The Dual of Noncommutative Orlicz-Lorentz Space*

HAN Ya-zhou

(College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, China)

Abstract : It is shown that the dual space of noncommutative Orlicz-Lorentz space $\Lambda_{\varphi,\omega}(\mathcal{M})$ is $M_{\varphi,\omega}(\mathcal{M})$, where \mathcal{M} is a semifinite von Neumann algebra and has no minimal projection, φ is an N-function satisfying the Δ_2 -condition and ω is a regular weight function. These results are noncommutative analogues of well known characterisations in the setting of classical Orlicz-Lorentz space.

Key words: von Neumann algebra, noncommutative Orlicz-Lorentz space, dual space

CLC number : 0177.7 Document Code : A Article ID : 1000-2839(2013)02-0148-06

非交换 Orlicz-Lorentz 空间的对偶空间

韩亚洲

(新疆大学数学与系统科学学院,新疆乌鲁木齐 830046)

摘 要: 在这篇文章中我们证明了当 φ 是满足 Δ_2 条件的N-函数且 ω 是正则的权函数时,非交换 Orlicz-Lorentz 空间 $\Lambda_{\varphi,\omega}(M)$ 的对偶空间是 $M_{\varphi,\omega}(M)$,这里 M 是不含最小投影算子的半有限 von Neumann 代数.

关键词: von Neumann 代数; 非交换 Orlicz-Lorentz空间; 对偶空间

0 Introduction

Let (Ω, Σ, μ) be a complete σ -finite measure space and $L^0(\mu)$ be the space of all μ -measurable functions defined on Ω . Let $\varphi : [0, \infty) \to [0, \infty)$ be an Orlicz function (i.e., a convex function which assumes value zero only at zero) and $\omega : (0, \infty) \to (0, \infty)$ be a weight function (i.e., nonincreasing and locally intergrable with respect to the measure m and such that $\int_0^{\infty} \omega \, dm = \infty$), then the Orlicz-Lorentz function space $\Lambda_{\varphi,\omega}$ on (Ω,μ) is the set of all $f \in L^0(\mu)$ such that $\int_{\Omega} \varphi(\lambda f^*) \omega \, dm < \infty$ for some $\lambda > 0$, where for any $f \in L^0(\mu)$, f^* denotes the nonincreasing rearrangement of f defined by $f^*(t) = \inf\{\lambda > 0 : \mu_f(\lambda) \le t\}$ for any t > 0 (by convention $\inf \emptyset = \infty$). We know that $\Lambda_{\varphi,\omega}$ is a symmetric function space with the fatou property, equipped with the norm $||f|| = \inf\{\lambda > 0 : \varrho_{\varphi}(\frac{f^*}{\lambda}) \le 1\}$, where $\varrho_{\varphi}(f) = \int_0^{\infty} \varphi(f^*) \omega \, dm$. If $\varphi(t) = t$, then $\Lambda_{\varphi,\omega}$ is the Lorentz space Λ_{ω} .[cf. [1, 2]].

If (X, Σ, ν) is a nonatomic measure space, then we have the following results: let either $\varphi(t) = t$ or φ be an N-function satisfying the Δ_2 -condition and let ω be an regular weight function, then $\Lambda_{\varphi,\omega}(\mathbb{R}^+)^* = M_{\varphi_*,\omega}(\mathbb{R}^+)$.

The main result of this paper is the noncommutative analogue to the dual space of the classical Orlicz-Lorentz function space.

The paper is organized as follows. Section 1 consists of some preliminaries and notations, including the noncommutative Lorentz spaces and their elementary properties. Section 2 presents some results about $\Lambda_{\varphi,\omega}(\mathcal{M})$. In Section 3 we prove the main result of this paper.

* Received Date: 2012-07-06

Foundation Item: Supported by the National Natural Science Foundation of China(11071204).

Biography: Han Ya-zhou(1982-), male, master, E-mail: hanyazhou@xju.edu.cn.

