AN ESTIMATION OF THE MODULUS OF CONVEXITY IN A CLASS OF ORLICZ SPACES

H. HUDZIK *

(Received 1985, December 26)

Abstract. It is given an estimation of the modulus of convexity in the class of Orlicz spaces L^{Φ} generated by Orlicz functions Φ satisfying condition Δ_2 for all $u \in R$ and such that the function $\Phi(\sqrt{u})$ is convex on R_+ . The modulus of convexity of the Orlicz space $L^P \cap L^Q$, $2 \le p \le q < \infty$, generated by the Orlicz function $\Phi(u) = \max(|u|^P, |u|^Q)$ is estimated. Relationships between uniform convexity of a modular and of a modular norm generated by it are discussed.

Introduction. The notion of uniform convexity of Banach spaces has introduced J. A. Clarkson in [1]. He has proved that the classical real or convex Lebesgue spaces L^p , $1 \le p \le \infty$, are uniformly convex for 1 . Next, many mathematicians have given some simplifications of the Clarkson proof. A very simple proof has given O. Hanner in [3]. Estimations for the modulus of convexity of L^p , 1 < $p < \infty$, may be chosen in [2] and [9]. The best result concerning uniform convexity of L^p , 1 , has obtained A. Meir [11]. Papers [6] and [12]concern uniform convexity of Orlicz spaces while papers [4] and [5] concern uniform convexity of Musielak-Orlicz spaces. In [4] it is proved that the modulus of convexity of the Luxemburg norm $\| \ \|_{\Phi}$ in a uniformly convex Orlicz space can be estimated whenever an estimation of the modulus of convexity for the modular I_{Φ} is known. In this paper an estimation for the modulus of convexity of the modular I_{Φ} for the class of Orlicz functions Φ such that $\Phi(\sqrt{u})$ is a convex function on R_+ is given. The result from [4] concerning the estimation of the function $q(\epsilon)$, $0 < \epsilon < \infty$, such that $||f||_{\Phi} \ge \epsilon$ implies $I_{\Phi}(f) \ge q(\epsilon)$ is improved. Next, these results are applied to give an estimation of the modulus $\delta_{\parallel \parallel \Phi}(\epsilon)$.

AMS (1980) Subject Classification. 46E30.

^{*} Institute of Mathematics, A. Mickiewicz University, Poznań, Poland.

Moreover, it is proved that the modulus of convexity for the Orlicz space $L^p \cap L^q$, $2 \le p \le q < \infty$, generated by the Orlicz function $\Phi(u) = \max(|u|^p, |u|^q)$, is nonsmaller than $1 - \frac{1}{2} \sqrt{2^q - \epsilon^q}$ ($0 < \epsilon \le 2$). Finally, relationships between uniform convexity of a modular and of a modular norm generated by it and various notions of uniform convexity of a modular m are discussed.

Now, we shall give some denotations and definitions. Throughout this paper R denotes the real line, $R_+ = [0, \infty)$, (T, Σ, μ) denotes a space of positive measure, Φ denotes an *Orlicz function*, i.e. $\Phi(0) = 0$, Φ is convex, even and not identically equal to zero or infinity for u > 0. L^{Φ} denotes the corresponding *Orlicz space*, i.e. L^{Φ} contains of all Σ -measurable functions f defined on T for which there is $\lambda > 0$ such that $I_{\Phi}(\lambda f) = \int_{T} \Phi(\lambda f(t)) d\mu < \infty$ (see [7], [10], [13] and [14]). With respect to the $Luxemburg\ norm\ \|\ \|_{\Phi}$ defined by

$$||f||_{\Phi} = \inf \{\lambda > 0 : I_{\Phi}(\lambda^{-1} f) \leq 1 \}$$

 L^{Φ} is a Banach space (see [10]).

We say an Orlicz function Φ satisfies *condition* Δ_2 for all $u \in R$ if there is a constant $K \ge 2$ such that $\Phi(2u) \le K\Phi(u)$ for all $u \in R$.

