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We, and our students and colleagues at the University of
Massachusetts, have erected the foundations of a general scientific
language capable of elucidating, in the spirit of Leibniz, the physi-
cal theories that are of concern to us here. We feel that this has
now been accomplished with a clarity and precision that has been
wanting up to this point. As a consequence of this work, we feel
qualified to submit our answer to the question in the title of this
paper. It is both important and illuminating to understand the roots
of any work of such a fundamental nature. Therefore, to begin with,
we sketch the mundane pragmatic background of our own work and the
history of the subject == as we see it.

The aim of an empirical science, for us, is to order, explain,
and predict the observable events associated with certain physical
situations or experiments. As such, its mathematical foundations
ought to be erected on a "general scientific language" capable of
describing these physical occurrences with adequate precision. In
particular, a flexible symbolic logic, or calculus of experimental
propositions, is required to serve this purpose. In this regard, it
should be appreciated at the outset that a symbolic logic is not a
collection of physical laws; it is not even a language (an instrument
of communication). A symbolic logic does not become a language until
its symbols are assigned objective significance, and a language
expresses physical laws only when it, in some sense, predicts the
consequences of actual physical procedures. Thus, for the most part,
we have not been concerned with physical laws, but with the pristine
grammar of a language to describe physical experience. The direct
approach, and the one we utilized, is to synthesize such a language
from the physical procedures or operations employed in the empirical
sciences. The result of these efforts we have called empirical logic.
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The statistical theory that we have constructed on this foundation we
have called operational statistics.

This ambitious program, however, was mot the original intent.
One of us (Randall), motivated by problems in n?clear reactor
engineering, simply sought an adequate mathematical formalism to deal
with mechanical mixtures of materials. The approach was to.reg?rd
such media as stochastic products of some well-defined fabrication
process. Stochastic models and methods were developed, after'some :
effort, that did predict the behaviour of some of th?se.mate?lals with
reasonable accuracy. However, there remained some d1ff1cu1t195:
Manufacturers appeared to concentrate on producing useful materlals.
for which no models were available. As a consequence, the st?chastlc
models became more complex and the necessary mathematical man%pula-
tions became less tractable. It soon was evident that perennial ?odel
making, however clever, at best offered only a temporary and partial
solution.

In addition to these obvious difficulties, there were a ?umheF of
nagging doubts as to the adequacy of the formali§m. In pra?tlce, it
is only of interest to predict some of the material properties from
data obtained from an effectively fixed class of scanning 1nstFuments.
It appeared that, in some way, the stochastic models ov?rdescrlbed the f
materials and were far more complicated than the situation demanded.
Furthermore, in many instances, it was quite ev%dent that the measure-
ments significantly perturbed the scanned materials. Hence there !
seemed to be irreducible uncertainties, at least in the pragmatic
sense, for which the formalism provided no adequate description.

In order to satisfy these doubts, it was innocently decided to
investigate, in some detail, the formal mathematical structure of the
problem. These investigations led to a jungle of fundamental prob}ems
whose subtleties had hardly been anticipated. The venerable-ques§1on
of the meaning of probability (subjective or objective_-- epistemic or
ontic) and the related metaphysical problems of indu?tlon demanded )
attention at the very outset of the study. In due time even the basic
logic, that is the rules of inference, became a matter of concern.

In the process, and over a period of several years, it became
necessary to abandon one cherished elementary concept after another.
The continuum of real numbers was the first to go, followed by con-
ventional probability theory and classical logic. Eventually ?oth%ng
remained but the operational basis on which the present f?rmalfsm is
founded. The adoption of the operational approach,'at this PDlnt in
the development of an empirical language, does not 1@p1y radical
empiricism, logical positivism, or even operationalism. The develop-—
ment of an operationally based language should not be ?resumed to be a
simultaneous rejection of subjective methods. In ?artlcular2
explicitly identifying the observables of an exper%mental science does !
not automatically deny the unifying power of idealized models. 1In
fact, the essentially subjective logic has been erected on these
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operational foundations.!® As a matter of fact, the formalism, as it
ultimately developed, is, as far as possible, independent of any
epistemological point of view. For instance, it neither requires nor
discourages the realist view of the world.

Even prior to the decision to study the basic character of the
problem of mixtures of .materials, the striking similarities to parts
of quantum theory was evident. This should come as no surprise, for,
as G. Mackey observed,15 the formalism of quantum mechanics might
become necessary when the precision of measurements becomes high with
respect to the disturbance they cause. This is certainly the case in
the materials problem, as indeed it is in many of the behavioural and
social sciences, which have stubbornly resisted formal treatment.