1 Preliminaries

In this section, we collect some basic facts and notion that will be used for what follows. Throughout this paper, we denote by \mathcal{M} a semifinite von Neumann algebra acting on a Hilbert space \mathcal{H} with a normal semifinite faithful trace τ , \mathcal{M}_+ the set of all nonnegative operators in \mathcal{M} , and \mathcal{M}_{proj} the lattice of (orthogonal) projections in \mathcal{M} . For standard facts concerning von Neumann algebras, we refer to [3, 4]. The closed densely defined linear operator x in \mathcal{H} with domain D(x) is said to be affiliated with \mathcal{M} if and only if $u^*xu = x$ for all unitary operators u which belong to the commutant \mathcal{M}' of \mathcal{M} . Let x be affiliated with \mathcal{M} , then x is said to be τ -measurable if for every $\varepsilon > 0$ there exists a $P \in \mathcal{M}_{proj}$ such that $P(H) \subseteq D(x)$ and $\tau(P^{\perp}) < \varepsilon$ (where for any projection P we let $P^{\perp} = I - P$). The set of all τ -measurable operators will be denoted by $\widetilde{\mathcal{M}}$. The set $\widetilde{\mathcal{M}}$ is a *-algebra with sum and product being the respective closure of the algebraic sum and product. For every $x \in \widetilde{\mathcal{M}}$, there is a unique polar decomposition x = u|x| where $|x| \in \widetilde{\mathcal{M}_+}$ and u is a partial isometry operator. Let $r(x) = u^*u$ and $l(x) = uu^*$. We call r(x) and l(x) the right and left supports of x, respectively. For a positive self-adjoint operator x affiliated with \mathcal{M} , we set

$$\tau(x) = \sup_{n} \tau\left(\int_{0}^{n} \lambda \, \mathrm{d}E_{\lambda}\right) = \int_{0}^{\infty} \lambda \, \mathrm{d}\tau(E_{\lambda}),$$

where $0 \le x = \int_0^\infty \lambda \, dE_\lambda$ is the spectral decomposition of *x*. For $0 , <math>L^p(\mathcal{M})$ is defined as the set of all τ -measurable operators *x* affiliated with \mathcal{M} such that

$$||x||_p = \tau(|x|^p)^{\frac{1}{p}} < \infty$$

In addition, we put $L^{\infty}(\mathcal{M}) = \mathcal{M}$ and denote by $\|\cdot\|_{\infty} (= \|\cdot\|)$ the usual operator norm. It is well known that $L^{p}(\mathcal{M})$ is a Banach space under $\|\cdot\|_{p}$ $(1 \le p \le \infty)$ satisfying all the expected properties such as duality.

Let x be a τ -measurable operator and t > 0. The "th singular number (or generalized s-number) of x" $\mu_t(x)$ is defined by

$$\mu_t(x) = \inf\{\|xe\|: e \in \mathcal{M}_{proj}, \, \tau(I-e) \le t\}$$

See [5] for more information about generalized *s*-number. For $x, y \in \widetilde{\mathcal{M}}$, we shall say that *x* is submajorized by *y*, written $x \prec \forall y$, if and only if

$$\int_0^t \mu_s(x) \, \mathrm{d}s \le \int_0^t \mu_s(y) \, \mathrm{d}s, \text{ for all } t > 0.$$

A normed linear subspace $E \subseteq \widetilde{\mathcal{M}}$ is called rearrangement invariant if and only if $x \in \widetilde{\mathcal{M}}$, $y \in E$ and $\mu_{-}(x) \leq \mu_{-}(y)$ implies that $||x||_{E} \leq ||y||_{E}$ and $x \in E$; symmetric if and only if $x, y \in E$ and $x \prec y$ implies $||x||_{E} \leq ||y||_{E}$; fully symmetric if and only if $x \in \widetilde{\mathcal{M}}$, $y \in E$ and $x \prec y$ implies $||x||_{E} \leq ||y||_{E}$ and $x \in E$; properly symmetric if E is symmetric, rearrangement invariant and intermediate for Banach couple $(L^{1}(\mathcal{M}), \mathcal{M})$. Let E be a noncommutative symmetric space. The norm on E is said to have the Beppo-Levi property if and only if $0 \leq x_{\alpha} \uparrow_{\alpha} \subseteq E$, $\sup_{\alpha} ||x_{\alpha}||_{\alpha} < \infty$ implies $\sup_{\alpha} x_{\alpha}$ exists in E. The norm on E is said to be order continuous if $||x_{\alpha}||_{E} \downarrow_{\alpha} 0$ whenever $x_{\alpha} \downarrow_{\alpha} 0$. If the norm on E is order continuous, then every continuous linear functional on E is normal, and in this case, the Banach dual E^{*} may be identified with the associate space E'. See [6, 7] for more information about this.

