfy ©y SO,. From cpl(l)-_f: q:-z(l)

2



35

L

follows immediately that ||l < |l o, ||. If 9 is any element of (ReM)™
write p = ' - 07, |o|= o +©°. Note that o' Ap™ = 0 impliesE# LE
It is clear that |of| <fl¢' | + |o™]|. SetE = Eg+ - Eg- . Then

Ioll 20(E) = 0"(E) + 0 (E_-) = [0 || + |o7||. Hence

loll = o ] + lol = @™ (1) + o7 (1) = lo](I) = | lo| |. Finally if
ol cpl + tpz with 0 < Cpl,cpz G(ReM):, then "cp" = cp{I):cpl(IHcpz(I)

= Jo I+ o, 1.

From these remarks it follows that (ReM):* = (ReM):H

([10] Note VII and Note VIII, Theorem 26. 4), and that the Banach

space (ReM): 1s an abstract L-gspace. It is well known that every
bounded linear functional on an abstract L-space is a normal inte-
gral. Consequently {RE:M):’* = (ReM);:= ReM. We summarize

the above in terms of the Abelian W*-algebra M.

Theorem 5.3: The Banach spaces M, M: are isometrically

__-'H___"_—ﬂ———-—_l—“——______—ﬂ___“__

isomorphic.

Proof: If TEM, ©w€ Mn’ define o(T){(®) = ©(T). The map g is clearly

an algebraic isomorphism of M into M:. That ¢ is onto follows

from Re(Mn*) = (REM):, * = ReM. It is clear that “ U('I‘)" :;”TH.
On the other hand

lo(T)]] 2 sup {|o(THw, I:Ixl<1, [lyll<L x, yen)

,Y)
= sup ([T, y) 1 [x]l <1, Iyl <1, %y e

IT ]

Thus [[o(T)]| = ||T] so that o is an isometry.

1

The result of Theorem 5.3 is a well-known property of any

W*-algebra (cf[1] p. 40) and S. Sakai [17] has shown that this
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pProperty may be used to give a non-spatial definition of W*_algebra.
More precisely, in [17] a B*-algebra M is called a W=X_algebra if
there exists a Banach space F suchthat M = F* If F is canonically
embedded as a norm - closed subspace of M¥* then it may be shown
that F' is generated by the totality of normal positive linear functionals
on M. Since normality is determined by the order properties of M
only, it follows that if Fl“ FZ are two Banach spaces with the property
Fl*= F,*= M, then F, coincides with I, when they are canonically
embedded into M*. Further it may be shown.that if M is a W*.3algebra
in the above sense then M may be represented faithfully as a weakly

closed *-subalgebra of £(¥) for some Hilbert space ¥ and that under

such a representation the g(M, F) topology is equivalent to the weak

operator topology on bounded spheres.
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VI. THE SPACE Re MO
Let M be an Abelian W*-algebra.

Definition 6. 1: By MO we shall denote the set of all linear densely

defined closed transformations T which satisfy TU © UT for each
unitary operator U in M! ReMO will denote the set of self-adjoint
transformations in Mo. If TEMO, we shall denote the domain of
definition of T by 8.., and the range of T by p. I TGReMO, then

T will be called positive, written T =2 0, if (Tz, z) = 0 for each ZGQT.
We will write T€(R eMO)+.

In this section we shall show that Theorem 4. 7 leads to a
natural construction of ReMO, and we give an elementary proof of
the fact that each positive element of (Flel‘v‘lo)+ has a unique square
root in (ReMO)+. Tke proof is elementary in that it uses only those
properties which are consequences of the Riesz space structure of
ReM. In later sections it will be shown, that if the algebraiclopera-
tions are suitably defined, then ReMO 1s 1tself a Dedekind complete
Riesz space, which is, at the same time, a universal completion of
the Dedekind complete Riesz space ReM.

We shall frequently use the following useful result:

Lemma 6.2: (cf[13], p. 226) Every linear closed Hermitian trans-

formation TEMO 1s maximal Hermitian and self-adjoint.

Proot: Let V. denote the Cayley transform of T ([12], p. 74).

Since T is closed, QV = %THI’ Wy = ?’&T-il are closed subspaces
v T

of . Since T commutes with every unitary operator in M', it

follows that VT may be extended to a partial isometry in M. Since
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. .. * *

M 18 Abclian VT VT = VTVT so that %TJriI:%T T To show that T is
self adjoint, it is sufficient to show that WTHI:%T-?LIIN' Assume z€¥
satisfies ((T+1l)x, z) = 0, ((T-il)x, z) = 0 for all x€ ST. Thus also

(x, z) = 0 for all x€ ﬂT’ which is dense in ¥ Thus z = O.

We now obtain a more precise version of Theorem 4. 9, which

will lead to the construction of the class ReMO.

Theorem 6. 3: Let 9 be a normal positive linear functional on the

Abelian W*-algebra M which satisfies ® < w, , for some x€¥ There

=

exists a positive self-adjoint transformation H € (ReMO) which satis-
m ity . T -
; M
- K = =
fies H(I E_ ) = 0, and ©(M) wa_, er'“;_(IVI).

Proof: From the proof of Theorem 4.9, there exists a sequence of

positive self-adjoint operators in (ReM)+ which have the following

properties:
(i) 0<H_1]
n'n.
M.
(i1) Hn(I-EX | =0

(ii1) For each T in M, ®(T) = 1imn_,m(Tan, an).
Note that if T’ is any element of M’, then
R I N N e
<t flem.
In particular, if z is any element of {M x} there exists a real constant
K(z), independent of n, such that
I1H 2| < K(z)

Now suppose z € M “x] satisfies " an“ <K(z), where K 1is a

real constant, independent of n; then the sequence {an} 1s actually
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convergent. In fact, from (i) {“ an “ }lis a Cauchy sequence of real
numbers. Further form = n

|H_z-H z|°=(H z,H z)+(H_2z,H_ 2)-(H 2z, H 2z)-(H z, H z)

m n n n m m m n n m
2
<|H_z||° - |H z|°~0asm, n- o
m n

We define the linear transformation H as follows:

Letm= {z€[M'x]: |H z|| < K(z) for all n}. For z€¥, set

Hz = 11m H z. For ZG%@[M’X], setHz=0. From [M’x}gmgwijj

n—toe n

. it follows that H is densely defined. By (iii) ¢ = (W1 Hx(M)' We now

show that H is a positive self-adjoint transformation in MO'

(a) For z € 81y (Hz, z) 2 0 follows immediately from (an, z)=0.

(b) H is Hermitian and closed: If 21,2, - P then

(Hzl, ZZ) = lim (anl, ZZ) = hmn—»m(zl" anz) = (zl, sz). Thus

z, o EH* and H* z, = I—Iz2 so that H € H* and H is Hermitian. In

n-=oo

particular H* is densely defined so that H** is defined. Suppose now

that z € 8y, z "z and H z —y. From Hzn - y follows that for

some constant K, "Hz “s K for all n. Thus "H z " < "Hz " < K
n m n n

holds for all m,n. Fix m and let n = o to obtain “ Hmz “ < K for all

. JThius z £ By Now HC H®** H** is closed and we have z

2 € 8yyps, 2,2 and H¥z - y; hence H*z = y, so that Hz = y since

n

7 € .BH. Thus H is closed.

(c) Let U e M’ be unitary; if z € JQH, thén 1Tz € EH since

IH, vzl = JoH:2]={82].

Further, UHz = U(lim H z)=lim - Uan = lim

1
as
o
N
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Thus UH ¢ HU for each unitary UeM'. That H is self-adjoint now

follows immediately from lemma 6. 2.

Remark: Notice that the transformation H of Theorem 6. 3 has the

§
special property that H [I-EKM ] = 0. We shall assume for the present

1
that M' has a cyclic vector x€%, i.e., for some Xe¥, EXM = I. We

shall find it convenient to make the following definition:
M'_

Definition 6. 4: Assume Ex = I. We shall denote by Mo(x) the set of

all elermments H in MO which satisfy the following conditions:

(1) x€ EH'

(ii) There exists a sequence {Hn}, n=1,2.. of elements of M+

such that HnT s and zéﬁH if and only if " an “ < K(z), and then

Hz = Iim  z.

n=too I

From (ii) follows immediately that if HE Mo(x), then(Hz, z)= 0
for all z€ ’QH’ so that H =2 0.

Theorem 6.5: Let HE Mo(x). There exists a unique element G in
d—— e ——— ]

M (x) which satisfies GE = H.

Proof: (i) Existence: Let {Hn}n':l 5 be a sequence of elements
of M+ associated with H as in Definition 6. 4. Consider the sequence
L b Y
{Hrf}n=l, 2 Observe that HH3 1
1
i 2 . »
“Hrf'z“ = (an, z) < "an.” "z“ < “Hz“ “z" We define a linear

1
54t
2

5 Hn ceM . For each zEﬂH,

n

transformation G as follows:

1
ﬁG = {zey: HHnaz;"s K(z) for n=1,2,...} where K(z) is a con-
1

stant independent of n. For z¢€ QG’ we set Gz = Iimn_me z. Note

that QG - JQH, and that G is a linear, densely defined, self adjoint
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element of ]!\/I0 by precisely the same as the proof of Theorem 6. 3,
and satisfies (Gz,z) 2 0 for each z € .QG. In particular then,
G € Mo(x). G has the following properties:
(1) ﬁH it QGZ, In fact, if z€ BH’ there exists K(z) such that

ﬂanﬂzﬁﬂHm%HfZ“Z5"Hm2“25K(z) forallma2n....... (a)

L §
Noting that z € §, and that (a) implies ﬂHn_f H ¢z | ¢ < K(z) for all m, n
i
fix m and let n = oo to obtain " an Gz “2 < K(z) for all m. Thus

Gz€f, so that ZEQGZ.