As a consequence of these reflections, the aims of this study
became more ambitious. It seemed as though a solution of the original
problem would, in effect, permit one to deduce the formal structure of
quantum mechanics from notions more primitive than customarily is the
case. Although it appeared that a paper on quantum theory might be
more scholarly than one on mixtures of materials, in time it became
evident that the initial quest was surely the more ambitious one, in
spite of its mundane motivations; for it ultimately demanded a sounder
basis for empirical science. Since quantum mechanics purports to be

part of empirical science, it ought to be subsumed by the more general
results,

Our current formalism is, in effect, a blend of the earlier work
on mixtures of materials and the Baer *-semigroup approach to ortho-
modular lattices (quantum logics) initiated by one of us (Foulis).
Although semigroups do play an important role in our work,”»8,19 we
have, as yet, been unable to incorporate Baer *-semigroups in our
general formalism without imposing ad hoc assumptions. In fact, the
structures that we have been forced to consider in order to represent
composite physical systems have "logics" that are not even ortho-
modular posets. -

Although logic is the general science of inference, it began, and
for the most part has been formally developed as a theory of deduc-
tion. This has been particularly true of its ideographic transcrip-—
tion, symbolic or mathematical logic. Leibniz is said to have been
the first serious student of symbolic logic; almost two hundred years
before Boole, he proposed a universal scientific language (charac-
teristica universalis) and a calculus of reasoning (calculus ratio-
cinator) for its manipulation, Unfortunately, little came of his
projected scientific reforms.

The history of modern symbolic logic properly begins with George
Boole, who in 1847 published the mathematical foundations on which
symbolic logic has since enjoyed continuous development. In brief,
he proposed the algebra that now bears his name —-- in lattice termi-
nology, a distributive orthomodular lattice. It is noteworthy that
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Boole's work was motivated by statistical considerations. It is even
more noteworthy that he did not form the disjunction of propositions
(events) unless they were disjoint (orthogonal).

W.5. Jevons, John Venn, and Charles Saunders Peirce are among
those associated with the transition from Boole's original system to
the modern form of Boolean algebra. In a number of further steps in
the evolution of symbolic logic, the rigorous deductive methods of
pure mathematics were brought together with Boole's system, ultimately
culminating in the monumental Principia Mathematica of Whitehead and
Russell. Algebraic logic is a natural product of this line of
development. As Halmos observed, algebraic logic is more algebra than
logic. In our view, the process leading to this final abstraction has
thus tended to obscure the empirical content of logic!

It should not be supposed that this Boolean juggernaut went un-
challenged. Over the years a number of interesting alternative logics
have been advanced. The "intuitionist school", led by Brouwer, pro-
posed the dual of a relatively pseudo—complemented lattice, Others,
such as Post, Lukasiewicz, and Tarski, proposed modal logics -- that
is, logics with propositions admitting more than two truth values.
Kolmogorov suggested that conventional probability theory could be
regarded as modal logic with a continuum of truth values. It is worth
recalling, in this regard, that probability theory was originally
introduced as a symbolic logic for plausible reasoning. When
Laplace's Théorie Analytique was first published in 1812, it was
widely regarded as the long awaited calculus of inductive reasoning
fully developed. '

Keynes, in agreement with Koopman, suggested much later that the
modes of probability (viewed as an inductive logic) only form a partly
ordered set. However, most of the modal logics that have been
advanced have had linearly ordered modes. Birkhoff pointed out that
the Brouwerian logic mentioned above and the so-called quantum logics
can be valid only if they are modal logics (that is, only if they do
admit propositions that can be neither true nor false). It is not
surprising then, that Reichenbach explicitly proposed a three-valued
(true—indeterminate-false) logic for quantum mechanics.

The impressive successes of classical mechanics (the prototype of
modern empirical science) made its authority so complete that its
epistemological foundations remained virtually unchallenged for almost
two hundred years after Newton, Leibniz, and Descartes. Materialism,
in fact, transformed this model of physical reality into reality
itself. Its logical foundations, however, were finally subjected to
careful scrutiny in 1883 in Mach's The Science of Mechanics. This
work influenced Einstein and others to press these inquiries further.
In due time, it was duly noted that the implied logic of classical
mechanics was not quite the atomic Boolean algebra originally pro-
posed. Nevertheless, it was a Boolean algebra, the universal
separable measure algebra -- isomorphic to the quotient algebra of
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Borel subsets modulo sets of Lebesque measure zero of any n-
dimensional Euclidean space. It thus appeared that the twin edifices
of classical thought -- Boolean logic and classical mechanics --
were in essential, if not exact, agreement.

Einstein's relativity theory did not alter the essentials of this
reassuring state of affairs; quantum mechanics, however, was another
matter. Birkhoff and von Neumann demonstrated that the logic under-—
lying quantum mechanics could not be a Boolean algebra and, in effect,
they proved that it was a separable, atomic, orthomodular lattice.
Experimental logic, in the original sense of Leibniz, owes its current
renaissance to this seminal work and the general dissatisfaction with
the logical foundations of quantum physics (or more precisely, the
lack of them). In their original paper, Birkhoff and von Neumann also
suggested tentatively that a quantum logic ought to be modular,
However, most of the subsequently proposed logics have only been re-—
quired to be orthomodular lattices or posets. As we have already
observed, even these conditions may be overly stringent.

