AARHUS UNIVERSITET

ON THE MODULUS OF SMOOTHNESS AND THE $\label{eq:Gamma_def} \mathsf{G}_\alpha\text{-}\mathsf{CONDITIONS} \text{ IN } \mathsf{B}\text{-}\mathsf{SPACES}$

J. Hoffmann-Jørgensen

September 1974

Preprint Series 1974/75 No. 2.

MATEMATISK INSTITUT

ON THE MODULUS OF SMOOTHNESS AND THE $\label{eq:Gamma-conditions} \mathsf{G}_{\alpha}\text{-}\mathsf{CONDITIONS} \text{ IN } \mathsf{B}\text{-}\mathsf{SPACES}$

1. Differentiation of real functions on a B-space

Let E be a Banach space with dual E', and let f be a map from E into ${\rm I\!R}.$ Let $x_O\in E$ and $D\in E'$, then we say that

D is a <u>subdifferential</u> of f at $x_0 \in E$, if we have $<D,y> \le f(x_0+y) - f(x_0) \qquad \forall \ ||y|| \le \delta \ .$

for some $\delta > 0$.

D is a <u>Gateux differential</u> of f at $x_0 \in E$, if we have $<D,y> = \lim_{t\to\infty} t^{-1}(f(x_0+ty)-f(x_0)) \quad \forall \, y\in E.$

D is a Fréchet differential of f at $x_0 \in E$, if we have

$$\lim_{y\to 0} ||y||^{-1} |f(x_0 + ty) - f(x_0) - \langle D, y \rangle| = 0.$$

We note that f admits at most one Gateaux (Fréchet) differential at a given point, whereas f may admit many subdifferentials. If f admits D as its Fréchet differential then D is a Gateau differential for f. If D is a Gateaux differential for f, and f is convex, then D is a subdifferential for f.

44/484

Now we define the modulus of continuity, $\omega,\;\;$ and the symmetric modulus of continuity, $\;\rho,\;\;$ by

$$\omega(f,x,t) = \sup_{y \in B} \{|f(x+ty) - f(x)|\}$$

$$\forall x \in E \forall t > 0$$

$$\omega(f,A,t) = \sup_{x \in A} \omega(f,x,t)$$

$$\forall A \subseteq E \forall t > 0$$

$$\rho(f,x,t) = \sup_{y \in B} \{\frac{1}{2}|f(x+ty) + f(x-ty) - 2f(x)|\} \forall x \in E \forall t > 0$$

$$\rho(f,A,t) = \sup_{x \in A} \rho(f,x,t) \qquad \forall A \subseteq E \quad \forall t>0$$

Where B is the unit Ball in E, and S is the sphere:

$$B = \{ y \in E | ||y|| \le 1 \}$$
, $S = \{ y \in E | ||y|| = 1 \}$

<u>Proposition 1.1.</u> Let $x_0 \in E$ and let U be a neighborhood of x_0 , so that f admits a subdifferential, D(x), at x for all $x \in U$, and suppose that

(1.1.1)
$$\exists \ \epsilon > 0 \quad \underline{\text{so that}} \quad t \sim f(x_0 + t\theta) \quad \underline{\text{is continuous}}$$

$$\underline{\text{in}} \ [-\epsilon, \epsilon] \quad \underline{\text{for all}} \quad \theta \in S,$$

(1.1.2)
$$D(x) is continuous at x = x_0.$$

 $\underline{\text{Then}}$ D(x₀) is a Fréchet differential of f at x₀.

<u>Proof.</u> We may assume that ϵ in (1.1.1) is taken so small that $B(x_0,\epsilon)\subseteq U$ ($B(x_0,\epsilon)$ denote the ball with center x_0 and radius ϵ), and we may also assume that D(x) is bounded in $B(x_0,\epsilon)$, that is

$$||D(x)|| \le M \quad \forall x \in B(x_0, \varepsilon).$$

Now let $\theta \in S$, and put $g(t) = f(x_0 + t\theta)$, and $h(t) = \langle D(x_0 + t\theta), \theta \rangle$. Then for each $s \in [-\epsilon, \epsilon]$ we can find $\delta(s) > 0$, so that

$$< D(x_O + s\theta), y> \le f(x_O + s\theta + y) - f(x_O + \theta) \quad \forall ||y|| \le \delta(s)$$

Putting $y = u\Theta$ give

$$uh(s) \le g(s+u) - g(s)$$
 $\forall |u| \le \delta(s) \forall |s| \le \varepsilon.$

Now $|h(s)| \le ||D(x_0 + s\theta)|| \le M$ for $|s| \le \epsilon$, and so

$$\underline{D}^{+}(g,s) = \liminf_{u \to 0+} \frac{g(s+u) - g(s)}{u} \ge -M$$

$$\overline{D}^-(g,s) = \lim_{u \to 0} \sup \frac{g(s+u) - g(s)}{u} \le M$$
.

