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DIFFERENTIAL GEOMETRY AND PHYSICS.

By Roman S. INGARDEN.

Physics is connected with geometry since times of Archimedes and other ancient
scientists and philosophers. This fact was poetically expressed by Plato who sajd that
god makes always geometry. But if we think more specifically about differential non-
Euclidean geometry as created by Riemann and others in the 19-th century, Einstein’s
general theory of relativity (1915), i.e., a theory of gravitational field, was its first impor-
tant and fully successful application. By this fact differential geometry in this sense trans-
gressed definitely the borders of physics as was expected by Riemann in his famous inay-
gural lecture (1854), but who said at its end that: ‘“‘Here we stay on the border of g
domain belonging to another science—physics, and the present day gives us no reason
toltransgress this border>”

Innumerable, but rather unsuccessful attempts of further generalization of the Einstein
relativity theory, in order to include ai other physical fields and create the so-called
unified field theory, filled & considerable part of history of physics and mathematics in
the subsequent decades, Although these investigations gave some important impulses to
development of differential geometry, their physical failure, or at least inconclusiveness,
caused that they shifted more and more into the margin of physics and mathematics. Ope
of the reasons of this failure was, perhaps, that such theories either compietely neglected
the quantum character of the physical phenomena or tried to take it into account in an
artificial and unconnected with geometry manner. Actually, this problem is connected
with an unsolved conceptual difficulty: if we try to quantize the geometry ‘‘itself’’, we
come to a theory which is mathematically unclear and radically departs from the conven-
tional differential geometry; if we quantize the field ‘“in’’ a geometry, we depart from the
Riemann-Einstein postulate of inner connection of physical and geometrical properties,
cf. also [1]."" We have to add that even the simplest quantum field theory of interacting
fields, working in the flat space-time continuum of special relativity, is not yet mathe-
matically completely clear, although the recent progress in a rigorous treatment of such
non-linear theories creates some hope that this theory may be soon formulated. On the
other hand, the eXperimental investigations of recent decades in high energy particle
physics show that we are yet rather far from a closed and exhaustive picture of these
phenomena, so time is not yet rape for speaking about the allcomprehending theory.

In such a situation the majority of modern theoretical and mathematical physicists
is rather more interested in infinite-dimensional spaces of functional analysis and in ab-
stract algebraic methods connected with the latter, than in finite-dimensional nop.
Euclidean differential geometries (except for the people working in general relativity, but
they are not so numerous). In the meantime, the pure differential geometry changed
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considerably under the stronger influence of other parts of modern mathematics, espe-
cially topology, than of physical investigations. The local methods have been comple-
mented by the global ones, and in such a way the modern concepts of differentia] manifold,
diffecomorphism, fibre or vector bundles, etc., have been Created, together with systematic
applications of abstract Lie and holonomy groups. This development forms not only the
qualitative methods of geometry, but also gives, so to Say, a new quality to the differential
geometry itself which has already a strong appeal to some physically minded mathe-
maticians and mathematical physicists (among them, relativists, cf. [2]), if not yet to
majority of theoretical physicists.

Before we show these new problems and perspectives, we would like to mentjon that
the failure of the Einstein concept of unified field theory does not mean that the general
Einstein idea of covariance in physics is wrong. On the contrary, independent of rela-
tivity, it appeared to be exceptionally successful in all parts of physics, making the tensor
and group concepts extraordinary popular among physicists. The excellent series of text-
books on theoretical physics by Landau and Lifshitz shows how many-sided and deep
the tensorial methods are and how groups appear in all parts of physics. A considerable
contribution to this development has been given by Japanese, let us mention only the
Tensor Society and Journal founded by A. Kawaguchi and the exceptional school of
mathematical engineering founded by K. Kondo. These investigations also showed how
many-sided applications of differential-geometrical Spaces are possible in physics and
engineering, completely independently of such physical ideology as Einstein’s unified
field theory.

