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1. Differentiation of real functions on a B-space
Let E be a Banach space with dual E', and let £ be
a map from E into R. Let x €E and DE E', then we say

that

D 1is a subdifferential of £ at xOE E, 1if we have

<D,y> < f(xo+y) - f(xo) v iyl < 6.

for some 6>0.

D is a Gateux differential of £ at %o €E, if we have

<D,y> = lim t—1(f(xo+ty) - f(xo)) VYyE€E.

t-pc0

D is a Fréchet differential of f at X, €E, 1if we have

Lim Iyl 1 £ (x+ty) - £(x) = <D,y>| = 0.
y=0

We note that f admits at most one Gateaux (Fréchet)
differential at a given point, whereas f may admit many sub-
differentials. If f admits D as its Fréchet differential
then D is a Gateau differential for f£. If D is a Gateaux
differential for £, and f is convex, then D is a sub-

differential for £.




Now we define the modulus of continuity, w, and the sym-

metric modulus of continuity, p, by

w(f,%x,t) = sup{lf(x+ty) - £(x) [} ¥ XEE V>0
vEB

w(f,A,t) = sup w(f,x,t) VACE V t>0
XEA

plf,x,t) = sup{%If(x+ty) + £(x-ty) - 2£(x) |} VX€E V>0
vEB

p(£,A,t) = sup p(f,x,t) ¥ACE V t>0
XE€A

Where B is the unit Ball in E, and S is the sphere:

B={yeEl llyll < 1}, s = {yeEl Uyl = 1}

Proposition 1.1. Let xO €E and let U be a neighborhood

of Xyt so that f admits a subdifferential, D(x), at x

for all x€U, and suppose that

(1.1.1) 3 ¢>0 so that t’~f(xo+t0) is continuous

in [-¢,¢] for all 0€Es,

(1.1.2) D(x) is continuous at x = >

Then D(xo) is a Fréchet differential of f at Xg-

Proof. We may assume that ¢ in (1.1.1) is taken so
small that B(xo,e) c U (B(xo,e) denote the ball with center
X and radius ¢), and we may also assume that D(x) is

bounded in B(xo,s), that is

HD(x)ll <M VxeBmyeL



Now let ©€8S, and put g(t) = f(xo+t0), and
h(t) = <D(xo+t6),o>. Then for each s€[-e,e] we can find

6(s) >0, so that

<D(Xo+se),y> < f(xo+so+y)-—f(xo+0) v lIyll < 6(s)
Putting y = u® give

uh(s) < g(s+u) ~g(s) viul < 6(s) ViIsl < e.

Now [h{s)| <[ID(x_+s0)ll <M for Isl

A

€, and so

0% (g,s) = Lliming LS 29(8) 5y
u-0+

D (g,s) = lim sup (S+ul)1~ (s) <M.

u-0

So by continuity of g and Lemma VII.6.3 in [3], we find

that

Ig{t) - g(s)| < Mlt-sl Vt,s€[-e,c].

In particular we have that g is absolutely continuous in

[~e,e] and
g'(s) = D {g,s) < h(s) < Qf(g,s) = g'(s)
a.e. in [-e,e}. Hence we have for ©0€S and Iitl < ¢ :

t
f <D(x,+s0),0>ds.
0

f(xo+t0) - f(xo)

1

Now let llyll <& , and put t = fiyll, 8 = t 'y, then we have

Ny 17" TE(x4y) = £(x) = <D(xg),y>

t
<z JlID(xg#s0) = Dlxg) Il ds < @(D,xg.t)



and by continuity of D at Xyr We have that D(xo) is a
Fréchet differential of f at L

Proposition 1.2. Let f be a convex continuous function

from E into IR and U an open nonempty subset of E, so

that

(1.2.1) L otg,u,8) — 0

t t-o

Then f admits a Fréchet differential, D(x), everywhere in

U.