So by continuity of g and Lemma VII.6.3 in [3], we find that

$$|g(t) - g(s)| \le M|t-s| \quad \forall t, s \in [-\epsilon, \epsilon].$$

In particular we have that g is absolutely continuous in $[-\epsilon,\epsilon] \quad \text{and} \quad$

$$g'(s) = \overline{D}^-(g,s) \le h(s) \le \underline{D}^+(g,s) = g'(s)$$

a.e. in $[-\epsilon,\epsilon]$. Hence we have for $\theta \in S$ and $|t| \leq \epsilon$:

$$f(x_0 + t\theta) - f(x_0) = \int_0^t ds.$$

Now let $||y|| \le \varepsilon$, and put t = ||y||, $\theta = t^{-1}y$, then we have

$$||y||^{-1} |f(x_0+y) - f(x_0) - \langle D(x_0), y \rangle|$$

$$\leq \frac{1}{t} \int_0^t ||D(x_0+s\theta) - D(x_0)|| ds \leq \omega(D, x_0, t)$$

and by continuity of D at x_0 , we have that $D(x_0)$ is a Fréchet differential of f at x_0 .

 $\frac{\text{Proposition 1.2. Let}}{\text{from}} \ \ \text{E} \ \ \underline{\text{into}} \ \ \mathbb{R} \ \ \underline{\text{and}} \ \ \mathbb{U} \ \ \underline{\text{an open nonempty subset of}} \ \ \underline{\text{E, so}}$

$$\frac{1}{t} \rho(f,U,t) \xrightarrow[t\to 0]{} 0$$

Then f admits a Fréchet differential, D(x), everywhere in U.

<u>Proof.</u> Let $x \in U$ and let $\theta \in S$, then the function $g(t) = f(x+t\theta)$ is convex. Hence g has a left and a right derivative, say g^- and g^+ , everywhere, and we have

$$g^{-}(t) \le g^{+}(t)$$
 \times t \tag{g(t+s) - g(t) - sg_{.}^{+}(t) \geq 0} \times t \times \frac{1}{2} \text{ \t

Moreover we have

$$0 \le s(g^{+}(0) - g^{-}(0)) \le g(s) + g(-s) - 2g(0)$$
$$\le 2\rho(f, U, s)$$

and so by (1.2.1) we have that $g^+(0) = g^-(0)$, and so

$$D_{O}(x,y) = \lim_{t\to 0} \frac{f(x+ty) - f(x)}{t}$$

exists for $x \in U$ and all y, and we have

$$0 \le f_t(x,y) - D_0(x,y) \le \frac{2}{t} \rho(f,U,t ||y||)$$

for all t>0 and all $x\in U$, $y\in E$, where $f_t(x,y)=\frac{f(x+ty)-f(x)}{t}$. Hence we have

$$f_{t}(x,y) \xrightarrow[t \to 0]{} D_{o}(x,y)$$
 uniformly in $U \times B$

and so D_{O} is continuous in $(x,y) \in U \times B$. It is evident that we have

$$D_{O}(x,\lambda y) = \lambda D_{O}(x,y) \qquad \forall \, x \in U \quad \forall \, y \in E \quad \lambda \in \mathbb{R}$$