These logical discrepancies should come as no surprise for, as we
have seen, the logics of empirical science have been consequences of,
not foundations for, models of reality. Characteristically, determi-
nistic or stochastic models of Nature are established and then, if at
all, the implied logics are investigated. In brief, these posterior
logics depend not on reality, the purported authority of empirical
science, but on models of reality. This topsy-turvy practice that
leaves the conventional wisdom so vulnerable to crucial physical tests
(such as the Michelson-Morley experiment and the recent tests of the
Bell inequality) has been noted by Mach, among others. Physicists
(such as Tisza??) have sought a self-healing physics with which to
escape the havoc caused by these periodic calamities. It would seem
that a large step in this direction will have been taken when all
physical laws can be founded on a common a priori logic.

It would be difficult to justify a preference for any of the
known logics in the face of the noted discrepancies. In addition,
there are many deficiencies implicit in these logics; for example, the
lack of a suitable "tensor product'". The former deficiency is readily
appreciated by anyone who has ever attempted to formally discuss the
consequences of performing temporally ordered observations on a
physical system. Birkhoff, for one, has discussed this matter in
connection with the problem of the interpretation of the infimum
operation in quantum logic. In an excellent review of the axioms of
quantum logic, MacLaren!® pointed out that there are temporally
ordered observables that can be operationally described, but for which
there appear to be no corresponding Hermitian operators. The root of
this difficulty is the absence of an adequate conditioning operation
in the underlying logic. The conditionings that were proposed by
Koopman and Copeland,!%s"% in classical Boolean settings were also in
part motivated by such deficiencies. On the other hand, the lack of
a suitable tensor product has been apparent to all those who have
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studied the measurement problem from an abstract point of view.
Perhaps the most critical deficiency in the known logics is their
inability to formally describe the necessary and sufficient conditions
for an experiment (or physical situation) to take place.

Thus, we have developed the foundations of an adequate a priori
logic independent of any particular model of nature or epistemic view;
but nevertheless, one that may still reflect the collective experience
of science. This has been accomplished by initially adopting a strict
operational point of view. Such an approach has been proposed by many
authors, but surely P.W. Bridgman is its most articulate modern
spokesman. In brief, this point of view requires that all concepts be
defined in terms of physically realizable operations. This procedure
is in accord with Birkhoff's injunction, "Scientifically, quantum
logic should draw its authority directly from experiments. This
approach is not only scientific; it has the mathematical advantage of
making the lattice theory of quantum logic autonomous.”"! 1In any case,
introspection will reveal that there is no acceptable alternative,
since we reject the aid of any specific physical model. Again note
that this should not be construed to mean that we have rejected the
concept of a physical model -- for indeed we have not! Here the
important point is that the logic is established first, and then
physical models are employed.

The need for a fundamental operational logic is also implicit in
much of the contemporary scientific literature. In Atomic Physics and
Human Knowledge,? Neils Bohr restated his well-known views on the
critical significance of the language with which experiments are
described in atomic physics. He noted, for example, with regard to
the unambiguous use of the concepts of classical physics, that, "The
decisive point is to recognize that the description of the experi-
mental arrangement and the recording of observations must be given in
plain language, suitably refined by the usual physical terminology.
This is a simple logical demand, since by the word 'experiment' we can
only mean a procedure regarding which we are able to communicate to
others what we have done and what we have learnt." 1In the very first
sentence of his monograph on quantum mechanics, Heisenberg states,
"The experiments of physics and their results can be described in the
language of daily life."!?

At a Colston Symposium, W. Kneale!®?® remarked with regard to
empirical science, '"Since language is not merely a vehicle of communi-
cation of thought but also an instrument of learning itself, it is a
mistake to be impatient about linguistic questions unless they are
manifestly of the sort that can be solved by tossing a coin."

In the light of the above considerations and as a consequence of
many years of investigation, deliberation, and debate, we give our
answer to the question "What ought quantum logics to be?" in the form
of the following list of desiderata:
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I

Quantgm logic should be founded on the notion of physical operations
experlm?nts, procedures, measurements, or tests; or, at the very i
least, it should admit an explicit operational paradigm.

IT

It should,'insofar_as'possible, be independent of any epistemological
or ontologl?al prejudice. TIts form should be neutral with respect to
all world-views and explanations of physical events.

10

The elements of a quantum logic (events, propositions, questions, two-
valued observables,...) must be testable; that is, foé each such’ele—
ment, ther? must exist at least one physical operation every realiza-
tion of which unequivocally determines one of two truth values (occur-
nonoceur, true-false, yes—no, 0-1,...). It is not required that two
Feallzatlons of a test operation produce the same truth value. If E
is a test operation, we denote by T(E) the set of all elements of the
quantum logic that are tested by E. O0f course, we suppose that

T(E) # @.
v

?f an element of a quantum logic admits two or more test operations,
1t 1s understood that no significance is attached to which of these
tests is employed to obtain its truth value.

v

For_each test operation E, the set T(E) should admit the Boolean
notions of conjunction, disjunction, negation, and so forth. For
instance, if p,q € T(E), there must exist an element r € T(E) that is
effective as the conjunction of p and q in the classical sense:
Whenever E is realized, the resulting truth value of r is 1 if-and
only_if the resulting truth values of both p and q are 1. The
remaining Boolean notions are understood in analogous ways.

