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Introduction

Given two C*- algebras A1 and A, , we can form their alge-
braic tensor product A1®A2 and look for reasonable norms
on it such that the completion is a C*— algebra ; more preci-
sely we shall study the C*— crossnorms and define in a natural
manner two such norms : the largest one and the smallest one ;
their properties are rather similar to those of the norms A
and A which arise in the case of Banach spaces . Then we shall
be concerned with the properties of the completions of A15>A2
with respect to these norms, in particular their types (liminar,
postliminar, antiliminar, with continuous trace), representa-
tions, states and traces. The results are still valid for the
tensor product of an arbitrary finite number of C*— algebras,

but we consider the case of two C*— algebras for the sake of

simplicity of notations.

Throughout these lectures we shall use the notations of Dixmier's
book on C*— algebras ; moreover S(A) will denote the set of
all states of a C*- algebra A , endowed with the weak topology ;
it is compact if A has a unit element, but not necessarily lo-
cally compact in the general case ; 01(A) will denote the set

of all normed characters (or central states) of A, also endowed
with the weak topology ;it is not locally compact in general,
even when A has a unit element (see {71, § 3, prop.6), but is
Polish if A is separable (see [2], 7.4.2). For each Banach x -

algebra A with approximate identity we denote by C*(A) the



II

* .
enveloping C - algebra of A.

*
A C - algebra is said to be simple if it has no proper ctosed
»
two-sided ideal ; a state f on a C - algebra is factorial if

—_—

the associated representation e is factorial. All our vector
spaces and algebras are complex ; for any two vector spaces or
algebras E, » E,, we denote by E e E, their algebraic tensor
product ; every element x of this space can be written, but not

N
in a unique manner, as x = 2 X1 n® X, .
- s s



§ 1. Preliminaries.

n.1.1. Tensor productsl of Banach spaces.

If E1 and E2 are Banach spaces, we say that a seminorm P

on E1 ® E2 is a cross seminorm (resp. a subcross seminorm) if

p(x1@ x2) = (resp. ¢ ) Ix, 0 . Fx, 0 14 x;€ E; .

The A crossnorm.

There exists a largest subcross seminorm on E1 ® E2 (which

is in fact a crossnorm)

N
I xi, = 1nf“§1 llx1’n1(.}!x2,nl
where the inf is taken for all families (x1 X, ) satisfying
" ,n°72,n
X = ,‘.%1 x1,na x2,n‘ The completion of E1 & E2 for this

crossnorm will be denoted by E1 2 E2 ; it possesses the fol-

lowing universal property : for each continuous bilinear map-

ping u of E1 x E2 into a Banach space F there exists a unique

continuous linear mapping v : E, ® E, —>F such that
v(x1@ x2) = u(x1,x2).

Functorial properties. For i = 1,2 1let uy be a continuous

linear mapping of Ei into a Banach space Fi 3y the linear map-
ping U@ u, E1 ® E2 _ F1 ® F2 can be extended in a con-
tinuous linear mapping u1$ u, E1 2 E2 —> 1“1 ® F2 3 evi-
dently

(w8 uy)(x,@x5) = u,(x,) e u,(x5)

If uy is surjective and Fi has the quotient norm of Ei’ then

u13 u, is surjective, F, & F, has the quotient norm of

E, ® E2 and moreover

1



A —
Ker u1¢ u2 = Ker u1@ E2 -+ E1@ Ker u2 .

Example 1. If X is a measurable space with a measure 4 , and
if E is a Banach space, L1(X,r )® E is canonically isomorghic
to L1(X,p yE), the space of all ux -integrable mappings of X
into E ; this isomorphism carries each element of the form

fo¥ into the mapping x —> f(x).§¥ = In particular
ANO SR E-5 ANC S L' (x, x X @M ,)
1049 2r ko) v 1% A s K @M,

‘The 4 crossnorm.

If fi is a linear functional on Ei we can consider the liuv‘
near functional f,e f, on E,®E, characterized by the pro-
perty

(f1@ f2)(x1012) = f1(x1).f2(x2) +
the 2 norm is defined by
I x = su f hif X
I x 1, p | (£,8£,)(x)]

where the sup is taken for all fi which are continuous and of
norm ¢ 1 ; this is the smallest crossnorm which is reasonable

in a certain sense (see[6)) ; the completion of E1a E2 for

A
this norm will be denoted by E1a E2 .

Functorial properties. If we have continuous linear mappings

. . . . R
u., : E;, —> F. there is a continuous linear mapping U@ u, :

i
2 . .. . a . .
aZFz 3 1if u, is isometric, u,@ u, is also iso-

E,@ E, —» F, s

metric.
Example 2. If X is a locally compact topological space we denote

by C.(X) the space of all complex continuous functions f on

X which vanish at infinity ; that means that for each number



a 3 0 the set of xeX such that |f(x)| ) a 1is compact ;
this is a Banach space for the sup-norm ; if X is compact we
write C(X) instead of C,(X). Then if E is a Banach space,

N . . .
C (X)e E is canonically isomorphic to Cc,(X,E) ; in particular

c.(xy) & C.(X5) ~ C.(Xyx X,)

Definition 1. If | I, is any subcross norm on E1 ® E2 we

o
denote by E19 E2 the completion of E1a E2 for this norm.

Bibliography. (6],[18].

n.1.2. Peo8or products of Banach # -algebras.

(For the definition of Banach -algebras, see [2], 1.2.1 ; see

also [4] and [ 5].)

Let us consider two Banach algebras Ay and A, 5 Aje A, is

an algebra with a multiplication verifying
(a1eaz).(b1e b2) = a1b.'or:12b2 ;
the 2 norm is not always a norm of algebra,i.e. does not al-
ways verify Il a b, Nalg. by, (see [5]) ; but it is easy
to see that the A norm does ; if A1 and A2 are Banach x -algebras

A1@AZ is a normed » -algebra with an involution satisfying

X * *
(a1@a2) = a, @ &, ;

then A1 3A2 is a Banach # -algebra ; it possesses the fol-

lowing universal property : let us say that two morphisms u,

and Uy of .lt1 and A2 into a Banach * -algebra B commute if

u1(a1).u2(a2) = u2(a2).u1(a1) Y a;, € Ay ;



then for each pair (u1,u2) of commuting continuous morphisms
there exists a unique continuous morphism v : A1§ A2 ——B
such that

v(a1p a2) = u1(a1).u2(a2) 4 a; € A, .

Conversely if A1 and A2 admit unit elements, each continuous

morphism v can be obtained in this manner.

Example 3. If G1 and G2 are locally compact groups, the Banach
¥ -algebra L1(G1x G2) is canonically isomorphic to the tensor

product L1(G1)§ L1(G2).

n.1.3. Tensor products of Hilbert spaces and von Neumann algebras.

(see [11)

The Hilbert tensor product of two Hilbert spaces H1, H2
X
will be denoted by H1@ H2 ; we recall that it is the comple-

tion of H1a H2 for a scalar product which verifies
(xj@ x5 1 yj@ y5) = (x40 yy)-(x50¥,)

If &.i is a von Neumann algebra in Hi the von Neumann alge-

bra in H1a H2 generated by all operators a1@ 8, with
<
a, € d’i will be denoted by 671 ® d2 ; it is a factor iff

4
A , and a2 are factors ; it is equal to .Z)(H1 on) iff

S .@(Hi).

1

Proposition 0. Let O be a factor in a Hilbert space H and

Q’ its commutant ; the morphism u : & e ' __>/(H)
defined by wu(aea') = a a' is injective ; in particular

if a and a' are not zero, a a' 1is also not zero.

For the proof see [1], p. 31, exercice 6.



Distributivity with respect to Hilbert integrals.

For i = 1,2 1let Xi be a measurable space with a measure

My s 85 —> Hi s a pm, -measurable field of Hilbert spaces ;
|

it is easy to construct on the field (s.,,s,),—sH £H
1772 1 S, 2,32

a structure of )‘1 #) ,-measurable field of Hilbert spaces and

an isomorphism

| & 0 &
;g U :./H‘I,s1 d ry(sy) o /Hz,s2 d"z(sz))

TP fn
> // f1,, 0 Ha g a0k q0pp)(sy,s8))
&
with the following property : for each vector X; = / X g.°
'S
i

df«i(si) one has

®
U(x1@x2) = // x1’s1®x2,sz. d(r1or2)(s1,s2) .



§ 2. Representations of the algebraic tensor product of two

c* -algebras.

We consider two C*-algebras A1 and A2 .

!n.2.1. Tensor products of representations.

1 Let L be a representation of Ai in a Hilbert space Hi H
L [
‘we can form the representation of A1s>A2 in H1o H2 defined
;by

(T ,8T,)(ayp8,) = T.(a,) 67,(a,) ;
?the von Neumann algebra generated by this representation is

: i < N

iclearly ’Tr1(A1) @7"2(}&2)' ; it follows that T,®7, 1is facto-
‘rial (resp. irreducible) iff ", and T , have the same proper-
ty. The equiwalence (resp. quasiequivalence) class of Wﬂlwwz

idepends only on the analogous classes for L and 7'2 .