Now let $x \in U$ and let $y_1, y_2 \in E$. Let $\varepsilon > 0$ be chosen so that $B(x, \varepsilon) \subseteq U$. If $|t| \le \varepsilon$ then we have

$$\begin{split} |f_{t}(\mathbf{x}, \mathbf{y}_{1} + \mathbf{y}_{2}) &= D_{o}(\mathbf{x}, \mathbf{y}_{1}) - D_{o}(\mathbf{x}, \mathbf{y}_{2})| \leq |f_{t}(\mathbf{x} + \mathbf{t}\mathbf{y}_{1}, \mathbf{y}_{2}) - D_{o}(\mathbf{x} + \mathbf{t}\mathbf{y}_{1}, \mathbf{y}_{2})| + \\ &+ |D_{o}(\mathbf{x} + \mathbf{t}\mathbf{y}_{1}, \mathbf{y}_{2}) - D_{o}(\mathbf{x}, \mathbf{y}_{2})| + |f_{t}(\mathbf{x}, \mathbf{y}_{1}) - D_{o}(\mathbf{x}, \mathbf{y}_{1})| \\ &\leq \frac{4}{t} \rho(\mathbf{f}, \mathbf{U}, \mathbf{t}(||\mathbf{y}_{1}|| + ||\mathbf{y}_{2}||)) + |D_{o}(\mathbf{x} + \mathbf{t}\mathbf{y}_{1}, \mathbf{y}_{2}) - D_{o}(\mathbf{x}, \mathbf{y}_{2})| \end{split}$$

So by continuity of D_0 and (1.2.1) we find that

$$D_{O}(x,y_1+y_2) = \lim_{t\to 0} f_{t}(x,y_1+y_2) = D_{O}(x,y_1) + D_{O}(x,y_2)$$

Hence $D(x) = D_O(x, \cdot) \in E^{\tau}$, and we have that

 $|f(x+y)-f(x)-\langle D(x),y\rangle|\leq 2\,\rho(f,U,||y||)\quad\forall\,x\in U\ \forall\,y\in E$ from which it follows that D(x) is the Fréchet differential for f at x.

2. The modulus of smoothness

Let $N_p(x) = ||x||^p$ for $1 \le p < \infty$, then we define $D_p(x)$ to be the Fréchet differential of N_p whenever it exists. Note that $D_p(0)$ exists and is equal to 0 for p > 1, but does not exist for p = 1. Suppose that $x \ne 0$ and $D_p(x)$ exists then straightforward computations show:

(2.1)
$$D_p(\lambda x)$$
 exists for $\lambda \neq 0$ and $D_p(\lambda x) = \lambda^{p-1} sign(\lambda) D_p(x)$

(2.2) $D_q(x)$ exist for all q > 0 and

$$D_{q}(x) = \frac{q}{p} ||x||^{q-p} D_{p}(x) = \frac{q}{p} ||x||^{q-1} D_{p}(\frac{x}{||x||})$$

(2.3)
$$\langle D_{p}(x), x \rangle = p||x||^{p}$$

(2.4)
$$||D_{p}(x)|| = p||x||^{p-1}.$$

Let $0 then we define the p-modulus of smoothness, <math display="inline">\rho_{_{\rm D}},$ by

$$\rho_{p}(t) = \rho(N_{p}, S, t) = \sup_{x,y \in S} \frac{1}{2}(||x+ty||^{p} + ||x-ty||^{p} - 2)$$

and we define, $\omega_{p}(t)$, by

$$\omega_{p}(t) = \sup\{\|D_{p}(x)-D_{p}(y)\| \mid x,y \in S, \|x-y\| \le t\}$$

for t>0 (if $D_p(x)$ does not exist for some $x \in S$, we put $\omega_p(t) \equiv \infty$). From (2.2) and (2.4) we find

(2.5)
$$\omega_p(t) = p \omega_1(t) \quad \forall t > 0 \quad \forall p \ge 1$$

(2.6)
$$\omega_{p}(t) \leq 2p$$
 $\forall t > 0 \quad \forall p \geq 1, \text{ if } \omega_{1} < \infty$

Let $x,y \in E \setminus \{0\}$, and put $x_0 = ||x||^{-1}$ and $y_0 = ||y||^{-1}y$, then we have

$$x_0 - y_0 \le \frac{2 ||x - y||}{\max\{||x||, ||y||\}}$$

and so we find

$$(2.7) \qquad ||D_{p}(x) - D_{p}(y)|| \le p |||x||^{p-1} - ||y||^{p-1} || + ||y||^{p-1} \omega_{p} \left(\frac{2||x-y||}{\max{\{||x||, ||y||\}}} \right)$$
 for all $x,y \ne 0$ and all $p \ge 1$.

