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AN ESTIMATION OF THE MODULUS OF CONVEXITY
IN A CLASS OF ORLICZ SPACES

H. HupzIK *

(Received 1985, December 26 )

Abstract. It is given an estimation of the modulus of convexity in the class of Orlicz spaces
L® generated by Orlicz functions @ satisfying condition A, for all u €R and such that the
function @ ( V) is convex on R.. The modulus of convexity of the Orlicz space LPn Lq,
2 < p < q < =, generated by the Orlicz function @ (u) = max (lu |p, |u 19) is estimated.
Relationships between uniform convexity of a modular and of a modular norm generated by it
are discussed.

Introduction. The notion of uniform convexity of Banach spaces has introduced
J. A. Clarkson in [1]. He has proved that the classical real or convex Lebesgue
spaces LP, 1 <p <o, are uniformly convex for 1 <p < oo, Next, many mathe-
maticians have given some simplifications of the Clarkson proof. A very simple proof
has given O. Hanner in [3]. Estimations for the modulus of convexity of LP, 1<
p <o, may be chosenin [2] and [9]. The best result concerning uniform con-
vexity of LP, 1 <p <2, has obtained A. Meir [11]. Papers [6] and [12]
concern uniform convexity of Orlicz spaces while papers [4] and [5] concern
uniform convexity of Musielak-Orlicz spaces. In [4] it is proved that the modulus
of convexity of the Luxemburg norm || |l in a uniformly convex Orlicz space can
be estimated whenever an estimation of the modulus of convexity for the modular
Io is known. In this paper an estimation for the modulus of convexity of the
modular /g for the class of Orlicz functions & such that <I>(\/—1:l— ) is a convex
function on R, is given. The result from [4] concerning the estimation of the
function gq(e), 0 <e <oe, such that ||f|le =€ implies /o (f)=q(e) isim-
proved. Next, these results are applied to give an estimation of the modulus & 4 (€).
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Moreover, it is proved that the modulus of convexity for the Orlicz space L? NLY?,
2 <p <q <o, generated by the Orlicz function ®(u) = max (|u P, (ul?), is

nonsmaller than 1 — %q\/ 29 — €7 (0<e<2). Finally, relationships between

uniform convexity of a modular and of a modular norm generated by it and various
notions of uniform convexity of a modular m are discussed.

Now, we shall give some denotations and definitions. Throughout this paper
R denotes the real line, R4 = [0,), (T, 2, u) denotes a space of positive measure,
@ denotes an Orlicz function, i.e. ®(0)=0, & is convex, even and not identically
equal to zero or infinity for « > 0. L® denotes the corresponding Orlicz space,
i.e. L® contains of all T-measurable functions f defined on T for which there
is A>0 suchthat I (Nf)=[7P(NAf(2))du<oo (see [7],[10],[13] and
[14]). With respect to the Luxemburg norm || || ¢ defined by

Ifllg =inf {A>0: Io(A~! /)<1}

L?® isa Banach space (see [10]).

We say an Orlicz function & satisfies condition A, forall u €R if there is
a constant K =>2 such that ®(2u)<K®(u) forall u€R.

The moduli of convexity of a modular m (for definition of the modular see
[13-15]) and of anorm || || are defined for 0<e<1 and 0 <e <2 , respectively,
by

Sm(e)=inf {1-m(I 38y m(n)<1, m(@)<1, m(I=5)>e}

assuming inf ¢ =1 (see [4]),
) Vit
6””(e)=lnf{l—HT—ll CIANST, gl <1, 0If-gll=>e€} (see [2]).

A norm || || (a modular m) is said to be uniformly convex if its modulus of
convexity is positive for 0 <e<2 (for 0<e<1).

Results. Before we shall prove the main theorem of this paper, we shall give three
auxilliary lemmas.
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Lemma 1. Let ® be an Orlicz function such that the function ®( Vv 7) is
convexon Ry. Then 81,(€e)=>¢€ for 0<e<l.