The moduli of convexity of a modular m (for definition of the modular see [13-15]) and of a norm $\| \|$ are defined for $0 < \epsilon \le 1$ and $0 < \epsilon \le 2$, respectively, by

$$\delta_m(\epsilon) = \inf \left\{ 1 - m\left(\frac{f+g}{2}\right) : m(f) \le 1, m(g) \le 1, m\left(\frac{f-g}{2}\right) \ge \epsilon \right\}$$

assuming inf $\phi = 1$ (see [4]),

$$\delta_{\parallel \parallel}(\epsilon) = \inf \{1 - \|\frac{f+g}{2}\| : \|f\| \le 1, \|g\| \le 1, \|f-g\| \ge \epsilon \} \text{ (see [2])}.$$

A norm $\| \|$ (a modular m) is said to be *uniformly convex* if its modulus of convexity is positive for $0 < \epsilon \le 2$ (for $0 < \epsilon \le 1$).

Results. Before we shall prove the main theorem of this paper, we shall give three auxilliary lemmas.

Lemma 1. Let Φ be an Orlicz function such that the function $\Phi(\sqrt{u})$ is convex on R_+ . Then $\delta_{I_{\Phi}}(\epsilon) \ge \epsilon$ for $0 < \epsilon \le 1$.

Proof. We have by convexity and super-additivity of the function $\Phi(\sqrt{u})$ (see [8]),

for any $w, z \in R$. Hence it follows that for any $f, g \in L^{\Phi}$,

(1)
$$I_{\Phi}(f+g) + I_{\Phi}(f-g) \ge 2I_{\Phi}(f) + 2I_{\Phi}(g)$$
.

Defining $f_1 = \frac{1}{2}(f+g)$, $g_1 = \frac{1}{2}(f-g)$, we get $f_1 + g_1 = f$ and $f_1 - g_1 = g$. So, by (1),

$$I_{\Phi}(f) + I_{\Phi}(g) = I_{\Phi}(f_1 + g_1) + I_{\Phi}(f_1 - g_1) \ge 2I_{\Phi}(f_1) + 2I_{\Phi}(g_1), \text{ i.e.}$$

(2)
$$I_{\Phi}((f+g)/2) \leq \frac{1}{2} \{I_{\Phi}(f) + I_{\Phi}(g)\} - I_{\Phi}((f-g)/2).$$

Assuming additionally that $I_{\Phi}(f) \leq 1$ and $I_{\Phi}(g) \leq 1$, we get $I_{\Phi}((f+g)/2) \leq 1 - \epsilon$ whenever $I_{\Phi}((f-g)/2) \geq \epsilon$. It means that I_{Φ} is uniformly convex and $\delta_{I_{\Phi}}(\epsilon) \geq \epsilon$.

For a fixed *Orlicz function* vanishing only at zero and for any $\sigma \in (0, 1)$, we denote by f_{σ} the function from $R \setminus \{0\}$ into R_{+} defined by

$$f_\sigma(u) = \Phi(u/(1-\sigma))/\Phi(u).$$

There holds the following

Lemma 2 (see [4], Lemma 2.3). Let Φ be an Orlicz function satisfying condition Δ_2 for all $u \in R$ and define the function $p:(0,1) \to (0,1)$, by

$$p(\epsilon) = \sup \left\{ \sigma \in (0,1) : \sup_{u>0} f_{\sigma}(u) \leq \frac{1}{1-\epsilon} \right\}.$$

Then for any $f \in L^{\Phi}$ and $\epsilon \in (0,1)$, we have $||f||_{\Phi} \leq 1 - p(\epsilon)$ whenever $I_{\Phi}(f) \leq 1 - \epsilon$.

Lemma 3. Let Φ be an Orlicz function satisfying condition Δ_2 for all $u \in R$. If for $\epsilon > 0$,

$$q(\epsilon) = \inf_{u>0} \{\Phi(u)/\Phi(u/\epsilon)\},$$

then $q(\epsilon) > 0$, $q(\epsilon) \le K$ for $0 \le \epsilon \le 2$ (K is the constant from condition Δ_2) and $I_{\Phi}(f) \ge q(\epsilon)$ whenever $||f||_{\Phi} \ge \epsilon$.