(11) SGZ_C_‘__‘EH: For z¢ 8 and each n,

1 B 1 1 1 1 b 4
HeGz = H? lim H °z = lim H°H 2z=1lim H?H ¢z.
n n me-=co m m-=o0 n m m=—o0 M n

2y 2y 1
Thus Hrf A EIG a.:nd Ganz = I-II;GZ. Thus 1if ZEQGZ, then for each
i 1 1 1
m, n, “Hn_fHIf z | s"GHIfzﬂ::“HIsz“sK(z).

In particular by setting m = n, we obtain that ZEEH.

(i11) G2 = H. From (i) and (ii) 9G2= B Let z_€ 'BGZ .

H’ |
| ZZEQG, then
2 . Z z
(G Z, ZZ) — (Gzl,Gzz) = 11:c'.raln_“m(Hn 215 Hn z,
= 11mn_.m(anl, ZZ) = (Hzl, Zz)
| o el
as EG is dense, we obtain G Z, = Hzl.

Before turning to the question of the uniqueness of G, we
state two preparatory lemmas

Lemma 6.6: (cf [12', p. 61) Let T be a linear, densely defined

p— i

closed transformation in . Then (I+T’"T)_1 exists and is equal to

a bounded positive self adjoint operator B, “B“ < 1. The trans-
formation C = TB is also bounded, "C “ <1. If T'denotes the
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restriction of T to JQT*T’ then T is the smallest closed linear exten-

——-—-_—_——ﬁ_—-_m-_u—-—_—m—-_
* -l [ - -
sion of T'. Consequently Bpxe 18 dense in B, thus in ¥.

%m

Lemma 6.7: Let TE MO be self adjoint, and (Tz,z) = 0 for all zEBT.

P e e e
- ~ e . i Siiga )
B = (I+Tz) 1: T 812 then TB is also positive and self adjoint.

DU

Further B, T BEM.

Proof: That Tz 1s also positive and self adjoint follows as in (127,

p. 108. For each Z1525 ¥4

~ 2 _ 2
(Tle,zz) = (Tle, (I+T )BZZ) = (Tle, Bzz) + (Tle, T BZZ)

B 2 3 2

= (le, TBzZ) = T le, TBzz) = {( (I+T )le, TBzz)

= (ZI’TBZZ)

Hence TB is self adjoint since it is bounded.
Again, for each zey

{LBz.z)= (TB2, (I+T2)Bz) Bz) + (TBz, TZBz)

3

(TBz,,
= (TBz, Bz) + (TZBZ, TBz) =2 0.
Now note that (+T°)B =1I= I*D BMI+T%)* > B(I+T2).
If UEM' is unitary, then U = U (I+T°)B c (I+T°) UB  so that
BU c B(I4+T*)UB c UB
As B is bounded BU = UB so that BEM. We have also that
(TB)U = TUB o U(TB)
As TB is bounded we have also that (TB)U = U(TB), thus TBE M.

We now complete the proof of Theorem 6. 5.

2 i 2 2
0 satisfies Gl = Cy .

GL Tx = GTx for each TEM'. Set B = G5 = ()l

(11) Uniqueness of G: Assume G'€M Thus

Then (Gl.'B)2 iy - (GB)ZTX holds for each TEM'. Since E;VI = I and

B, GB

(G,B)°, (GB)” belong to M, follows (G,B)* = (GB)®. Since G,
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are positive, self adjoint elements of M, the uniqueness of square

roots in the bounded case implies that GlB = GB. In particular then

GI = G on %B' Observe W o) ;9 2 = .BGZ If G . G’ denote the restric -

F 4

tions of G, G to B2 = B 2, then G1 G . Lemma 6.6 now implies
1

that G = G, .
We turn now to a related uniqueness problem which will be of

use 1n what follows. If H is any element of (ReMO)+ such that x € BH

!

and H(I-E:I:[) = 0, then HxG[fo] so that [M’Hx]g [:M’x]. Thus

("f—lx, o - wx, ol by Theorern 6. 3, there exists 0 SHO € MO

(THOX, Hox) = (THx, Hx ) holds for each TEM. We show that in fact H=H

.
7
Lemma 6.8: Let H€(ReM()" satisfy x € 4, and H(I-E) ) = 0. Assume

(x) such that

T

that (T Hx, Hx) = (T HOX, Hox) holds for each T € M where I—I0 C Mo(x}.
Then H = HO'
Proof: Let vy €¥ satisfy @ =w,_ _. Observe that the restrictions of

v,V X%, X
H, HO to [My] are again positive self-adjoint transformations, with

domains 8, N My ], B, N [My] respectively. Note that if yEX satisfies
0
=W X(M), then y = Ux where U is a partial isometry in M, which

W
¥: ¥
satisfies U*U = EMX, UU* = EI;I Consequently (T Hy, Hy) = (THOy, Hoy)
holds for all TE€M. Alternatively (Hzl, sz) (Hozl, Ho?l) for all
M

5 in {My}. Note that HEY is the smallest closed extension of the

restriction of H to {My}. l.et z € EH. Let {zn} in {My} satisfy zn-' 8

Z Z

ll

Hzn = Hz. It follows that {Hoz }is convergent and thus z € EH and
0

HO z " Hyz. By symmetry 8§ NIMy] = 8 NiMvy]; further

0 H HO
(Hzl, sz) (H 02 T Hozz) holds for all Zy, Zy € ﬂHﬂ [My]. It follows
that HZEM HZ EM In fact assume z ¢ 9, 20 My J-for all z,€8 N{My]
y 0 Ty ‘ © Yy ¥ liAie 4 1-%H -

Hz) = (ZI’ sz) .

- %—I N My ], (I—IO 1 Hoz.) = (Hzl.
0
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- 2
Thus z GJS\HZ N My ] and Hyz = sz. By symmetry, HZEM = H2 EM.
0 07y y
It follows immediately that (I+H02)-1 B = (I+H2)ml EM. By
¥ b 4
& s -
lemmas 6.6 and 4. 8, (I+HO) ¥ = (I+H2) 1; consequently HOZ = HZ. Set
2y ~1 -
G=HI+H") GO:HO(I-FHOZ) 1, and note that 0 <G, GO € M. We have
(Gzl Gzz) — ((JO T GOZZ) holds for all Z, €BH ﬂ[My] Thus
2
G E;VI GO Eid so that by lemma <. 8, G2 = Gg. Hence G = GO. In

We now summarize some of the preceding lemmas in

That H = HO follows from lemma 6. 6.

4

Theorem 6.9: Assume the Abelian Wi- -algebra M satisfies EM = 1,

— S — < I —

for some x in ¥. Jet H 2 0 be an element of ReM .. with x€D Then

o _ - 0~ H
there exists a sequence {Hn}n-‘l 2. of elements of ReM+ with the
properties

(i) 0<H_ 1

(i) z €8 if and only if ||H_z| sK(z), where K(z) is a constant

- _ 13 .
independent of n, and Hz 1117:‘11_7‘.%C an. We write 0 SHnTn H.

Further there exists a unique element 0 <G EReMO, which

—— e — e —

- i
satisfies Gz = H. We have 0 < Hrf" Tn G.

/

We shall now proceed to remove the restriction that Ei{ =1

for some x in¥. We have the following result:

Theorem 6.10: Let M be an Abelian W*x-algebra. Let 0 < HE ReM,,.

There exists a sequence {Hn}n= 1,2,... of elements of (ReM)+ with the

S el S T—
— mars Ter—

L —10
o e L —

properties that

@) osH_ T

(11) =z € JQH 1f and only if "an” < K(z), where K(z) is a constant

independent of n and Hz = lim i i
n*=og ~ 1i
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We shall write 0 H 1 H.
n'n

There exists a unique element P §GEReMO, which satisfies

2 L 1

G = H. Wehave 0 <H? 1 G. We shall write G = H7.

n In
—————————
Proof: Let 0 < HER&MO. Choose a maximal family {xl }1643 of

elements of  with the property that xieﬂH and ExM if i # j. Then

M’ M’ ‘ J
EiEJ Ex. = I. In fact set E = Eié..ﬂ E and if E # I, there exists

1 1

xEﬁH such that ( (I-E)x, x) # 0. The linear functional WI-E)x

,(I—E)x(M)

1s non zero, and its support is majorized by I-E contradicting the

maximality of the family {x1}1€,ﬂ

Let Hi denote the part of H in [M’xi ] 1.e., the restriction of

H to [M'xi]. Observe that 0 < H. € ReM From 7127, p. 70, it

»
follows that H =1Ti€_ﬂ X H.. By theorem 6.9 above, for each i, there

. . / .
exists 0 < H(l) € ReM with H(l)(I-EM ) = 0, and 0 < H(l) T H.. Set
n n X n o 1

H =11, xH(l). It is clear that H €M, 0 < H T . For eachzey
n 1€ 0 , I I n'n

put z, = EM z. We have zEEHifand only if ziE aQH for all i and
i

1€J “ “ < +o00. Iszﬁ

IIanﬂ =5, IHG a0, AR N i Tk

Observe that for each i, ﬂH‘z. - H(1 2 " l O. In fact let n 2 m, then
1 1 n 1 n

() s gy, (m gy, . 2(H.z., (51 - gli)y, )

I m 1 n Im 1 T § n Im 1



countably many terms are different from zero. Given €> 0, choose

| lyys ) 2
m such that Em?f‘*m "Hi z, -I—l(nm z, “ < €/2. Then choose no(e)
m,, 0 m m " m
such that T ”H Z -Hnlm z, “ < €/2 for all n > nO(E). It follows
n=1 'm 'm m
that 1lim H z = Hz.
Nn—co ~ n

Letm= {zecy: “ ann < K(z) for all n}. We have shown that
8y &S Mand if z € EH then Hz = Iimn_.m an. We define a transformation
B by setting B = Mand for z€M, set Bz = limn_‘m an. That B is a
linear densely defined, closed, Hermitian transformation which
commutes with all the unitary operation of M’ follows exactly as in
Theorem 6.3. It is clear that BOH. Thus B = H by lemma 6. 2.
Finally the existence and uniqueness of 0 < GE ReMO satisfying G2 = H
1s proved exactly as in Theorem 6.5, by setting