On the other hand, we should like to mention that it is not excluded, rather very
probable, that in the further development of mathematics some connections between
differential geometry and functional analysis will be found. Also in this problem the
Japanese mathematig@_%ns are pioneers: A, Kawaguchi yet 46 years ago (cf. [3]-[6]) and
Y. IcﬁgwgngMay be, some new, probably much Hore abstract, connection between J
the ideas of Riemann and Banach wij] give a mathematical clue for the future physics.
However, “‘the present day gives us no resason to transgress its border”.,"THerefore, in
tﬁé_fc")il'c;\—;ving we can only give some typical examples of less known applications of
modern differential geometry to physics of today, claiming that perhaps in some cases
these applications may influence again the main trend of pure differential geometry.

1. Electrodynamics. Finsler geometry can be applied to the classical (non-quantum)
theory of motion of a charged particle in an electromagnetic field (e.g., in an electron
microscope or other electronic device Or a particle accelarator), if only the magnetic field
Is present (cf. [7] and independent [8)). Confining ourselyes for simplicity only to the
static electromagnetic field in vacuum, it can be described by 4 harmonic functions of
space coordinates x* (k = 1, 2, 3): the electric or scalar potential ¢(x*) and the magnetic
or vector potential 4,(x*) (i = (1,2,3). The charged (point) particle in point x* is de-
scribed by its charge ¢ and mass m (for simplicity we here assume that the electric poten-
tialis gauged so that the total energy of the particle £ = 0 and that the units are such that
the velocity of light ¢ = 1). Then we obtain a special Finsler space called by me a Randers
space ([8]-[9]) with metric

(1) ds = (a;(x*)dx'dx?)/2 4 g (x¥gx

(we assume the Einstein summation convention), where
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(2) ay(x") = (@M — mA6,;,  agaty = ed(x")  (h,j=1,2,3
and (4 = the Laplace operator)
(3) do(x*y =0, 44;(x%y = (i=1,23).

Such a theory has been applied to the electron microscope by the present author in
his doctor thesis done in 1948, but published in 1957 [8]. The actual problem of this
paper was the investigation of not so much detail quantitative and local properties of such
Spaces, as of qualitative and global characteristics of the motion, namely, the question if
the absolute point representation of space is possible in the electron microscope (as it is
possible in the optical case of inhomogeneous medium known as the “fish eye” example
of Maxwell). For this purpose the author solved the problem of imbedding of a Finsler

tion is that the Space (1) is of a constant Berwald curvature. It seems that this conjecture
is not proved (or disproved) up to now. Since then, however, the general theory of
Randers spaces, especially of constant curvature (in different senses), have been much
developed in Japan by M. Matsumoto with his pupils ({11]-[15]) and H. Yasuda [16]. It
would be desirable, therefore, to continue this investigation in collaboration between
mathematicians and physicists.

On the other hand, at the previous (1974) and the present (1975) Ohmihachiman con-
ference T. Kawaguchi presented papers concerning a generalization of the metric (1)-(3)
foran eIectromagnetic field not in vacuum, butin a ferrornagnetic material with hysteresis,
in view of applications to electric machines. Actually, he used only one branch of the
hysteresis loop, but it is obvious that such a theory can be generalized leading to a com-

2. Mechanics. The above problem belongs also to mechanics, but the latter discusses
the problem of motion more generally, not only in arbitrary potential fields, but also for
forces without potential, and for the case when the potentjal J’ depends not only on co-
ordinates (positions), but also on velocities (momenta), i.e., when we cannot speak about
a “field”. In the latter case mechanics s called Lagrangian since it has the Lagrangian
function L =7 __ p (T = the kinetic energy). Recently for such a case J, Kern [17] for-
mulated a generalization of the Finsler space which he called a Lagrange space and which
differs from the former by the possibility of jts Lagrangian function not being homogeneous
in directions (velocities). This opens new interesting possibilities for the global properties
of the space and the motion.

