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1. Extremal methods have been used in phenomenological and statistical ther-
modynamics from the time of Clausius and Boltzmann, and in later times variational
methods have found important application in quantum statistics (cf. e.g., [1].
A similar idea was recently used in statistical optics (cf, (2] in connection with [3D.
In general statistics and probability theory the question of an objective principle
of finding probability distributions is one of central problems, especially if practical
applications are in mind. It seems that the first who found the right way of solving
this problem was R. A. Fisher [4] (cf. also [5]). There is nothing surprising in the
fact that his method is variational and that the most important of its features i in
common with the Boltzmann idea of using the maximum of the logarithm of pro-
bability as a criterion for the desired distribution. Roughly speaking Fisher’s and
Boltzmann’s expressions appeared to be special cases (or modifications) of the general
concept of information formulated by Shannon [6]. Shannon’s information theory
gave the most general and simplest too] for solving problems of this kind, in gencral
statistics, (cf. [7]), as well as in statistical physics (cf. [81, [9]).

The aim of the present paper is to show how the known method of information
theory may be yet generalized to a simple principle which unifies physical and general-
statistical concepts and extends them On a new range of possible applications.

2. In [10}—{12] it was shown that the concept of information can be defined
independently of that of probability, but, that, on the other hand, complete know-
ledge of the first determines the other, and reversely. '

Both concepts belong to different logical levels. In the present paper it will be
shown how their interrelation may be used for obtaining a principle of statistics.
The usefulness of this principle, in physics and in problems of statistical estimation
and inference, may be considered as a heuristical proof of the righthness of our
choice of axioms of information.

It we fix our attention on some Boolean ring B with » atoms (n can be finite
or denumerably infinite), information can be expressed by Boltzmann’s formula

n : S- el
M) Hlpl=— > pilogp,
k=1 ,

[541]
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where pg is the probability determined on the k-th atom, k = 1,2, ...,n. We sec
that information is a functional of the probability distribution, which we express
by the sign H{p], p = {px} = p (k). We can formulate. therefore, the following
variational principle
2) éji: , 62H<0*).

op op?
Conditions (2) express the principle of maximum uncertainty which according to
Jaynes [9] should replace the rather ambiguous Laplacean “principle of insufficient
reason’’. 1t is, of course, not only a natural generalization of the thermodynamical
principle of the maximum of entropy in adiabatically isolated systems (2nd law
of thermodynamics), but also an interpretation and logical explanation of the latte:.
In view of that correspondence we will call information H the adiabatic information
(in contradistinction to the other which will be defined later on). To (2) we have
to add, of course, the additional conditions

ki3
(3) Zpk; 1, pr>0.
k=1

Further, if we consider some systems of real numbers defined on atoms of B (spectra
of random variables, in particular, of physical quantities)

(4) u={ug} =uk), w={wey=wi(k), etc,
we may add the following additional conditions to (3):
i % n K1 .
(5) 2 Ug Pr = Ula Z u%pk = UZ: eeey 2 u}'cpk - Ul‘s
k=1 k=1 E=1
bl n 7
(6) Wk PE = Wl: Z W%‘.pk = W2> ey Z W?cpk = W, etc.,
k=1 k=1 k=1
where r, s = 0,1, 2, ... . More generally, we may add additional conditions of the
form
(N fi@p s n) = A1, s (215 s P0) = A (m=0,1,2,..),

where fi, ..., fm are some given functions of py, ..., pn, and Ay, .., 4m are some
given constants. For the sake of simplicity and concreteness we shall consider here
only additional conditions linear in pi’s of the form (5), (6). We see that the problem
(2) with (3), (5) is a generalization of the known momentum problem in the pro-
bability theory.