E is called <u>uniformly smooth</u> if $\rho_1(t) = o(t)$ as $t \to 0$, and E is called <u>uniformly p-smooth</u> $(1 , if <math>\rho_1(t) = o(t^p)$ as $t \to 0$. E is called a G_{α} -space (o < 1), if there exists a map, G: E \to E', so that for some A > 0 we have

(2.8)
$$||G(x)|| = ||x||^{\alpha} \quad \forall x \in E$$

(2.9)
$$\langle G(x), x \rangle = ||x||^{1+\alpha} \forall x \in E$$

(2.10)
$$||G(x) - G(y)|| \leq A||x-y||^{\alpha} \forall x,y \in E$$

<u>Lemma 2.1</u>. There exist constants $K_p < \infty$ for $p \ge 1$ so that we have

(2.1.1)
$$\rho_1(t) \le \rho_p(t) \le K_p \rho_1(t)$$
 $\forall 0 \le t \le 1, p \ge 1$

 $\underline{Proof}_{\bullet}$ Let $x,y \in S$ and $t \ge 0$, then

$$||x+ty|| + ||x-ty|| \ge ||2x|| = 2$$

and since $a^q + b^q \le a^p + b^p$ whenever $1 \le q \le p < \infty$ and $a + b \ge 2$, we find

Now it is easily seen that there exists constants $\ {\rm C}_{\rm p} < \infty \ \ {\rm so}$ that

$$1 + s^p \le 2(\frac{1+s}{2})^p + C_p(1-s)^2 \quad \forall 0 \le s \le 1$$

Hence we find

Let x and y belong to S and $0 \le t \le 1$. Now we put a = ||x+ty|| and b = ||x-ty||, then $0 \le a \le 2$ and $0 \le b \le 2$, and so

$$\begin{split} \frac{1}{2}(a^p + b^p - 2) & \leq (\frac{1}{2}(a + b))^p + 2^{p-3}C_p |a - b|^2 - 1 \\ & \leq (\rho_1(t) + 1)^p - 1 + 2^{p-1}C_p t^2 \\ & \leq p(\rho_1(t) + 1)^{p-1} \rho_1(t) + 2^{p-1}C_p t^2 \\ & \leq 2^{p-1}p \rho_1(t) + 2^{p-1}C_p t^2 \end{split}$$

Now from [1] we know that

$$(1+t^2)^{\frac{1}{2}} -1 \le \rho_1(t)$$

and since $(\frac{1}{2}t)^2 \le (1+t^2)-1$ for $0 \le t \le 1$, we find

$$\frac{1}{2}(a^p+b^p-2) \leq (2^{p-1}p+2^{p+1}\bar{\mathfrak{C}_p})\rho_1(t)$$

for all $0 \le t \le 1$. Hence (2.1.1) holds with $K_p = p2^{p-1} + 2^{p+1}C_p$.

(2.2.1)
$$\rho_1(t) \le A t \omega_1(t) \quad \forall 0 \le t \le 1$$

(2.2.2)
$$t \omega_1(t) \le B \rho_1(t)$$
 $\forall 0 \le t \le 1$

<u>Proof.</u> Let $x,y \in S$ and t > 0 be given, then

||x+ty|| + ||x-ty|| - 2 =
$$\int_0^t < D_1(x+sy) - D_1(x), y > ds + \int_0^t < D_1(x) - D_1(x-sy), y > ds$$

 $\leq 2t \omega_1(2t)$

so we find

(2.12)
$$\rho_1(t) \le t\omega_1(2t)$$
 $\forall t \ge 0$.

Now let

$$f_t(x,y) = t^{-1}(||x+ty|| - ||x||)$$
 for $x,y \in E$, $t>0$.

Then $\lim_{t\to 0} f_t(x,y) = \langle D_1(x),y \rangle$ for $x \neq 0$ and $y \in E$, and since $t \sim ||x+ty||$ is convex we have

$$f_{t}(x,y) - \langle D_{1}(x), y \rangle \ge 0$$
 $\forall t > 0$
 $f_{t}(x,-y) + \langle D_{1}(x), y \rangle \ge 0$ $\forall t > 0$

Hence if t > 0 and $x, y \in S$ we have

$$0 \le f_{t}(x,y) - \langle D_{1}(x), y \rangle \le f_{t}(x,y) + f_{t}(x,-y)$$
$$= t^{-1}\{\|x+ty\|+\|x-ty\|-2\} \le t^{-1} \rho_{1}(t)$$