A Banach space $(E, \|\cdot\|_E)$ is called locally uniformly convex if the conditions $x_n, x \in E$, $\|x_n\|_E \to \|x\|_E$, $\|x_n + x\|_E \to 2\|x\|_E$ imply $\|x_n - x\|_E \to 0$. $(E, \|\cdot\|_E)$ is said to be uniformly convex if the conditions $x_n, y_n \in E$, $\|x_n\|_E \leq 1$, $\|y_n\|_E \leq 1$, $\|x_n + y_n\|_E \to 2$ imply $\|x_n - x\|_E \to 0$. It is clear that in those two definitions it is sufficient to require only $\|x_n\|_E = \|x\|_E = 1$. $(E, \|\cdot\|_E)$ is strictly convex if for every $x, y \in X$ with $\|x\|_E = \|y\|_E = 1$, $x \neq y$ implies $\|\frac{x+y}{2}\|_E < 1$ holds.

In the following we will write $f \approx g$ for nonnegative functions f and g whenever $C_1 f \leq g \leq C_2 f$ for some $C_j > 0, j = 1$ 2. Given $\varphi : [0, \infty) \rightarrow [0, \infty)$ an Orlicz function (i.e., it is a convex function, takes value zero only at zero) and $\omega : (0, \infty) \rightarrow (0, \infty)$ a weight function (i.e., it is a non-increasing function and locally integrable and $\int_0^\infty \omega dt = \infty$). Let φ be an Orlicz function and we denote the Young conjugate of φ by φ_* , i.e.,

$$\varphi_*(t) = \sup\{st - \varphi(s) : s \ge 0\}, \text{ for all } t \ge 0.$$

We still further say that φ is an N-function whenever $\lim_{t\to 0} \frac{\varphi(t)}{t} = 0$ and $\lim_{t\to\infty} \frac{\varphi(t)}{t} = \infty$.

Definition 1 Let \mathcal{M} be a semifinite von Neumann algebra. Given $\varphi : [0, \infty) \to [0, \infty)$ an Orlicz function and $\omega:(0,\infty) \to (0,\infty)$ a weight function, the noncommutative Orlicz-Lorentz space $\Lambda_{\varphi,\omega}(\mathcal{M})$ is defined by

$$\Lambda_{\varphi,\omega}(\mathcal{M}) = \{x \in \widetilde{\mathcal{M}} : ||x|| < \infty\}$$

where the functional $\|\cdot\|$ on $\widetilde{\mathcal{M}}$ is defined by

$$||x|| = \inf\{\lambda > 0 : \varrho_{\varphi}(\frac{x}{\lambda}) = \int_0^\infty \varphi(\frac{\mu_t(x)}{\lambda})\omega(t) \, \mathrm{d}t \le 1\}.$$

It is clear that if $\varphi(t) = t$, then $\Lambda_{\varphi,\omega}(\mathcal{M})$ is the noncommutative Lorentz space $\Lambda_{\omega}(\mathcal{M})$.

Proposition 1 For $\rho_{\varphi}(x) = \int_{0}^{\infty} \mu_{t}(\varphi(|x|))\omega(t) dt = \int_{0}^{\infty} \varphi(\mu_{t}(x))\omega(t) dt$, we have

(i): $\rho_{\varphi}(x) = 0$ if and only if x = 0,

(ii): $\varrho_{\varphi}(x) = \varrho_{\varphi}(|x|),$

(iii): $\rho_{\varphi}(\alpha x + \beta y) \le \rho_{\varphi}(\alpha x) + \rho_{\varphi}(\beta y)$ for $\alpha + \beta = 1, \alpha, \beta \ge 0$.