ﬂG {zew: ”HZZ“ <K (Z) K’ (z) 1ndependent of n} and if z¢ ;gG set

Gz = 1lim Ha . Itis clear thatH T G.
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Vil. THE ALGEBRAIC STRUCTURE OF MO

If A, B are linear closed densely defined transformations in
¥ it 1s not true in general that A+B, AB are even densely defined,
if A+B, AB denote sum and product in the usual sense of general
transformations. In fact there are closed linear densely defined
transformations T which satisfy T € T* for which .\BTZ = f0}. M
is an Abelian W*-algzbra, then this pathology does not occur in MO'
- T'his follows from some results of von Neumann and Murray which

state essentially that if M is Abelian, and if A, BEM_,, then A+B, AB

0
have unique extensions in MO’ and these extensions satisfy the proper
algebraic relations. The key to the von Neumann-Murray result is
based on the concept of essentially dense subspaces; in particular if
AGMO then EA 1s essentially dense. The proof of this latter state-
ment as given in [13] depends on the spectral representation of
general self-adjoint transformations, so it is desirable to obtain a
proof which lies within the existing framework developed so far. The
relevant definitions and lemma follow. The result will act as a

bridge between what has been obtained in the previous sections and

the results of von Neumann and Murray on the algebraic properties

of MO'

Definition 7.1 (cf [13],p. 222). Let? be an arbitrary linecar mani-
fold in¥. (g is not necessarily closed, nor invariant under M'). If
a sequence ml,mz, ... of linear closed subspaces exists which has the

following properties:

(1) Em1 eM (EML denotes the projection on ')7(1) for all 1.
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(iii) [?nl,mz, e )=/ (e, Vi Em1 = I)
then is said to be essentially dense.

Lemma 7.2: If% is essentiall dense, then? is also dense.

PEEEE: ¥ = [ml’MZ""] c [m] cC ¥, thus [’7?] = .

T'he next lemma is a substitute for the speciral theorem for

the unbounded self-adjoint transtormations of MO'

Lemma 7.3: Let H be a positive self-adjoint transformation of MO'
p— . " __ "

L] [ 3 a
There exists a sequence {Fn} of projections in M with the tollowing

—_——————

properties:

(1) Fn?( = ﬂH.

(i1) The restriction of H to Fnﬁ{ 1s bounded and belongs to M.

-_ e

(iii) Forn2m,F 2F ; V F =L
I m 14| n

M

,-_(_Z_izarollar}_r 7.4: ﬂH 18 essentially dense.
5, - A

Proof of the Corollarz: Immediate.

Proof of the lemma: Let H be 3 positive self-adjoint transformation
i e o e IR R

of MO and let {Hn} eM” satisfy 0 < H_ THH as in Theorem 6.10. For

each n denote by {E;n)} the spectral family of Hn' We may assume

that 0 < A < +o for each n. Note the following properties of the E)En)

(a) for each n,E}En) T)\I in ReM.,

(b) for n = m,E{n) < E&m); this follows immediately from the

fact that for neem, Hn = Hm’ and that Ein) is the projection on the

closure of the range of (',\I-Hn)Jr. Thus for each fixed )\, there exists

a projection F, = 0, F}\ € M such that Ein) lnF)\. It is clear that F

A A
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is the projection on [ﬂn Range (Ein))]. We claim that F)\ T?x I.
That Fl T}\ 1s obvious. Suppose z€§/, Flz = 0 for all A. Thus for
each l,E;n)z 0 as n—-=w. By the definitions and various properties

of E;n) (see for example (9], p. 131 ff. )

(H 2 H z) > (8 (1-E(M),, H (1I-E™)z) 2 32 [ (-£(™), |
Fix A, then choose n such that
2 _ 1
Ja-E3z )% = L a2

Thus for each )\, there exists n(A) such that " Hn(h)z “2 > 12- %"z "2

Thus z ¢ ;QH. Thus Vk F)\ # I contradicts the fact that ﬂHis dense.
Hence FXTKL In the above we have made use of the fact that
- (n) 2 - (n) . .
Hn(I E}\ E- R RA El ) implies
2 (n) ‘n) 2 (n)

Hn (I_El ) 2 A Hn(l--rE}L ) = A (I--E)L ).
It follows that, for each )

Range Fl c {z GQH: (Hz, z) < \(z, z)}
for if z€Range FX" then z € ﬂn Range E (n), so that for all n

A

2 ;
(an, z) <X(z, z) and also (an, an) <X (2,2). Thus indeed zGﬂH,

and (Hz, z) < \(z, z). From the closed graph theorem, it follows

that the restriction of H to F)\ﬂ( 1. e, HF}. 1s bounded. The statement

essentially dense.
)

Proof: 1Itis clearly sufficient to consider the case n= 2. Thus

suppose that M. M, are essentially dense linear manifolds of & and

let {9?11 n}, {mz n} be the associated linear subspaces of the definttion.



48

By Ei . we denote the projection (in M) whose range 1s the subspace

mi, o i=1, 2, We have Ei, nTnI‘ Set mn = M I N mz,n’ let En be
the projection (in M) with range mn. Observe En Tn, and that

.‘ mﬂgml N mz. We have that I-E nAE = (I-E, n)V(I_E

2, n S 2,0

] )

>

so that for each z ¥,

0S ((I-Ey | AE, )z,2)= ((I-E; (I-E, )z,z)

1.

<((I-E )Z’ZH((I-EZ n)z, z)=*0asn—oo

l n

Thus (I- Vn(E AEZ n}z, z) = 0 holds for each z €%

L.

so that Vn(El _AE ) =1 and observe that the range of projection

2. N

>

E A EZ, - 1s just 7?21, “ N mZ, o th Thus the sequence { mn]

l,n

satisfies the requirernents of definition 7.1 for the linear manifold

Ny NN,.

Via theorem 6. 10, we have available the following polar
decomposition for any element T GMO. We only state the result,

the details of the proof are precisely as in [12], p. 108.

Lemma 7.6 : Everz clo%ed linear denselz defined transformation

T in MO can be represented in one and only one way in the form

T = VH where H is a positive self-adjoint transformation in MO and

in M. We have H = +ﬁ37]_"—:

- V = projection [Range H].

L.emma 7.8: Let? be an essentially dense linear manifold in ¥,

and T an arbitrary element of MO' Then m' = fuip GJQT, TzeEm! is

V is a partial isometr

essentially dense (cf [13], p. 223).
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Proof: From lemma 7. 6,

let T = VH be the polar decomposition of

T. By lemma 7.3, let Fn be a sequence of projections of M which

SatiSfY FI’I TI]. I, H Fn - M. Let mn Satisfy mnT

< m E”?nT I, E, €M.

Set ?R(n) = {z:z € Fnﬂ.(, VHFrl Z emn} Note that m(n) 1S a closed

M,

linear

subspace since VHFi €M for all i, and further observe that m(n)t_:_:m'

for all n. Since z ¢ Fnﬁ.( “mplies z EFn+1£[ we have m(n)cm(rﬁl) for

each n., It is clear from the definition the Em(n), the projection on

m(n), belong to M for all n. Let Pn denote the projection on

{2 (I-Emn)VHFnz = 0}. We have

m(n) = Fnﬂf N {z: VHFnZ E?Ytn} = Fnﬂfﬂ{z:(I-E }VHFnz = 0}

M

Thus E_(n)=F_ AP . Observe also that
m n n

T

mn = {z: (I-Emn)z =0} c {z: (I-E )VHFnz =0}

1. €. { = E7Rn 2 J-P . We have

n

0<I- Ep(n) = I-(F_AP )= (I-F_)V(I-P_)
)

S

< (I-F ) + (I-Emﬂ)

m(n) l 0 thus Em(n) Tnl a.ndm’ 1s essentiallydense.

< (I-Fn)v(I-E

It follows that I - E

Remark 7. 2: T A BE MO’ thken from lemma 3.8, 3.5 it follows

that ’QAB’ ‘BA+B are essentially dense in ¥.

We now have available the following results of von Neumann

and Murray concerning the algebraic properties of MO’ without re-

course to the general form of the spectral theorem.

Theorem 7.10: (cf [13], p. 227 ff.).
TSI ee——— e

(1) Let A, B ¢ MO' It A2 Bthen A= B, i.e. Proper exten-
—_— e

sions do not exist in MO'

m
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(2) If A, B € MO, then A+B, AB have unique extensions to

elements of M,. Denote these extensions by [A+B], [AB] respec-

tively.

i 1

(3) With addition and multiplication as in (2), the followin
————— T e 70n as 1n {4), the following

Properties are valid: A, B, C GMO, a, b are complete numbers.
(i) [A+B] = [B+A]

(ii) [ [A+B]+C] = (A+[B+C1] ]

(iii) [a[A+B] 7] = [alA] +b[B7 ]

(iv) [ (a+b)A] = [2A+bB]

(v) [[AB]C] = [A[BC]]

(vi) [[2aA]B] = (a[AB] ]

(vii) [albA]] = [(ab)A]

(viii) [ [A+B]C] = [[AC] + [BC]]
(ix) [A[B+C]]= [[AB] + [AC]T

(x) [aA]> = {a A*]

(xi) [A+B]* = [A*4+B*]

(xii) [AB7J*

Il
3
3
>
*

e oy

It should be noted that (2) is Proved essentially by showing that
ﬁ(A_I_B)*, E(AB)* are dense in ¥. (A+B)** (AB)®* then provide the
unique extensions [A+B], [AB] in Moﬂ:lf‘l], p. 60). In particular,
with addition and multiplication defined as in (2), part (3) states that
MO is an algebra. We now show that MO 1s a commutative algebra in

the sense of tle following

Theorem 7.11: If A, B €M, then [AB] = [BA]




5l

. Proof: Let 0 < A, BneReM satisfy AHT IA!, BHT lBl, in the

sense of Theorem 6.10. Observe that 0 s A B_ 1 , and for each
n n 1

z in EIAHBI’ which is dense in ¥, we have |[A B_z|s||a]|B|z]

for all n,m. It follows that there exists C GMO with Aan Tn C, and

ﬂc = JBIA' IB,, and by symmetry gc - EIB”A!' Letz€ EIA”BI’YE glA’,
then(lBlz, IAly)z Hﬁp’m(Aanz’y) = (Cz, y). Since ﬂ%A\ 1s dense,
|A||B|z = Cz. Thus |A]|B] c C, and by symmetry IB|]Al ¢ C,
hence by lemma 6.2 [|A|[B|]= [|B||A]]= C.