Proof. It follows from condition Δ_2 that for any $\epsilon>0$ there is $K_\epsilon>0$ such that $\Phi\left(\frac{u}{\epsilon}\right)\leqslant K_\epsilon\Phi(u)$ for all $u\in R$. Hence $q\left(\epsilon\right)\geqslant K_\epsilon^{-1}>0$. Moreover, we have for $0<\epsilon\leqslant 2$ and $u\in R$,

$$\Phi\left(\frac{u}{\epsilon}\right) \geqslant \Phi\left(\frac{u}{2}\right) \geqslant K^{-1} \Phi\left(u\right), \text{ i.e. } \left[\Phi\left(u\right)/\Phi\left(u/\epsilon\right)\right] \leqslant K \text{ and } q\left(\epsilon\right) \leqslant K.$$

It is clear that $\Phi(\frac{u}{\epsilon}) \leq (q(\epsilon))^{-1} \Phi(u)$ for all $u \in R$, $0 < \epsilon \leq 2$. Thus $I_{\Phi}(f) < q(\epsilon)$ implies $I_{\Phi}(\frac{f}{\epsilon}) \leq (q(\epsilon))^{-1} I_{\Phi}(f) < 1$, i.e. $||f||_{\Phi} < \epsilon$.

Combining the above three lemmas, we obtain the following

Theorem 1. Let Φ be an Orlicz function satisfying condition Δ_2 for all $u \in R$ and such that $\Phi(\sqrt{u})$ is a convex function on R_+ . Then L^Φ is uniformly convex and $\delta_{\parallel \parallel \Phi}(\epsilon) \geqslant p(q(\frac{\epsilon}{2}))$ for any $0 < \epsilon \leqslant 2$.

Proof. Assume that $\|f\|_{\Phi} \leq 1$, $\|g\|_{\Phi} \leq 1$ and $\|f-g\|_{\Phi} \geq \epsilon$. Then by condition Δ_2 for all $u \in R$ and Lemmas 2 and 3, we have $I_{\Phi}(f) \leq 1$, $I_{\Phi}(g) \leq 1$ and $I_{\Phi}(\frac{f-g}{2}) \geq q(\frac{\epsilon}{2})$. Applying Lemma 1, we get $I_{\Phi}(\frac{f+g}{2}) \leq 1-q(\frac{\epsilon}{2})$. Next, by Lemma 2, we obtain $\|\frac{f+g}{2}\|_{\Phi} \leq 1-p(q(\frac{\epsilon}{2}))$. It is the desired result.

The following example is an illustration of our method of estimation for the modulus of convexity in considered class of Orlicz spaces.

Example 1. Let $\Phi(u) = \max(|u|^p, |u|^q)$, where $2 \le p \le q < \infty$. This function satisfies the assumptions of Theorem 1. We shall show that $\delta_{\|\|\Phi}(\epsilon)$

$$\geq 1 - \frac{1}{2} \sqrt[q]{2^q - \epsilon^q}$$
 for $0 < \epsilon \leq 2$.

Indeed, we have for $0 < \epsilon \le 1$,

$$\Phi(u)/\Phi(u/\epsilon) = \epsilon^{p} \qquad \text{if } 0 < u \le \epsilon$$

$$= \epsilon^{q} u^{p-q} \qquad \text{if } \epsilon < u \le 1$$

$$= \epsilon^{q} \qquad \text{if } u > 1,$$

and for $\epsilon > 1$,

$$\Phi(u)/\Phi(u/\epsilon) = \epsilon^{p} \qquad \text{if } 0 < u \le 1$$

$$= \epsilon^{p} u^{q-p} \qquad \text{if } 1 < u \le \epsilon$$

$$= \epsilon^{q} \qquad \text{if } u > \epsilon.$$

Hence, $q(\epsilon) = \min(\epsilon^p, \epsilon^q)$ for $0 < \epsilon < \infty$.