Proof (i) and (ii) are all evident. (iii): Letting $\alpha + \beta = 1$ and $\alpha, \beta \ge 0$, by Theorem 4.4 of [5] and Proposition 3.6 of [Chapter 2, [8]] and the properties of convex function, we have

$$\varrho_{\varphi}(\alpha x + \beta y) = \int_{0}^{\infty} \varphi(\mu_{s}(\alpha x + \beta y))\omega(s) \,\mathrm{d}s$$

$$\leq \int_{0}^{\infty} \varphi(\mu_{s}(\alpha x) + \mu_{s}(\beta y))\omega(s) \,\mathrm{d}s$$

$$\leq \alpha \int_{0}^{\infty} \varphi(\mu_{s}(x))\omega(s) \,\mathrm{d}s + \beta \int_{0}^{\infty} \varphi(\mu_{s}(y))\omega(s) \,\mathrm{d}s$$

$$= \alpha \varrho_{\varphi}(x) + \beta \varrho_{\varphi}(y).$$

Proposition 2 $\Lambda_{\varphi,\omega}(\mathcal{M})$ is a symmetric operator space with the Luxemburg norm: $||x|| = \inf\{\lambda > 0 : \int_0^\infty \varphi(\frac{\mu_t(x)}{\lambda})\omega(t) dt \le 1\}.$

Proof It is clear that $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0. For, every $\alpha \in \mathbb{C}$, we obtain

$$\begin{aligned} \|\alpha x\| &= \inf\{\lambda > 0: \int_0^\infty \varphi(\frac{\mu_t(\alpha x)}{\lambda})\omega(t) \, \mathrm{d}t \le 1\} \\ &= |\alpha| \inf\{\lambda' > 0: \int_0^\infty \varphi(\frac{\mu_t(x)}{\lambda'})\omega(t) \, \mathrm{d}t \le 1\} = |\alpha| ||x|| \end{aligned}$$

Since $\varphi(\frac{\mu_t(x)}{\|x\|+\frac{1}{n}})\uparrow_n \varphi(\frac{\mu_t(x)}{\|x\|})$, then we have $\int_0^\infty \varphi(\frac{\mu_t(x)}{\|x\|+\frac{1}{n}})\omega(t)dt \le 1, n = 1, 2, \dots$. Therefore, it follows that

$$\int_0^\infty \varphi(\frac{\mu_t(x)}{\|x\|})\omega(t)\,\mathrm{d}t \le 1$$

Let $x, y \in \Lambda_{\varphi, \omega}(\mathcal{M})$, we know that

$$\begin{split} \int_{0}^{\infty} \varphi(\frac{\mu_{t}(x+y)}{||x||+||y||}) \omega(t) \, \mathrm{d}t &= \varrho_{\varphi}(\frac{x+y}{||x||+||y||}) \\ &\leq \frac{||x||}{||x||+||y||} \varrho_{\varphi}(\frac{x}{||x||}) + \frac{||y||}{||x||+||y||} \varrho_{\varphi}(\frac{y}{||y||}) \\ &= \frac{||x||}{||x||+||y||} \int_{0}^{\infty} \varphi(\frac{\mu_{t}(x)}{||x||}) \omega(t) \, \mathrm{d}t \\ &+ \frac{||y||}{||x||+||y||} \int_{0}^{\infty} \varphi(\frac{\mu_{t}(y)}{||y||}) \omega(t) \, \mathrm{d}t \leq 1. \end{split}$$

Then we have $||x + y|| \le ||x|| + ||y||$.

If $\int_0^t \mu_s(x) ds \le \int_0^t \mu_s(y) ds, t > 0$, then by Proposition 1.2 of [9] we know that

$$\int_0^t \varphi(\mu_s(x)) \, \mathrm{d}s \le \int_0^t \varphi(\mu_s(y)) \, \mathrm{d}s, t > 0$$

for any Orlicz function φ . Thus, by Proposition 3.6 of [Chapter 2, [8]],

$$\int_0^\infty \varphi(\mu_s(x))\omega(s)\,\mathrm{d} s \leq \int_0^\infty \varphi(\mu_s(y))\omega(s)\,\mathrm{d} s,$$

which tells us that $\Lambda_{\varphi,\omega}(\mathcal{M})$ is a symmetric operator space.

From the above Proposition and Theorem 2.1 of [10], we have the following result.

Proposition 3 $\Lambda_{\varphi,\omega}(\mathcal{M})$ is a Banach space with the Luxemburg norm.