VI

A quantum logic should be capable of formally describing compound
operations and measurements, and their consequences., In particular
E]

1? should b? possible to represent sequences of operations and opera-
tions on unions of physical systems.

' If the above desiderata are satisfied, most of the standard
notions of quantum logic can be introduced. For instance, a collec-
tion of elements is said to be jointly orthogonal if they’admit a
common test operation and, whenever such an operation is realized, at
most one of these elements is assigned truth value 1. If, in addi—
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i such a realization assigns truth valu§ 1 t? ?ne and zﬁiyoizi of
tiiié elements, we say that they form a maximal jointly or %f -
. llection I; view of Desideratum IV, i ds pr?sumeq that:1 e
Cocoigitio; holds for any one common test operationm, 1tdh31az :
:ommon test operations. As usual, a state ?an betingEOEEd A
function, mapping elements of a qQantuy %oglc totho L e
interval, that sums to 1 over maximal jointly orthog

The above mnotion of orthogonality allows‘usth ;ﬁti;dziihzzznal
following useful concepts: If {p,q} is a maxima iﬁat S
collection of elements of a quantum loglc, Wwe sa}‘rt Pl L
operational complements of each OX0EC: S 0 o ament, we say that

ements p and q share a common C : ;
iﬁey are Eperationally perspective and we wr1ti P %%sq;ctiiep%d_%hii+l
for i = 1,2,...,n, then we say that.pl is weék y P 'nzl SR
and we write py WP Pp+1* Finally, if {p,q} is a qz: i'q. e
set, we say thatﬂf and q are orthog?nal and we wri pl i G

on;ection it is important to realize that, in genera A pntum ate
Zrhtogonal’collection need not be jointly orthogonal. qzz TR
in which every finite pairwise orthogonal set of elements hl
orthogonal is said to be orthocoherent.

We can now turn our attention to the matFZr oihiiduizzzioan
ference in quantum logic. wg_propose to'conil e;f ang e
axiomatically in terms of a binary relﬁtlon 2. : Eean L
elements of a quantum logic, let us write p § %h oSense h w%ich s
sense or the other, q can be dedgced from p. : ebinary ok
is so will depend on the axioms 1m?osed upon the o o)
Among the axioms that we have studied (but not nec

are the following:
(1) BAT; EBE D SORE &

==%‘p £ q.
(2) Pléqla plgP-p’ qlﬂq =

1

(3) q"¢ p's, 9 99y P OEP =3pg 94-

(4) q for all j, (p:) a family of elements with a common
E%;i operation, p a Jdisjuncticn of (pj) =%p £ 4.

(5) ¢ qi for all j, (qj) 2 family of elements with a common
Eé;t Joperation, q a conjunction of (qj) =3 p £ q.

(&) 'pgrs 61 =P £ 98

~

i a
(7) p ¢ q ==> there exists r, rl p, there exists s; s
di;junction of r and p such that s £ q and q & S

(8) pgqand ggp="7P¥ 4
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Suppose that E is a test operation and that p, q e T(E).

Desideratum V, the usual Boolean notions are available in T(E).

If q is deducible from p in the classical sense that p is disjoint

from (that is, orthogonal to) the negation of q in T(E), then
Axiom 1 guarantees that p ¢ q.

By

For some purposes, 'l two elements p and q that are operationally
perspective can be regarded as being logically equivalent. (Note that
wp is the transitive closure of op, and thus, from this point of view,

wp is a logical equivalence.) Thus, Axiom 2 is simply the correspond-
ing substitution rule.

Evidently, Axioms 3 through 6 are simply shreds of classical
reasoning that may or may not be desirable. Axiom 7 is also in the
classical tradition; it amounts to the celebrated orthomodular law.

If Axioms 1 and 6 are imposed, then ¢ is indeed a quasi-order
of the elements of the quantum logic. In this case, denote by = the
corresponding equivalence relation (p = q€=3p < q and q <p). It

follows from Axiom 1 that p wp q¢ == p= q. Given Axiom 8, the con-
verse holds and the two equivalence relations coincide.

To many authors, (perhaps most), a quantum logic is an ortho-
modular poset. In such a poset the orthogonality relation is avail-
able from the start (p L q<=%p < q'), orthocoherence holds, two
elements are operational complements if an only if they are ortho-
complements, and wp (as well as op) are the relation of equality.
Furthermore, there is one and only one binary relation that satisfies
Axioms 1 through 8; namely, the original partial order relation.