*) This formulation may be weakened to the form

SH & H S H
@) —= == =9
op 5p2 Sp2i—1
S H

<0 (=12.),

ﬁpZI
but (2} suffices for our purposes,
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3. Let us take as a special case of (4) wp =k (k=0,1,2,..), ie n= 0o,
s=etc. =0, all U’s ({=1,..,r) are positive. Introducing instead of H

(8) LHZ*jpk(logpk+i+#1k,+mk2+--.-I-Jwrk’),

=1
where A, yy, g, ..., ur are Lagrange multipliers, we get from (2), (3), (5)
©) ‘zf=—(logpk+ﬂ+mk+mk2+...+mkf)—1=o,
and hence
(10) Pe=Cxp{—po—p1 k —pp k2 — ... — pr k7),

where uy = A+1. We see that the condition pr > 0 (k=0,1,...) is satisfied and
further that

2
Plo _ 1 oo =01,

51’?.: Pr

(11)
l.e. that the second condition in (2) is satisfied, too. Denoting

(12) zZ= 2 exp(—p bk —p2 k2 — . — e k) = Z (4, 2, ooy i)
k=0

(we call Z the statistical sum or the sum over states) we get from 3)
(13) wo =log Z
and from (5)

(14) Ul = —-i-log Z, U2 = —w—d—log Z, “eey Ur = — o lOg Z.
d‘ul a{"’Z a,u'r

Solving (14) with respect to wuy, uy, ..., ur we get pt = p1 (Ui, ey Up), oony phy =
= pr (U1, ..., Uy), then from (12) Z = Z (U1, ..., Uy), from (13) ug = uy (U, ..., Ur),
from (10) pr = px (Ui, ..., Up), and finally from (1) Hmax = H (U, ..., U). Now
we may define quantities

1 0H(U, ..., Up)

15 -
(1) T; oU;

We call T; the i-th (generalized) temperature and pi the i-th statistical potential,
From (1), (3), (5) we get easily the following important connection between them

i
(16) — = i=1,..,r).
T e ( )

Substituting (10} into (1) we obtain further
(17) Hmax=M0 +‘LL1 Ul—!-,uz Ug—[" —l—‘ur Ur.
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From (12) and (16) we can express Z as a function of temperatures 7%s:

» & k k2 kr .

(18) = EZ:; exp( R Tr) = Z(Ty, ..., Ty
and then define the quantity

(19) I=—-—ﬂ0=——-—10gZ(T1, vees Tr) =I(T1,...,T'r)

which we shall call the free information or isothermic information. Because of (17)
we may write

(20) I:]U."]_ Ul—l-...—l—‘urUr—H

what together with u; = (0H/oU;) resembles the Legendre transformation of analy-
tical mechanics. For » = 0 I corresponds exactly to Brillouin’s “negentropy™ [13],
I— — H, and it seems that in such a way the controversy between Shannon’s
and Biillouin’s definitions of information can be setiled. From (2), (1) and (5) [ can
be expressed as a functional of p by given 77, ..., T5: '

@1) 1= Y5 k+k2+ +kr+1
é (T1 T ogp:.:)

Now we can formulate a variational principle for I considering temperatures
71, ..., Tr as determined by the external conditions of the statistical system (isothermic
problem). In such a way we have a generalization of a physical system in a thermostat
and we may speak in our case about the thermostat of the k-th order. We put

22) — =0, —>0
(we require the minimum of /) with the single additional condition (3). Denoting
k2 kr |
(23) Zp;g(Tl-l-—-l- +—r+logpk+)t),
where A is the La‘gtjange multlpher connected with (3), we get finally
. .
m#gﬁ)

Z(Ty, ., Ty)

k kr
24 = ex _/1___...__)=
@4 P P( T, T

(4 = A4+1). We see that also now py’s are positive and that

2
02 Ly .__i.>0
ov; Dk

(25)

as it should be.
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4. Now we shall discuss in greater detail the first three simplest cases: r = 0, 1, 2.

a) r = 0 (for an obvious reason we take, however, a finite 7). We get from (10)
1 1
26 B e_'ﬂ" = —— =,
(20) pe Z n

i.e. the uniform distribution of probability, as might be expected. Further we have
(27) Hma,x = — Imin = IOg .