!
!If we have a measurable field of representations T, y We

|
|
|

can write, with the notations of n.1.3

® @
/W1,s1 duqi(sy) @ /F'Tz,s2 dry(s,) ~

» ®
| //771,3 ®T 5 o - d(pi@rs)(s,,8,)
- 2 2

| in particular for discrete sums

(?11,8)8(? Tog) = ® (g @7, ) .



n.2.2. Restrictions of a representation of A1 @Ag .

“Definition 2. We shall say that a representation « of A,e A2

is a subcross representation if

hw(a, @ay) il hay i« llay I Y a; e Ay .

[f A1 and A2 have unit elements e, and e,, every representationm

of A1 9A2 is subcross because we have

"“ﬂ(a1@ a2)Il = ]l-‘r(a1ve2 . €, a2) il

I\

\l‘n’(a1¢o e2)N ST (e1v a2)‘(

N

Nagl - la, |

since a, T (aje e;) and 8y +— T (e, 0 a,) are repre-

sentations of A1 and A2 respectively.

Proposition 1. To each subcross representation W of A1 @AZ

in a Hilbert space H one can associate canonically representa-
tions Ty and 172 of A1 and A2 in H such that

’n’(a10 a2) = W1(a1).‘7"2(a2) = Tl'e(az). '71(a1) (1)
for each ay in Ai ; moreover one has

~

1(a1 ) strong limit of 'rr(e.1 ® Vt)

“n‘2(a2) strong limit of T(uswaz)

where (us) and (Vt) are arbitrary approximate identities of
A1 and A2 . Finally if w is faithful or non degenerate or fac-

| torial, ’T«1 and W P have the same property.

Proof. We choose an approximate identity (us) of A, and prove
that for each a, in A, , ’ﬁ(usaaz) has a strong limit ; set

H, = WT(A1 0A2).H ; we must prove that ‘n’(use az).x has a




imit for each x ¢ ﬁ1 ; since the family "aT(usm a2) is bounded
(because W is subcross), we can take x in H, ; by linearity

ﬁe can suppose x has the following form

X = W(b1ob2).y where b; ¢ A, , ¥y ¢ H;
then

il (usa a2).x = 7 (us b, ®a, b2).y ;

this converges to 'lf(b1 ® a, b2).y since

}l?l‘(usb1wa2b2).y - "»T(b1c> a2b2).y I = H'ﬁ’((usb1—b1)@ a2b2).y ]

< usb1-b1 /| a.2b2 ey )

we have thus proved that 'Ti(usoaz) has a strong limit which
is independant of the approximate identity (us) ; denote it by
T 2(3.2) 3y as easily werified ":72 is a representation ; define

T, 1in an analogous manner ; to prove (1)

771(a1).'72(a2) lim ‘W(a1@vt). lim W(usaa

5)

]
=
—~
oY)
®
[
n

since
H'Tr(a1usovta2) —’7{(a1®a2) |
< N ( (a1us-a1)@ vtaz) I+ )« (a.1 @ (vtaz-az)) ]
= 1l a1ms-a1 . ¥a

5 o+ ) a, . )lvtaz-a‘2 .

The last assertion is trivial.

Remark 1. From the above proof we also deduce the following :

if Ai is a Banach x -algebra with approximate identity, to each



subcross representation @ of A1 @Az one can associate repre-

sentations w, and T, of A, and A, verifying (1).

Definigion 3. The representations 7r1 and L associated with

5 will be called the restrictions of 7 to A1 and A2 ; if A1
and A2 have unit elements, they are nothing but the usual res-

trictions of T .

Proposition 2. If 7, (or '74’2) is a type I factor represen-

(g

tation, T 1is equivalent to a tensor product of representatioins.

In fact we can write
L
H1 @ H2

W1(a1).—. ‘ﬁ1(a1)01

H

7[2(3-2) = I & ()2(32)
where Fi is some representation of Ai in Hi s then
T (a8 a2) = f,(ay) @ r5(a;)

Proposition 3. If Wi is a representation of Ai with 71'1 non

aegenerate, the restriction of ’»719'772 to A2 is a multiple of Mo

In fact this restriction is given by

Fa(az)

lim (71372)(us®32)

]

Lim 7 (ug) - 7 5(ay)

I 9"”,)_(32) .

5*
Lemma 1. If A1 has no unit element, each C subcross norm p
"/

~/
on A1 [ A2 can be extended to a C* subcross norm p on A1® A2.

The same holds for A2.

Proof. Choose a non degenerate isometric representation 7T of

A1®A2 in a space H ; its restrictions '?(.l and ’7(2 are faithful
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and non degenerate P My extends to a representation 711 of A1 ’

which is faithful because "71(A1) does not contain the scalars ;

the bilinear mapping

[lad

Ay x Ay — Z (H)

((agshy)yay) —s 7,(ay,hy). Ty(ay)
gives rise to a linear mapping

P K e A, —s L (H)

N
S (a

~~ 1

1,n’h1 ,n)‘9 8‘2,

N
n *——>5471(31,n'h1,n)'72(32,n) i
f is easily verified to be a representation. We now prove that
p is faithful : take an element b in Ker ¢ ; for each element

a in A1QA2 we have
baeKerpn(A1@A2) = Ker m =1{0} ;

L
then for each x in HeH

~~
~

0 = (T,e7,)(ba)ex = (7,07,)(b).(7,07,)(a).x ;

since W 1 and 7w o are non degenerate, the same holds for
0T, the elements (71@T2)(a).x are dense in HéH y

and we see that (“T: 14:9712)(b) = 0 ; since T,®w

1 5 is faithful,

b=0 and ¢ is faithful.

Now setting 'ff(a) = )l ¢(a)l for each a in A,@ A, we get a

* . . .
¢ norm which clearly extends p and is subcross since

P((a;,h))ea,) = I¢((a;,hy)@ay)l

IN

171 (aqshy) Il 1 5 (ap) i

N

‘l(a1Qh1),’ . ” 8.2 ” °

Bibliography [8], (20 1.
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§ 3. The v crossnorm.

n.3.1. Definition of the V crossnorm.

We consider two Ct algebras A1 and A2 ; denote by | My
the LUB of all C’- subcross seminorms on A1@ A2 ; this is clearly
a C'- subcross seminorm majorized by | ll, 5 this is in fact a
crossnorm because if 'lTi is a faithful representation of Ai ’

T, OT 5 is a faithful representation of A1® A2 and

l(ﬁ1vW2)(a1oa2)N = lagl .l(a2 0.

If A, and A2 have units each C - seminorm on Ao A2 is majori-
zed by | "v since each representation is subcross. The elemen-

tary properties of the v norm are summarized in the following :

- Theorem 1. The LUB of all Ct subcross seminorms on A @ A,

is a C*- crossnorm I N,; the representations of the comple-
tion A1$ A2 are in bijective correspondance with the subcross
érepresentations of A1 ® A2 y and in particular with all repre-
| sentations of Aje A, if A, and A, have units . The c algebra
1A15A2 has the following universal property : if we have two

!
| commuting morphisms uy of Ai into some C™- algebra B, there

exists g unique morphism u : A15 A, —> B such that

u(a1 ® 32) = u, (a1).u2(32).

Note that the representations of A1<§A2 are also the same
as those of A16 A2 sy 80 that A1é A2 is the enveloping ¢ -

algebra of A1 6A2 . More generally we have the following :

Proposition 4. If A1 and A2 are Banach x -algebras with appro-

ximate identities, C * (A13 A2) is canonically isomorphic to

¢ (4,) ® c*(Az) )
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Proof. Let u; and u the canonical morphisms Ay —» C*(Ai)

and A13 A, —> C*(A1s A2) ; take some faithful representa-
tion T of C€"(a,)8C"(4,) in a Hilbert space H ; let 75 be
the restriction of 7 +to C*(Ai) s 0 1° 44 and '712 °ou, are
commuting morphisms of A, and A, into Z (H) ; hence there exists

a representation ¢ of A18 A2 in H such that
P (a0 ay) = T, (uy(ay)). To(uy(ay))
now there exists a representation ‘f\; of C‘)('(A1 ® A2) in H with
? (u(a)) = ¢(a) Vae aga, ;

in particular

Flulageay)) = fla;@ay) = 7 (u (a))). 7, (uy(a,))

= T(uy(a))euy(ay)) ;

this proves that 1Im ? = Im ¥ ; we must now show that ; is
faithful or,equivalently, that for each representation ¢ of

C*(A16 A2) in a space K there exists a representation ¢ of

In? in X such that . p = 6 ; set T = 6ow; by remark 1,

—_

7 admits restrictions T 1 and ‘8'2 ;Ti extends to a represen-
T

tation /;i of C*(Ai) in X ; since , and :sz commute, they

define a representation T of C*(A1) ® C*(Az) in K with

T(ua)euy(ay)) = Ti(a). Tylay)

‘r(a.1 ® a2)

= 5'(u(a1o a2)) ;

set = = T oq ) ; we have
s (¢ (ua;0ay))) = T(u(a)aeuylay)) = « (u(aeay))

- A
whence 6o p = 6,
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Corollary 1. If G, and G, are locally compact . groups, C*(G1xG2)

. v,
is canonically isomorphic to C*(G1) @ C*(Gz).