Proof. Let x€U and let 0€8S, then the function
g(t) = £(x+t0) is convex. Hence g has a left and a right

derivative, say g— and g+, everywhere, and we have
- +
g (t) < g (t) vt

g(t+s) ~g(t) =sg’ (t) 2 0 VvVt Vs»0

v
[=]

g{t-s) —g(t) +sg (t) vt Vs>0

Moreover we have

0 < s(g"(0) -g7(0)) < g(s) +g(-s) - 29 (0)

1A

2p(£,U,s)

and so by (1.2.1) we have that g+(0) =g (0), and so

DO(X,y) = lim f(x+tzi-f(x)
t-0

exists for x€U and all vy, and we have

0 s £.(x,y) - D (x,¥) 5 2 o(£,0,t llyl)



for all t>0 and all x€U, y €E, where £ _(xy) = £ et t)—f(x) .

Hence we have

£ {x,y) — D (x,Yy) uniformly in Ux B
t~0

and so D  is continuous in (x,y) €EUxB. It is evident that

we have

Do(x,)\y) = AD, (x,¥) VXEU Vy€EE AER

Now let x€U and let y1,y2€E. Let €>0 be chosen so

that B(x,e) € U. If It} < ¢ then we have

[ft(XrY'l"’Yz) - DO(XIY']) - I%(XrYZ)‘ < lft(X+tY1 ry2) = Do(x+tY1 'Y2)| +

4

IDo(x+ty1,y2) =Dy + |ft(x,y1) - D, (xyyq) |

1A

4
e p(f,U,t([ly1II +Ily2H)) + |Do(x+ty1,y2) - DO(X.yz)l
So by continuity of Do and (1.2.1) we find that

Do (x:¥qtyy) = 1im £ (%, 74+y,) = Dy (x,74) + D (x,y,)

Hence D(x) = Do(x,-) € E', and we have that

1£(x+y) - £(x) - <D(x),y>! < 2¢(£,U, lHyll) VXEU VyE€EE

from which it follows that D(x) is the Fréchet differential

for £ at x.



2. The modulus of smoothness

Let Np(x)=|lxllp for 1 < p<w, then we define Dp(x)
to be the Fréchet differential of Np whenever it exists.
Note that Dp(O) exists and is equal to 0 for p>1, but does
not exist for p = 1. Suppose that x # 6 and Dp(x) exists

then straightforward computations show:
(2.1) DP(Ax) exists for A # 0 and Dp(Ax)=Apﬁ1skyux)Dp(x)
(2.2) Dq(x) éxist for all g>0 and

Dy (x) = HxiT P (x) = g-nan“‘np<“-§—”)
(2.3) <D, (x) ;x> = pllxIlP

(2.4) o_Ga il = plixi®r,

Let 0<p<w then we define the p-modulus of smoothness,

P s by

pl
1 p P
p,(t) = p(N_,S,t) = sup —(lx+ttyll® + lIx-tyli® - 2)
p P X,y€S 2
and we define, mp(t), by

wp(t) = sup{HDp(x)—Dp(y)H | x,y€s, lx-yll < t}

for t>0 (if Dp(x) does not exist for some x€ S, we put

Qp(t) =), From (2.2) and (2.4) we find

(2.5) wp(t) = p wg(t) Vt>0 Yp

v
—

(2.6) w (€) < 2p Vt>0 VYpo>1, if w,<w

1

Let x,y € E~{0}, and put xo=llxll_1 and yo=||yll—1y,

then we have



2lx-y II
X5 Yo € mERThxl TS YT

and so we find

2ix—vil )

- P1_ p1 p1
(2.7) lID, (x) D, < pf fixll Hy =" [+ iy i 9 Gl =T, T

for all x,y # 0 and all p>1.