Now let x,y and z belong to S, and let t>0, then we we have

$$\begin{split} |\langle \mathbb{D}(x) - \mathbb{D}(y), z \rangle| &\leq |\langle \mathbb{D}(x), z \rangle - f_{t}(x, z)| + |f_{t}(x, z) - f_{t}(y, z)| \\ &+ |f_{t}(y, z) - \langle \mathbb{D}(y), z \rangle| \\ &\leq 2t^{-1}\rho(t) + |f_{t}(x, z) - f_{t}(y, z)| \end{split}$$

Using the inequality

$$||u|| + ||v|| \le ||u+v|| + ||u+v|| \rho_1 (\frac{||u-v||}{||u+v||})$$

for u = x+tz and v = y gives

for $0 < t \le \frac{1}{2}$ and $||x-y|| \le \frac{1}{2}$, since we have

$$||x+y+tz|| \ge ||2x|| - ||x-y|| - ||tz|| \ge 1$$

for $t \le \frac{1}{2}$ and $||x-y|| \le \frac{1}{2}$. Hence we find

$$\begin{split} f_{t}(x,z) &- f_{t}(y,z) = t^{-1}(||x+tz|| + ||y|| - ||y+tz|| - ||x||) \\ &\leq 3t^{-1} \, \rho_{1}(t+||x-y||) \end{split}$$

and similarly we find for $t \le \frac{1}{2}$ and $||x-y|| \le \frac{1}{2}$:

$$f_{t}(y,z) - f_{t}(x,z) \le 3t^{-1} \rho_{1}(t+||x-y||).$$

Putting t = ||x-y|| gives

$$|| \leq 2||x-y||^{-1}|\rho_1(||x-y||)| + 3||x-y||^{-1}\rho_1(2||x-y||)$$

for $||x-y|| \le \frac{1}{2}$ and all $z \in S$. Hence we have

(2.13)
$$\omega_1(t) \le 5t^{-1}\rho_1(2t) \quad \forall \ 0 \le t \le \frac{1}{2}$$

From the lemma on p.251 in [1] it follows that there exists a constant C > 0 so that

$$\rho_1(2t) \le C \rho_1(t) \quad \forall 0 \le t \le 1$$

and so (2.2.1) and (2.2.2) follows from (2.12) and (2.13).

Theorem 2.3. The following conditions are equivalent

(2.3.2)
$$\rho_{p}(t) = 0(t) \quad \underline{as} \quad t \to 0 \quad \underline{for \ some} \quad p \ge 1.$$

$$(2.3.3) \qquad \rho_p(t) = 0(t) \quad \underline{as} \quad t \to 0 \quad \underline{for \ all} \quad p \ge 1.$$

(2.3.4)
$$\lim_{t\to 0} \omega_1(t) = 0.$$

 $\underline{\text{Proof}}$. (2.3.1), (2.3.2), and (2.3.3) are equivalent by Lemma 2.1, and (2.3.4) implies (2.3.1) by Lemma 2.2. So we have only left to show that (2.3.1) implies (2.3.4). Let

$$U = \{x \in E \mid \frac{1}{2} < ||x|| < 2\}$$

then we have for $x \in U$, $y \in B$ and t > 0

$$\frac{1}{2}(||x+ty|| + ||x-ty|| - 2||x|| \ll ||x||\rho_1(\frac{t||y||}{||x||}) \le 2\rho_1(2t)$$

Hence we have

$$\rho(N_1, U, t) \le 2\rho_1(2t)$$

and so by Proposition 1.2, we find that (2.3.1) implies that $D_1(x) \quad \text{exists everywhere on S, and by Lemma 2.2, we find that}$ $\omega_1(t) \xrightarrow[t\to 0]{} 0.$

 $\underline{\text{Theorem 2.4}}.\ \underline{\text{Let}}\ 0<\alpha\leq\ 1\,,\quad\underline{\text{then the following conditions}}$ are equivalent

(2.4.1) E is uniformly
$$(1+\alpha)$$
-smooth.

(2.4.2)
$$\rho_{p}(t) = 0(t^{1+\alpha})$$
 as $t \to 0$ for some $p \ge 1$.

(2.4.3)
$$\rho_{p}(t) = 0(t^{1+\alpha})$$
 as $t \to 0$ for all $p \ge 1$.

(2.4.4)
$$\omega_1(t) = 0(t^{\alpha})$$
 as $t \to 0$ for all $p \ge 1$.