Bibliography [10].

n.3.2. Tensor products of states and representations.

If T3 is a representation of a Cr—algebra Ai y the alge-
braic tensor product 71'1 [ ’»72 can be extended to a represen-
tation 741 5 7(2 of A1é A2 ; this representation has the same
properties as ‘»71 ® 772 (see n.2.1.). On the other hand each
representation 77 of A15A2 admits restrictions 71 and “7:’2
which have properties analogous to those of § 2.2. Consider
now two states f1,f2 on A1,A2 ; f1® f2 is continuous for the

y norm because setting fi = W oW i we have
i

f1@f2 = W 0(7(167(2) ;

its extension to A, ¢ A, will be denoted by f1é f, 5 it is
easy to see that

7 ~ T, ® .
f15f2 f1 f2 ’

consequently f1é f2 is pure (resp. factorial) iff fi is.

Proposition 5. The mappings (f,,f5) —s f16 f, of S(4,)x

S(A2) into S(A1éA2) and ('7(1,'7\’2).__, 7151.—2 of

A A /V\

Ay x A2 into A1 ® A2 are continuous.

Proof. For the first mapping we must show that the mapping

(f1,f2) — (f1é f2)(a) is continuous for each a in A15 Ay

by equicontinuity we can take a in A @ A2 and the assertion

becomes trivial.
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The second mapping is obtained by passing to the quotients

in the following commutative diagramm :

P(A;) x P(4,) —_> P(4; ¢ 4,)

T 1 | l

and T is open as the direct product of two open mappings (. .e:

[2], 3.4.11).
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§ 4. Definition and first properties of the x crossnorm.

n.4.1. Definition of the * crossnorm.

Lemma 2. Let Ai be a concrete C”—algebra in a Hilbert space
Hi ; realize A1®.A2 in H1£ H2 with the operator norm I I
then for each state fi on Ai and each a in A1®4A2 we have
l(f1@ f2)(a)l £ fa ) ; for each representation m, of A; we have

(w407 )(a)l & nay.

Proof. We have the first inequality for each pair of vector
states since u1x1@ w X, = UJx1ax2 ; then for each pair
(f1,f2) where the states f1 and f2 have the form

2

f1 = “)x1,1 + coeo + “,x1,n1 with ZJNx1,iH =1
f2 S qu2,1 + oeees + W x2’n2 with %’ﬂxg’jHZ - 1
because
I(f,0f5)(a)l ¢ =2 ‘(“x1’i“‘“x2“9(a)!
= £ lwx1’i.x2,j (a) |
$ 2 Xy 0% Xy 0% A = naun

anf finally for each pair of states (f1,f2) by continuity
since the f. of the previous form are dense in S(Ai) (see

[2], 3.4.4).

Second assertion : TTi being a sum of cyclic representations
we can assume ﬁri is cyclic, in a space Ki’ with a cyclic
vector Xy which defines a state fi of Ai ; denote by f the
extension of f1® f2 to A , the uniform closure of A1® A2

in l?(H1o H2) and consider the representation ‘Wf of A in a
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space Hf ; as in [2], 2.4.2 one can construct an isomorphism
of Hp onto K,®K, which carries ’)Tf(a).xf into the vector
(T 1@ 7\’2)(3).(110x2) for each a in A,@ A, , and ';rf(a)
into (7% 1@ 2)(a) ; then

I(w,om)(a)ll = Ivg(a)ll < hal.

Lemma 3. Let A1 and A2 be abstract C*-algebras, 'Tti and f’i
representations of Ai with  Ker ’Tfi C Ker ¢ i 3 then

(v ,e7,)(a)ll > X(f,8 ¢,)(a)) Y ae€ar®a,.
Proof. Denote by Hi and Ki the spaces of T i and (i and set

B, = T,(ay) € f(Hi) ;

i
there exists a representation 6 of By in K, such that fi =

64 0 'h'i : we have the following mappings

4
Ayoh, MO B B, fo by Z(K”Kz)

and their composition is (’1 e (0 o 3 by the preceding lemma,

for each a in A10A2 :
NP @ f)(a) = N6 6 6)((7 0w p)(a)) )

¢ MT 0w y)(a) ).
QED

We are now in a position to define the ¥ crossnorm :

Theorem 2. Let A‘i and A2 be two C*-algebras and a an element
of their algebraic tensor product ; for all faithful represen-
tations w, of A; the number I (v, ® T ,)(a) I has the same |
value, which we shall denote by lall*‘ s I (l* is a C*-

crossnorm ; for each representation pi of Ai ’ (10 14 2 is

Co,«/t\.mc.\au/s
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for that norm ; finally lal, = sup QY ] ®p2)(a) I.
f: € A,

Definition 4. The completion of .1\1 0A2 for the » norm is

»
denoted by A1 ®A2 ; for each representation T4 or state fi
of Ai v Ty ;72 and f1;f2 are the extensions of 771 072
7
o A2 L]

and f10f2 to A1

The identity mapping of A1a A2 extends to a morphism
A13 A2 _ A1 é A2 y 80 that the second algebra appears as a

quotient of the first.
Example 4. Z¥(H,) @ L¢(H,) i thing but Z€(H . )
xample 4. 1 ») 1is nothing bu 1 @ Hy).

Theorem 3. If A1 or A2 is postliminar the * and v norms are

identical.

In fact for each a in A1 ® A2 we have

I
tal = sup Iw(a)H where T € A, é4,

but by proposition 2 such a m is equivalent to a tensor product,

and we get llak, & lal,.

QED

For each locally compact group G we dencte by C;(G) the
image of C (@) in the left regular representation of G in the

space LZ(G).

. *
Proposition 6. If G, and G, are locally compact groups, Cr(G1xG2)

. * e
is canonically isomorphic to Cr(G1) ® Cr(G2)'

Set G = G1 X (}2 ’ Ti and = left regular representation
of G; and G , U = canonical isomorphism of LZ(G1)£ L2(G2)

onto L2(G) ; for each fi in L1(Gi) y U carries the operator

(7 1@ T 2)(f10f2) into @ (f) where f(x1,x2) = f1(x1).f2(12);

these elements « (f) are contained and total in C:(G), thus
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the uniform closure of (71 ® 7‘2)(L1(G1)®L1(G2)) is carried
by U into C;(G) $ but this uniform closure is equal to C;(Gi) -3

C:(G2).

Corollary 2. If G1 and G2 are amenable, tpe # and v norms on
C*(G1) © C*(Gz) are equal.

*
By [15] a group G is amenable iff C;(G) ~ C (G) ; on the
other hand G1x G2 is amenable if G1 and G2 are.

Remark 2. Consider a locally compact group G and a C*-algebra
* v »

A; C(G)®A 1is nothing but the crossed ®WEproduct C’ (G,A)

defined by Zeller-Meier and Leptin among others, where the

action of G in A is trivial ; analogously C;(G)EA is equal

to -C;(G,A) 3 if moreover G is amenable we have C*(G,A) ~

C;(G,A), so that the # and v norms on C*(G)o A are identical.

Bibliography [24],[28].

n.4.2. The fundamental property of the # norm.

Theorem 4. The » norm is the smallest C - subcross norm on

A1® A2 .

Proof. By lemma 1 we can suppose that A.I and A2 have units e,

and €y Let p be a c- subcross norm on A10 A2 ; we have to
N

prove that for each Ty in Ai s

(T ,ex,)(a)l < p(a) Y aeh@A ; (2)

A A
let E be the set of all pairs (7.'1,1('2) in A,x A, for

which (2) holds ; E is closed because the mapping (-r 1,72)

A Pl
—— 715 72 of A1 xA2 into A15 A2 is continuous (ef.

—
proposition 5) and the mapping T —s lT(a)l of A, ®A,
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into fR+ is lower semicontinuous ([2], 3.3.2). We will now show
that E is dense in 21 x /1;.2 s suppose it is not dense ; its com-
plement contains a non empty elementary open set of the form

U1x U2 , Where Ui is the set of all ’;Ti which“;ot identically

zero on some ideal Ii of Ai ;3 choose a non zero positive ay in

Ii ;s then

(71,T2)€E .=—>‘7T1(a1) or Tz(ag) = 0

o .