Recent decades are characteristic by very deep and extensive investigations of the
qualitative and global, in particular ergodic, properties of (classical) mechanical motion,
These investigations were inaugurated by H. Poincaré, A. M. Liapunov, G. D. Birkhoff,
E. Hopf (in particular in connection with the problems of astronomy), and then intensely
developed by a Iot of excellent mathematicians, as C. L. Siegel, A. N. Kolmogorov, Ya.,
G. Sinai, P.R. Halmos, J. Moser, M. M. Peixeto, R. Thom, §. Smale, V. I. Arnold,
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R. F. Arestorf, C. Pugh, A. Kelley, R. Abraham, J. E. Marsden and others, cf. the ex-
cellent book of the two latter [18] on the foundations of mechanics, where the connec-
tion between these problems and global differential geometry is explicitly shown. But
the connection between analytic mechanics and differential geometry has been particularly
investigated in France where the tradition of E. Cartan persists and develops (cf. [19]),
We may mention the names of A. Lichnérowicz, F. Gallissot, J. Klein, C. Godbillon.
This school has explicitly shown that classical mechanics has two aspects, the Hamiltonian
and the Lagrangian ones, Hamiltonian equations of motion being covariant, while
Lagrangian contravariant, the two theories being dually connected by the Legendre trans-
formation. The Hamiltonian €quations are now interpreted as a dynamical system on a
cotangent bundle of the configuration space, while the Lagrangian equations as a dy-
namical system on a tangent bundle of the configuration space (cf. [19]-[20]). The
Hamiltonian aspect is connected with a canonical simplectic structure on the cotangent
bundle, while the Lagrangian aspect 1s associated with a more rich differential calculus on
the tangent bundle, also connected with the technique of the simplectic geometry.

We have to point out that the differential-geometric spaces used in (1)~(3) and in the
mentioned more general mechanical theories have nothing to do with the geometric struc-
ture of the usual space-time, as in the general relativity or the unified theories. They
represent rather the geometry of forces or potentials acting on a particle. This is, in par-
ticular, seen in (1)-(3) where the considered geometry is not gauge invariant, while the
electromagnetic field and the trajectories of motion are gauge invariant in the usual
space-time. Further, the field equations (3}, although expressed in the geometry, have
no direct geometrical meaning, as Einstein’s equations of the gravitational field which
are expressed by the curvature tensor of the Riemannian geometry. Finally, the geo-
metry depends on the parameters of the particle (as e, m, and in general E), so for
cach sort of particles we have a different space (this is avoided only in the gravitational
field, where the geodesic inertial motion is independent of the mass of the particle).
When we have many interacting particles, the respective spaces are many-dimensional,
much more dimensional than the usual space-time. Such situation is similar to that of
Hilbert or Banach spaces used in quantum theories, where we cannot speak of any direct
connection between these spaces and the usual space-time. Only topological and global
properties of trajectories and of the electromagnetic Randers space are gauge invariant
and have a direct physical interpretation in space-time. This is in contrast, e.g., to the
point of view of Y. Takano [21] who considers the field theory in Finsler space rather in
the spirit of the unified field theory.

In this situation one may ask the question which is the purpose of discussing the
diﬁ’erential-geometric spaces in physics and engineering, where most practical problems
has been already solved by traditional methods without direct application of differential
geometry. The answer is that just for solving qualitative global problems which cannot
be even formulated without using this modern mathematical approach. One of the
methods of getting a geometrical insight into the nature of the global problems is the
method of imbedding of more complicated spaces into a simpler one with a known
topological structure. Only when the global problem is solved, we can say that we un-
derstand completely a given physical or engineering system.

Methods of differential geometry can be also applied, as we mentioned, to the non-
potential case, in particular, to the so-called non-holonomic and rheonomic systems. Such
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Investigations have been started yet before the last war by a Polish mathematician A.
Wundheiler ({22]-[23]) and others (cf. [24]), and are continued, among others, in Japan
(T. Kawaguchi-Kanai (Mrs.) in Sapporo). On the other hand, the modern methods of
groups of diffeomorphisms have been recently successfully applied to hydrodynamics of
incompressible fluids by D. G. Ebin and J. E. Marsden [25]) and others. There is also a Iot
of applications of differential geometry to elastomechanics and plasticity, and to the solid
state in general (e.g., using of Finsler geometry for anisotropic media by K. Kondo’s
school in Japan), but we do not like to g0 into details of these questions here.