Let $0 < \epsilon < 1$ and $\sigma \in (0, 1)$. We have

$$f_{\sigma}(u) = (1 - \sigma)^{-p} \qquad \text{if } 0 < u \le 1 - \sigma$$
$$= (1 - \sigma)^{-q} u^{p-q} \qquad \text{if } 1 - \sigma < u \le 1$$
$$= (1 - \sigma)^{-q} \qquad \text{if } u > 1.$$

Thus, $\sup_{u>0} f_{\sigma}(u) = (1-\sigma)^{-q}$. Hence it follows that

$$p(\epsilon) = \sup \{ \sigma \in (0,1) : (1-\sigma)^{-q} \le (1-\epsilon)^{-1} \} = 1 - {}^{q}\sqrt{1-\epsilon} .$$

Applying Theorem 1, we get for $0 < \epsilon \le 2$,

$$\delta_{\parallel\parallel_{\Phi}}(\epsilon) \geqslant p(q(\frac{\epsilon}{2})) = 1 - \frac{q}{\sqrt{1 - (\epsilon/2)^q}} = 1 - \frac{1}{2} \frac{q}{\sqrt{2^q - \epsilon^q}}.$$

Note. For p = q it is a classical result for L^p spaces, $2 \le p < \infty$.

Main notions that will be used in the following may be chosen in [15]. X denotes a *modular space*, i.e. a real vector space equipped with a convex and left-continuous *modular m*. Elements of X will be denoted by x, y (the letters f, g are reserved for denotation of functions). The *modular norm* ||| is defined by

$$|||x||| = \inf \{\lambda > 0 : m(\lambda^{-1}x) \le 1\}.$$

H. Nakano [15] has assumed that a modular m is said to be uniformly convex if for any two $\epsilon, \gamma > 0$ we can find $\delta > 0$ such that if $m(x - y) \ge \epsilon$ and $\max(m(x), m(y)) \le \gamma$, then

$$m(\frac{1}{2}(x+y)) \le \frac{1}{2} \{m(x) + m(y)\} - \delta.$$

If m satisfies the conditions for uniform convexity in the sense of Nakano with $m\left(\frac{1}{2}(x-y)\right) \geqslant \epsilon$ instead of $m(x-y) \geqslant \epsilon$, then we say that m is uniformly convex in the modified sense of Nakano.

This new property of m is weaker than uniform convexity in the sense of Nakano.

Corollary 1. (a). If Φ is an Orlicz function such that $\Phi(\sqrt{u})$ is a convex function on R_+ , then I_{Φ} is uniformly convex in the modified sense of Nakano with $\delta(\epsilon, \gamma) = \epsilon$.

- (b). If additionally, Φ satisfies condition Δ_2 for all $u \in R$, then I_{Φ} is uniformly convex in the sense of Nakano with $\delta(\epsilon, \gamma) = \frac{\epsilon}{K}$, where $K = \sup \{\Phi(2u)/\Phi(u) : u > 0\}$.
- (c). If $\lim_{n\to\infty} x^*(x_n) = x^*(x)$ for any linear modular bounded functional x^* over X (see [15], p.206) and $\overline{\lim}_{n\to\infty} m(x_n) \le m(x)$, then $\lim_{n\to\infty} m(\frac{x_n-x}{2}) = 0$.

Proof. Property (a) follows by inequality (2), p.3. For the proof of (b), assume additionally that Φ satisfies condition Δ_2 for all $u \in R$. Then $I_{\Phi}(x-y) \ge \epsilon$ implies $\epsilon \le I_{\Phi}(x-y) = I_{\Phi}\left(2\frac{x-y}{2}\right) \le KI_{\Phi}\left(\frac{x-y}{2}\right)$. Hence we get $I_{\Phi}\left(\frac{x-y}{2}\right) \ge \frac{\epsilon}{K}$. Now, it suffices to apply property (a).

The proof of (c) is analogous to the proof of Th. 1, p. 227 in [15].