= (7,07,)(a,®a,)
Denote by A the completion of A1@ A2 under the norm p, by B
the commutative sub C*-algebra of A1 generated by a, and €4
by BeA2 the closure of B®A2 in A, by ¢ an irreducible

representation of B ®A, in a space K such that F(a10 a2) # 0 ;

since ¢ | B is factorial and of type I we can write

4
K = KoKk,
f(bj@b,) = (b)) @ (,(b))  YbeB, byed,

where (¢, and (., are irreducible representations of B and A,

in K, and K,. On the other hand by [2], 2.10.2, there exist
>K

a Hilbert space H and an jrreducible representation 7 of A in

H such that K is invariant under “:T(B@A2) and (7 |Be® AZ)K

s 7 A2 is factorial, and of type I since its restric-
tion to K is ¢ Ao, which is a multiple of Po s thus 7 is a
tensor product of two irreducible representations 1,‘7(2 of
A,y A, ; we have (_‘7(1,'7(2)6 E and (71@'7.-2)(a1®a2) is
not O since its restriction to K is P(a1a a2) # 0 ; so we

have got a contradiction.
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Corollary 3. If A1 and A2 are simple, A1 gAz is simple too.

It is sufficient to show that every irreducible represen-
tation ™ of A @A, is faithful ; denote by ™, and T, the
restrictions of a1 ; 1’1A1®‘A2 is composed of the two following
mappings

w

Moy 5w ()" BT, (A" Y L(H)

where u(a1®32) = ')T1(a1)6>7r2(a2) and v(T1®T2) = 1,75 ;
u is faithful because g and W, are, and v is faithful by
proposition O ; thus WTIA1a A, 1is faithful and a . Il (a)ll

is a C"- subcross norm on A1®A2 3 then ™ (a)lt ) Ua i,

for each a in A1€)A2 and consequently for each a in A1$ A2 .

Bibliography [ 201].

n.4.3. The property (T).

Definition 5. A O*—algebra A is said to have property (T) if

for every C*—algebra B the » and v norms on A®B coincide.
Then by theorem 4 all C"- subcross norms are identical. By

theorem 3 every postliminar C*-algebra has property (T), and
by remark 2 so does the C*-algebra of every amenable locally

compact group.

Proposition 7. If A is the closure of the union of a family

of sub C*-algebras A; which have property (T), then A has also
property (T).

The union UAin is dense in A®B for the topology
of the v norm ; the » and v norms are continuous functions

for thid topology ; on the other hand the restrictions of
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*
these norms to each AieiB are C - subcross norms, and con-

sequently must coincide.

Remark 3. It is unknown whether the property (T) passes to

the quotients.

Example 5 (of a C*—algebra not having property (T)).

Denote by G the free group with two generators u and v, by
7 the left regular representation of G in H = L2(G) , by A
the C*-algebra generated by «(G) , by U the automorphism
fr— % of H , which carries 7w into the right regular re-
presentation, and by ¢ the representation of AeA 1in H defi-
ned by P(a1®a2) = a,.Ua,U. The » norm on A®A 1is the ope-
rator norm in the Hilbert space I{éIIAJL2(Gme) s we shall

prove that ¢ 1s not continuous for this norm.

Suppose f is continuous ; choose an ¢ with 0 < €< 1/12 ;s let
5 be the Dirac function at the unit element on G, considered
as an element of H , 7(2 = W®&7 the left regular represen-

tation of Gx G ; it is easy to chek that

(woo ) (w2(e,8)) = 1 Yget ;

on the other hand the von Neumann algebra B generated by

A @A 1is standard and it follows that every normal state of
?) is vectoriql ; every state of .AaA can be extended to a
state of D , and thus is a weak limit of vector states ;s in

particular thereMa normed vector x in He H verifying
lw (72w - (e ) (7Pww T ¢ e2/2
and the same for v ; this is equivalent to

(72w lx|x) -1 | ¢« £2/72
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it follows that
*Z(u,u)_1.x - x | ¢

and the same for v. For every subset E of GxG let P, be

E
the projection in L2(Gx G) associated with E ; we have
P, B = "r(’z(g1,g2).PE. 1~"2(g1,g2)'1 Y g,:8,¢ G ;
€118
hence
(P x| x) = (P 172(u,u)—1.x lﬁrg(u,u)—1.x)

(u,u)E E°

(g x 1x) = P, g x 10 & 1(Pg x 1x) = (g x l72(u,u)" %)

+ 1P x 2w ) - Ry 2w x P (u,u) ) |

&

I\
N

(P(u’u)Exlx) y (Ppxlx)-2¢ VE . (3)

Take E = B x G where B is the set of all words of the form
viPvP. ... with m # 0 ; the sets (u,u)®E are mutually dis-

joint, so that
by virtue of (3)
(P(u,u)“Ex’x) > (Pgxlx)-2ne ;
it follows from (4) that
3(PEX‘X)—6€ RS 1

or

(Pp,g x1x) & 1/3+2¢
in the same manner we get by taking E = AxB , A = G-B

(P < 1/3 + 2 €

Axg X 1X) S
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but P + P = 1 , so that

BxG AXG

1 = (x]x) < 2/3 + 4 ¢ < 1
which is absurd.
Remark 4. The analogous of corollary 3 for A15A2 is not
true. In fact denote by @ the von Neumann algebra (factor of

type II1) generated by A ; it is simple by [1], p. 275, cor. 3 ;
let 6 be the representation of @ g & in H defined by

0’(a160a2) = a; a, ;

consider the following diagramm

Aer o Qe & _S . /)
| =
Aoh o &

1]

if x is injective, 5¢T ¢ will pass to the quotient in a
mapping AdA ._>-€(H) ; but we have just proved that this
is not the case ; then x is not injective and & ® & is not

simple.

Bibliography [20].
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£ 5. Tensor products of states and of continuous linear functionals.

n.5.1. Tensor provducts of continuoue linear functionals.

- Proposition 8. If fi is a continuous linear functional on Ai .

one has
I(f,@f5)(a) ] & WL - KE ) - Ula ), V ae A oA, .
Proof. W# can suppose Nfi I =1 ; if we embed Ai in its enve-

L
loping von Neumann algebra A! A1¢1A2 is embedded in the
- , .
algebra A'1'3A§ ; let fi = uy ¢i be the polar decomposition
of fi where uy is a partially isometric element in Ag and ?i
a state ; for each a = Z a1,n&32,n € A,® A, we have

(£, ©f,)(a)

il

/
< f1 \F ,n) 'f2(3‘2,n)

Z ¢ (uy 8y e @y(u, 8y )

(¢, <¢5)((u,0u,)a)
whence by lemma 2

I(f1dof2)(a)! € Wu,euyla k, < ka ¥ .

I Corolliary 4. The » norm is not smalier than the 2 norm.

| Proposition 9. If A1 (or A2) is commutative, the norms v, »

| and A are identical.

By theorem 3 the first two are identical ; writing A.I =
C,(X) we have A13A2 ~ _(_:o(x,Az) ; hence the norm 2 is a

c*-crossnorm and by theorem 4 is greater than the » norm.
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Definition 6. If )l‘( is any C*- crossnorm on A1 OAZ and

if fi is a continuous linear functional on Ai , by proposition

o
8, f1 ® f2 extends to a continuous linear functional on A1a A2

«
(see definition 1), which we denote by f, ® f, ; we have

)'f10f2! = Ilf1l(.7f211.

In the same manner if ‘T(i is a representation of Ai we get a
. « ol ¥ o
representation 71 @ W, of A10A2 s if fi is a atate, f1o f2
is also a state ; by the proof of lemma 2 , Te df is equi-
1772
£
valent to Te ® W P hence f1:f2 is factorial (resp. pure)

1 2
iff fi has the same property.

Proposition 10. For each non Zero element a in A1 ;Az there

exist. pure states f, and f, such that (f1®f2)(a) #0 .

Proof. Realize A; in some Hilbert space H; and A,®4A, in
L
H1@ H2 ; there exist vectorsx and y in H,,é H2 such that
(a x!y) .= 0 ; then there exist vectors Xy and ¥y in I-Ii such

that

(30110 x2ly1@y2) # 0

(w )la) # 0 3

x1,¥1 % ¥ %5075

”x y is a linear combination of states, hence there exist
i1 .

states f, and f, such that (f10 f2)(a) # 0 ; finally t; is

a weak limit of linear combinations of pures states.