Proof. We have by convexity and super-additivity of the function @ ( Vv _LT)
(see [8]),

e(lz+w+e(z-wl) _ (W (Erw) )+ e (2 -w)?)
2 2

2, 2
>¢(/(z+w) ;(Z_w) )= z2+w?)

>P(VzP )+ P(Vw?2)=d(z)+ P (w)
forany w, z €R. Hence it follows that for any f.g€L?®,

(1) Io(f+g)+1a(f-g)=210(f)*21s(8).

.. 1 1
Defining f, = —(f+g), &, = E(f—g)’ we get f; +g,=fand f;, —g, =g. So,
by (1),

To(N+1lp(g)=Iap(f1t+81)t e (f1 -8 )22 (f1)+21p(g1), i.c.
(2) Io((f+8)/2)< % (o (F)*+1e ()} —To((f-2)/2).

Assuming additionally that 7o (f) <1 and I4(g)<1, weget I ((f+g)/2)<
1 — e whenever Io((f-g)/2)=e€e. It means that I is uniformly convex and
Srp(€)=e.

For a fixed Orlicz function vanishing only at zero and for any o € (0, 1), we
denote by f, the function from R\ {0} into R, defined by

fo(u)=2(u/(1-0))/®(u).
There holds the following

Lemma 2 (see [4], Lemma 2.3). Let ® be an Orlicz function satisfying
condition N, forall u €R and define the function p : (0,1)—(0,1), by

p(e)=sup {0€(0,1): sup fo(u)<——}.
u>o0 1—¢€
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Then for any fELd’ and € €(0,1), wehave || flle <1 —p(€) whenever 14 (f)
<1-—e.

Lemma 3. Let ® bean Orlicz function satisfying condition A, forall u €R.
If for e >0,

q(e)=inf {®(u)/P(u/e)},
u>0

then q(e)>0, q(e)<K for 0<e<2 (K isthe constant from condition J,)
and T4 (f)=q(€) whenever || fllp =€

Proof. 1t follows from condition A, that for any € >0 thereis K, >0 such

that @ ( E)<K€<1>(u) for all u €R. Hence q(e)>K;1 > 0. Moreover, we
€
have for 0<e<?2 and u €R,

¢(5)>¢(§)>K—lq>(u), ie. [®(u)/P(u/e)] <K and q(e)<K.
€

It is clear that d)(z) <(q(e))~'®(u) forall uER, 0<e<2. Thus I (f)
<q(e) implies 1o (* Ly<(a(e) o (£)<1,ice. Ifllo<e

Combining the above three lemmas, we obtain the following

Theorem 1. Let ® be an Orlicz function satisfying conditfon A, forall u€R
and such that ®(V u ) isa convex function on R4. Then L® isuniformly convex

and & "q,(e)?p(q(% )) forany 0<e<?2.

Proof. Assume that || flle <1, llglle <1 and ||f—glle = €. Then by condi-
tion A2 forall u €R and Lemmas 2 and 3, we have I¢(f)<l Iy (g)<1 and

) 1—q(§). Next,

Iq;( > )>q(—) Applying Lemma 1, we get 14,(
ftg
2

by Lemma 2, we obtain ||

le <1-p(q( 5 )). It is the desired result.

The following example is an illustration of our method of estimation for the
modulus of convexity in considered class of Orlicz spaces.

Example 1. Ler ®(u)=max (|ul|”,|ul?), where 2<p<g <o, This
function satisfies the assumptions of Theorem 1. We shall show that & 4 (€)
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21—%‘1\/ 29 — e for 0<ex2.

Indeed, we have for 0<e<1,

d(u)/®(u/e)=¢€ if 0<u<e
=elyP 1 if e<u<1
=¢d if u>1,
and for e>1,
d(u)/d(u/e)=€? if 0<u<l1
=ePul™?P if 1<u<e
=ef if u>e.

