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RELATIVE OCPERATOR ENTROPY IN
NONCOMMUTATIVE INFORMATION THEORY

Jun Ichi Fumi* and Eizaburo KamEi**

{Received June 21, 1988)

Abstract, Relative entropies for positive linear forms on operator algebras have been discussed
by various tesearchers. Following afier the operator entropy due to Nakamura and Umegaki, a re-
lative operator entropy for positive operators on a Hilbert space is defined. If 4 and B are invertible
then it is'expressed by a ‘mean’ A s B = Al/2 (log A —%BA _1/2),41/2 whose representing function
is logt?, in the Kubo-Ando theory. It is shown that it satisfies pril:lcipal properties for relative
entropies.

1. Umegaki’s ralative entropy is introduced in [17] as a noncommutaitive version
of the Kullback-Leibler entropy, which is given by the trace of
{(H Alog A — 4 log B.

where 4 and & are positive operators affiliated with a semifinite von Newmann algebra
Afterwards, many authors have considered the relative entropy [2,3,4 11 13, 14, 16].

In this note, we shall restrict ourselves on bounded positive operators on a Hilbert
space and introduce a relative operator entropy S (A | B) as the solidarity A s B whose
sepresenting function is log z. The solidarity is somewhat a generalization of means in

the Kubo-Ando theory. In the case where 4 and B are invertible, we have the exact
form '

fa) S(A{B)=A% (logAd~%BA~")A"

As 2 matter of fact, the representing function f (¢ )=log? is appeared as S (1] 2).

)
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e, the adjoint F of f is the entropy function —¢ logz, cf, [7] andso

F(Ad)=—Alogd=S(4]1).

3N, 2 gl

V2 should note that —A4 log A is the operator entropy considercd by Nakamura-Umegaki
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operator entropy. ¥ A4 and B commute, then {1) and (2} coincide up 10 sign

[13]. This means that the relative operator entropy {2) is a relative version of ihe

In §72, we discuss variational forms of the relative operator entrooy which makes

easy to defing it for noninvert: ible operators. In § 3, wein vesiigate the

O

iva operator

entropy has principal properiies on celative entropy. Finally we rafer relations between

the relotive operaior entropy 2ad an operator version of Uhlmann’s relative entropy.

=
ter]

2 For the sake of convenience, we define the seljudjoini quoiient of positive 4

for B by
(3) Bjd =A% BATH.
Then | B/A |=inf {2>0 ; B < g4 }and the BKW metric [9] is g‘ifven by

d(A, B)=Tlog .4/BN * UB/AN.

T is known in |91 ihat the set of all positive invertible operators with norm 1 isa
complete spacs, o0 which Kato-Watatani gave a generalized nolar decomposition.

Now the notation of solidaiity remi inds us of Kato's idea in about 10 years ago when
the study of means was on its way. 1t is just the same a8 (2) if one replaces logt by
any operator monotone function as mentioned in the proof of I5 ; Theorem 3] andits
next paragraph. This 3uggesis that cas cap consiruct 2 mean i rown an operator mono-

tone funciions f by
g 5oy q A ~ __“é
(4) AmB=APF({B]AYAY =F{(B]A)]A

Afierwards, Kubo and Ando [12] made a complets investigation into it including
in the reverse discussion. The principal result is that there exisis an affine order-4somor-
phism between the class o ¢ all means and that of nonnegative operator monotone
functions on [0, o} whose Porrespondence is given by (4).

Anyway, coming back to Kato, ane may consider 2 binary operation s among posi-

tive operators induced by 2 operator monotone function f on {0, %) asin (4), and
we call it a solidarity. Solidarity might have an analogy to msans in the Kubo- Ando
theory. Here we don’t discuss on a solidarity itself, though.

Now, we shall give variational forms of (2):

Lernma 1. If A and B are positive invertible, then

(€3]
P
(V3]
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(5) S{A|B)=-4% log (42 B~1 4% ) A"
= _log{BT /A1) /ATH,
Gid
(65 S(4iBY=B%F(A/B)E" = F{4AJBY/ B,
where F{i)=—1log 7.