Proposition 11. For every a in A.'o A2 we have

nan? = sup (f1@f2)(b"a*ab)
*

where fi is a state of Ai and b an element of A1 0A2 with

(f,0£,)(b"D) < 1 .
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Proof. Clearly the lert handside is greater than the right one.
Tc prove the converse inequality realize Ai in & Hilbert space
Hi and A = A1@ A2 in H = H1£ H2 ; by decomposing Hi in a
direct sum of cyclic subspaces we can suppose Ai admites a cyclic
unit vector X; % then x = X, X, is cyclic for A ; 1let fi =
w ;3 for each &€ > 0 there exists an y in H with Fyr { 1

x5

and Ha yh ) Jlaj- € ; there exist a b ¢ A with iy - b x
€& and ¥b xl € 1 ; then

nall- & & nwayl
 lia(y-bx)i +iHabdbxi

iabxl ) nal-€-lalceE

(Cf1@ fz)(b*afa b))i (bxa”a b x lx)i

= Na bx |

> rall- & - kalé;
and finally

* . 2
(f1® fz)(b b) = ¥b xl g 1 .
Bivliography [24],(28].
n.5.2. Restrictions of states.
Consider =cme C%— crossnorm W &{on A15>A2 , scome state

f on A15 Az , T = ‘“X"?' , and the restriction T of % to
Ai ; set fi = UJxo?fl : ?rfi is equivalent to the subrepresen-

tation of 7, in the subspace 'ii(Ai).x ; the central sup-
port of this subspace in ﬁi(Ai)' is I because it conyains

all vectors 'ﬁj(aj).‘ﬁi(ai).x where j # i ; hence T is
A

gquasiequivalent to w, . We call f, the restriction of £ te Ai H
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we have

f1(a1) lim f(a1ovt)

f2(a2) lim f(usa a2)

where (us) and (vt) are approiimate identities (arbitrary) of
A1 and A2 s if £ is factorial, f1 and f2 are also factorial ;
finally the restrictions of a tensor product f1;vf2 are f1

and f2 .

: «
Proposition 12. Let f be a pure state of A19A2 ’ f1 and f2

ol
its restrictions ; if f, (or f2) is pure we have f = f.@ f, .

Proof. The projection E onto the subspace ‘N1(A1).x 'is minimal

in 11(A1)' , hence for each T in ﬂ1(A1)' » T is a scalar

o

h(T) ; if T = ’F2(a2) we have

h(72(32)) = (Tz(az)on, X)
= (7 2(a2).x| x) = f,(ay)
then
f(a1@ 32) = (W’Z(az).7r1(a1).x | x)

= (TrZ(aZ)E'T1(a1)E'x'x)
= f2(az).(ﬁr1(a1).x' x)

= f2(a2).f1(a1) .

Proposition 13. In order that every pure state of A1g A2 be
a tensor product, it is necessary and sufficient that A1 or

A2 is commutative.

Sufficiency : suppose A1 is commutative and take a pure state
o
f of A10A2 ;s the first restriction L of "'Tf is a multi-

ple of some character X , so that the first restriction f1
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of f is equal to X ; by proposition 12 we have f = f16( f2.

Necessity : suppose Ai is not commutative ; then it admits an

irreducible representation T ; in a space H; of dimensdon 3 2 ;

set W = ’k‘1 :72 , take a vector x in H19‘H2 which is not

decomposable, and set f= w x ° 7 3 we shall prove that

the pure state f is not a tensor product ; suppose the contrary :
« . . a
f = f1o f2 3 them ~vr is equivalent to e © Mo hence w4

1 2
is equivalent to We 3 there exists x,; € Hi such that fi
i

Wxio 1T i ; then

t

o
- o N DJ Y = w °
£ (ux1 * q) e ( x2° ) X,0X, e 3

this implies that x is proportional to x1¢>x2 y which is a

contradiction.
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$ 6. Functorial properties of A15 A2 and A1; A2 .

Let us consider morphisms uy s Ai _— Bi where Ai and

Bi are C*—algebras ; the function on Aj@A, : a .__.>I(u1ou2)(a)n
is a C'~ subcross seminorm, consequently less than Kal ; thus
u;® u, can be extended to a morphism

u,eu, : A1;A2 _— B1;B2 .
On the other hand realizing ]31 and 132 in some Hilbert spaces
we get & morphism

u1’: U, : K‘E;AZ —_— 31;32 ;
clearly if u, and u, are onto, u15 u, and u1; u, are also
onto ; if u, and u, are injective, the same holds for u1; U, .
Remark 5. It is not known whether u, and U, being injective
implies u © Uy is injective.

1

Proposition 14. Suppose Im uy is a closed twosided ideal

of Bi ;s then we have

v
Ker u,® u, = Ker u, ® A2 + A1o Ker u,
where the bar means the closure in A1é A2 .

! M v
Proof. Set A=A18A2 y U= u,®u, , I =Kerui ’ Ji=I;nui ’

i
I = 110 A2 + A1o 12 ;3 I is a closed twosided ideal of A &=£.

£EEF 5 %) ; the canonical decomposition of uy

u! u
Ai_ 1 EJi 1=.Bi

gives rise to the following decomposition :

] "
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to— gt Yy " o_ a0 Y
where u -u1gu2 and u -u1eu5 .

We first prove that u" is injective ; it suffices to show that
every non degenerate subcross representation T of J1 0J2 can
be extended to a subcross representation P of B1¢ B2 ; denote
by T, and ¥, the (non degenerate) restrictions of T ; they

can be extended to representations f , and ¢, of B, and B,
with the same weak:. closures (cf.[2], 2.10.4) ; f, and ¢, are

commuting and define a representation ¢ of B,e B, which has

the desired properties.

We have now to prove our proposition in the case where u, and
u, are surjective ; denote by w the canonical morphism of A
onto A/I ; clearly Ker u > I and it is sufficient to prove
that

huCa)l 3 Nhw(a)y Y a ¢ AeA, ;

w(a1a32) depends only on u1(a1) and uz'(az), let

w(a1¢ 32) = v(u1(a1),u2(a2))
where v is a bilinear mapping B1x 32 —= A/I ; v defines
a linear mapping (which is a morphism) v' : B,eB, — > A/I
with

v'(u(a)) = w(a) Y a ¢ A10A2 3
take b, in B, and a; in A; with ui(ai) = b; ; we have
| v'(b1o bz)l = lv'(u(a1@a2))ll = Hw(a1qp a2) '}
$ lla1ll . ya2ﬂ;

since the norm of Bi is the quotient norm of the norm of Ai
we get

v (byob)l & Mo b . b, |

so that the function on 31032 : b ——slv'(b)l is a C*-
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subcross seminorm ;3 then for every a ¢ A1¢)A2 we have

Kw(a) = Iv'(u(a))y RS Nu(a)/lv

Corollary 5. If J; is a closed twosided ideal of A, J1é J5

can be identified with a closed twosided ideal of A1c>A2 .

Corollary 6. Consider morphisms u; s Ai —_ Bi and suppose

A, (or A2) is postliminar ; then
Ker u15'u2 = Ker u15 U, = Ker u1a A2 + A e Ker Uy .
Proof. The rlght handside is a closed twosided ideal by [2],

1.8.4 ; set Ii = Ker u; o, Ci = Im u; j I1 and C1 are postli-

minar ; the canonical decomposition of uy gives rise ta the

following commutative diagramm :

B

A2](“,{ 0002} /
A, =c.éc \\\\\\‘ 5

B

1 2

v
®
X
@

B

u" is injective since uz is injective, and we have
v

v *
Ker u1o u2 = Ker u1a u2 = Ker u'

Bibliography [10].
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§ 7. Study of the representations of &

n

n.7.1. The mappings 1, ﬂo and 1 .

As before A = A]@ A, denoies the completion of A1@ A,

for some C = Crossnorm | s A is a quotient of A15A2 ;
v A
hence Prim 3 is a closed subset of Prim (A1@ A2) sy A a
//v\\ A ~ '\
Closed subset of A4® A2 » and A a Borel Subset of Aje A2 .
&«
The mapping (1'1,7'2) —_— T, ® 72 (seedefinition 6)
gives rise to two mappings
A A A
nc A.] x A2 ﬂ A
la) N [
n AL« A2 — A

analogously associating to every Tepresentation 7 of A its

restrictions we get a mapping

N [

= mn
n . 3 — A« A,

Me N is the identity, so that 1 is injective ang R Surjective.
Theorem 5. The mapping I, is bicontinuous ; its image is dense

if « = %,

|

ggggi. It is continuous by prop031t10n 5 ; the last assertion
follows from the last assertion of theorem 2 3 let us now
brove that the mapping T . T @”WZ f—— 7& is continuoys ;
let U be an open subset of A : the set of a11 7?1 whicn are

-1

nos 1dentlcally Zero on some subset I of A i T (U) iz the

set of all L @75 which are not 1dentlcallv Z_2ro or I1® A

2 ’
hence it ig open.

Theorem 6. 1t A1 (or A2) is postliminar, M, and M are tijec-

tive ; morecver if A7 and A? are separable the ioilowing con-
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ditions are equivalent

(i) A, or A, is postliminar
1 2

A PN

(ii) the mapping n, : ‘I1x A, — Ao A, is bijective
NN

(111) the mapping M : X, xR, —5 K;4 4, 1s bijective.