3. Thermodynamics. We would like to develop this point in a little more detail in
connection with the recent investigations of the author. The last items mentioned in the
previous point are already connected with macroscopic (phenomenological) thermo-
dynamics. Here we shall try to connect the macroscopical theory with the microscopical
one in its quantum form, for the first time in this paper involving quantum mechanics
into our considerations._ In such a waﬂ'\;f_eqcome to the point where, as if, on the back- /
ground of infinite-dimensional functional spaces (Hilbert or Banach spaces, cf. [26]) there
appear finite-dimensional spaces of differential geometry, Riemann, Finsler, Kawaguchi

Yen, possibly, more general ones. { — e

T'he application of differential-geometrical methods to thermodynamics (especially of
differential forms) has been started by C. Carathéodory [27] who created the so-called
\_axiomatic phenomonological thermodynamicy : o< [287; o,
we alss Técormend the other Books by R. Hermann for exposition of applications of
modern differential geometry to physics, in particular, [29]). In statistical physics A. A.
Vlasov [30] can be considered as a pioneer of using differential-geometric spaces, the
Finsler space including. Here we use, however, a more general point of view, that of in-
formation thermodynamics, i.e., thermodynamics based on information-theoretical esti-
mation (cf. [26], [31]-(34]).

Let us consider a quantum system of f degrees of freedom (it is not necessary that f
is large, we may have, €.g., f=1as in the case of one linear oscillator, but we consider
the system as contained in a “heath bath’’, j.e., influenced by outer stochastic disturb-
ances, cf. [26]). The system has 2findependent observables: positions @, and momenta
P.(r=1,..., ), fulﬁlling the well-known commutation relations

() [@nQ)=0, [0Q,.P]=ij,, [ProP]=0  (rns=1,..., /),
and independent in the sense that any other observable on the system is an (operator)
function of these observables. We denote

(5) (Ai):“-(Qr!Pr) (izla-'°:2ﬁr:11“'sf);

(6) A” = %'(A%AJ + AJ'A{), ey A":l"":n = Sym (Ail P Ain) y
where Sym denotes the Symmetrization operation. We now assume that we have the n-th
order macroscopic information about the system (n =1,2, ... if the system is enclosed
in a finite volume, n = 2,4,6, ... if the volume is infinite), i.e., that we know all sta-

tistical moments (correlations) defined as mean values of observables (5) and (6) up to
order n:

(7) a; = Tr (A:p) , ag; = Tr (4ijo), ..., @ .., = Tr (Afl...iﬂ) .

where p is an (unknown) state of the system (described by a density operator). We call
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the set M,, of all density operators fulfilling (7) a macrostate of order n. Maximizing the
entropy (information) of the state of the system

(8) H(g) = —Tr (pIn p)
on the macrostate A, and denoting
(9) S:S(a’i,a’{j, "'sail...iﬂ)zsuﬂP H(P) »
Pe n

we obtain (if ay, ..., a;;, fulfill some conditions (cf. [35]-[36]) of uniqueness of the
presented problem called by us the rruncared problem of moments) a unique estimation
for the state of the system in the form

(10) p=Z7 exp(—F — [y — o — gty
where
(1)  Z=Z(§ 59, ..., 5% =Tr (exp (—5'd; — «-v — Y P

12)  F=oSfas, Y =iSfay, ..., g
while

(13) a; = —é(ln Z)/65°, ..., ay. i = —a(ln ZYEaT

1 a

Statistical parameters 8%, ..., 5*» may be called temperature coefficients or inverse tem-
peratures (of higher order, in general) associated with statistical moments or correlations
i o-o5 @y 5 . AS is shown by our notation, &’s are in some sense contravariant when
a’s are covariant (and we sum over repeated co- and contravariant indices). Anyway we
have two dual spaces of a’s and §'s and, although the mathematical meaning of this
duality is rigorously defined by the above formulae, we do not know if there exists any
of the known spaces of differential geometry (Riemann, Finsler, Cartan, Kawaguchi) in
which this duality can be interpreted, '