A simple and realizable example due to Ron Wright2" permits us to
illustrate the ideas introduced above. Thus, let us suppose we have

a supply of balls on each of which letters a,b,c,x,y, or z are printed
in color as follows:

Ball Type Red Green Blue
I a a X
IT b z b
ITI v c c
Iv y Z X

For instance, on a ball of type I is printed a red a, a green a and a
blue x. Balls of these types are placed in an urn. We consider three
test operations —— called the red, the green, and the blue test. To
conduct the red test, for instance, we put on a pair of red
spectacles, select a ball from the urn, and read whatever letter we
see on it. (It is supposed that we see only the letter printed in
red.) The blue and the green tests are defined analogously.
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Since the red test admits only three possible outcomes —— namely

a, y, or b —— it is mnatural to introduce the sample space R = {a,y,b}
corresponding to this test. Therefore, it is reasonable to let T(red
test) = P(R), the set of all subsets of R, and to interpret the
elements of T(red test) as events in the conventional sense.
Similarly, T(green test) = @), G = {a,z,c} and T(blue test) = P(®),
B = {b,x,c} . The nineteen events in

T(red test) U T(green test) U T(blue test)

constitute the elements of a (quantum) logic for this physical
arrangement, Given such an element, for instance D e T(red test), we
assign a truth value of occur or nonoccur (1 or 0 if you prefer) to D

by executing the red test and ascertaining whether the outcome belongs
or does not belong to D, respectively.

red in Desideratum V are, of course,
heoretic operations and relations. For
AU B e T(red test) and AU B is
d B, while the relative comple-
their respective negations.

The Boolean notions requi
supplied by the ordinary set-t
instance, if A,B € T(red test), then
offective as the disjunction of A an
ments R\ A and R \ B are effective as

y orthogonal if and only if

Clearly, a collection of events is jointl
they are pairwise disjoint and their union is contained in R, G, or B.

Such a collection is maximally jointly orthogonal if and only if, in
addition, the union is R, G, or B, Here a state, regarded as a
probability in the frequency sense, can be prepared by mixing the four
types of balls in a certain proportion. However, there exist states
that cannot be prepared in this manner —-- for instance, the state that

assigns 3 to {a}, {bl, and {c}.

al complements if and only if they form

Two events are operation
Here, we do have

a partition of R, G, or B into two disjoint sets.
distinct events that are operationally perspective, for instance,
{a,y} op {x,c} via the common operational complement {b}. Further-
more, in this example, Op is transitive and consequently gB_ccincides

with wp.

As was mentioned earlier, operationally perspective events may be
regarded as being logically equivalent in some sense. 1In the present
case, this is rather obvious; for instance, the operationally per—
spective events {a,y} and {x,c} occur under precisely the same circum—
stances —— namely that the selected ball is not of type 1I. It should
come as no surprise that one might wish to regard the equivalence
class, consisting of these two events, as representing the proposition

the selected ball is not of type II.

tuation, there does not exist a
events that satisfies all of
h a relation exists.

For this particular physical si
relation < on the logic of nineteen
Axioms 1 through 8. Indeed, suppose that suc

(i) (b} ¢ {b,y} by Axiom 1.
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(ii) {b,y} op {z,c} wvia {a}.
(iii) {b} g {z,c} by (i), (ii) and Axiom 2.
(iv) {b} < {b,x} by Axiom 1.

(v) {b,x} op {z,a} wvia {c}.

(vi) {b} ¢ {z,a} by (iv), (v) and Axiom 2.
(vii) {z,c} and {z,a} have a common test (the green test)
(viii '

ii) {b} ¢ {z,c} N {z,a} = {z} by (iii), (vi), (vii) and
TR ' Axiom 5.
bere exists an event C such that C | {b} and
{P}UC < {2z} ¢ {b}UC by (viii) and Axiom 7.

(x) {brpyc wp {z} by (ix) and Axiom 8.

In the example at hand
we have already observed inci
op. From (x), we conclude that {b} | C op {z} tgit %%s;Zig?ldes Et
op ; ion

r ]_S jal t o ‘! I' p V ])
th tiona er ectliv o]
{e\.’ ea tllat 0 even tller an A 1s opera 11 Sp e t

In spite of the fact th
¢ i at no relatio i
e L i n on the uant
relatio;:c;jsion can satisfy Axioms 1 through 8, cigtainu$i %?810.
e zczmge?g themselves. Perhaps the most natura? 1§3E;0n
< if and only of there i 5 =4
th?t Al b s o exist ?vents % ?nd B, such
riome R o1 ¥R B 2 1 € - 1s relation satisfies all of
g with the exceptions of Axioms 4 and 5. Furth
. er—

more, & respects states 1n th sens at A ——% fOr

A ; : ; :

Axiomsnlaiﬁszﬂailge implication relation —3 that satisfies all of

ek f01%0w5: e;gipz fﬁr Axiom 7 (the ?rthomodular law) :an be

e s C ach event A, let A' denote th

T iﬁ:ﬁ i:g?ﬁ;hatzTif a_ball of that type is selectes Siﬁezaniist

- i . 1s is essentially th g

2 y the s

a;gpzii;o?ffEEﬁ:sg?tes o for which a(A) = 1.) a?ﬁeisdzginge;-ffBa?l
c . It is easy to see th =+

~ ; at A ¢ B == £

-ggzzzssogoe: not hold; in faect, (b} =3{z}, but\{b} f#iii-iBﬁ e

i a(§b?§efv§(?h?)stafes; in fact, if o is that staEe fgiewﬁ?a;