Proof. The first assertion has been proved in proposition 2;
clearly (iii) implies (ii) ; to prove that (ii) implies (i)
suppose A1 and A2 are separabhle and non postliminar 3 by [31],
th.1 there exists a representation Ty of A; such that 'ﬂ&(Ai)'
is a type II, hyperfinite factor ; by [9], lemme 2.1, there

exist a Hilbert space K, a factor 55 in K and two isomoephisms

Py &+ w5 B
F101T1 and F29172 are commuting representations and define
a representation of A1 5.&2 in K, which is irreducible and
not equivalent to any tensor product since its restrictions

are not of type I.

Remark 6. It is not known whether one can replace v by any o

in (ii) and (iii).

Bibliography (8][14] .

n.7.2. Borel properties of [L and ] .

In this and the following numbers we suppose A1 and 52
separable ; for each n = 1,2,... Tﬁ we take a Hilbert space
. . . L .
Hn of dimension n and identify Hna Hm with Hnm by means
of a fixed isomorphism ; the spaces Facn(Ai), Facn(A), Fac (Ai),
Pac (A) are endowed with their usual Borel structures ; G’i

’ [a)
and © are the canonical mappings Fac (A;) — A; and
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Fac (A) — 572 ; ﬂi and R are the quafi-equivalence relations
in Pac (Ai) and PFac (A) ; (Pac (Ai) x PFac (Az))/(ﬂ.lx?\z)
has the quotient Borel structure of the product Borel structure

N la)
and A1x A2 has the product Borel structure ; the canonical

bijection
(Pac (A,) x Fac (Az))/(g1* R2) —»217‘32 (5)

is easily seen to be Borel.

o . .
Lemma 4. The mapping (1’1,1’2) —> T,® T, of Fac (AT) x

PFac (A2) into Pac (A) is Borel.

It suffices to show that for each n and m the mapping

Facn(A1) X Facm(Az) —— Pac__(A) is Borel ; or that are Borel

nm
the mappings

(TPWZ)h—+(71‘72HaLx
where a € A, x ¢ Hné Hm 3 or the mappings
(7 1T 2) — (7‘1o'w'2)(a1o a2).(x1o x2)
= 'W1(a1).x1¢ ‘7t’2(a.2).x2
but these mappings are continuous.

Remark 7. We do not know whether N is Borel, because we do not

‘know whether the mapping (5) is biborel.

Lemma 5. The restriction mapping = p__.(ﬂf1,ﬂ'2) of PFac (A)

into Pac (A1)x Fac (A2) is Borel.

It is sufficient to show that for each n the mapping
Faun(A) _ Facn(A1)x Facn(Az) is Borel ; or that the map-

pings m’+———>'ﬁ1(a1).x1 are Borel for a, € A, , x, e H 3
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but such a mapping is the pointwise limit of the mappings

T — 7((a1@ vt).x and we can choose a countable approxi-

mate identity (Vt)‘

Proposition 15. The mepping n is Borel.

In fact the composed mapping

Fac (A) —> Pac (A;)x Fac (A)) —» (Fac (A)x Fac (Az)),'(ﬂ1xf<2;

[\
is Borel, and n is obtained from it by passing to the quotient: .

Proposition 16. The image of M is a Borel subset of 2 .

It suffices to prove that the set E = C>'1(Im n) is
Borel in Pac (A) ; for each w in PFac (A) set f(mT) = 710‘172
where W, and T, are the restrictions of T ;7 T is a Borel

mapping ; we have

E §w ] £f(%) is quasi-equivalent to * }

{7l (%, f(w) ¢ graph or A 3,

"

but this graph is Borel by [2], 7.2.3, and the mapping —
(*, f(x)) is Borel.

Bibliography [81],[14].

: n
n.7.3. Product of measures on 31 and A2 .

~ o
Given two standard Borel measures P and /-*2 on A1 and A2
we shall construct a "product" measure on :\.‘ ; the construction

is made somewhat difficult by the fact quoted in remark 7.
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Proposition 17. There existsa standard Borel subset Ei of Ai ,
carrying My and such that n IE1x E2 is a Borel isomorphism

of E1x E2 onto a standard Borel subset of 2 3 1f one takes

Ei with these properties ang sets pm = TT(r‘1¢‘F~2) s the quasi-
equivalence class ﬁfqrod,‘(w ) is the tensor product of the
quasi-equivalence classes _[oﬂri.d,a1(7l1) and /fq%z.d/*z(w'2) ;

moreover M is central iff r1 and )*2 are central.

Proof. By [12], th. 6.3 , there exist a standard Borel subset
E, earrying ¥; and a Borel mapping Ry : E; —> Pac (Ai)

such that C)io R, = 1identity ; consider the (Borel) composed
mapping

E,x E, 2, Pac (A,) x Fac (A2)_b_> Fac (A) S %

where a = R1x R2 sy b = tensor product ;and ¢ = restriction

of ® to Im (boa) ; coboa is the restriction of M to

E1x E2 ;s hence boa is injective and its image meets each

quasi-equivalence class in one point at most ; bytr2], B 21 ,

this image is Borel standard and bea 1is a Borel isomorphism ;

by [2], 7.2.3, ¢ is a Borel isomorphism and its image, which

is nothing but 1 (E1x E2) s 1s Borel standard ; we have thus

proved the first assertion.

The measure K defined in the statement is carried by E =;.1(E1 E2) $

let R be the inverse mapping of ¢ ; the quasi-equivalence classes
® @

‘/ Tedp(7w) and .[ T'iodp~i(m'i) contain respectively

the representations ¢ = /: R(7 )edpe (7)) and Pi =

@
/: Ri(ﬁri).drAi(a'i) y but by n.2.1 we have

®
152
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transporting by means of I we get

@
[16f0, = /R(’nf).dy(v) ! €7)
E

which proves the second assertion.

As for the last assertion denote by aA(w ), & Tri), a and

ﬂi the von Neumann algebras generated by R(T), Ri(wi), ¢

- and pi 3 to say that p is central amounts to say that a -
/ea(’i( ).dp (7 ) ; but according to (6) and (7), & can be iden-
tified with 01 ° a2 and /Qa (w ).dp (7w ) with the tensor
product /ea(71).dp1(7r 1) ® /”a(-r 2).dp2(772) ; since we
have always @ ¢ /?z('r ).ds (¥ ) and ai ¢ /Oa (T«'i).d)li(‘l(i)
we shall have & = /wd (% ).dp (7 ) iff a; =/ua(7i).dpi(7i),

the last assertion being a consequence of the

Lemma 6. If Oki < h, are von Neumann algebras in a Hilbert

i
S - @ P impl i = P

space H., 019 &, = %1 ¢« >, implies \di = Py .

Proof : suppose- A, # ?)1 ; there exists T ¢ 31 y T ¢ a1 ;

then TeoI § &, ®© K(Hz) as is easily deduced from the matrix

representation of the elements of d1 ;[(Hz) .

Bibliography [8].

<
n.7.4. Some properties of 7:13372 and A10A2 .

Lemma 7. Consider C"- algebras A; and B; in & Hilbert space:
Hi and A15A2 , B1Q;‘B2 as C*- algebras in H1£H2 ; then
BieBy< Ao A, implies B, c A; .

Suppose B, ¢ A, ; there exists a € B, , a ¢ A, ; there
exists a continuous linear functional f1 on .p(H1) which is
zero on A1 but not on a ; take a continuous linear form ‘on

-@(Hz) which is non zero on B, ; by proposition 8 we have a
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continuous linear funcjional f1§f2 on ,,[)(H.') gf(Hz) ; it is

zZero on A1é A.2 but not on B1; B2 - which is a éontradiction.

Definition 7. An irreducible representation 7 of a ¢’ algebra

"A in a space H is traceable (resp. compact) if 7 (A) contains
(resp. is equal to) /?(H).

Proposition 18. Let wi be an irreducible representation of

Ai HENT 13 ”172 is traceable (resp. compact) if and only if 7w

1
| and T 5 have the same property.

It is known that ‘71(31)®72(a2) is compact iff 771(a1)
o«
1@

o
are, and W, e T 5 is traceable if =

and ’ﬁz(a2) are ; hence 7 W, 1s compact iff and P

9
] and ‘T('Z are ; the con-

verse is a consequence of lemma 7 and example 4.

Theorem 7. The C#— algebra A13 A2 is liminar (resp. post-

liminar) if and only if A, and A, have the same property.

N
Proof. Suppose Ai is liminar ; every 7 € A1¢7 A2 is of the
<
form ’vT1 8 T2 y, hence compact since 1('1 and ﬁ2 are compact ;

consequently A1;A2 is liminar. Conversely if ,11.16:91&2 is
liminar,for each Trie Ki y T is compact since 7?15; 72 is
and Ai is liminar.

Suppose now Ai is postliminar ; each factor representation

o o
m of A ® A is of the form 71@W2,hence is of type I ;

1 2
by [ 171, A1; A, 1is postliminar. Conversely if A, §A2 is
/e
postliminar,for each T(i € Ai , '7(1:'7 > is of type I ;it
follows ([161], ch.3,§ 4) that T; is of type I ; hence A; is

postliminar.
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Proposition 19. Each compact irreducible representation of

A1; A2 is the tensor product of two compact irreducible re-

presentations.