E is called uniformly smooth if p1(t) = o(t) as t-0,

and E 1is called uniformly p-smooth . (1 <p < 2), |if

p1(t) = 0(tP) as t=-0. E is called a Ga—sgace (0<a < 1),

if there exists a map, G: E-E', so that for some A>0 we

have

(2.8) N =nxn VXEE
(2.9) <G(x),x> = 1| x| T+ VXEE
(2.10) HG(x) =Gyl < Allx-yH® VX,y€E

Lemma 2.1. There exist constants Kp-<m for p>1 so

that we have
(2.1.1) Pp(t) < o () < Kopg(t) vo<t<t,  p21
Proof, Let x,y€S  and t > 0, then

Mx+tyll + Hx~tyll

v

l2xll = 2

and since a%+p9 < aP +bP  whenever 1 £ g9 <p<= and a+b>2,

we find

(2.11) pq(t)spp(t) YE20 V1 <g<p<<w



Now it is easily seen that there exists constants Cp<<m so

that
1+ 8P < 2(28) v e (1-5)2 VO <s <1
Hence we find
aP + pP < 2(%2)53 + Cpmax (ap~2'bp—2)[a_b!2 Va,b>0

Let x and y belong to S and 0 <t < 1. Now we put
a = llx+tyll and b = |x~tyll, then 0 <a<2 and 0 <b < 2,

and so

% (aP+pP-2)

1A

(3(a+b))P + 2p‘3Cpla~b|2 -1

iIA

(o, (0)+1)P = 1 + 2P’1cpt2

A

Py (£1+DF7! oty + 2P o2

IA

2P7Tp o () + zp'1Cpt2
Now from [1] we know that
(1+t2);2 =1 < pg (k)
and since (3t)% < (1+t%)=1 for 0 <t <1, we find
5 (aP+pP-2) f‘(zp-1p+2p+1@§)p1(t)

for all 0< t < 1. Hence (2.1.1) holds with sz:pzp“1+2p+1c§.

Lemma 2.2. Suppose that D1(x) exists for all xe€s,

then there exists constants A,Béim+, so that




(2.2.1) pp(t) < Atw () VO <t <1

1A
o+

1A
-

(2.2.2) to, (t) < Bo, (t) ¥ 0

Proof. Let x,vy€S and t>0 be given, then

t B
ix+tyll + Hz-tyll - 2 = | <D1(x+sy) - D1(x),y>ds +
0

t
+ f <D, (x) - D,(x-sy),y>ds
0

< 2tm1(2t)
so we find
(2.12) p1(t) < tm1 (2t) vt >0
Now let
£o(x,y) = ¢! (lixreyli- Ixll)  for x,y€E, t-0.

Then 1im ft(x,y) = <D1(x),y> for x % 0 and y€E, and since
t-0

t~llx+ttyll is convex we have

fe(x,y) - <Dy (x),y> > 0 Y £>0

v

0 Y t>0

v

ft(x,-y) +<D1 (x),v>

Hence if t>0 and X,Y€S we have

o
A

= ft(xry) - <D1 (x),y> < ft(X,y) + ft(xr‘Y)

£ Ulxrey li+ ity ll - 2) < £71 o (e

Now let x,y and =z belong to S, and let t>0, then we

we have



~-10~

I<D(x) -D(y),z>] < |<D(x),z> - felx2) |+ 1£ (x,2) -f.v,2)!

+ £, (y,2) ~ <Dy), 21

A

27 oty + £, (x,2) = £,(y,2)]

Using the inequality

Hall + 09l < Nutvil + lutyl] p,,(%l‘j%,’-“—)

for u = x+tz and v = Y gives

llx+tzll + Ayl < lx+y+tzll + [lx+y+tz]l Pyl ”::;yitﬁ”)

< Hly+tzli + lxIl + (t+2) p1(t+l|x-—y|l)

for 0<t < % and x-yil < %, since we have

lix+y+tzll > l2x| - Hx-yll - lltzll > 1
for t <% and Ix-yll < %¥. Hence we find
EL(xi2) = £.0v,2) = 7 (lxrtzll + Iyl - lystzll - lxll )
<367 oy (erllx-y D)

and similarly we find for ¢ < % and lix-yll < %
-1
£ . ly,2) - fox,z) < 3t pqlt+tix-ylIl).
Putting t = [lx~-yll gives
[<D(x) - Dly),z>| < ZHXﬁyH~1 pq (llx=yil) + 3Hx—yH~1p1(2Hx~yH)

for lix-yll <% and all z€S. Hence we have
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(2.13) o (t) 5 5t p, (28) v 0<t<k

From the lemma on p.25%1 in [1] it follows that there exists

a constant C>0 so that
P (28) < Cp,(t) v O<t<t

and so (2.2.1) and (2.2.2) follows from (2.12) and (2.13).