(2.4.5)
$$\exists c>0$$
 so that $\|D_{1+\alpha}(x) - D_{1+\alpha}(y)\| \le c\|x-y\|^{\alpha} \forall x,y$

(2.4.6)
$$\exists c>0$$
 so that $||x+y||^{1+\alpha} + ||x-y||^{1+\alpha} \le 2||x||^{1+\alpha} + c||y||^{1+\alpha} \forall x,y$

(2.4.7) E is a
$$G_{\alpha}$$
-space.

 $\underline{\text{Proof}}$. From Lemma 2.1, Lemma 2.2 and Theorem 2.3 it follows that (2.4.1)-(2.4.4) are equivalent.

 $(2.4.4.) \Leftrightarrow (2.4.5)$: From (2.5) and (2.7) it follows that

$$\begin{aligned} \|D_{1+\alpha}(x) - D_{1+\alpha}(y)\| &\leq (1+\alpha) \left\{ \|x-y\|^{\alpha} + \|y\|^{\alpha} \omega_{1} (\frac{2\|x-y\|}{\|y\|}) \right\} \\ &\leq C\|x-y\|^{\alpha} \end{aligned}$$

if $\omega_1(t) = 0(t^{\alpha})$ and $t \to 0$. On the other hand it is evident that (2.4.5) implies (2.4.4).

 $\label{eq:condition} (2.4.3.) \Leftrightarrow (2.4.6) \colon \text{From the definition of} \quad \rho_{\mbox{1+}\alpha} \text{ we}$ have

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^{1 + \alpha} + \|\mathbf{x} - \mathbf{y}\|^{1 + \alpha} &\leq 2\|\mathbf{x}\|^{1 + \alpha} + 2\|\mathbf{x}\|^{1 + \alpha} &\rho_{1 + \alpha}(\frac{\|\mathbf{y}\|}{\|\mathbf{x}\|}) \\ &\leq 2\|\mathbf{x}\|^{1 + \alpha} + C\|\mathbf{y}\|^{1 + \alpha} \end{aligned}$$

if $\rho_{1+\alpha}(t)=0$ ($t^{1+\alpha}$) as $t\to 0$ (note that we always have that $\rho_p(t)=0$ (t^p) as $t\to \infty$ for all $p\ge 1$). On the other hand it is evident that (2.4.6) implies (2.4.2).

 $(2.4.5) \Leftrightarrow (2.4.7)$: Suppose that (2.4.5) holds and put

$$G(x) = (1+\alpha)^{-1} D_{1+\alpha}(x)$$

then G satisfies (2.8) and (2.9) by (2.3) and (2.4). And (2.10) follows from (2.4.5).

Now suppose that E is a $G_{\alpha}\text{-space, and let }G\colon\thinspace E\to E^*$ satisfy (2.8) - (2.10). Let $\ x,y\in E,\$ then we have

$$\langle G(x), y \rangle = \langle G(x), x + y \rangle - \langle G(x), x \rangle$$

$$\leq ||G(x)|| ||x + y|| - ||x||^{1 + \alpha}$$

$$= ||x||^{1 + \alpha} (||x||^{-1} ||x + y|| - 1)$$

$$\leq (1 + \alpha)^{-1} (||x + y||^{1 + \alpha} - ||x||^{1 + \alpha})$$

where we have used the inequality

$$t-1 \le (1+\alpha)^{-1} (t^{1+\alpha} - 1)$$

which is valid for $t \ge 0$ and $\alpha \ge 0$. Hence $D(x) = (1+\alpha)G(x)$ is a subdifferential of $\|x\|^{1+\alpha}$ at x for all $x \in E$, and from (2.10) it follows that D is continuous on E. So by Proposition 1.1 it follows that $D = D_{1+\alpha}$ and from (2.10) it follows that (2.4.5) holds, and so (2.4.5) is equivalent to (2.4.7).

REFERENCES

- [1] J. Lindenstrauss: "On the modules of smoothness and divergent series in Banach spaces", Michigang Math. J., 10(1963), 241-252.
- [2] V.D. Milman: "Geometric theory of Banach spaces. Part II: Geometry of the unit sphere", Russian Math. Survey, 26(No.6) (1971), 79-163.
- [3] S. Saks: "Theory of integral", 2nd ed. Hafner, New York, 1937.