In order to answer the last question we have to fix a group of transformation with
respect to which the truncated problem of moments is invariant. We see that in order to
preserve the sense of summations in (10), the transformation group should not destroy
the concept of order of observable (then of moments and temperatures) described by the
number of indices. In other words, from the “‘simple”’ power statistical moments with
respect to A; = (Q,, P,) we can go over to any other “‘combined”’ power moment which
have the order (the highest power with respect to 4;) as a property, as central moments,
cumulants, etc,, but not, e.g., to “‘transcendental’’ moments, as trigonometric, hyper-
bolic, etc., which have no order in this sense. The most general group with this property is

!

(14) A: = fi(4y) , A:.'_f = fii( A Aim)y oon, Ail...i,,_ = il...in(Am SR Azl...ln) ’

where f;, fi;, «- *» fi;...1, are some polynomials of the l-st, 2-nd, .. +» h-th order, symme-
trized with respect to indices, and with real coefficients. Which sort of geometry can be
obtained in this manner is an open problem at the moment. It seems that it will be a
generalization of the concept of Finsler space, may be also a generalization of Kawaguchi
space. On the other hand, it is obvious that we obtain a generalization of the geometrical
construction of mechanics mentioned above. Thus also here we obtain a very rich and
interesting domain of open problems for geometrical investigations. We may remark that

the above problem, formulated quantum-mechanically, can be also formulated for classical
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mechanics, (9, p,) taken as a point of a classical phase space.

To obtain a correspondence with the Carathéodory approach to thermodynamics we
have to consider not two dual spaces of a’s and @’s but one space of a’s, B’s, of §, and
some other macroscopical parameters, as volume of the System or shape parameters of
boundary conditions, parameters of external fields, etc., which all together define a given
thermodynamic problem. Since all processes develop only in some directions in this space
(some surfaces or more general conditions on differentials), we naturally come to a theory
of differential forms and a sort of simplectic geometry. Also this more general approach
(it may be called an approach of thermodynamical space) is not yet sufficiently investigated
mathematically. so it may be an invitation for mathematicians or mathematical physicists,

On the other hand, we obtain a hydrodynamical case (or its generalizations) when
instead of numerical conditions (7) we consider some functional conditions, e.g., for mean
distribution of mass and velocities in the configuration space.

4. Optics, We discuss this point only very shortly to show that also here there are
interesting, although very difficult, problems for mathematicians. In electron optics such
a sort of problem has been actually already mentioned in point |, namely, the problem
of hysteresis recently investigated by T. Kawaguchi. In this question we have a possibility
of not uniquely defined indicatrix of a Finsler space (going over from one to another
branch of the hysteresis loop). In light optics we also have a possibility of two-valued
indicatrices (birefrigence of light). Insuch a way we have in physics not only a case of
non-positive definite indicatrix (as in special and general relativity of 4-dimensional space-
time), but also of many-valued, as a Riemann surface. In other words, the indicatrix of
a Minkowski or Finsler space can be considered, in a generalized theory, as not topolo-
gically equivalent with a sphere. E.g., we may think about an indicatrix of a torus shape
(I do not sav that this shape has just a direct application to physics). It seems that such
a generalization may lead to interesting global properties of Finsler or more general spaces
and the geodesic motions in them,

In our lecture we have purposely concentrated ourselves on problems laying outside
of the general relativity theory which, of course, have also many interesting and impor-
tant problems, especially those connected with cosmology and astrophysics (many of them
of global and qualitative character), which may present a useful inspiration for mathema-
ticians working in differential geometry. The latter problems concern, however, only the
Riemannian geometry, while our conference is chiefly devoted to the Finsler geometry,
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