Let $\rho: I \to (0, \infty)$ be a concave function, then the Marcinkiewicz space M_{ρ} is defined by

$$M_{\rho} = \{ f \in L^0 : ||f||_{M_{\rho}} = \sup_{t \in I} \frac{\int_0^t f^*(t) \, \mathrm{d}t}{\rho(t)} \}$$

and the Marcinkiewicz space M_s with $S(t) = \int_0^t \omega(s) \, ds$ is the associate space (=köthe dual space) of \wedge_{ω} . We define noncommutative Marcinkiewicz space $M_s(\mathcal{M})$ by

$$M_{S}(\mathcal{M}) = \{x \in \mathcal{M} : ||x||_{M_{S}(\mathcal{M})} = ||\mu_{t}(x)||_{M_{S}} < \infty\}.$$

It is clear that $M_s(\mathcal{M})$ is a noncommutative symmetric Banach function space[cf.[6], P745]. In what follows, given an Orlicz function φ , we define

$$I(f) = \int_0^\infty \varphi_*(\frac{f^*(t)}{\omega(t)})\omega(t) \,\mathrm{d}t, \ f \in L^0(\mathbb{R}^+),$$

and

$$M_{\varphi_{*,\omega}} = \{ f \in L_0(\mathbb{R}^+) : I(\frac{f}{\lambda}) < \infty \text{ for some } \lambda > 0 \}.$$

In the space $M_{\varphi_{*},\omega}$ we define $||f||_{M_{\varphi_{*},\omega}} = \inf\{\lambda > 0 : I(\frac{f}{\lambda}) \le 1\}$, then we get $||\cdot||_{M_{\varphi_{*},\omega}}$ is a quasinorm, if ω is regular. Moreover, if $\varphi(t) = t$, we obtain that

$$M_{\varphi_{*},\omega} = \{ f \in L_0(\mathbb{R}^+) : \|f\|_{M_{\varphi_{*},\omega}} = \sup_{t>0} \frac{f^*(t)}{\omega(t)} < \infty \}.$$

and $M_S = M_{\varphi_{*},\omega}$, where ω is regular.

Definition 2 For noncommutative Orlicz-Lorentz space $\Lambda_{\varphi,\omega}(\mathcal{M})$, we define the associate "norm" by

$$||x||_{\Lambda'} = \sup\{\tau(|xy|) : ||y||_E \le 1\}.$$

The associate space of $\Lambda_{\varphi,\omega}(\mathcal{M})$ is

$$\Lambda_{\varphi,\omega}(\mathcal{M})' = \{x \in \mathcal{M} : ||x||_{\Lambda'} < \infty\}$$

See [5] for more information about associate space of properly symmetric Banach space.

Remark 1 Theorem 2.2 of [Chapter 3, [8]] showed that each rearrangement invariant Banach function space $\Lambda_{\varphi,\omega}(\mathbb{R}^+)$ is necessarily intermediate for the pair ($L^1(\mathbb{R}^+)$, $L^{\infty}(\mathbb{R}^+)$), then it follows immediately that $\Lambda_{\varphi,\omega}(\mathbb{R}^+)$ is a properly symmetric. Banach Space Therefore, by Theorem 5.6 of [6], we have $\Lambda_{\varphi,\omega}(\mathcal{M})' = (\Lambda_{\varphi,\omega})'(\mathcal{M})$. Moreover, by Proposition 5.4 of [6], we have $\Lambda_{\varphi,\omega}(\mathcal{M})'$ is a properly symmetric Banach space.

2 Some results of $\Lambda_{\varphi,\omega}(\mathcal{M})$

Lemma 1 If φ satisfies condition Δ_2 , and $\int_0^{\infty} \omega(t) dt = \infty$, then $||x_n|| \to 0, n \to \infty$ if and only if $\varrho_{\varphi}(x_n) \to 0, n \to \infty$.

Proof If $||x_n|| \to 0, n \to \infty$, then we have $||\mu_t(x_n)||_{\Lambda_{\varphi,\omega}(\mathbb{R}^+)} \to 0, n \to \infty$. By Theorem 2.5 (c) of [2], we get $\varrho_{\varphi}(\mu_t(x_n)) \to 0, n \to \infty$, which implies $\varrho_{\varphi}(x_n) \to 0, n \to \infty$. On the other hand, if $\varrho_{\varphi}(x_n) \to 0, n \to \infty$, we know that $\varrho_{\varphi}(\mu_t(x_n)) \to 0, n \to \infty$. Moreover, by Theorem 2.5(c) of [2], we obtain $\varrho_{\varphi}(\lambda \mu_t(x_n)) \to 0, n \to \infty$ holds for all $\lambda > 0$, this tells us that $||x_n|| \to 0, n \to \infty$.