Proof. The formula (5) is obtained by log (1/t)=—logr. Since Xf (X% X5

ot

7 B - 1y P .o 14 14
= {XX%)X holds in general, applying it tor X=A%B " wehave

S¢4|B)=—log(Xx*) A~ =— 4" log (XX YR
=A% X log(X*XyB" = ~X"X log (_X’*}E)/B-i
=F(X*X)/B~' = F{4/B)/B™".
The above_le;nma says that if B is inveriible, then ons can define S(4 | B} (5‘). or

{63 evenif 4 is not invertible. Thus, considering the operator monotonity with respect

to B, we redefine the relative operaior eniropy as foliows :

Defiuidion 2. For posiiigve operators A ana B, the relative operdaior entropy

i

S{A|By=— s-lim A% log {A/‘iu‘-"}_"rij’i}r’i’“s

if the sirong Hmit exisis.

icugh, by such a {echnical reason, we rephrased S {A|5) asihs above; we had

rsiand on (2). As for the condition of the existence of the limit, cne of them i i§

1, . 1, Y. .
4% includes ran B” For commuiing operators A and B, we have

{7 S{A[Bj=—4-logd s-im A -log{B+ej:
e—=+0

w, if the limit exists then supp A <supp 8 where supp £ is the support projec-

section, we shall show ihat ilie velative operator entropy has the desiresble

The relative entropy S (A|B) has the following properties -

monotonity) B < C implies § {4 IB) S{41C).
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(termwise concavity) S (A |B) is operator concave with respect to A, B.
(homogeneity) S(ad|aB)=aS (A |B) foranonnegative number .

Proof. Since f(t)=1log? is operator monotone, the formula (4) implies the
required monotonity. Moreover, the operator concavity of f(t)=log ¢ implies the
operator concavity for the term B. As for the term A, the operator concavity of F(t)
=t - logt follows from the formula (6). The homogeneity is clear by (4).

In (7), the existence of the storong limit depends on the lower boundedness of the

set (A% log ( A% (B+e) 1 A %) A%}. Contrastively, the upper boundedaess is
always guaranteed :

Theorem 4. The relative operator entropy is upper bounded :
(3) S(AlB)<—A'10gA + A -log | B, and
() S(AIB)<B-A4.
Proof. By operator monotonity and (7'), we have
S(A1B)<S(AINBI) = —4-logd * A-loglBIl-
1t follows from the Klein inequality log t < t—1 that
S(AiB)=log(B/A)]A -1 < (BjA-1)]A" =B -4,
By (9), wehavea nonpositive condition :
Corollary 4. 1. If A > B, then S(A|B) <0.

Formally, it follows from (8) that S(A[B)<O0if A < ||B|. But the meaning-
ful siuation would be A4 > B asin the above corollary. In this situation, S(A|B)is
negative when 4 # B:

Corollary 4. 2. For operators A B with A>B, S (4i1B)=0if and only if
A=B.

Proof. Suppose S(A|B)=0. Then, it follow from (9) that 0=5(4 |B)<
B_A <0, which implies 4 =2B. Conversely, we have S (A4 14 )=A - log(supp A)
=0.

Remark. For invertible operators, it is easy to see that the assumption A = B in

the above can be removed.
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Since the operator concave function F (2)=—t-log(¢) satisfies F(0)=02= 0,
we can make use of the Jensen inequality due to Hansen and Pedersen [4: Theorem 2.1],
see also ‘M. Fujii [7] :

(10) F(X*AX + Y*BY) > X" F(A)X + Y¥*F(B)Y
for X*Xx+ Y'Y <1,

in order to show the joint concavity. But their inequality means directly that the relative
operator entropy is subadditive : '

Lemma 5. The relative operator entropy is subadditive :
S(4 +B|C+D)>S(4iC) +S(B\D).
Proof. We may assume that both C and D are invertible; Put X=C%(C+ D)—l/Z
and Y=D%(C+D) % Since X" X+ y*y=1, it follows from (10) that
S(A+B|C+D) =F((A+B)/(C+D))/(C+D)—1
=F(X*(4/C)X + Y*(B/D)Y)/(C'+D)‘1
> {X*F(4/C)X + Y*F(B/D)Y}/(C+D)“1
- [F(a/C)[CT! + F(B/D)/D™"}
=S(41€) +S(BID).
Theorem 6. The relative operator entropy is jointly concave : If
A=ad, * (1-a)d, and B=aB, + (1—a)B, for O < o <1, then
S(A{B) > aS(4, 1By)+ (1-a)S(4,1B, ).
Proof. By Lemma 5 and the homogenuity, we have
S(A1B)=S(ad, *+ (1-a)4, | aBl+(1—a)B2)
> S(ad, laB, ) + S(1—a)4, | (1-a)B,)
= aS(A4, |B, )+ (1—-a)S(4, |B, )
By operator monotonity, the above condition for B can be relaxed into B ZaB,

+ (1 —a)B,. Nest weshow the generalized Pierls-Bogoliubov inequality by making use
of Davis’ inequality [1 ; Theorem VL. 1]

V(F(A) L F(¥(4)

for a unital positive linear map ¥ :
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Theorem 7. Let ® be a normal positive linear map from a W*-algebra containing
A and B toasuitable W*-algebr_a. If ® (1) isinvertible, then,

(11) D(S(A1B)) < S(2(4)i®(B)).