Now write A = VA!AI, B = VBIB‘, where VA’ VB are partial

1sometries in M. Observe that
v,VvylallB] cV,lalvg|B| = AB
and Vv, Vp|Blla|l cvy|BlV,|A] = BA.
Consequently [AB] = [V, V,|A||B]]= [VAVB[IAI 1B 71
= [VAVBEIB”A']]:[VAVB|B”A']

= [BA]
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VIII. THE RIESZ SPACE STRUCTURE OF Re I\/I0

We shall denote the set of self-adjoint transformations of
MO by ReMO. In this section it will be shown that the natural order-
ing in ReM may be extended to a partial ordering of ReMO so that
ReMO will then be a (Dedekind complete) Riesz space when the opera-
tions V, A are appropriately defined. It will turn out that ReM is an

order dense ideal in ReMO, which has the pProperty that the band

generated by the identity is just ReMO. In other words, I is a weak

unit in ReMO.

We make the natural definition:
Definition 8.1: If A EReMO, we shall say that A is positive and
m
write A > 0 if and only if (Az, z) = 0 for all zE,ﬁA.

That this definition gives a bona<fide partial order on ReMO

we have:

Lemma 8. 2: (cone Properties)

(i) A, BEReM,, A>0, B> 0, then [A+B] > 0.

——— e

(ii) A€ReM,,a€R” then aA = 0.

U _ ity
(iii) A€ReM,, A>0, -A>0 then A = 0.
_— T

Proof: (i) If z ¢ ﬁA+B then

(LA+B]z, z) = ((A+B)z, 2) = (Az, z) + (Bz, z) =2 0

If now z € S[A+B]" there exists {zn}, zn c 0 such that

A+B’

z —zand (A B)zn -+ [A+B]z. Thus
= 17 >
(LA+B]z, z) hmn-*m ((A+B)zn, zn) 0,
(ii) is obvious.

(iii) A =20, -A >0 implies (Az, z) = 0 for all 2 - 8,- Thus
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1
A%z = 0 for all z € ﬁA,thus Az = 0 for all ZEEA, thus A = 0.

Definition 8.3: If A, B€ReM,, set A 2 B if and only if [A-B] = 0.
From lemma 8.2 it is clear that (ReMO, <) is an ordered

linear vector space.

Theorem 8.4: Let 0 < A GReMO, O<BeReM, . Let0 < A T A,
O n '‘n

0 <B T B, A, B €ReM,n=1,2,... as in theorem 6. 10, then
n'n n n

(i) [AB] 20,

(ii) A = B implies A° > B%,

(iii) A = B if and only if BA C QB and (Az,z) = (Bz, z) for each

z € QB’
(iv) A 2 B implies A_V BnTnA, A_A BHTnB ,

T Y
(v) A > B implies A" =2 B? .

Proof: (i) As in the proof thf Theorem 7.11, 0 < AanT (AB]. Thus
[AB] = 0.
(ii) From (i),[A[A-B]] = [A°-[AB]] = 0,
[[A-B]B] = [ [AB]-B*] = o.
Henge 0 < [[A%-[AB]] + [[AB]-B%]] = [A%-B%].
(ii1) Let z € EAZ M JDBZ. From (ii), for all n,
(B z, B z) <(Bz, Bz) < (Az, Az).

n I

It follows that, for all n, (an, an) S(A’z, A’z) holds now for all

z € BA” where A’ denotes the smallest closed extension of the re-
striction of A to 8,2 N 2. By lemma 6. 2, A’ = A so that By S Bp.
That (Az, z) = (Bz, z) for z € JQA 1s trivial. Conversely if EA - EB,
and (Az, z) > (Bz, z) holds for z € 8,, then [A-B] = 0 follows from the

fact that the graph of A-B in x% is dense in the graph of [A-B].
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(1v) ﬂAnz “ s” (An Y Bn)z" < H Anz "+“ BHZ"for all z implies that
(a) AV BnTn C where C € ReM,, (b) £,=8,N8pc 8~ < 8, so that
QC = QA’ and (c) A <C, To show C = A it is sufficient to show C <A.
Let QmeI be projections in M such that Range Qm e ﬂA for m=1,
2,..., bylemma 7.3. Observethat AQ , BQ , CQ are elements
m m m
of M for m=1,2,.... By the uniqueness of the square root in ReM,
A -B |Q =]AQ -B Q |. Hence
n n' m n m n
- 1 - ~1 - _
(AnVBn)Qmﬁa(Aan*_Ban.PlAn Blem) 3(Aan+Ban+IAan Brﬂn“
=A Q VB Q .
nm n m
For eachz €¥(AQ_z,z)2 (B Q_z,z), (AQ z,z)2(A Q z,z). Thus
m n m m n m
AQ 2B Q VA Q =(B VA )Q . Let m—-w, then for each z¢€ ® 2
m n m R n n m A
we have (Az, z) 2 ((AnVBn)z, z) for n=1,2,.... Thus (Az, z)=2(Cz, z)
. and A 2 C. Thus A= C. To show An ABHT B, it is sufficient to show
that for each z€ 95, that |[A AB z - B z|~0asn-ow. This fol-
| Il In 1§
lows immediately from the fact that |A AB z-B z| = [|A z-A VB z|
Il n n Il 1l Il
~+ 0 as n - oo.
(v) From (iv) we lmay ?ssume An Tn A, BnT B sat:sfy Bn < An
2 2 1 1 2 F
for all n. Hence also Bn < An. Hence ﬂAg o Spz and B < A~-.
The next few paragraphs follow fairly closely the correspond-

ing results for ReM [9], chapter 5. As usual, for A €ReM

|A| =+ Ja%a = +JAZ . Set AT = i[a+]|al].
Lemma 8.5: If A€ReM,, A< |A|, -A s |A]. Equivalently At > 0,

AT > AL
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Proof: Let A= V|A| be the polar decomposition of A. Let

AHE(ReM)+ satisfy AnTn|A‘ in the sense of Theorem 6. 10.
¥ 11 =
or all z € QA ﬂlAl’ 1

(VA_z,2)| <]|V] [A2 z]*

= 1 = (Anz,z}
since V is a partial isometry., Letn - o and we obtain
[ (V]A]z, 2)] < (|A]z, 2),
i.e. (V|Alz, 2z)=<(lAlz,2), (-V]A]z,2) <(|A] 2, 2),
i.e. A< |A], -A < |A]. The equivalent statement follows

immediately from the definition.

Theorem 8.6: Let A, BE ReM, satisfy B= A, B2 0. ThenB = A",

A e e e ] 0

Equivalently C2 A, C 2= -A, CEReM, imply C > |A].

0
Proof: Let B2 A, B=20. Set C= [2B-A], then

[C-A] = [[2B-A}l-A] = [2B + [-2A] ]

[2B-2A] 20,

and [C+A]

[[2B-AT7+A]
= 2B 2 0,

Thus, if we show that C = |A] it will follow that [2B-A] = |A]
1 B 2B 2[A+ |A|] which is the desired result.
By Theorem 8. 4,[ [C-AT[C+A]] =0, i.e.,

[[C°- [AC]]+ [[cAl-A®1]=0.
Using the fact that [AC] = [CA] we obtain [Cz-Az] = 0. FromC=20
and Theorem 8. 4(v}), it follows that C 2 + ,\/_KZ' = IA‘ ;

It follows immediately from Theorem 8.6 that (ReM , <) is a

OJ'
Riesz space, and that A" = sup(A, 0) in ReM, |A| = sup(A, -A) for

each A€ ReM_.. If i denotes the inclusion map of ReM into ReM

0 0
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+
then it is clear that i(A ) = (i(A) )+ for each A in ReM, and that i is

one to one. Thus i is a Riesz isomorphism, and in the sequel we

make no distinction between ReM and i(ReM).

Lemma 8.7: ReM is an order dense ideal in ReMO.

Proof: Suppose 0 < |S| < T where T € ReM, IS], SGReMO. We have

by Theorem 8. 4 since [T-ISl] 2 0 that ¥ = 8+ & E‘S" Thus
QS = QISI = & so that S € ReM by the closed graph theorem. Hence

ReM is an ideal in RéMO. It is clear from the construction of ReMO

that ReM i1is order dense in ReMO.

Lemma 8.8: Let 0 <S€ ReM, and suppose that [SH]TS in the sense

of Theorem 6.10. ThenS_ Tns in ReM,,.

Proof: Clearly 0 < snTn <S. Suppose that T € ReM, satisfies

T 2 Sn for all n. Hence if z € 8. then

T
(Tz,Tz)2(5 2,5 z2)for all n.
- n n
Thus QT = BS and for z¢€ QT-.
(T2, 2) 2 hmnﬁw(Snz, z) = (Sz, z).
Thus T =S and we have S_ T S in ReM .
n 'n 0

Theorem 8.9: Let 0 €£SE€ ReMO. Then S = Vn(nIAS). In other words

Re:l\u{[0 is Just the band generated by I.

e T e it e L

Proof: Since 0 snIAS <nl, nIAS€ReM. Clearly nInS] <S.

By the usual procedure, Vn(nI)\S) certainly exists in ReMO and

satisfies Vn(n IANS) €8S,

On the other hand, lemma 7.3 gives the existence of a sequence of

projections Pné M such that PHT I such that SPn €M for each n. We
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have SPnTn < S and again ¥, SPn exists in ReM Observe that

O.
L\ we have P z -z, SP z - (v SP )=z.
\/nSl:‘I_1 VnSPn n n n n

However as S is closed, it follows that z € ‘98 and SPnz - Sz, thus

;_jﬂsa.ndifzeﬁ

SP_1S. Now SP_¢€ ReM and SP_ =S implies SP_ < (m_IAS) for

some integer m_. Hence

S=V SP <V (nIAS).
Il 81 Il

Thus S = Vn(nIAS).