Proposition 4 If φ satisfies condition Δ_2 , and $\int_0^{\infty} \omega(t) dt = \infty$, then

$$K = \begin{cases} x : & x = \sum_{k=1}^{n} c_k E_k, c_k \in \mathbb{C}, \\ & E_k \in \mathcal{M}_{proj}, E_k \perp E_j, if \ k \neq j, \tau(E_k) < \infty, \ j, k = 1, 2, \cdots, n \end{cases}$$

is dense in $\Lambda_{\varphi,\omega}(\mathcal{M})$.

Proof If $x \in \Lambda_{\varphi,\omega}(\mathcal{M})$, we have

$$||x|| = \inf\{\lambda > 0 : \varrho_{\varphi}(\frac{x}{\lambda}) = \int_0^\infty \varphi(\frac{\mu_t(x)}{\lambda})\omega(t) \, \mathrm{d}t \le 1\} < \infty,$$

which implies $\mu_t(x) \to 0, t \to \infty$.

If $y \in \Lambda_{\varphi,\omega}(\mathcal{M}), y \ge 0$, let $y = \int_0^\infty \lambda \, dE_\lambda$ be the spectral decomposition of y. Then by Proposition 3.2 [5], we have that $y_n = \int_{\frac{1}{n}}^n \lambda \, dE_\lambda (n = 1, 2, \cdots)$ converges to y in the measure topology. On the other hand $\tau(supp|y_n|) < \infty, y_n \le y(n = 1, 2, \cdots)$. Let

$$y_{n,m} = \sum_{j=0}^{m-1} \left[\frac{1}{n} + \frac{n - \frac{1}{n}}{m} j \right] E_{\left[\frac{1}{n} + \frac{n - \frac{1}{n}}{m} j, \frac{1}{n} + \frac{n - \frac{1}{n}}{m} (j+1) \right]}(y).$$

Then $||y_n - y_{n,m}||_{\infty} \to 0, m \to \infty$, and $y_{n,m} \le y_n$. So we get

$$\mu_t(y_n - y_{n,m}) \le ||y_n - y_{n,m}||_{\infty} \to 0, m \to \infty$$

and $\mu_t(y_n - y_{n,m}) \le 2\mu_{\frac{t}{2}}(y_n)$. Since $y_n \in \Lambda_{\varphi,\omega}(\mathcal{M})$, using Lebesgue's dominated convergence theorem, we obtain

$$\varrho_{\varphi}(\mathbf{y}_n - \mathbf{y}_{n,m}) = \int_0^\infty \varphi(\mu_t(\mathbf{y}_n - \mathbf{y}_{n,m}))\omega(t) \, \mathrm{d}t \to 0, m \to \infty,$$

which implies $||y_n - y_{n,m}|| \to 0, n \to \infty$. Similarly, $||y - y_n|| \to 0, n \to \infty$. Hence, it follows that $y \in \overline{K}$.

For $y \in \Lambda_{\varphi,\omega}(\mathcal{M})$, we have

$$y = Re(y) + iIm(y) = Re^{+}(y) - Re^{-}(y) + i(Im^{+}(y) - Im^{-}(y)),$$

and $Re^+(y)$, $Re^-(y)$, $Im^+(y)$, $Im^-(y)$ are positive operators in $\Lambda_{\varphi,\omega}(\mathcal{M})$. So using the result of above, we obtain the desired result.

Proposition 5 If φ satisfies condition Δ_2 , and $\int_0^{\infty} \omega(t) dt = \infty$, then

(i) there does not exist an isometric copy of l^1 containing in $\Lambda_{\varphi,\omega}(\mathcal{M})$.

(ii) there does not exist an isometric copy of l^{∞} containing in $\Lambda_{\omega,\omega}(\mathcal{M})$.

(iii)there does not exist an isometric copy of c_0 containing in $\Lambda_{\varphi,\omega}(\mathcal{M})$.