It suffices to prove that if & is a continuous factor in
some Hilbert space H, and S and T are non zero elements in &
and Q' respectively, then ST 1is not compact ; we can suppose
5 and T are positive because ST compact implies S T TfS* =
S S¥T T* compact ; then there exist spectral projections PE

and PF of S and T such that

Sg » h > 0 and T, 3 k > 0 ;

E

for x € EAF we have Tx ¢ E, hence
STx K hiTxV ) hkixl ;

EAF 1is infinite dimensional since there exist projections
Q1, Q2,... in @' , non zero, mutually orthogonal, whose
sum is P, , and we have PrQ, # 0 Y n ; this proves that

ST is- not compact.

Bibliography [8),[221,{281,[29].

Remark 8. It is not known whether every traceable irreducible

ol
representation of A1® A2 is a tensor product.
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§ 8. Further results on the type of A 3 A

1 2

n.8.1. Antiliminar algebras.

We shall make use of the following construction : let f be
a continuous linear functional on A1 ; denote by Rf the mapping

N
feI of A,@ A into € ® A, ~ A, ; for each a = 2 a
1 2 2 2 ey

1,n@32,n
in A1® A2 we have
N
Rf(a) = ,“§4 < f,a1’n > .8y p

and for each continuous linear functional g on A2

< g,Re(a) > = 2 < f,a1’n > . < g8y >

= < feg, a > ;

hence by proposition 8

I Re(a) b = sup |<g,Re(a)>1¢ Afl.ral ;

Hyn <4
thus Rf extends to a continuous linear mapping Rf : A1; A2 ——

A2 and we have
< g Rela) > = <fog, a> (8)

.
for each a in A,®A, and g in Aé ; note that HRfll < Wt

that Rf is surjective and that it is positive if f is positive.
In the same manner one can define mappings Lg : A1;'A2 — A1.
We set A = A

Lemma 8. For every non zero a in A there exists a pure state

f on A, such that Rf(a) # O

1

This is a consequence of proposition 10.

Emaan
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_—

Lemma 9. If I is a twosided ideal of A , Rf(I) is a twosided

ideal of A2.

Proof. We have to show that

xe I, 3-2 € A2 = 3-2 Rf(X) € Rf(I) H

take an ¢ > O ; there exist an y =<Z_y1’nczo Y2,n in A, @A

in A, with Jda,nt g 1 and

with Nx -yl ¢& , and an a, 1 1

Vey Yy n =¥y nh € /20y pon Voo
we then have
I a, Rf(x) - a, Rf(y) g Nas I« HE . €

lay Re(y) - Re((ay ay)y) W = NRp(Z Yi,n®8p n -2 a,¥q, @ag¥, o)l

WRe(Z (yy - 24y pleayy, o)

A

hasl . ey . ¢
I'Re((a1085)y) - Rp((ajeay)x) U = K Rp((a,@ a,) (y-x)) I
olay - nfy . e
whence

lay Re(x) = Re((ay@ay)x) 1 & 3 ya, . 0fHe;

since Rf((a1® az)x) belongs to Rf(I) and since ¢ is arbi-

trary, the assertion follows.

Lemma 10. Denote by Hf ,'ﬁf y Xgp respectively the Hilbert
space, representation and cyclic vector associated with the
state f of A1 y by ¢ a representation of A2 in a space K, and

by y an element of K ; for each a ¢ A we have

< wy ot (Re(@)) > = <oy e (Tep)(a)> (9)
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It is sufficient to prove (9) when a has the form a1® a2 ;

in that case we have

<wy ,((Rﬂa))> = < wg F( < f,a, >.a2)>
= < f,a, > .< Wiy ¢Flay) >
= <wxf’7'—f(a1)>'<wy"o(32)>
= <wxf®wy,(‘::’f®f)(a1®a2)> .
Lemma 11. If f is a pure state and I a liminar closed twosided

ideal of A , Rf(I) is liminar.

Proof. We have to show that for each irreducible representa-

tion p of A2 in a space K, one has
p(RAD)) « LEEX)
since I is liminar we have
(7 o8 P )T ¢ LEH K

by (9)

< g0 (Rp(2)) > g, (T.@¢)(a) > (10)

I
A
&

Xf
for every vector state g on Z (K) ; this is still true for

every state of the form g = uJy +eoon uJy , then, by con-
1 n

tinuity, for every state of 17(K) (see [2]1, 3.4.4) ; and finally

for every continuous linear functional g on L (k). 1f g is null

. ¥ ) a
on ZE(K), W, ®8 is null on /Y’(Hfa K), hence on the set
f

(ﬁrf.; ¢)(I) 3 by (10), g is null on e(Rf(I)) ; and this proves

our assertion.

x +*
Theorem 8. The C - algebra A@ A2 is antiliminar if and only

if A1 or A2 is antiliminar.
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The condition is necessary because if Ai contains a non
zero liminar closed twosided ideal Ii y 115'12 is a non zero
liminar closed twosided ideal of A. Conversely suppose A2 is
antiliminar ; let I be a liminar closed twosided ideal of A ;
by lemma 11, Rf(I) is null for each pure state f of A, , and

by lemma 8 this implies that I is null.

¥

Remark 9. If for some C - crossnorm I h ’ ATE;A2 is anti-

liminar, A1 or A2 is antiliminar ; in fact if Ai contains a

non zero liminar ideal I, , I,¢ I, (the closure in A1; A2) is

a non zero closed twosided ideal in A13 A2 , and is liminar

‘(;Af'wﬂ'\f/t‘k 71.

since it is &ESooErenr of I1; 12 - It is not known whether

A, or A, antiliminar implies A1; A, antiliminar.

1

Bibliography [22 1.

n.8.2. Algebras with continuous trace.

For any C*- algebra A we denote by Py the set of all po-
N
sitive elements a of A for which the function on A : 7 — 5

Tr w(a) is finite and continuousj;and by m the linear

A
subspace spanned by P, 5 we recall that m, is a twosided
ideal and that A is said to be with continuous trace if mA is

dense in A (seel2], 4.5.2).

*
We set A = A1@A2.

Lemma 12. If f is a pure state of A, we have R.(p,) ¢ p, -
2= 1 £ ¥ A A2

Proof. Choose an orthonormal basis (xi) of He with x_ = x. ,

and set fi = tdx ‘fﬁf R fO = f ; let ¢ be an irreducible
i
representation of A2 in a space K , (yj) an orthonormal basis

*

of K ; for every a in p, , Tr((T:f® p)(a)) is finite ; but
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rr((wee ¢ )(a)) Z ((Teee)(a)xey;| %0y,

3 J J
= Z <w_@w,_ , (T 8¢)(a) >
y Xy yj f

by (9)

1

Z <w_ , p(Rs (1)) >
Z Tr p(R, (a))
¢ 1

Tr ¢(Re(a)) + Z Tr P(Rfi(a)) ;
L#l,

since Rf(a) and Rf (a) are positive, we see that Tr p(Rf(a))
i
and Tr {J(Rf (a)) are finite ; the function ¢ r—s Tr(kﬁf;(’)(a))
i

is finite and continuous since a ¢ Py 5 for each i the function

¢ — Tr p(Rf.(a)) is lower semicontinuous ([2], 3.5.9), hence
i

the function 2. Tr ,H(Rf (a)) is l.s.c.; Tr p(Rf(a)) is upper
t#o i

semicontinuous, and also l.s.c., hence continuous ; this proves

that Rf(a) € pA2 .

* "4
&{be any C - crossnorm on A1@ A2 H A1@ A2

* .
is a C - algebra with continuous trace if and only if A1 and

A2 have the same property.

Sufficiency : since m is dense in Ai y My ® my is dense

i 1 2
. & .
in A1e A2 and generated by elements a,® a, with a; € pAi :

./‘\
each T ¢ A1@ A2 is of the form 771@ T oo for a; ¢ pAi we

A

have

Tr’ﬁ(a1@ a2) = Tr 71(31).Tr"72(32) ;
T~ A~
since A13 A2 is homeomorphic to A1x A2 , we see that the

function ¥ —> Tr'r(a1® a2) is finite and continuous.

”
Necessity : A1§ A2 is liminar, hence identical to A1® A2 )

take a pure state f of A, ; by lemma 12, R.(m,) ¢ m ; since
1 fY7A A2
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m, is dense in A and R, is surjective, m is dense in A, .
A f A2 2

Remark 10. A similar result holds for the ¢ - algebras with

generalized contiauous trace (cf. [221], th.2).

n.8.%. The largest postliminar ideal of A1 JAZ

Proposition 20. Suppose A, (or A2) has property (T) ; let Ki

be the largest postliminar ideal of Ai ; then the largest
postliminar ideal of A1é A, is K, & K,
Proof. First, K1é K2 is a postliminar ideal in A15'A2 ;5 now

consider the following ideals

A, ® A2//A1& K2 and A15 K2/ K1; K2 are respectively iso-

1
morphic to A1& A2/ K, and A1/ K1$I%2 (cf. proposition
14), hence antiliminar by theorem 8 : A1& A2//A16 K2 is iso-
morphic to  (A;6 A,/ K 6 K,)/ (A,6K,/K,&K,) ; this shows
that A1& A2//K1é K2 is antiliminar ; hence K1& K2 is the

largest postliminar ideal in A1é A2 .