Remark: In the terminology of Riesz spaces, I is a weak order

unit in ReMO.
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IX. THE DEDEKIND COMPLETENESS OF ReM

0
Definition 9. 1: If T&(ReM )", put
|
ﬂTaxn - if x€ 83
(Tx, x) = x
’ + o0 otherwise
Theorem 9.2: Le: J < AT’ S E(ReMO)+ satisfy A'r ’_f\q_ < S.
(1) A= VTAT exists in REMO
(ii) For every € > 0 and every x€ 8,, there exists L
that |Ax - A_ x| <eforallA = A
T T TS -

-
2 2 i
(111) A‘i‘ T’I‘ A€ in ReMo'

(iv) 0<A T AinReMgif and only if A <A_ and (A_x, x)} (Ax,x).

it JT e e i S e ] - LI,

for all xey.
2

Proof: (i) By hypothesis, B S ‘ﬂA for every . From 0 gATz TTS S
(i

follows “ATX“ SHS:{" for each xEﬂSZ. Put M= {xEﬁ(:supT“ATx" < Kx"
. for some finite constant KX}. Note that 8¢ &M, so thatMis dense in
. Mis clearly a linear manifold in%. If ATE AT’ x €M, then
2 2 2
la_rx-a x| “=]A_x] +nATx" (A%, A X)-(A X, A x)
2 s
< Japx] %A x| 2

For each fixed x€?, the upwards directed set of real numbers “ ATx“

has a finite supremum. It follows that for every ¢ > 0, there exists

T such that |A_,x-A x| <eforallA ,A , >A . In particular,
Ep T T T " e -
forn=1,2,..., there exists T such that "A x-A x" < -l—for all
n,x il Tn i 1
A 2 A and we may assume that A = A for all n. In
;0 T T T
n, x 3 0 n, x
particular note that "ATH X" Tn sup,_ ”ATx"‘. Thus

J&, =x-A (%2 Sougimep,
m, X Th, x .

so that the sequence {AT x } converges to an element of ¥ which we
n, X
shall denote by Ax. Ax is uniquely determined in the sense that if
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{A_+ } is another increasing sequence such that ”A Xx-A x"-c:-l.
Tn: X i Tn, X =
for all A =2 A , , then
T Thnx
2
la,, x-a_ x|<|a, x-Ax|+|ax-a [<Z
n, x n, x n, X f,
for A'r 2 AT; V AT . It follows easily that A is linear; let
n, x n, x
X, VY, Z E;QA:*-?)’(, zZ = xty. Then, forn=1,2, ...
”Ax-Ax“ sf- for all A =2 A y = u (1)
T n T T
. 2 s X &
"Ay-A yJ <—- forall A =2 A o B (11)
T T T T ~
n,y
lAz - A z]| <% forallA > A
T n T Tn o
For all AT 2 AT V AT V A'r , these inequalities hold simul-
1, X i, ¥ n, 2
, = A x+ A lve
taneously ATZ X -y gives
"Az-Ax—Ay“ < %

which implies Az = Ax + Ay.

Let U be unitary in M’; if xe¢ B, then

la U || = |UA x|| = JA x|l <K for all 7.
T X T T X
It follows that Ux € QA and that if A X -Ax then A Ux - AUx.
Tn, X Tn, X

Hence

UAx = lim UA x = lim A Ux = AUx.

n = 00 T o0 T
n, X n, %

Hence AUDUA. If x,y € §,, there exist ATn xT“j ATn YTH, such
that AT X = Ax, A’r y #® Ay. The inequalities (i), (ii), above show

B, X n, y
that there exists a sequence AT T such that A'r X = Ax, A'r v = Ay,

n n n

so that (AT X, y) = (x, AT y ) converges to (Ax, y) as well as (x, Avy)

n n
il.e., for all x, vy SEUN (Ax, y) = (x, Ay). Thus y¢€ B p % and A®y = Ay.

Thus A € A* and A 1s Hermitian. In particular A** exists. To

conclude that A is even self-adjoint, it suffices to show that A is

closed in view of lemma 6.2. Suppose that X € JQA, X =X, Axﬂ -4 3,
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There exists a constant K such that ”Axn “ < K for all n, so that
"A X ﬂ € K for all 1,n. Let A(m)T A where 0 < A(m) € ReM.
T n T m T T
For eachm, T, n, we have "A(Tm)xnﬂ < K hence |!A;m)x" < K holds

for each m, 7. This implies that x€ §, for all T and that “ATx" < K.
(§
In turn this gives x € B4 Since A C A** and A** .5 closed

Ax = A**xn - A*%x = Ax. Thus A is closed, hence self-adjoint.

Z

That Ai < A" for each T is immediate from the definition of A. Hence

A < A. Further, for eachx€8,, (A_  x,x) T (Ax,x). This follows

n, x
from

| (ax, %) - (A )] s x| [Ax - A x| < Z]x]

for all AT > AT . Thus (Ax, x) = supT(ATx, x) holds for each x € ﬂA.
n, x
: 2

It follows that A = \.*”r AT; if B 2 A'r for all 7, then also B~ 2 Ai for all

T. By the definition of A, QB c ;QA; if y€ 84, then (By, y) 2 SUPT(ATY, y)

= (Ay,y). Thus B> A .
1 1 1
| = i 3 2 o - 2
(iii) Observe that 0 < A? T, % Al . By part (i) C= V_ AZ

L 1
exists in ReMO so that C < A¢, C = AT2 for all T implies C2 2 AT
1 1

for all T, so that C° = A and C = A?. Therefore C = AZ and (iii) is

proved.

1 1
(iv) From partls (iii) and (i), for each XEEA;-I:;, HAax":supTﬂATax";
1t xﬁ SA%' then sup, . " A‘TEX“ = +w. Thus (Ax, x) = SupT(ATX’ x) holds

for all x€¥. On the other hand, assume that 0 ﬁAT, A €ReM  satisfy

0
A = AT for all T, and (AT:{, x)TT (Ax, x) for every x€¥. By (i)ATTTBs.‘A

so that ;E.}A C ;gB. For each x€Qf Bx, x) = (Ax, x). Since the graph

ok
of [A-B] in &% is just the closure in ¥ x% of the graph of A-B, it

follows that [A-B] = 0. By this the theorem is completely proved.
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Theorem 9. 3: Let {AU}’ {BT] € (ReMO)+ satisfy 0 < AO TO A,

IR o e

0<B_ TT B. Then_ [A_B_] TG: _[AB],

Proof: Without loss of generality, assume AU’ BT belong to (ReM)+.
Thus AgBT TT " < "AB], so by Theorem 9.2 (i), there exists C€(ReM0)+

such that AOBT TU, . C < [AB]. In particular QEAE‘Z C EC v AT

X EEEAB]" there exists X EﬂAB, X =X and Aan -+ [ABlx. It fol-

‘lows that Aan -+ UX. JIn fact, {Aan] converges and so is a Cauchy

sequence. Given € > 0, for n, m =2 n_(e), “AB(x -X )" < e. Hence,
o) n  m

for everyn, m = no(s), Sup . “ AUB(Xn_xm)IzsupU “ BAg(xn-Xm)“ < e

and so Sup T" BTAO(xn-xm)" < e. Let X X and it follows, since

3

each BTAG 1s continuous, that

su ‘BTAg(xn-x)“ <€ for alln = no(e).

pU,TI
Now, since XEQC, there exist 0(e), T(€) such that

[Cx - A_B x| <e¢ for all Ay B Z A B

Let y be arbitrary in § From By € SA’ it follows that there exists

AB
Ge, y such that "ABY e AGBy" < e for all Ac 2 Ace Y. Also since
AOBy = BAGy, there exists Te, Ysm:h that “ BAUy—BTAgy"
=ﬂABy-ABy“<€f0ra11B = B . Thus , for all A =2 A ;
0] g T F T O o
€,y €, Y
B =B
T ]
€,V
"ABy —-AUBTy" < 2e
Hence, given € > 0, for each x , there exist AO’ BT such that
. &, X_, €%
n n
|Cx - A_ B_ x| <e, |ABx_ - A B. x| <e
€, X €, X e, X €. %
n n n n

hold simultaneously. Choose n_ (€) such that Sup “ Ao

for all n 2 no(e). For n = n



”Cx ABx " ﬂ"Cx BT AU x"+"B AU (xn x)ﬂ
€, X e, X 6, % E,X
n n n n
+ |ABx - A B X < 3¢
| B x|
€, X €, X
n n

Thus Aan = Cx. Thus Cx = [ABJx and so [AB] € C. Therefore
[AB] =

Cﬁrallarz 9.4: If 0 < {AT}TT A, 0 < {BT}TT B are indexed by the
L. I A

same index set {T}, then [ATBT] TT [AB].

=i

Proof: [ATBT] TT follows immediately from the equidirectedness. It

remains to be showa that the systems [ATBT]’ [A*BT'] have the same
set of upper bounds. It is obvious that any upper bound of the system

[A_B_+] is an upper bound for the system [A B 1. Let LA B ]
T T T T 1 TZ

be given choose T, suchthat A 2A ,A ;B 2B B , then

2 Ty Ty Ty T3 LSRR
[A_. B_ ]=2[A_ B_7]. Thus any upper bound of the system [A_B ]
'T3 'T3 ‘Tl 'TZ : I
is also an upper bound of the system [ATBT:].

Theorem 9.5: Let {E, }1 € be a system of pairwise disjoint projec-

tions of M which satisfies 216,1? = I. For any element TE€ ReMO,

set 'I“.1 = TEi and let ¥ denote a finite subfamily of the index set .
e e e S e 5

Then

(i) If TG(ReMO) T Tr1@” Ti= VT = VelTT, g x T))

et e o T+ F

(ii) If SE(ReMO) T€(ReM()", then [ST] = v,[S.T.].