Proof let B be invertible, then so does @ (B). Put a unital map @y (XH=
®(X/B~')/®(B). Then,it follows from (6) that

®(S(4iB) —o(F(A/B)/B~")=%, (F(4/B) 2(B)"
< F(®,(A4/B)/®(B)
= F(®(A)/ ®(B)/@(B) ™! =S(2(4)i®(B).
Since ® is normal, (11) holds even if B isnot invertible.

Remark that the above inequality holds for a geneial operator concave functions.
Though this remark suggests the inequality of solidarity, we refer to it no more. Backto

the original situation, we have the Peierls-Bogoliubov inequality for the relative operator

entropy :

Corollary 7. 1 (Peierls-Bogoliubov inequality). Let ¢ bea normal positive linear
functional on a W*-algebra containing A and B, then,

$(S(A1B)) < ¢(4) {log(#(4) - log (¢(BY) } -

Applying Theorem 7 for a map ¢ (X)=PXP from M to the reduced von Neuman
algebra P M P, we have so-called monotonity of the relative entropy :

Corollary 7.2 (monotonity). If P isa projection, then
S(PAP|PBP) = PS(4 |B)P.

4. For 0 <r<1, let m, be the operator mean corresponding to the represent-

ing function f, (1) = t7. By (4), for invertible A and B, 4 m, B= (B/A)r/A’l.

If A commutes with B, then A m, B=AY""B". AsUhlmann himself remarked in
[16], the quadratic interpolation Q1, (p, q) for seminorms p(x) =< Ax, x> %

and g (x)=<Bx,x> % is the seminorm defined by A m, B for commuting 4 and
B:

(12) QI (p,q)(x) =<4 m, B x,x>".

The equation (12)" holds even if A does not commutes with B, by which various pro-

perties of the quadratic interpolation of positive linear forms are led via operator means
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by Kubo and Ando [12]. For instance, the operator version of the Wigner-Yanase-
Dyson-Lieb. concavity (cf. [10,16]) is derived from the concavity of operator means.
As a matier of fact, if A =>oad, * A, and B> aB, £B, for a, f> 0 with
a+ f=1, then we have
A m, B > (a4, t {3A2) m, (aB, * [332)
Zad, m, ozB1 + 6A2 m, 8B,
=a(4, m, B )+t B(4, m, B, ).
On the other hand, the Uhlmann’s relative eniropy [16] is based on the interpe-
lation theory of positive linear forms. The argument of positive sesquilinear forms is

reduced to that of operators via the Pusz-Woronowicz theory [4,16], see also [6] :
For positive linear forms ¢, ¢ onaunital *-algebra A, puta sesquilinear form

(13) <x y> = o(xy*) + Y (ryx)
Let x — v be the usual map from A to H which is the Hilbert space with the inner
product corresponding to (13). Then there exists detivatives A, B on H with
(14) < AR, Y > =¢ (xy™) and <BX, 5 >=v(y*x).
It follows from (12) that A and B are commuting positive contraction with A + B
=1.

Now. in this situation, the Uhlmann’s relative entropy S(oplY)y is expressed by

(15) S(p1¥), = — lminf < {(4 m B - A)ry1, 1>

r—=+0

Considering that the Uhlmann’s relative entropy is upper semicontinuous with respect to
the term ¥, its operator version would be defined by

(16) S(A|B), =— slm s-im (4 m, (B+e)—4)]r,
E—~+0 ¥—>+0

if the strong limit exists. Fortunately, two relative operator entropy coincide up to sign.
In fact, for invertible B, we have

_S(AIB)y= slim (A m B —A)lr
r—+0

slim B%(A/Bm, 1 — A/B)B"|r
F—>+0.

{ slim ((A/B)'~" — 4/B)/r}/B™

r—>+0
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= _(A/B)log(A4/B)/B™ = S(AI|B).
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