= c = th = &5
i ot 2, then o({z}) = 0, {b}—=3{z}, but } =

Since both i i
. relaiigﬁd-a satisfy A§1oms 2 and 8, we can factor out th
g respectiggiand thus 1ndu?e partial orders, also denotede
A Structuree ¥y, on the equivalence classes (propositions)
Sl 5 1n-fact, becomes an orthocomplemented 1
ese partial orders. However, it is not an ozgiEt
o—
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i i the one hand, for <, the supremum

lar poset in either case. On : < : *
ggdzrthogonal elements need not exist. W?at does exist 1f Fhe equiv
lence class corresponding to the dlsjunctlonlog Ehe uqderlytngther
oiihogonal events and, with respect to such 'diSJuncgéongn tﬁz R

does hold fors<.
suprema), the orthomodular law o Ehe

;233 fgr-g Ehe supremum of orthogonal elements does exist; znlfaciéw
T i; the "éisjunction" just mentioned. However, the orthomodular
fails for =3.

i n
As this example plainly shows, a quantum 1o§1c £§het;eiei§ zg;ii
i i i has been factored out) ma
appropriate logical equ1va¥enc? > C »
mgie ihan one significant implication relaFlon. In geniralé szcof
order relations are a consequence of adopting a.pa;tlcu igemiﬂt X
i haviour of a physical arra .
model or explanation of the be ) : e i
i i i ication relation can therefore
choice of a particular implica : i
i i ible models. Such a choice, as p
rejection of a class of possib n ! , i
geieral language of empirical logic, 1s contrary to Desideratum N
and for us is unacceptable.

Incidentally, the practice of identi?ying elements of gequi?igm
logic that are imagined to be equivalent-ln some sense can Forq
useful, but it must be applied with con51dera?1e iaut;on. LNy

2 -
rd have clearly shown
example, as R. Cooke and J. Hilgevoo : h in t
papeg i; these transactions,3 the common practlcetog ;iezz;iz;ngan
i t be separate

elements of a quantum logic that cannot : e

iti n his paper on spin exp .
lead to absurdities. Furthermore, 1 P : ¥
Ron Wright made it absolutely clear that logically equ%vali?;-igen s
can condition states differently and Fhus must not be }iin 1t1be Leee
unless they are "final events" (that is, events that will mo

for conditioning).
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The details of our own empirical logic héve been published eize;
where.5>6,9,10,17,19,21 .50 we shall only provide a sgetchf ere;Vides ;
matte; of fact, the urn example discussed above, in itself, pr
compact illustration of our approach.

We always begin with a collection of ?ell—deflned, Ehizlci%iyred
realizable, reproducible test procedures (in our urn exal g aésociate s
green, and blue tests). With each such test prociduriéswof PR
a sample space (in our example R, G, and B) the e eze SRR R
called outcomes. Since each sample space correspon s g o
operation, we refer to these sample sgzciz ZSCZEziigiZnoé el

1 of sample spaces correspon T
Zi;iiggzﬁzal procgdureﬁ, we refer Fo the set of ali o?zr?ELoEs g§.§
(quasi) manual. (The quasimanual in the urn example 1 , G,

Thus, a quasimanual ( is a nonempty colle?tion og (gﬁiilziicome
o - 1led @~operations. v = )
overlapping) nonempty sets ca 5
we meazpany element e € E, for any E€Q,. By anQ event,fwileean any
subset A € E, for any E€Q,. We denote by £ @) themiettoomes o
(l~events and, of course, U@ denotes the set of all outc . i
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the basic ideas with which empirical logic begins are very simple
indeed —- only one step removed from the sample spaces of classical
probability theory. The operations fit together in a quasimanual much
in the same way Euclidean patches fit together in a manifold.

Precision is obtained by working within this well-defined mathematical
framework.

If Qvis a quasimanual, an E €Q4 is said to be a test operation
for an event A€ £ () if A ¢ E. Thus (just as in the urn example)
T(E) = P(E) and the Boolean notions required in Desideratum V are
supplied by the ordinary set-theoretic operations and relations. In
particular, a collection of Gi~events is jointly orthogonal if and only
if they are all contained in some b-operation E and they are pairwise
disjoint. Therefore, two-events A and B are operational complements
if and only if they are disjoint and their union is an O—operation.

An event A€ g(q,) is said to occur (or to nonoccur) if any test
operation for A is executed and an e € A (respectively, e ¢ A) is
secured as the outcome. This is but one of the many modalities that
can be defined for events. For example, we can also say that an event
A€ £(@) is confirmed (or refuted) whenever an event Beé € (&) occurs
(respectively, nonoccurs) and B wp A. Similarly, for any implication
relation—on £(d), we can say that an event A is =3-confirmed (or—=-

refuted) if an event B occurs (respectively, nonoccurs) and B—3 A
(respectively, A—3B).

An O~weight is a function w :(JJQ —* [0,1] such that, for every

EeQ,
ezgli wie) = 1,

the sum being understood in the unordered sense.

The set of all
O-weights is denoted by Q(Q.).

For w € 2(a) and A € £(a), define

w(a) = E;A w(e).

The resulting map W : £ (0) —* [0,1] is called a regular Q-state.
Notice that, if @ ¢ Q(A), and if A,B € £(Q) with A | B, then

w(AU B) = w(A) + w(B). A regular G-state w is to be regarded as a
logically possible complete stochastic model, in the objective sense,

for the empirical situation described by the quasimanual (.