Proof: (i) T :—[—EEJ" T, follows from [12], p. 70. Note that EiEj=O

implies Ti A Tj = 0. If not, there exists 0 # AG(ReM)+ such that AﬁTi,

A < Tj so that A = AE, = (AE.)E. = 0. Hence T, Vv Tj — [Ti® T.] if

i # j. Consequently, for each finite subfamily ¥ of 4, V. 63 i63XT
By the Dedekind completeness of ReM -H-IGE X T. Tg T’ <T. Thus
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ST = vyl T)=v. . ,T.. T'<Timplies T'E. <TE, =T,.

Vies icy i i

On the other hand T’ > 'I‘i implies T"E'?L ETi. Thus T"Ei = Ti and

! /
T =Wi@)<T Ei:WiGﬂXTizT'
(i1) In view of (i), it is sufficient to show that [ST]Ei = I'SiTi].

Note that SiTi = BE.“TE

1

c IST]E,, so that [SiTi] - [ST]Ei. Hence

[SiTi] = [ST]i , by lemma 6. 2.

Let A be any element of ReMO. R(A) will denote the closure
of the range of A, N(A) will denote the null space of A.
Lemma 9.6: If A, B ERel\_/LO then

(i) AL1B¢& [AB]= 0 & AB= 0= R(A) 1 R(B),

(ii) If A, B, C € ReM

0 then A 1 B implies AC 1 BC.

Proof: (i)Assume firstthat A2 0, B2 0 and set C= A A B> 0. Let

el s e — e — 1 B i ——— Iy

0 <A T A, O=2 B TB, where A , B € ReM. Notethat A AB =0
n 'n I n n n n

so that A B_= 0. Since [Aan] Tn[AB], AB = 0. In the general

case, it is clear that [AB] = 0 if and only if AB = 0. By the uniqueness
of the square root in ReM,, |[AB]| = [|A||B|]. Hence [AB]= 0 if
and only if 'A”B' = 0, t.e., if and only if A 1 B.

If R(A) L R(B) then (Ax, By) = 0 holds for all xEﬁA,YEBB.sothat

(x, ABy) = O for all x€8,, y €8, Since 8, is dense, AB= 0= [AB].

B
Conversely, if AB =0, thenm:{nyﬁB:By’@S)A} is essentially dense in ¥
by lemma 7.8. Hence if x = Ax’,x" €8, and y = By’ where y’egB,

| y € BA’ then (x, y) = (Ax’, By’) = (x", ABy') = 0. To conclude that
R(A) £+ R(B), it is sufficient to observe that the closure of the graph in

¥ x % of the restriction of B to M is just B.

(it) If A, B,C€ReM_,, and A | B, then AB= 0. Thus

01
0=[[ABIC°] = [[AC][BC]], so that AC 1 BC.
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Theorem 9.7: Let 0 < {Ti}iEJ be any system of mutually disjoint

elements of ReMO. Then S = viTi exists in ReMO and satisfies

ST ool —— T T — s T

2L <F3 i

SEi = Ti’ where Ei denotes the projection on R(Ti)' Consequently

Sy s e ey £l b i e —y

ReMO 1s a universally complete Riesz space.

Proof: By lemma 9.6, T . Tj for i #j implies E. 1 Ej where E. Ej
: | ’

respectively denote the projection on R(Ti), R(Tj)' Set S = ieg X Ti'

It is clear that S = 0onl - T. E., and from Theocrem 9.5 S=V._. T..
1€S4 1 1cd 1

Clearly SEi - Ti so that SEi = T..

1
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X. A GENERALIZATION OF THE THEOREM OF
R. PALLU DE LA BARRIERE

i ¥
Definition 10.1: A map y: (ReMO) ~ [0, +00] will be called a trace

on ReM, if for each T, T, € (Rehlo)+, 3 ® 0, veal. we bave

VILT T, 1) = W(T)) + WT,), WAT)) =X W(T,) .
v will be called a semi-finite trace, i1f for each T € (REMO)+, T £ 0,
there exists 0 # S E(REM0)+ such that 0 <S5 < T and ¥(S) < +w. y will
be called a normal trace if 0 < TT T’r T in (REMO)+ implies
v(T) = Sup,. \];(TT). Finally V¢ will be called faithful if V(T) = 0,

T € (ReMO)+, implies T = 0.
+

Definitio_n__lO;_%: Let p(M) = w, x(M) for some x€¥. For TE(ReMO)

R ‘%‘ & 1
Qx, x(T) " {H o};I‘!erw;fs:, : .
Note that if x € 8., then O _(T) = (Tx x), and if TEiReM)™ thes
Ay «(T)= W, L {T)
Lemma 10.3: For each x €%, Qx x 1s a normal semi-finite trace on

i e S

(ReM) . Q__ is faithful if and only if EM = [,
X, X X

Proof: Let T I, €(ReM,) . Let 0 gHmT g HIG(REM)+,
n 'n i’ "'n

s 0
1=1,2;n=1,2,.... It follows that

(i) Hél) + HIEZ) Tn [T, T,

1) 2

1 =
(i) [Hr(1 + HIEZ)]ETH AT 1",

For eachy €x, || (H "+ H Py 1% = [y |52y 1Pe2m (Va4

n
: (1)..{2)
Since (Hn Hn . ¥) & D,

€

3.5
i) (v )5+ ety 152 < puDyem By g gDy e pul@ly g
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1 1 1
Gv) Je e EP)E 2 = D E g2y a3y

(1ii) implies y € § if and only if y€8,. N .. .
[T,+T,] T, °T,

i K a s 1. : 1 1
(iv) implies y € Q[TI_l_TZ]g if and only if y€ Qle N QTZ;,.

It follows that ox’ x([T1+T2]) = +o0 if and only if nx, {T;) =+ and/or

('ZM'1 x(TZ) = +w. Thus QX, x([Tl+T2]) <+ if and only if Qx X(Tl)<‘:+m

2

and () (T,) <+w. In this case
. X 2

3

1
Jes e (2)) 3y ) 2

Q}c K(ET1+T2)] = “ (T1+T2)‘%x! 2: lim
HIEZ)%"HZ

n=oo

I

1
tim__ JEM)% ¢ 1im |
n—tob " n n-* oo

il

() (T1)+Q (T

X, X X, X 2)'

That Qx x 1s normal follows from theorem 9.2, and the semi-

>

finiteness of Qx . follows immediately from the fact that ReM is order

dense in ReMO, and that Qx X(T) <+ for each T €(ReM )+. If
’ M

Mf M! 7
Ex o f, then Q (I—EX ) = W, X(I-Ex ) = 0. On the other hand,

1f E}l:d = I then Qx - 1s faithful; for if 0 # T E(ReMO)'{F, then choose

3 7
0 #S €(ReM)” with S < T. Then EM =1 implies that @ (S)=w (S)# 0.

X X, X X %

X, %

The next lemma is somewhat in the conver se direction.

Lemma 10.4: Let ¢ be a normal trace on (ReMO)+ such that YI)<+ oo,

_m—m___——“——-——#—-—————_—-_-—_—.ﬁ____________—__

then V = Qx, - for some x €¥.

Proof: Since ReM is the ideal generated by I, V(T) <+ for each

TE(ReM)+. The restriction of ¥ to (ReM)+ defines a positive normal

linear functional on ReM. There exists x€ ¥ such that wW(T)= Qx x(T)

holds for each T ¢ (ReM)+. By normality and lemmma 8. 7, \|;(T)=Qx x(T)

+

holds for each T E{ReMO) ;
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Lemma 10.5: If Nfi}ie,ﬂ is a family of normal traces on (ReMO)+,
Ty

W
then the map T = ¥ xj;i(T): (ReMO)

= [0,+o] is also a normal

1€J
-

trace on (ReMO) .

Proof: Set y(T) = I,  ,V,(T), T€ReM]. y is clearly linear.

Suppose 0 < T_ TT T € ReMJ. By {F} denote the family of all finite

subsets of the index set oFf

Sup, ZiEJ wi(TT) & supq_ SUP.y Zieg\yi(TT)

SUPg SUP,. 2; - ¥ (T.)

= supg 3 Ei(T) = (T).

icg eV

Thus ¥ is a normal trace.

Theorem 10.6: There exists a semi-finite, faithful, normal trace
———— oy e, mormal trace

+

]

on (ReMO

Proof: Let W, (M) be a maximal family of positive normal linear

1 1 ’

functionals on M with the Property that their supports EM = K.

xX. 1
1

are pairwise disjoint. As usual, ¥. .= L LetD denote
1€L 1 X., X

¥ ]

1’ 1
the extension of W, o to a normal trace on (ReM0)+. Then
R

Vo = Eie.ﬁ Qx_, x, has the desired properties. Vo 18 certainly a normal

trace by lemma 10.5. Suppose that for some TG(ReMO)+, \pO(T) =

+
Let0sT T T, T, €(ReM)". From y,(T )= 0 follows w, (T )=0,
1

i
thus TnEi = 0, hence Tn = 0 since Zié,ﬁ Ei = I. Thus T=0, and \po is

>

faithful, If TGREMJ, T # 0 then TEi # 0 for at least one index i.
Choose 0 # S < TEi' Then Qx . (S) = 0if i # j. Thus

3 )
\[;O(S) — Qxi’ Xi(S) - wx” X.(S) < +o00, so that \yo 1s semi-finite.

1 1
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In the converse direction we have:

Theorem 10.7: If ¥ is any normal, faithful semi-finite trace on

+ ; .
(ReMO) then there exjsts a family {xi}i e’ X, €% such that

’ ’ ey ; M
[Mxi]J. [ij] ita#], ZiGJ Exi = I and { = ZiEJ Qxi’xi.