Proof (i) and (ii) are immediate consequences of Theorem 2.4 of [2], Theorem 3.7, Corollary 3.8, Theorem 4.8 and Corollary 4.10 of [11]. (iii) follows immediately from Theorem 4.8 of [7] and Theorem 2.4 of [2].

Proposition 6 If φ satisfies condition Δ_2 , and $\int_0^{\infty} \omega(t) dt = \infty$, then $\Lambda_{\varphi,\omega}(\mathcal{M})$ is reflexive and $\Lambda_{\varphi,\omega}(\mathcal{M})$ has the Beppo-Levi property and the norms on $\Lambda_{\varphi,\omega}(\mathcal{M})$ and $\Lambda_{\varphi,\omega}(\mathcal{M})^*$ are order continuous.

Proof It follows immediately from Theorem 4.7 of [7] and Remark 1.

Proposition 7 Let \mathcal{M} be a von Neumann algebra acting on a separable Hilbert space \mathcal{H} . If φ satisfies condition Δ_2 , and $\int_{0}^{\infty} \omega(t) dt = \infty$, then $\Lambda_{\varphi,\omega}(\mathcal{M})$ is separable.

Proof It is an immediate consequence of Proposition 6.9 and Corollary 6.2 of [11] and Theorem 2.4 of [2].

Proposition 8 If φ satisfies condition Δ_2 , then $\rho_{\varphi}(x) = 1$ if and only if ||x|| = 1.

Proof It is an immediate result of Theorem 2.5 of [2].

Proposition 9 Let φ and φ_* satisfy the Δ_2 -condition, φ be strictly convex, then

(i) $\Lambda_{\varphi,\omega}(\mathcal{M})$ is uniformly convex.

(ii) $\Lambda_{\varphi,\omega}(\mathcal{M})$ is reflexive and strictly convex.

Proof (i): It follows immediately from Theorem 7 of [12] and Theorem 3.1 of [13]. (ii): By Theorem 4.8 of [7] and Theorem 7 of [12], we have $\Lambda_{\varphi,\omega}(\mathcal{M})$ is reflexive. From Theorem 5.2.5 and Theorem 5.2.6 of [14] and (i), we obtain $\Lambda_{\varphi,\omega}(\mathcal{M})$ is strictly convex.

3 The dual of $\Lambda_{\varphi,\omega}(\mathcal{M})$

Theorem 1 Let ω be a regular weight function and let either $\varphi(t) = t$ or φ be an N-function, then $\Lambda_{\varphi,\omega}(\mathcal{M})' = M_{\varphi_*,\omega}(\mathcal{M})$.

Proof It is an immediate result of Theorem 2 of [1] and Remark 1.

Theorem 2 Let ω be a regular weight function and let φ be an Orlicz function. Then the following holds:

(i) If $0 < \lim_{t \to 0} \frac{\varphi(t)}{t} < \infty$, then $\varphi(t) \approx t$ and $(\Lambda_{\varphi,\omega}(\mathcal{M}))' = M_S(\mathcal{M})$.

(ii) If $0 < \lim_{t\to 0} \frac{\varphi(t)}{t}$ and $\lim_{t\to\infty} \frac{\varphi(t)}{t} = \infty$, then there exists an N-function ϕ such that $\phi(t) \approx t^2$ for t small enough and $\phi(t) \approx \varphi(t)$ for t large enough, and

$$(\Lambda_{\omega,\omega}(\mathcal{M}))' = M_S(\mathcal{M}) + M_{\phi_{*},\omega}(\mathcal{M}).$$

(iii) If $0 = \lim_{t\to 0} \frac{\varphi(t)}{t}$ and $\lim_{t\to\infty} \frac{\varphi(t)}{t} < \infty$, then there exists an N-function ϕ such that $\phi(t) \asymp \varphi(t)$ for t small enough and $\phi(t) \asymp t$ for t large enough, and

$$(\Lambda_{\varphi,\omega}(\mathcal{M}))' = M_{\mathcal{S}}(\mathcal{M}) \cap M_{\phi_*,\omega}(\mathcal{M}).$$