Notice
that, if A,Be £ () with A wp B, then w(A) = w(B) for every we 0(d).

p Let QO and B be quasimanuals. By an interpretation morphism

—* B, we mean a map ¢ : UQ—— E(B) with the following two
properties:

(i) For E€Q , eLEJ E p(e) € B.
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(ii) If x and y are U—outcomes and {x} L {y},
then ¢(x) N #(y) = [0}

i =zl $(e). We call ¢
For such a ¢, if Ac UQ, define p(A) = g a #(e).
pEZitive in c’:ase p(e) # Eﬁ for all eeUa, . Notice 1_:hat w e Q(B)
implies that w o ¢ € n(a), so we can define the conjugate map
¢t 1 Q(B) — 2

by the equation T (W) = wog Tor all w € 2(B).

We use the term 'interpretation' ?ecause we have in mlnd_theual
situation in which Qv is a phenomenolcg19al or laboratory qu2§i2?ng
explained or interpreted by the theore?lcal or moqel %uas:.monSider;b1y
In practice, of course, the model quasimanual B w111_ ave ; N
more mathematical structure than the laboFatory qu351m?nuithonormal
instance, B may be the crthocohere?t quas1man9a1 of al ho Al
bases of a Hilbert space. In particular, notice thatltbe Ztoi g
map ¢t interprets a theoretical regular state w as a itﬁtone yor
frequency model ¢ T (v). Naturally, ¢t need not be onz' s
onto -— there may. be many theoretical models that prellc A g
frequency for laboratory events and theFe may be regular
are not consistent with the interpretation d.

A quasimanual in which the equivalence relation E?_B;e%[;ez;iled
orthogonality (in the sense that A wp B, CLA=C _}J;. 1}{151:5 v
a manual. A quasimanual @ is calle('i a premar.mal if there e
manual B and a positive interpretation morphism

v g,

If QU is a premanual, there exists a unique smallestlr{lan&alt(h{z,)migial
which U {@)=Ud . Moreover, 2@) = aKay). Ve c? ¢ ])-»ar e
generated by Q. A quasimanual with a ur}ltal.set ob regl_Jtal it
a premanual. (A set of regular states 18 said to be 1.m:|.t1-le o
nonempty event is assigned the value 1 by some state 1n .

In those instances in which it is desirz.ible to facgir zl.;tl;l;i 2 8
logical equivalence relation wp it'is essential to—be 3 t’iis i
orthogonality relation to the quotient structure —1 ana’ et
precisely the condition imposed on mar'ma}ls. Now, let Lot hon s
It is easy to show that op is a tran51t1\-re relation on't.on, o 5
op coincides with wp. Tf A€ £ (0), define the propositiom p
affiliated with A by

p(A) = {Be £ @) | B wp A}
and let
T @) = {pa) | Ae E@}

denote the collection of all such propositir:m§. As noted, we can lift
the orthogonality relation.l to TT(Q) by defining
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p(A) L p(B)<= AL B
for A,Be £(4). Furthermore, if p(A) L p(B), we define

p(A) @ p(B) = p(AU B).

(It is easy to show that the partially defined binary operation @ is,
in fact, well-defined for a manual Q..) Recall that, if the G-events
A and B are orthogonal, then AU B is the Boolean disjunction of A and
B in T(E), where E is any common test operation for A and B. Thus,
p(A) @ p(B) is the result of lifting this disjunction to the
quotient structureTl (). A negation map p(A) — p(A)' is defined on
TL(a)by p(A)' = p(B), where B is any Q—event such that B oc A. Of
course, the special propositions O and 1 inT(0) are defined by

0 = p(®) and 1 = 0'. It can be shown that T(Q) is an associative
ortho-algebra in the sense of Hardegree and Frazer.!ll

Recall that a quasimanual O/ is said to be orthocoherent if every
finite collection of pairwise orthogonal events is jointly orthogonal.
Thus, a manual Q,is orthocoherent if and only if T(&) is an ortho-
coherent associative ortho-algebra in the sense that, if p(A), p(B),
and p(C)e Th(a) with p(A) L p(B), p(A)L p(C), and p(B) L p(C), then
p(A) L p(B) @ p(C). IfT (W) is orthocoherent, then there exists a
unique partial order relation g on Tl(d) such that (@), <, L, ',

0, 1) is an orthomodular poset for which the orthogonal join is the
orthogonal sum ®. In fact this order relation is the unique relation
satisfying Axioms 1 through 8 introduced earlier. Explicitly, we have

p(A) ¢ p(B) <& there exists p(C) such that p(A) L p(C)
and p(A) @ p(C) = p(B),

for p(A), p(B), p(C) e TL(@).

As observed earlier, the model manual P for an interpretation
morphism G, B normally will have a richer structure than the
phenomenological quasimanual ¢, -— in particular, it will generally
be an orthocoherent manual for which TL(R) carries the distinguished
order relation g discussed above. Given such an interpretation
morphism ¢, it is natural to define a corresponding quasi-order €4

on £() by

A sy B&=y p(4(4)) < p(4(B))
for A,Be £(Q).