Proof: An outline of the proof is given, the details follow exactly

as in theorem 10.10. Choose a maximal family of pairwise disjoint
projections Ei €M such that \y(Ei) <+o0. From the semi-finiteness

- of | follows that . E. = I. The restriction of ¥ to (ReM)-}'Ei

ieg 1
defines a positive faithful normal linear functional on MEi’ whence
’
the existence of X, € ¥ such that Eixi =;;:i;;]:“,:;fI = Ei follows from the

a

faithfulness of . Thus \I;(TEi) =W, (TEi) holds for each T EEREW+

Lt

: S

so that \p(TEi) = Qx " (TEi) holds for each T E(ReM)+ by normality.
Sl

Finally if {¥} denotes the family of all finite subsets of the index set

4, then for each TGCF?-eMO)+,

V(T) = sup, ‘l’mieg" TE )= supg &, o ¥(TE;)= Sup:szieafnxi, xi( T,

- supg Zie&" Qx.,x.(T) _ ziEbﬂ Qx., x.(T) ‘
1’71 1 B
Lemma 10.8: 1If S GfRer', TEC[{eM())+then

R B - P

(i) [TS] = TS, (ii (TS)? = T3s7,

Proof: (i) It is sufficient to notice that SEReM, T closed imply TS

1s closed.

1 1

i 1 1 1
(ii) Observe [T45%T?2S°%

¥ . 34 X
]= [T8) = TS. .. (T8)%=[T%*]|=T?

Lemma 10.9: Let Vo be a normal faithful semi-finite trace on(ReMO)

1
S2,

£

Let £ be any projection of M such that \VO(E) <+ o0.

TR
Define P = Vx {Ex : wx, X(M) — \yO(ME)} Then P = E.
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Proof: Since \pO(E) < +o0, the restriction of \110 to ME is a positive

normal linear functional on M; by lemma 10. 4, there exists (at least

one) x € ¥ such that \.l/O(ME) = w:{ x(M)' By the faithfulness of \PO,
/ | ’
E}I:I = K. The lemma now follows exactly as in lemma 4. 8.

The following theorem is the central result of this section and
generalizes the weak Radon-Nikodym theorem of lemma 4.7 and the

theorem of R. Pallu de la Barriere.

Theorem 10.10: Let Vo be a semi-finite faithful normal trace on
+
(ReM ] . Let § be an arbitrary semi-finite normal trace on(ReM

+
O) .
There exists T E[I{eMO}+such that {(S) = q;o([TS]) for all S G(R6M0]+

Conversely if T E(ReMO)-t the map ¥(S) = 410(['1‘8]), SE{ReMO]"'is a

normal semi-finite trace on (ReMOI"', The restriction of ¥ to ReM

defines a positive normal linear functional on M if and only ii_'
q;O(T) < +0w. Finally q;o([TS]) < 4;0([ T’S7) holds for all SE(ReMO)-"if

and only if T = T,

Proot: Consider a maximal family of projections in M, {E

1

ied
pairwise disjoint with the property that \I:(Ei) <+, and qJO(Ei)< + o0

for each icd. Put E = Vi Ei’ F=I-E;if 0#P <F, Pa projection

in M, then {(P) = + o0; for there exists 0 # P’ < P such that \pG(P <+ oo
by the semi-finiteness of q;o. The maximality of the family {E1}

then implies q/(P") = too, thus Y(P) < + o contradicting the semi-
finiteness of y. Thus F = 0 and V.E. = I. For Se(ReMO)+ put

Vo () = ¥, (SE,), ¥'(S)= Y(SE,). By lemma 104,y ', ¥ define positive

~normal linear functionals. q;o faithful implies (support xya)(M) = Ei'
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; : |

Thus (support | )(M) < (support \VOI)(M). Hence there exists Tié(ReMO)T
P .

such that, for all Se(ReM) , 4;1(8) = wy(SEi) = \I/S([STi]). If we set

S; = SE;, then y(S,) = y(([T.S.]) holds for each SeReM|'; hence by

normality for each SGfReMr. Put T =T[:iE..ﬂ X Ti" and observe that
'I‘G(ReMOL" Let {F} denote the family of finite subsets of the index
set J, and let S be any element ofirReMO)T Note thatTI_:}xSi T,J S and
'IT3 x T, 1o T andﬂg [5,T;11; [ST]
WS) = supg ¥(I[ x5,

Supy (24 ¥(5,))
e (T ¥o(LS; T 1)
= supy v (Il x [5,T.7)
= q;o([ST]) using the normality of y, Vo

: + ;
Conversely, if T E(ReMO), define |(S) = \po([ST]), SG(ReMO,t ¥ is
clearly linear on{ReM + By 1
y 0) y lemma 0 < ST T"r 5. ST,SE(ReMJ
implies 0 < [STT] T’r [ST] so that § is normal. To check the semi-
finiteness of §, choose {Pn] n=1,2,... projections in M such that

Pn Tn I and TPn €c ReM. Let$S E(ReMOrbe given. Choose n such that

(S Pn] # 0 and S’€ ReM such that 0 # S’ s‘[SPn] < S and satisfying

Vo(8') <+w. Observe S'P_=S’. Since TP_ € (ReM)" there exists

a constant K suchthat TP <K I. We have

WS = yo([S"T]) = y4([8'P_T]) = y,([S'TP_])
= K qfo(S') <+ 0. Thus ¥ is semi-finite.

That { defines a positive normal linear functional on ReM if and only

if Vo (T) < 0 is an immediate consequence of lemma 10.4 and the

fact that \yo(T) < o0 if and only if q;O(I) < o0.
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It is clear that, if T, T’ 6{ReM0)+ satisfy T < T’ then
\yo([ST]) < \po([ST’]) holds for each S G(ReMOI": Thus assume that

\[ro([ST]) < \IIO([ST']) holds for each S in(ReMO)T Choose a maximal

family of pairwise disjoint projections {Ei}ie.ﬂ

that q,O(Ei) < 400, q;é[EiT']) < +w. In particular qfo([EiT]) < o for each

of M with the property

i€f. As usual Zi Ei = I and for eachi there exists (at least one)

€J ;
M

x. €¥ such that E. x, x,, B~ = E; and q;O(SEi) = Q

(S.) holds for
Xi, Ki 1

1
each S infReMOﬂ' From q;o([EiT']) < + 00 it follows that

& +
O ([5;T;1) <, o ([S;T;"]) <+ holds for all S€(ReM)” By lemma

y L P
10.4 and the definition of O, it follows that x, ¢ QT% . ’3
i %y - i i
and for each S G(ReM)-I-, we have
1 1 1 1 1 1

1 1
Fl 2 /{2 13
2x., T®x.)<(S.T./%x., T!?2x.).
A Gl W | LR "R TfE ™M

- 2% 292 4 )=
(1) (Ti Si X, Ti Si xi) (Si i
Suppose first that T, T/ actually belong to(ReM)-l—. From (i) follows

(Ti X, X) S (Ti{x, x) for all x €M xi} ,and hence by continuity

for all x€ [Mx,]. Thus T, E <T/ EM. By lemma 10.9,
. M . 1 1 ’ ,
E; = vy {Exi VoME)=w (M)} Thus T{E; s T, E, or T, = T.

In the general case, choose projections {Pn},{Pn’} in M such
that P * I. P’1% I, suchthat T P_ ¢(ReMl, TP’ €(ReM},
i on n 'n n n

For each i, Ti Pn E(ReMyl-, T; Pn' E(ReM)+, and observe that
1

1
o ’ , 5 )5
Q =P AP 1 L and T,Q, T/Q , T?Q , T/?Q_ ¢ReM. In

relation (i) replace S by SQn. For each SGlReMl-}-
1

1
2 2 - 4
(S Qn Ti X, 5 Ti xi) = (S TiQn X xi) < (STi Qn > xi).

1

Thus T.Q <T/ Q, sothat T. <T!. Hence T < T/
1 1 1 In 1 i 2
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Corollarz 10. 11: Let §, ¢ be two normal semi-finite traces on(ReMO)+

which satisfy ¥(T) < o(T) for each T E(ReMo)f There exists S E(REM]+

with 0 £§ < 1 such that y(T) = ¢([ST]) for all T €(ReM:

Before proving Corollary 10.11 we give the following slight

- generalization of [1], p. 11, lemma 2.

Lemma 10.12: Let T, T, €(ReM ) satisfy T

&
R -

6 gt el with 0 €8 & 1 such that ¥,

1 < TZ. There exists

=T2 S.

Proof: From T1 < T2 we have ;Q,I,Zl_(; QTI. ,
1

1 1
“Tlé-x "2 < " TZZ X “ 2. The map Tzzx—*Tlix may be extended uniquely

2 Y
to a continuous linear map B: [Range TZE] . Set B=0on¥®

If x€ QT then

1
[Range Tzz]. It follows easily that Be M, 0 < B¥B < 1 and that
1 1 -

Tf= [B Tf]. Thus T, = T,S, with § = B*B.

Proof of Carollarz 10.11: Let \];0 be a normal faithful semi-~finite

trace on(ReMOﬁ By theorem 10. 10,there exist Tl’ T2 G(ReM0)+such

that Y(T) = ¢,([T T,1) < y,([TT,]) = 9(T) holds for each T in(ReMO)T
Thus Tl < T2 and by lemma 1C. 12 there exists 0 <S <1, S E(RE:MjF

with TZS g% T Thus

"
®([ST]) = @(TS) = yo([T S T,1) = ([T T,]) = WT).
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XI. THE EXTENDED ORDER DUAL OF ReMO

In this section we shall show that the family of semi-finite
traces introduced in X may be endowed with a Riesz space structure.
This leads immediately to a representation of the elements of ReMO
as normal integrals defined on an order dense ideal of ReM. The
notation and terminology is essentially the same as in [8].

By J we shall denote the family of all order dense ideals of
ReMO. Then Jis a filter basis. Let ¢ = U{I;:I €3} If ped we
shall denote by Icp its domain of definition. Thus Icp € Jand cpE(Icp)l:
for all ped.