Proof It now follows from [106, Theorem 2.2, [8]], that $M_S(\mathbb{R}^+)$ and $M_{\phi_{*,\omega}}(\mathbb{R}^+)$ are exact interpolation spaces for the couple $(L^1(\mathbb{R}^+), L^{\infty}(\mathbb{R}^+))$. Then by Proposition 3.1 of [15], we obtain $M_S(\mathcal{M}) + M_{\phi_{*,\omega}}(\mathcal{M}) = (M_S + M_{\phi_{*,\omega}})(\mathcal{M})$. on the other hand, it is clear that $(M_S \cap M_{\phi_{*,\omega}})(\mathcal{M}) = M_S(\mathcal{M}) \cap M_{\phi_{*,\omega}}(\mathcal{M})$. From the above discussion and Theorem 3 of [1] and Remark 1, we complete the proof.

Theorem 3 Let either $\varphi(t) = t$ or φ be an N-function satisfying the Δ_2 -condition and let ω be a regular weight function, then $\Lambda_{\varphi,\omega}(\mathcal{M})^* = M_{\varphi,\omega}(\mathcal{M})$.

Proof Under the given assumptions and Theorem 2.4 of [2], we have $\Lambda_{\varphi,\omega}(\mathbb{R}^+)$ is a separable space, which implies the norm on $\Lambda_{\varphi,\omega}(\mathbb{R}^+)$ is order continuous. Therefore, Proposition 3.6 of [6] implies that the norm on the space $\Lambda_{\varphi,\omega}(\mathcal{M})$ is order continuous and so Theorem 5.11 of [6] shows that the dual Space $\Lambda_{\varphi,\omega}(\mathcal{M})^*$ is identified with $\Lambda_{\varphi,\omega}(\mathcal{M})'$. On the other hand, by Theorem 4 of [2] and Remark 1, we have

$$\Lambda_{\varphi,\omega}(\mathcal{M})' = M_{\varphi_*,\omega}(\mathcal{M}).$$

Hence the required result follows.

References:

- [1] Hudzik H,Kaminska A,Mastylo M.On the dual of Orlicz-Lorentz space[J].Proc Amer Math Soc,2002,130:1645-1654.
- [2] Kaminska A.Some remarks on Orlicz-Lorentz spaces[J].Math Nachr, 1990, 147:29-38.
- [3] Pisier G, Xu Q. Noncommutative L^p Spaces [M]//Pisier G, Xu Q. Handbook of the geometry of Banach spaces. Amsterdam: North-Hollcmd, 2003, 1459-1517.
- [4] Terp M.L^p Spaces Associated with von Neumann Algebras[R].Copenhagen Univ:Notes,1981.
- [5] Fack T,Kosaki H.Generalized s-numbers of τ -measurable Operators[J].Prac J Math, 1986, 123:269-300.
- [6] Dodds P,Dodds T,Ben de Pagter.Noncommutative Köthe Duality[J].Trans Amer Math Soc,1993,339:717-750.
- [7] Dodds P,Dodds T.Some aspects of the theory of symmetric operator spaces[J].Quaest Math,1992,15:942-972.
- [8] Bennett C, Sharpley R.Interpolation of Operators[M]. New York: Academic Press, 1988, 129.
- [9] Hiai F,Nakamura Y.Majorizations for generalized s-numbers in semifinite von Neumann algebras[J].Math Z,1987,195:17-27.
- [10] Dodds P,Dodds T,Ben de Pagter. A General Markus Inequality[J]. Proc Centre Math Anal Austral Nat Univ, 1989, 24:47-57.
- [11] Dodds P, Ben de Pagter. Properties (u) and (V*) of Pelczynski in symmetric spaces of τ -measurable operator[J]. Positivity, 2011, 15:571-594.
- [12] Lin P,Sun H.Some geometric properties of Lorentz-Orlicz space[J]. Arch Math, 1995, 64:500-511.
- [13] Chilin V, Krygin A, Sukochev P.Local uniform and uniform convexity of non-commutative symmetric spaces of measurable operators[J].Math Proc Cambr Phi Soc,1992,111:355-368.
- [14] 俞鑫泰. Banach 空间几何理论[M].上海:华东师范大学出版社,1986.
- [15] Dodds P,Dodds T.Fully symmetric operator spaces[J].Inter Equat Oper Th,1992,15:942-972.

责任编辑:赵新科