Certain classes of interpretation morphisms are of special
interest. For instance, a Boolean manual is an orthocoherent manual
B for which TI(B) is a Boolean algebra, and a Boolean interpretation of
a quasimanual Q. is an interpretation morphism O B, where B is a
Boolean manual., Similarly, a Hilbert manual is an orthocoherent
manual # for which TL(#) is isomorphic to the lattice of projection
operators on a Hilbert space, and a Hilbert interpretation of @ is an
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interpretation morphism ngadi, where 4 is a Hilbert manual. If, as
often is the case, we wish to consider such a special class of
interpretations of a phenomenological quasimanual Q, we can study the
corresponding class of implication relations sy on £(@). In partic-
ular, we can form the intersection of all such relations < and obtain
a single quasi-order on €(d) corresponding to the class of models
under consideration., In this way, we can consider the implications
common to all models of a certain type before committing ourselves to

a particular model.

Thus, by means of interpretations, we can pull back relations,
as well as states, from models. Therefore, as promised, we introduce
idealistic models in empirical logic.

The subjective logics also mentioned at the beginning of this
paper are constructed as follows: TFor a quasimanual @, we regard sub-
sets of Q(a) as hypotheses making assertions concerning the fre-
quencies with which events occur and propositions are confirmed. We
denote by %4 (Q) the sigma field of subsets of Q(a) generated by sets of
the form {w € Q@) | p ¢ w(a) < q}, where p and q are rational numbers
and Ae €(@). The elements of {(o) are interpreted as inductively
accessible statistical hypotheses concerning the physical operations
described in d.

It is clear that (@) is a classical Boolean algebra. Hence 1E
is natural to introduce the convex set M) of all countably additive
probability measures on (). The elements of M(a,) are regarded as
subjective probabilities, or credibilities, that amount to consistent
models of belief concerning the statistics associated with the
physical procedures represented in®. It has been shown that a
generalization of Bayesian inference works well in this mathematical
framework and permits us to modify beliefs in the face of experimental
data.l® 1In fact, most of the methods of modern statistics (for
example, maximum likelihood, confidence intervals, and hypothesis
testing) can be employed in this formalism.

In many cases, the elements of a manual represent physical
operations that a single observer may execute. In other instances,
the operations of a manual represent the measurements that are
permitted on a given type of physical system We represent the
combined activities of two observers and the union of two physical
systems by means of suitable "products". If Oy and B are manuals, the
products in question are defined as follows:

—

&'B SeLé'E{E}XFelEea', FeE Bls
& = (Y pBe x (82 | Fe 6 E, e},
O x g =086 N @B, and

a® e ={TF U &b
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It
ot :sg(:igshgwn thiF t?e forward and backward operational products
, respectively, are manuals and, as -
x £ s 4 consequence 80 18
Stztzzrtiilan Eroduct(b><8. If 4, and B admit unital sets o% regular
manual, Tﬁn the tensor product Q®B exists and, of course, it is a
bilate;al ’ef;arte31an product represents situations that admit
influence or interference between th
L : two factor m 1
while the operational i 5 &
i products represent situations admitti
unilateral influence or interf i
: ; erence. The tensor product
situations that admit no influe i ’ e
: nce or interference, but i
- : , but that do admit
;2E§§lzslonil Of course the union of two quantum mechanical systems
rmally be represented by the tensor product. Evidently, it
>

is possible to construct iterated i i
ol et products, thus sat;sfylng

When_é%i§e2§§§%2;§(cxx B)hneed not be an orthomodular poset, even
are orthomodular posets. Althought i i
supposed that this is a defect in o i EhE tEJUEnE b
S ur version of the tensor d
it can be shown that there is n i BE
o tensor product in the category of
;zg?zm?gu%gr gos;ts that satisfies even the most fundamenta% quuire—
A n fact, then, the apparent "defect" i
) ect" is r
essential property of tensor products. L
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15 INTRODUCTION

Quantum logic traces to the investigations of Birkhoff and
von Neumann *‘who suggested that the (closed) subspaces of a
(separgb}e) Hilbert space may be interpreted as representing the
propositions pertaining to a physical system. Subsequent rgsearch
has attempted to clarify this suggestion, and a large assortment of

mathematical systems have been i i
investigated ;
of quantum logic (QL). £ under the general rubric

o All quantum log%cal systems take the family of subspaces of a
: ert space as their point of departure, but beyond this there ar
1@portant differences concerning the appropriate parent categor ]
Blehoff and von Neumann emphasized the lattice structure, and zﬂ i
heirs héve proposed the class of orthomodular lattices as’the X
g?groprlate parent category. Other researchers have concentrated on
i fer?nt structural features of quantum propositions, and ha
accordingly proposed different parent categories. : %o

The most prominent

Research supported by Zonta International, Amelia Earhart Fellowship

*Th . ; .
Ch: l9§631ngest}gatlon stems from von Neumann's earlier work (1932)13
pte » Section 5. Strauss made a similar suggestion in 1937/8.1!
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