Of course, concepts of generalized temperatures and statistical potentials do not
occur in this case;
Dr=1m=o0c0, Uy=U T1=T, 1 = w). We finally get

(29) _v
P = (1+T)kt!
in the adiabatic case and
-7}
exp|l— T
(29) pr = 1
1 —exp (—* ?)

in the isothermic case. Eqs. (28) correspond to the so-called geometric distribution
well-known in statistics, (cf., e.g., [14] Ch. III Eq. (5.2)), when (29) give a special
case of the Gibbs distribution of statistical mechanics. Then,

(30) p=7 =log—

Since U >0, T (and ) is always positive (the asymptotic case 7= 0 is excluded
by our assumption of strictly positive probabilities, cf. (3), according to the recent
point of view in probability theory). The extremal values of H and [ are:

1

(31) Hmax= U+ Dlog(U+1)—Ulog U, Jmin = —log(l —e T);

Q) r=2(n=o0, U= U, Uy— U? = 0¢?). In this case no exact summation
of the statistical sum (12) is possible. However, for the case

(32) Us 2o

we can approximatively replace summation by integration and finally get for the
adiabatic distribution
1 ( (k — U)2)

63 PE=amg P 202
L.e. the Gauss distribution. From (14) we obtain
1 U 1 1
(34 === mE=3a

T2 202
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and, therefore, the isothermic distribution 1s

)
4P AT} ( ko k2 )
(35) - P ]/m exXp T, T, '

We see from (34) that the second temperature 75 is proportional to the square of
the fluctuation (standard deviation) ¢ or to the variance of the distribution, as
statististicians call o2, At the same time the first temperature 77 is negative (U > 0).
The latter fact is intuitively clear, since probabilities for larger k are greater than
those for smaller k, when k < U, i.e, we have then the so-called inverted population
from the point of view of the usual thermodynamical Gibbs distribution (29).
Such a situation occurs, for instance, due to the process of excitation (e.g. “optical
pumping”) of masers and lasers. From this example we see that the concept of
equilibrium with keeping two first moments constant has a quite different meaning
(of an enforced equilibrium) than of that with merely the first moment coanstant.
In usual situations only the latter case occurs in physics (natural equilibrium) and this
explains why T was hitherto not in use, (cf. [10]).

5. Coming back to the general form (4) of the random variable u, we see that
the above formalism can be carried out only under assumption that (for » = oo)

(36) szexp(_ijmui):fexp(_jﬁc.)<m,
=1 i=1 E=1 i-1 Ti

L.e. that the statistical sum is convergent for given Uy, ..., Uy or Ty, ..., Ty. (This
condition was fulfilled in points 3. and 4.). Accordingly, we call a random variable u
statistically regular if there exist such real numbers P15 oes pir (OT T, ..., T7) that (36)
is convergent, (cf, [11]).

If we consider not one, but, e.g., two compatible {comeasurable) random varia-
bles u, w with conditions (5) and (6), we get

1 ~1 £
(37) Pk = —€Xp (__ 2 —ul— 2 vj wfa)
Z -1 Ti i=1

under the assumption of convergence of

) o r i ]

(38) Z#"Z exp(_Zﬁ_,_Zvj w£)<oo.
k=1 =1 Tt j=1
We have used above, in analogy to physics, temperatures for u (e.g., energy) and
potentials for w (e.g. number of particles in the system; statistical potentials are
then generalizations of the concept of the chemical potential). Correspondingly,
we may have then the mixed problem: isothermic with respect to u, and adiabatic
with respect to w, etc. It is easy to get the generalized thermodynamic identity
r 8

(39) ar= 3 Layy X v am;.
=1

§=1 Z
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If spectral values u;’s and wy’s depend on some external parameter, V' say (as volume
in physics), we get an additional term (or terms if there are more of such parameters)
in (39):
oy s

(40) i = D' —dUi+ > v dW;+Pdv,

i=1 A1 i=1
where P represents a (generalized) force connected with parameter ¥ (pressure
in this case). ‘
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