We say a modular m is uniformly convex in the second modified sense of Nakano if for any $\epsilon, \gamma > 0$ there exists $\delta(\epsilon, \gamma) \in (0, 1)$ such that $\max(m(x), m(y)) \leq \gamma$ and $m(x - y) \geq \epsilon$ implies

$$m\left(\frac{x+y}{2}\right) \leqslant \frac{1-\delta}{2} \left\{ m(x) + m(y) \right\}.$$

This property is weaker than uniform convexity in the Nakano sense and there holds the following

Remark 1. If m is a modular satisfying the condition:

(
$$\Lambda_2$$
) For any $\epsilon, \gamma > 0$ there is $K(\epsilon, \gamma) > 0$ such that $m(x) \leq \gamma$ implies $m(2x) \leq Km(x) + \epsilon$.

then all three uniform convexities of Nakano type for m are equivalent.

Proof. It is obvious that uniform convexity in the Nakano sense implies the uniform convexity of m in the modified sense of Nakano. Conversely, if m is uniformly convex in the last sense and $m(x-y) \ge \epsilon$, $\max(m(x), m(y)) \le \gamma$, then $m(\frac{x-y}{2}) \le \gamma$ and so

$$\epsilon \leq m(x-y) = m(2\frac{x-y}{2}) \leq K(\frac{\epsilon}{2}, \gamma) m(\frac{x-y}{2}) + \frac{\epsilon}{2}$$

i.e.
$$m(\frac{x-y}{2}) \geqslant \frac{\epsilon}{2K}$$
. Hence it follows that $m(\frac{x+y}{2}) \leqslant \frac{1}{2} \{m(x) + m(y)\}$ $-\delta(\frac{\epsilon}{2K}, \gamma)$.

Now, assume that m is uniformly convex in the sense of Nakano and $\max(m(x), m(y)) \leq \gamma$, $m(x-y) \geq \epsilon$. Then

$$\begin{split} m(\frac{x+y}{2}) &\leq \frac{1}{2} \left\{ m(x) + m(y) \right\} - \delta(\epsilon, \gamma) \\ &\leq \frac{1}{2} \left\{ m(x) + m(y) \right\} - \frac{\delta(\epsilon, \gamma)}{2\gamma} \left\{ m(x) + m(y) \right\} \\ &= \frac{1 - \gamma^{-1} \delta(\epsilon, \gamma)}{2} \left\{ m(x) + m(y) \right\}. \end{split}$$

It means that m is uniformly convex in the second modified sense of Nakano. Conversely, assuming that m is uniformly convex in the last sense, we have

$$m(\frac{x+y}{2}) \leqslant \frac{1-\delta(\epsilon,\gamma)}{2} \{m(x)+m(y)\},$$

whenever $m(x-y) \ge \epsilon$ and $\max(m(x), m(y)) \le \gamma$. Since

$$\frac{\epsilon}{2K(\frac{\epsilon}{2},\gamma)} \leq m(\frac{x-y}{2}) \leq \frac{1}{2} \{m(x) + m(y)\},$$

SO

$$m(\frac{x+y}{2}) \le \frac{1}{2} \{m(x) + m(y)\} - \frac{\epsilon \delta(\epsilon, \gamma)}{2K(\frac{\epsilon}{2}, \gamma)},$$

i.e. m is uniformly convex in the Nakano sense.

Remark 2. Every uniformly convex Orlicz function $\Phi: X \to R_+$, i. e. Orlicz function such that for any $\epsilon \in (0,1)$ there is $\delta(\epsilon) \in (0,1)$ such that $\Phi(x-y) \ge \epsilon \max(\Phi(x),\Phi(y))$ implies $\Phi(\frac{x+y}{2}) \le \frac{1-\delta}{2} \{\Phi(x)+\Phi(y)\}$ (for definition and examples see [4-5]), is a uniformly convex modular on X in the second modified sense of Nakano.