Hence, g(e)=min (e”,e?) for 0 <e <o,
Let 0<e<1 and c€(0,1). We have

fo(u)=(1-0)7? if 0<u<l-o
=(1-0)"9uP™ 7 if 1-0<u<l
=(l-0)"1 if u>1.
Thus, usg% fo(u)=(1—0)"9. Hence it follows that
p(e)=sup {6€(0,1): (1 —0) I<(1—e) ' }=1-9V1—-¢.

Applying Theorem 1, we get for 0 <e <2,
€ 1
5||||¢(€)>P(4(5))=1—q 1—(6/2)‘1=1_5‘7 20 _ 9 .

Note. For p =q it isaclassical result for L? spaces, 2 <p <oo.

Main notions that will be used in the following may be chosen in [15]. X
denotes a modular space, i.e. a real vector space equipped with a convex and left-
continuous modular m. Elements of X will be denoted by x, y (the letters f, g
are reserved for denotation of functions). The modular norm ||| ||| is defined by
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Wx|ll=inf {A>0: m(A~'x)<1}.
H. Nakano [15] has assumed that a modular m is said to be uniformly convex if
for any two €, ¥ >0 we can find 8 >0 such that if m(x —y)=e and max(m(x),
m(y))<v, then

m(%(xw))s {m(x)+m(»)}—6.

1
2
If m satisfies the conditions for uniform convexity in the sense of Nakano with

m ( %(x —y))>e instead of m(x — y) =€, then we say that m is uniformly

convex in the modified sense of Nakano.
This new property of m is weaker than uniform convexity in the sense of

Nakano.

Corollary 1. (a). If ® isan Orlicz function such that <I>(\/_LT ) is a convex
function on R, then Ig is uniformly convex in the modified sense of Nakano with
6(e,y)=€.

(b). If additionally, ® satisfies condition A, forall u ER, then g isuni-
formly convex in the sense of Nakano with 6 (€, v)= E, where K=sup {®(2u)/
d(u):u>0}. K

(¢). If lim x*(x,)=x*(x) forany linear modular bounded functional x*

n—>oo

)

Xy —%

over X (see [15],p.206) and lim m(x,)<m(x), then lim m(
71 =>00 n—oe
=0.

Proof  Property (a) follows by inequality (2), p.3. For the proof of (b),
assume additionally that & satisfies condition A, forall u €R. Then I¢ (x — )

> e implies e<1¢(X—y)=1¢(2x—2y )<K1¢(x;y ). Hence we get

Ig( x ; 4 )= IE( Now, it suffices to apply property (a).

The proof of (c¢) is analogous to the proof of Th. 1, p.227 in [15].

We say a modular m is uniformly convex in the second modified sense of Nakano
if for any €,y >0 there exists 8(e,y) € (0,1) such that max(m(x),m(y))
<y and m(x —y) =€ implies
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m(

This property is weaker than uniform convexity in the Nakano sense and there holds
the following

Remark 1. If m is a modular satisfying the condition :

(A) Forany €,v>0 thereis K(e,v)>0 such that m(x) <vy implies
m(2x)<Km(x)+e.

then all three uniform convexities of Nakano type for m are equivalent.
Proof. It is obvious that uniform convexity in the Nakano sense implies the

uniform convexity of m in the modified sense of Nakano. Conversely, if m is uni-

formly convex in the last sense and m(x —y)>e, max (m(x),m(y)) <7, then

m(Z=2 )<y andso
e<m(x-y)= m(z—z—) K(—,y)m( )+§,
. x—-y € . xty 1
i.e. m >_"-_ . Hence it follows that m(—— )< — {m(x)+m
6(2)/21( (2 )2{() 1}
_8(——’ 7)

2K
Now, assume that 7 is uniformly convex in the sense of Nakano and max(m(x),

m(y))<7vy, m(x—y)=e. Then

x+ty

m(

)< %{m(x)m(y)} 5(e.7)