Remark 11. It is not known whether the above proposition still

holds without assumption.

Bibliography [22].
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§ 9. Temsor products of traces.

Given two von Neumann algebras a1, (32 and two faithful
normal semifinite traces t1, t2 on (31, 02 s Onécan construct
canonically a faithful normal semifinite trace t, 51;2 on

(31 ® 6‘22 such that

; - . +
(t1@ t2)(8.1@ a2) = t1(a1).t2(a2) 4 a; e di
(here and in the sequel we agree that 0.9 = oo .0 = 0) ; in

order to do this, denote by my the definition ideal of ti

and form the tensor product of the Hilbert algebras m% , mg H
the von Neumann algebra 'u(m%a: mé) is isomorphic to 6215 a2
and it suffices to transport by means of this isomorphism the

1
natural trace of U(m?@mg).

We consider some C - crossnorm Il, on Ao A, .

Proposition 21. Let fi be a semifinite lower semicontinuous

(s.f.1l.s.c.) trace on A, ; one can construct canonically a

s.f.l.s.c. trace f on A1; A2 such that the representation

associated with f is quasi-equivalent to the tensor product

of those associated with f1 and f2 , and that f(a1e a2) =
+

f1(a1).f2(a2) for every ay in Ai .

Proof. Denote by m, the definition ideal of fi y by Ty the
representation associated with fi y by ai the von Neumann
algebra generated by 'Tli(Ai) y by ti the faithful normal semi-
finite (f.n.s.f.) trace on ai such that fi = tiaT«’i ; .the
pair (% 1% To o t15t2) is a traced representation (see

definition 6.6.1 in [2]) : for if a, ¢ m’{ we have

(4,0 t,)((7 @ 7 ) (a0 3y)) = t,(7,(a)) . ty(Ty(ay)) < + oo



47

and this proves that the trace class operators in Im (ﬁ'13772)
generate the von Neumann algebra d1 5 dé . It is then suffi-

cient to set f = (t,91t,) ¢ (7 16 7,y

Definition 8. The trace f constructed above is called the

tensor product of f1 and f2 and denoted by f1§ f2 ; 1t is a
character iff f1 and f2 are characters. On the other hand it
is immediately seen that f1§ f2 is finite if f1 and f2 are
finite ; and conversely that if f1; f2 is finite and f1 and

f2 are not identically zero, they are finite ; in this case
; [ 4
f1é f2 is nothing the tensor product of the central positive

functionals f1 and f2.

Lemma 13. Let Q be a factor, t a f.n.s.f. trace on &, d1 and
(32 two factors included in @, commuting and generating & ;
suppose that 0 « f(a1 a2) < + o2 for at least one pair
(a;,a,) in <i: x<ﬁ§ . Then there exist a f.n.s.f. trace t. on

ai and an isomorphism of d1é (12 onto @ carrying t1¢§ t2

into t and a,® a, into a,a, for each a; in tii .

Proof. Denote by E, the (non empty) set of all a, GCX:

such that 0 < t(a1a2) < + 0o for at least one a, in
a,; ; define E2 in a similar manner ; let as be an element of
E, ; the function on (2:': a, —> t(a1a2) is a trace which
is normal (the verification is immediate), semifinite (since
it assumes a value which is neither zero nor infinite) and
faithful since t(a1a2) = 0 implies a,a, = O which in turn
implies a, = O (cf. prop.0) ; choose a fixed f.n.s.f. trace

1

t, on (11 with definition ideal m, ; for each a, in CZ:

]
we have

t(a1 a2) = k2(a2).t1(a1) (11)
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where k2(a2) is a stric.ly positive number ; in the same

manner for a, . E and a, - 27
1 1 a 2
t(a1a2) = .1_a1).té(a2)
where té is a f.n.s.f. trace on @. and g1(a1) . 0 ; let
m, be the definition ideal of té .
+ 21 s
If a, € my - 0 and a, « E, , we have 0 < t1(a1) <+ wo

whence by (11) , 0 < t(a1a2) < + % ; this proves that

+ . + )
m, - 0 ¢ E1 s in the same manner m, - 0 ¢ E2 . Take a;
in m; - 0 ; since a, lies in Ei we have
t(a1a2) = k2(a2).t1(a1) = k1(a1).té(a2) ;
thus k1(a1),/t1(a1) = kZ(aZ) /té(ag) is a number k inde-
pendant of a{ and a, ;i 1f we set t, = k th we get
_ /
t(a1a2) = t1\a1).t2(a2)
for a, ¢ m; - 0 , then, by linearity, for a; € my ; and

e +
also, by semifiniteness, for a, ¢ Cii .

Denote by H, H

%

algebras m*, m

, H2 the Hilbert completions of the Hilbert

1
, mg ; the bilinear mapping (a1,a2) N

DR —

(S

a,a, gives rise to a linear mapping Fo: m @mg — s m*

it is easily verified that F is an isometric x» - morphism ;
then it can be extended to an isomorphism F of H1£ H2 onto
some closed subspace H' of H ; F(m%@;mé) is invariant by the
left multiplication operators Ub where b is in 621 or <?2 ;
the same holds for H', so that H' is invariant by all Ub where

b ¢ A ; similarly H' is invariant by all V. where b ¢ Q ;

b
1 1
hence H' = H , F(m§g>m§) is a dense sub Hilbert algebra of

1
m? , and
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Ut gnd)) = U@

finally the desired isomorphism is obtained by composing the

following ones

a,é az —_ U(méwmg) —_— U(F(m%om%)) —_—

L u(et) — &’ .

‘Proposition 22. Every character f of A15 A2 such that O <«

N _ . + .+
f(a1®az) < + oo for at teast one pair (8.1,8.2)6 Al x Ay

is the tensor product of two characters.

Proof. ?he characterfdefines a representation v and a trace t
oﬁ a = 7(A1$A2)“ ; let T, be the restrictions of @ , di
the factor generated by ".ri(Ai) , t; the trace constructed

in lemma 13 ; the pair (w i’ti) is a traced representation :

in fact if 0 < f(a1@a2) { + @ we have

0 < t(m(a;eay,)) = t(w,(a;).75(a,))

1]

t1(71(a1))-t2(w2(a2)) < + o0

whence 0 <« ti(’\ri(ai)) < + oo and our assertion follows

by [2], 6.7.2. Denote by f, the character t, oW, , by ¢4
the representation associated with fi sy DY T)i the factor
Pi(Ai)" and by Sy the corresponding trace on 551 ; there
exists an isomorphism 7)1 —-——>Qi carrying Py in 4 and
s; in t, , whence an isomorphism ’)515 ,'52 . 4215 a, car-
N LY . [ & ' < . <

rying p1ep2 in wm,e7> and 8,98, 1n t1at2;by
composing with the isomorphism L‘l1 é‘az — s a of lemma

13_, we see that f1£f2 = f .

< .
Theorem 10. The mapping (f,,f;) +——> f,ef, is a homeo-
morphism of C1(A1)x C1(A2) onto C1(A1.§, A2) .
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Proof. It is bijective by propositioh 22 and continuous by

propositibn 5 ; we must now prove that the mapping f1@ f2

— f1(a1) is continuous for every a, ¢ A: ; choose an in-
creasing approximate identity (vt) of A, ; f1(a1) is the
1imit of the filtering family (f1@ f2)(a1a;vt) , hence

f,ef, —> f1(a1) is l.s.c. ; the same holds for f,e f, —

1
f2(a2) ; in order to prove the continuity we can suppose that

L]
2 H
there exists a, in A, such that fZ(az) > 0 ; since

f1® f2 is in the neighbourhood of some element f?@ f

f,0f, —> f2(a2) is 1.s.c., f,ef, # f:o f; implies

£2(a2) > 0 ; then
£,(a)) = (f;01,)(ay0 8y)/1,(ay)
which proves that f,o f, —> f1(a1) is u.s.c., and finally
continuous.
, ; o
Corollary 7. Suppose A1 and A2 are separable and set A = A1<a A2 H

~
then I induces a Borel isomorphism (A1)f x (A2)f —> Ap .

-— m
The restriction of N to Af is Borel by proposition 15
and injective by theorem 10 ; A, and (A1)f x (A2)f are
standard by [2], 7.4.3 ; then nl 2} is a Borel isomorphism

by [2], B 21.

Bibliography. [ 8].
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