Theorem 2.3. The following conditions are equivalent

(2.3.1) E is uniformly smooth.
(2.3.2) pp(t) = 0{t) as t-0 for some p > 1
(2.3.3) po(t) = 0(t) as t-0 for all p 3 1.
(2.3.4) lim w](t) = 0.

t-0

Proof. (2.3.1), (2.3.2), and (2.3.3) are equivalent by
Lemma 2.1, and (2.3.4) implies (2.3.1) by Lemma 2.2. So we have

only left to show that (2.3.1) implies (2.3.4). Let
U={x€E|%<lxll<2}

_then we have for x€U, y€B and t>0

El) < 20, (26)

H(x+tyl + lHx-tyll - 2UxH x Nxlloq (G <

Hence we have
p(N,,U,t) < 2p 4 (2t)
and so by Proposition 1.2, we find that (2.3.1) implies that

~D1(x) exists everywhere on S, and by Lemma 2.2, we find that

@y (t} —0.
t-0



-1 2=

Theorem 2.4. Let 0<a< 1, then the following conditions

are equivalent

(2.4.1) E 1is uniformly (1+a)-smooth.
(2.4.2) pp(t) = 0(t™*%) as t+0 for some p > 1.
(2.4.3) oo (t) = 0t as t-0 for all p > 1.
(2.4.4) w () = 0(t") as t-0 for all p > 1.
-
(2.4.5) dc>0 ‘so that "D1+a(x)_D1+a(y)“-<- cllx-yll ¥vx,y
(2.4.6) 3050  so that Iyl O+ syl 7o 201%™ eyt ™ vx,y
(2.4.7) E is a Ga—sgace.

Proof. From Lemma 2.1, Lemma 2.2 and Theorem 2.3 it
follows that (2.4.1)-(2.4.4) are equivalent.

(2.4.4.) » (2.4.5): From (2.5) and (2.7) it follows that

iip (x)

& o 21 x=y i
o (1+a){llx-yll Ay o, (’USITIY_)}

-D‘H»(x(y)”

1A

Cllx-—yllOl

1A

if o (t) = 0(t*) and t-0. On the other hand it is evident

that (2.4.5) implies (2.4.4).

(2.4.3.) © (2.4.6): From the definition of we

Pi+a
have

by 1% ey % <2 TP s 20 °1+a(%%§ﬂ}

o

20%1 1 & cpyntte

A

if p1+a(t) = O(t1+a) as t->0 (note that we always have that
pp(t) = 0(tP) as t-ow for all p > 1). On the other hand

it is evident that (2.4.6) implies (2.4.2).
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(2.4.5) = (2.4.7): Suppose that (2.4.5) holds and put

G(x) = (1-(-0()”1 D1+a(X)

then G satisfies (2.8) and (2.9) by (2.3) and (2.4). And (2.10)
follows from (2.4.5).
Now suppose that E is a Ga—space, and let G: E-E’

satisfy (2.8) - (2.10). Let X,¥y €E, then we have

<G(R),y> = <G(x),x+y> ~ <G(x) , x>
< HGEM Nxtyll- Nx1 e
= sl e " sy ri- 1)
< (1) ™1 ey it O g 1Y
where we have used the inequality
t-1 < (1+) "1 (£
which is valid for t > 0 and a > 0. Hence D(x) = (1+a)G(x)

(1+a

is a subdifferential of |lx| at x for all x€E, and

from (2.10) it follows that D is continuous on E. So by

Proposition 1.1 it follows that D = and from (2.10) it

D1+cx
-follows that (2.4.5) holds, and so (2.4.5) is equivalent to

- (2.4.7).
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