< imytmo) 1= 2 tn(x)em(r))
2 2y
l

-1

It means that m is uniformly convex in the second modified sense of Nakano. Con-

versely, assuming that m is uniformly convex in the last sense, we have

m(’”zy)<1“52(‘”” (m(x)+m(»)},
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whenever m(x —y)=e€ and max(m(x),m(y)) <. Since

€ <m(E )<t imx)rmol,
2K(<,7) ) 2
2
SO
()< imx) e m(y)) -G

€
2K(=,7)
( 2
i.e. m is uniformly convex in the Nakano sense.

Remark 2. Every uniformly convex Orlicz function ® : X >R, i.e. Orlicz
function such that for any € € (0, 1) thereis §(e)€(0,1) such that ®(x —y)
+
>e max(®(x), ®(y)) implies dJ(fz—y—
tion and examples see [4 —51), is a uniformly convex modular on X in the second
modified sense of Nakano.

)QL;—S {®(x)+D(y)} (for defini-

Proof. If ®(x —y)=e and max (®(x),P(y))<v, then

o(x—y)> 0627 Loy (3(x), B()).

Thus

Corollary 2. Every modular m as in Remark 2 has the following useful pro-
perty: if lim x*(x,)=x%*(x) forany linear and modular bounded functional
n— o

x* over X and lim m(x,)<m(x), where m(x)>0, then lim m(x —x,)
:O. n=—>oo Nn—> oo
The proof is analogous to that of Th. 1, p.227 in [15].

Notes 1. (a) All above considered uniform convexities (i.e. uniform convexi-

ties of Nakano type) are very strong properties. The definition of uniform convexity
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of a modular m given on page 2 is a weaker one.
(b) If m is a uniformly convex modular in the sense of definition given on
page 2, then forany x, x, €X, n=1,2,..., suchthat x*(x,)=>x*(x) as

n—> oo forany linear and modular bounded functional x * over X, and 1lim m (x,)

n—> oo

<m(x)<1, we have m(%(x,,—x))*o as n—>oo,

Proof. (a) follows immediately from definitions. Property (b) may be proved
in an analogous way as Th. 1, p.227 in [15].

Remark 3. (a) No norm on X is auniformly convex modular in the second
modified sense of Nakano (so also in the modified sense of Nakano and in the sense
of Nakano)).

(b) Any uniformly convex norm on X has the following property : for any
e,y >0 thereis 6(e,vy)<€(0,1) such that ||[x —y||=e€ and max(||x|l, ¥ )
<7y imply

x+y

1-6
| II<2—maX(IIxII, [y 1D.

(¢) The inequality & (€) <
(0,2].

holds for any normed space X and any €€

| m

Proof. (a). Let xq €X, lIxoll=1 and Xy={Axo :AER}. Let o, >0,
xX=ax,, ¥y =px,. We have

x+ a+ a+tf x|+
125527 0= B xo =2 B _ lIxll+llyll _
2 2 2 2

It means that X is not uniformly convex in the Nakano sense.
(b) If (X, IIll) is uniformly convex, then forany e €(0,2] thereis &(e)
€ (0, 1) such that max([lx|l, [y 1)<1 and [Ix — yll=¢€ imply ||x + y| <

2(1—8) (see [9]). Assume that 0 <a=max (||x]l, I¥I) <7y and ||x — y||
x

>e. We have max (| X1, 1IZ1)<1 and ||
€ a a

6(-)).
y

(c) Let (R,|.|) be the real line equipped with the norm [x|=x for x>0

_yl|>£. Hence ||x +y[|<2a(1—
a g4
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and |x|=—x for x <O0. Since |x+y|+|x —py|=2 max (|x|[, |y|) forany

. . X+
X,y ER, 5o lx—yl>e and max(lx], [y <1 imply | =)= max (x|

x_.
|}’|)—|—?i l<l—§. Moreover, for x=1, y=1—¢, wehavex — y =[x — y|

=¢ and |X+y

| =1—§. These facts mean that 6 (€)= % forany e€(0,2].