We may define the following relation ond: P, 53 P, whenever

- {T€ReM, 9, (T)=,(T)]
contains an order dense ideal of ReMO. Since is a filter basis,

the relation E\(} is an equivalence relation. The set of classes of

equivalent elements will be denoted by T‘(ReMO) and i1its elements

denoted by[yp], TI'(ReM) is defined similarly,

T(ReMO)is given a Riesz space structure as follows. For all
real a, and all [¢p] € T‘(ReMO), set alop] = [ap]; [cpl]+[cp2] = [cp3]
whenever there exist cpfé [cpl T CDZJ E[cpz:l and cp:';e [cp3] such that
{T:cpl’('r) + cpz’('r) = @3'('1*)} contains an order dense ideal of ReM .
That the linear operatioas are well defined follow from the fact that
A} is a filter basis.

We set [p] = 0 whenever there exists ®’€[w] such that

[TEReMO:cp'(T) 2 0} € -f} The se: of non-negative elements forms a

cone inT(RE:MO ); if we set [cpl] < [cpz] whenever [cpz-tpl]= [cpl:l-\:cpz'_]z(),



4

the order structure defined on T (ReMO) 18 compatible with its

linear structure. For every [cp] EI‘(ReMO) we have [tp] < [cp+], and
if [§] 2 0is such that [¢] = [¢] then [cp+]S (¥v]. Thus [o ]+ exists
and equals [cp+]. Hence I‘(ReMO) 1s a Riesz space.

For 0 <o €d, setp(T) = sup{p(S): 0 <S < T, SEIcp] for TerReMdT
Theorem 1.1 of [8] asserts that if 0 <¢, ¥ €d, then Lo]=[¢ T if
and only if @ = { on(ReMoﬁ' ® has the following properties

(i) E([T1+TZ])=$(T1)+E§(T2), ov(a Tl)=a$(Tl) for each real a=0,
.Tl, T, E(REMO]*.'

(ii) 0<T, <T, inReM, theny(T,) <H(T,).

e

(1i1) ¢ is semi-finite in the sense of section X.

(IV) 0 < T'T T‘T T in ReM then Qp(T) = SupT Qp(TT)_

0’
Thus ¢ is the minimal monotone additive exténsion of ¢ tolReM0)+
with values in [0,00]. It is clear that ® is a normal semi-finite
trace on(ReMdT and that the restriction of ¢ to(ReMJ+ 1s a normal
semi-finite trace on ReM in the usual sense ([1] P- 79) ,

For each we€d, we shall write Ecp = {SGReMO:Iaﬁl ( IS | ) < + 00 }.
Then Ecp = Icp’ and ﬂcp'i.s an order dense ideal, in fact the largest on
which such that ‘cp' can be extended finitely.

Let \|/O be a faithful normal semi-finite trace on(ReMO)t and
; | let 0 <wé€d, ¢ the extension of ¢ tO(ReMOTt By theorem 10.7 there
exists TéﬁeMo)+such that ®(S) = q;o([TS]) holds for each SE(ReMO)T

Conversely an element T E(ReM8+defines an element of T (ReMO}+

as follows: set I = {SGReMO:\VO([ |S|T])<+ ©}. Then I.€d and if

S, S,, S,€Ly, S=5,-8 withS,5,20, then®. (8=, ([5,T1)-y([S, T1)
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defines wuniquely ® as an element of (IT);. By normality
EET(S) = \po([ST]) holds for each SG[ReMO)'." By theorem 10. 7 EETz?OT'
implies T = T’ for T, T’e&{emo)‘f Hence if T, T’ e(;ReMO)+then
[cpT] = [cpI, ¢ ] if and only if T = il

We may now define a map m:(ReM,'~ I(ReM )" by setting
2

m(T) = [cpT] for T€ (ReM The preceding remarks show that m

0
is onto and 1-1. It is obvious that 0 < T1 < T2 imply that m(Tl)gm(Tz).

Further m is linear on (ReMO)T In fact let Tl’ TzéfReMO)_f then for all

SElReM
‘cET1+T2(S) = VolIS(T +T,) 1) = yo([ST 1) + v ([ST,])
= ETI(S) + ETZ(S)
If IT1+T2 3 {SEReMO:cBTl+TZ(|s|)< +w}, then IT1 +T, cP,
IT1+TZ e I,l..1 M 'I‘T2 and for all SEITI_I_T2
°r,+1,8) = @p (5) + 0y (5)
Hence ECPT1+T2] = [CPTIHPTZ] = [CDTl] + [CDTZJ

so that m is linear. We will show that m may be extended to a Riesz

1somorphism of ReMO onto T (ReMO) ;

Theorem 11.1: The Riesz spaces ReMD, I‘(ReMO},T(ReM) are 1so-
T "

morphic.
Proof: Let m:{I:{eMO)+-* 1"(ReMO)+ be defined as above. For Tz[Tl-TZ]
+ _ " ; -
T,, TZE(ReMO), set m(T) = m(T,)-m(T,). That m:ReM T(ReM, )

is well defined, linear and 1-1 follows immediately from the linearity
and l-1-ness of m on(ReMO)T Let [cp]EI‘(ReMO), Lo 1= [cpl]—[c_nzj with

(0,120, [,] 20. There exist Ty TZGCF{eMO)+with m(T,) = [0 ],
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m(Tz] = [cpz:l so that m([Tl-TZJ) = m(Tl)-m(Tz) = [@1]“[Cp2]=[@]-

Thus m 1s onto.

To show that m is a Riesz isomorphism of ReM_ onto I“(ReMO)

0

it is sufficient to show that m(T+) = m(T)+ or alternatively

[CPT'I'] = [CP-; ]J. IfS =20, S¢ SCDT, then
o7 (5) = sup{pg(S'): 0 £ 5’< 5]

. +
In particular cpT(S) gcpT+(S).
For each A€ER eMg,
It follows immediately that §

. - +
define \|;T+(A) = hmn—m cpS(A/\n T ).

=2 8, that + <9~ on B and
Vot T % YTt =05 on By
that 0 < $T+ < EES. Since the restrictions of EET+, ¥s to ReM are

normal semi-finite traces on ReM, by Corollary 10. 11 there

exists 0 < ST+ <1, ST+ ¢ ReM such that $T+ — E%ST_I_. Note that

0 < SST+ < S and that \VT+(T) — qoSST_I_(T) — cpT(SST+) = cpS(T+)=cpT+(S).
Hence cp',;.(S) — cpT+(S) and so [co,;,_] = [cpT+] and m is a Riesz isomor-
Phism. That I'(ReM), T‘(ReMO) are 1somorphic Riesz spaces follows
immediately from the fact that ReM is an order dense ideal in ReMO

and [8], Theorem 2. 6.

A Riesz space L is said to be perfect in the extended sense
if it satisfies L = T(T"(L)). From [8],p.491 , if L is any Archimedean
Riesz space, thenI'(L) is perfect in the extended sense. Combining

this remark with Theorem 11.1, we have as a generalization of

Theorem 5. 2:

Theorem 11.2: The Riesz space ReMO 1s perfect in the extended

sense,
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XII. THE SQUARE ROOT OF AN ARBITRARY
POSITIVE SELF-ADJOINT TRANSFORMATION
In preceding sections, it has been shown that an Abelian
W#*-algebra M may be extended to a class M, of closed densely defined

linear transformations which commute with every unitary operator in

4

M".  The following question arises naturally. If T is a given self-

adjoint transformation on the Hilbert space ¥, does there exist an
Abelian W*-algebra M such that T € MO? If T is bounded, then
{1, T} "’ trivially satisfies the requirements.

Let T be a self-adjoint transformation on the Hilbert space ¥.

Note in particular that T is densely defined, linear and closed.

Lemma 1,2'_._1_: Let Ml = {8 € LW): ST C TS} I\/I1 1s a W*-algebra.

Proof: It is clear that I\/I1 1s a linear space. Suppose thatS,,S., € M

1772
then 8152 T ESI TS2 & TS;S, so that M, is an algebra. IfS € M
)*

1!

1!
Ne
then S*T c (TS) =TS . Thus Ml 1s a - subalgebra of £(%). It is now

/

F
sufficient to show that M = M,. To this end observe that the bounded

1 1
self-adjoint operators (I+T2)_l, T(I-!-Tz)_1 belong to M1 ﬂM;. In fact,
from
2, -1 2,-1 % 2, -1
TI+T") " =(TE+T™) *) D2(I+T™) " T
it follows that both T(I+T%)" !, (1+T%)"! belong to M,. If further,
S EMI, from ST € TS it follows that ST2 = TZS and
2
Stl +1) = ST2+S C TZS+S = (T2+I)S
implies (I+T2)"IS = S(I-FTZ)_1
and T(I+T2)*IS = TS(I+T2]_1 = .'ST(I-FTZ)_1
2, -1 2. -1

so that equality holds since T(I+T") '8, STI+T ) ~ are bounded.
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/
Now suppose that S ¢ le . In particular

sa+T%)™! = qeré)lg

1

and ST(I+'I'2)“ T(I+T2)'IS = '.[‘S(I+T2)“1

Hence, if x € QTZ = %(IJrTz)_l’ then Sx EBT and TSx = S Tx. Let x¢€ JQT.

Since the graph of the restriction of T to ;EITZ 1s dense in the graph of

T (in& x &), there exist X € ETZ such that X = x, Txn = Tx. Thus

Sx €8,, Sx -Sx and TSx =S Tx =~ST . Thus Sx € 8  and
n T n n n X T

T(Sx) = STx since T is closed. Thus ST C TS and S € Ml' Hence

M1 = Ml” and the lemma is proved.

Lemma 12, 2: M; is an Abelian W*.-algebra.

Proof: We show that MI'Q M1 = (M;)’. It 1s sufficient to note that

(I+T2)_1, T(I+T2)“1 belong to Ml' It 8 € le ST < follows exactly as

in lemma 12.1.

Theorem 12’.._3_: Let T pera sel_f-a.d_joir_l_j:__lirlear_transfc_)_gmatim}_ on a

=
T —T .

Hilbert space ¥. There exists a unique, positive self-adjoint iine_a_g_

transformation S such that SZ = T.
—mre e kil O SUCH T

A —rrr-w—_ry

Proof: By lemmas 12.1, 12. 2, there exists an Abelian Wx-algebra M

such that T commutes with every unitary operator in M'. The state-

ment of the theorem now follows from Theorem 6. 10.
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