Proof. If $\Phi(x-y) \ge \epsilon$ and $\max(\Phi(x), \Phi(y)) \le \gamma$, then

$$\Phi(x-y) \geqslant \frac{\min(\epsilon, 2^{-1})}{\gamma} \max(\Phi(x), \Phi(y)).$$

Thus

$$\Phi\left(\frac{x+y}{2}\right) \leqslant \frac{1-\delta\left(\gamma^{-1}\min\left(\epsilon,2^{-1}\right)\right)}{2} \left\{\Phi(x) + \Phi(y)\right\}.$$

Corollary 2. Every modular m as in Remark 2 has the following useful property: if $\lim_{n\to\infty} x^*(x_n) = x^*(x)$ for any linear and modular bounded functional x^* over X and $\overline{\lim_{n\to\infty}} m(x_n) \le m(x)$, where m(x) > 0, then $\lim_{n\to\infty} m(x-x_n) = 0$.

The proof is analogous to that of Th. 1, p. 227 in [15].

Notes 1. (a) All above considered uniform convexities (i.e. uniform convexities of Nakano type) are very strong properties. The definition of uniform convexity

of a modular m given on page 2 is a weaker one.

(b) If m is a uniformly convex modular in the sense of definition given on page 2, then for any x, $x_n \in X$, $n = 1, 2, \ldots$, such that $x^*(x_n) \to x^*(x)$ as $n \to \infty$ for any linear and modular bounded functional x^* over X, and $\overline{\lim_{n \to \infty}} m(x_n) \le m(x) \le 1$, we have $m(\frac{1}{2}(x_n - x)) \to 0$ as $n \to \infty$.

Proof. (a) follows immediately from definitions. Property (b) may be proved in an analogous way as Th. 1, p. 227 in [15].

Remark 3. (a) No norm on X is a uniformly convex modular in the second modified sense of Nakano (so also in the modified sense of Nakano and in the sense of Nakano).

(b) Any uniformly convex norm on X has the following property: for any $\epsilon, \gamma > 0$ there is $\delta(\epsilon, \gamma) \in (0, 1)$ such that $\|x - y\| \ge \epsilon$ and $\max(\|x\|, \|y\|) \le \gamma$ imply

$$\|\frac{x+y}{2}\| \le \frac{1-\delta}{2} \max(\|x\|, \|y\|).$$

(c) The inequality $\delta_X(\epsilon) \leq \frac{\epsilon}{2}$ holds for any normed space X and any $\epsilon \in (0,2]$.

Proof. (a). Let $x_0 \in X$, $||x_0|| = 1$ and $X_0 = \{\lambda x_0 : \lambda \in R\}$. Let $\alpha, \beta \ge 0$, $x = \alpha x_0$, $y = \beta x_0$. We have

$$\mid\mid \frac{x+y}{2}\mid\mid = \mid\mid \frac{\alpha+\beta}{2} \, x_0 \mid\mid = \frac{\alpha+\beta}{2} \, = \, \frac{\mid\mid x\mid\mid + \mid\mid y\mid\mid}{2} \; .$$

It means that X is not uniformly convex in the Nakano sense.

- (b) If $(X, \| \|)$ is uniformly convex, then for any $\epsilon \in (0, 2]$ there is $\delta(\epsilon) \in (0, 1)$ such that $\max(\|x\|, \|y\|) \le 1$ and $\|x y\| \ge \epsilon$ imply $\|x + y\| \le 2(1 \delta)$ (see [9]). Assume that $0 < a = \max(\|x\|, \|y\|) \le \gamma$ and $\|x y\| \ge \epsilon$. We have $\max(\|\frac{x}{a}\|, \|\frac{y}{a}\|) \le 1$ and $\|\frac{x y}{a}\| \ge \frac{\epsilon}{\gamma}$. Hence $\|x + y\| \le 2a(1 \delta(\frac{\epsilon}{\gamma}))$.
 - (c) Let (R, | |) be the real line equipped with the norm |x| = x for $x \ge 0$

and |x| = -x for x < 0. Since |x + y| + |x - y| = 2 max (|x|, |y|) for any $x, y \in R$, so $|x - y| \ge \epsilon$ and max $(|x|, |y|) \le 1$ imply $|\frac{x + y}{2}| = \max(|x|, |y|) - |\frac{x - y}{2}| \le 1 - \frac{\epsilon}{2}$. Moreover, for x = 1, $y = 1 - \epsilon$, we have x - y = |x - y| $= \epsilon$ and $|\frac{x + y}{2}| = 1 - \frac{\epsilon}{2}$. These facts mean that $\delta_R(\epsilon) = \frac{\epsilon}{2}$ for any $\epsilon \in (0, 2]$. Since $(R, |\cdot|)$ can be isometrically embedded into any Banach space X, so we obtain $\delta_X(\epsilon) \le \frac{\epsilon}{2}$ for any $\epsilon \in (0, 2]$ and any normed space X.