Since (R, | |) can be isometrically embedded into any Banach space X, so we

obtain 8X(e)<§forany €€(0,2] and any normed space X.

Theorem 2. (a)- Forany modular m, uniform convexity of the modular norm
Il Il implies uniform convexity of the modular m and the inequality &, (€)=
81 111 (2€) holds forany e€(0,1].

(b) If m is uniformly simple, uniformly finite and uniformly convex, then
Il |l is uniformly convex.

Proof. It is well known (see [7], [10], [13], and [15]) that for any
x € X, wehave m(x)<1 ifand only if [[|x[[[<1 and m(x)<1 implies m (x)

< |llx|ll. Assume that m( x——z_—}i ) =€ and max(m(x),m(y))<1. Then
[l = ;y lIl=e and max (|||x|ll, Il¥lll)<1. Thus, by uniform convexity of
11, we get
x+y . X+
m( )<l||——1|l|<1—5|||11|(2€)-
2 2
It means that 8,, (¢)=>8/,);,(2¢€) and m is uniformly convex.

(b) The proof may be proceeding in an analogous manner to that of Th. 3,
p.227 [15].

Remark 4. For every modular m we have |||x ||| =1 whenever m(x)=1.

Prooof. If m(r~1x)=o0 forany 0<r<1, then [[|x|[|=1, by the defi-
nition of the modular norm ||| |||. Assume that m (r~!x)<eo forsome r€(0,1).
Then m(\x) is a finite and convex function of X on the interval (0, r=1). There-
fore, m(\x) is a strictly increasing function of X in some neighbourhood of Ao =1.

Hence, we have for any A > 1, m(Ax)>m(x) = 1. Hence it follows that |[|x |||



(1]
[2]
(31
[4]
(5]
[6]
(71
[8]
[91]

[10]
[11]

[12]
[13]

[14]
[15]

AN ESTIMATION OF THE MODULUS OF CONVEXITY 237

References

Clarkson, J. A. : Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396 —414.
Diestel, J. : Sequences and series in Banach spaces, Springer-Verlag 1984.

Hanner, O. : On the uniform convexity of L? and 1P, Ark.Math. 3 (1956), 239 —244.
Hudzik, H. : Convexity in Musielak -Orlicz spaces, Hokkaido Math. J. 14 (1985), 85-96.
Hudzik, H. : A criterion of uniform convexity of Musielak -Orlicz spaces with Luxemburg
norm, Bull. Acad. Polon. Sci. Math. 32, No. 5-6 (1984), 303 —-313.

Kaminska, A. : On uniform convexity of Orlicz spaces, Indagationes Math. 44 (1982),
27-36.

Krasnoselski; , M. A. and Ruticki; , Ya. B. : Convex functions and Orlicz sapces, Groningen
1961.

Lamperti, J. : On the isometries of certain function spaces, Pacific J. Math. 8 (1958),
459 —466.

Lindenstrauss, J. and Tzafriri, L. : Classical Banach spaces II, Function spaces, Springer-
Verlag 1979.

Luxemburg, W. A.J. : Banach funcation spaces, Thesis, Delft 1955.

Meir, A. : On uniform convexity of P spaces, 1 < p < 2, Illinois J, Math. 28.3 (1984),
420-424.

Milnes, H. W. : Convexity of Orlicz spaces, Pacific J, Math, 7 (1957 ), 1451 —1486.
Musielak, J. : Orlicz spaces and modular spaces, Springer-Verlag Berlin Heidelberg Tokyo
1983.

Musielak, J. and Orlicz, W. : On modular spaces, Studia Math. 18 (1959), 49 —65.

Nakano, H. : Topology and linear topological spaces, Tokyo 1951.