(b) If m is uniformly simple, uniformly finite and uniformly convex, then ||| ||| is uniformly convex.

Proof. It is well known (see [7], [10], [13], and [15]) that for any $x \in X$, we have $m(x) \le 1$ if and only if $|||x||| \le 1$ and $m(x) \le 1$ implies $m(x) \le |||x|||$. Assume that $m(\frac{x-y}{2}) \ge \epsilon$ and $\max(m(x), m(y)) \le 1$. Then $|||\frac{x-y}{2}||| \ge \epsilon$ and $\max(|||x|||, |||y|||) \le 1$. Thus, by uniform convexity of ||||||||, we get

$$m\left(\left.\frac{x+y}{2}\right.\right) \leq |||\frac{x+y}{2}||| \leq 1-\delta_{|||\,|||}(2\epsilon).$$

It means that $\delta_m(\epsilon) \ge \delta_{|||||||}(2\epsilon)$ and m is uniformly convex.

(b) The proof may be proceeding in an analogous manner to that of Th. 3, p.227 [15].

Remark 4. For every modular m we have |||x||| = 1 whenever m(x) = 1.

Prooof. If $m(r^{-1}x) = \infty$ for any 0 < r < 1, then |||x||| = 1, by the definition of the modular norm ||| ||||. Assume that $m(r^{-1}x) < \infty$ for some $r \in (0,1)$. Then $m(\lambda x)$ is a finite and convex function of λ on the interval $(0,r^{-1})$. Therefore, $m(\lambda x)$ is a strictly increasing function of λ in some neighbourhood of $\lambda_0 = 1$. Hence, we have for any $\lambda > 1$, $m(\lambda x) > m(x) = 1$. Hence it follows that |||x|||

= 1.

References

- [1] Clarkson, J. A.: Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.
- [2] Diestel, J.: Sequences and series in Banach spaces, Springer-Verlag 1984.
- [3] Hanner, O.: On the uniform convexity of L^p and l^p , Ark, Math. 3 (1956), 239 244.
- [4] Hudzik, H.: Convexity in Musielak-Orlicz spaces, Hokkaido Math. J. 14 (1985), 85-96.
- [5] Hudzik, H.: A criterion of uniform convexity of Musielak-Orlicz spaces with Luxemburg norm, Bull. Acad. Polon. Sci. Math. 32, No. 5-6 (1984), 303-313.
- [6] Kamińska, A.: On uniform convexity of Orlicz spaces, Indagationes Math. 44 (1982), 27-36.
- [7] Krasnoselskii, M. A. and Rutickii, Ya. B.: Convex functions and Orlicz sapces, Groningen 1961.
- [8] Lamperti, J.: On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
- [9] Lindenstrauss, J. and Tzafriri, L.: Classical Banach spaces II, Function spaces, Springer-Verlag 1979.
- [10] Luxemburg, W. A. J.: Banach funcation spaces, Thesis, Delft 1955.
- [11] Meir, A.: On uniform convexity of L^p spaces, 1 , Illinois J. Math. 28.3 (1984), <math>420-424.
- [12] Milnes, H. W.: Convexity of Orlicz spaces, Pacific J. Math. 7 (1957), 1451-1486.
- [13] Musielak, J.: Orlicz spaces and modular spaces, Springer-Verlag Berlin Heidelberg Tokyo 1983.
- [14] Musielak, J. and Orlicz, W.: On modular spaces, Studia Math. 18 (1959), 49-65.
- [15] Nakano, H.: Topology and linear topological spaces, Tokyo 1951.