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ON THE LOCAL RIEMANNIAN STRUCTURE OF
THE STATE SPACE OF CLASSICAL
INFORMATION THERMODYNAMICS.
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By Roman S. INGARDEN and Henryk JANYSZEK.

The paper 1s a continuation of the investigations of the local Riemannian structure of the
state.space of thermodynamical systems by one of the authors (R.S.I1.). Now the following two
cases have been investigated: 1) the space of all statistical states, equilibrium or nonequilibrium, '
for the classical discrete finite systems (they correspond to the Ising models of finite spin systems),
2) the state space of the so-called control thermodynamics, i.e., information thermodynamics with
the usual (Ist order) temperature and 2nd order (control) temperature, of an ideal gas (for
simplicity only a system of one degree of freedom is considered). The result is that in the case 1)
the space 1s of a constant and positive Riemann curvature, while in the case 2) the Riemann
curvature 1s not constant and not necessarily positive and depends critically on the 2nd order
temperature. i

§1. Introduction. Some years ago one of the present authors (R.S.1) started an in-
vestigation of differential geometry of thermodynamics, especially of statistical thermodynamics
considered as information thermodynamics [1]", [2]. These investigations have been connected
with the geometrical ideas of mathematical statistics (cf. the monographs [3], [4], where the earlier
references can be found. and [5]), and the term information geometry has been introduced because
of the importance of relative information for the definition of distance in the state space [6).
Actually, the distance is not of the Fréchet type, but in the limit of small distances, i.e.. locally it is
of the Frechet type and we obtain then a Riemannian geometry. In [6] the local Riemannian
structure of the state space of classical thermodynamics of the ideal gas and of a system of linear
and generalized oscillators has been investigated. The result is that all these thérmodynamical
spaces are flat in the Riemannian sense, so can be considered as locally Euclidean. In the present
paper we shall ivestigate some other classical cases, and we shall see that they are essentially non-
Euclidean ones.

§2. The complete state space for discrete systems. Let us now consider the space of all

possible statistical states for a discrete finite classical system. Such a system has n=1. 2, - - - pure
states and a general mixed state can be written as p=(p,. p,, - - -, p,), where

n
(1) 2,20 (i=1,2, -, n, Y pi=1.
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In such a way we have n— | independent parameters of a state p, €.g., py, * ", P,—y, and

(2) Pa=1l=p1— =Py

Since 0<p, <1, we have the following conditions for the independent parameters p, 20 (a=1, 2,
<o n=1),0<p, + - +p,-, <1, i.e., they fill the inside and borders of the rectangular triangle
(for n=13), in general a simplex, (cf. Fig. 1) defined by n equations of sides

(3) p,=0 (a=1l, - n-1),  pippt AP =1
in space (p,, -, py_;)- The “‘state space” on Fig. 1 is actually

P
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Fig.l. Probability space for n=3.
4
the triangle ABC with “barycentric” coordinates p,, - - -, p, {(by one too numerous, therefore not
all independent, but symmetrical), while the space of independent parameters may be taken as
ABQ or ACO or BCO, etc.

The information distance of states p and ¢ (in this order) is now defined by means of the
relative information (entropy)

n—1

(4) s(q|p=S(g|p)= Y pdlnp;—ing)=3 pllnp,~Ing,)
i=1 =

a=1

S SIS NI

Taking into account only independent parameters p, we may write the Taylor expansion (using
the Einstein summation convention)

1 &S

dSZ=S(p|p+dp)=S(p|p)+§ dp +— =
2 5paapﬁ

op

dpdpg+ - -,

PTq

S
=|:lnp3—ln q,—1In (I—Zpa)—i—ln (1—-2%)} =0,
p=a a Z p=gq

2R
dp.0p;

x 1 p=q

where (cf. (4))

-

c
Splp=0, -

p=q Pa
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Finally, in this approximation
(5) ds*=S(p|p+dp)=S(p+dp|p)=g..(p)dp.dp; >0,

where (without summation!)

1 (5, -1
(6) gaﬂ(p):_ p + I_ZP: s (a’ ﬁ=1a ”'sn'l)'

2 \p,

The same result can be obtained directly from the general formula [2]-{6]

1 /élnpélnp 12 élnp dnp,
(7) Guplt) =— )= L P
2\ du, uy 2. Cu,  Cug

(we introduce into g,; the factor 1/2 otherwise than usually [3]), when we put for parameters
upi=p, (a=1. ---, n—1).
To facilitate the further calculations we transform the parameters in the following way:

po=1ix2. x, =0 (x=1, -, n=1), CPJEX;=X,0,4

(in the latter formula no summation!) and we obtain the new variables

. ¢p, ép XX
gl ) =2 = g, p(x)) = B+ et :
cx, Ox, 1 .
(?) —-(5?53(.,..‘(,5

This form of the metric tensor is, however. well-known in the theory of Riemannian spaces (cf.
[71, p. 136). Namely, this is a special form of the metric tensor of a Riemannian space of con-
stant Riemannian (for n=2 Gaussian) curvature K=4, which can be imagined as an {(n—1)-
dimensional sphere with the radius r= \/7 in an n-dimensional Euclidean space E£". The equation
of these sphere in £" is

(8) Xi+x34+ x4 xi=2.

Going back from x, to our previous parameters p,, and putting

2

(9) pnz%xn* xn;o-

we obtain from (8) an equation of a plane (hyperplane) in p-space, p, + - - - +p,=1, which is just
the normalization equation (1) or (2) of our starting point. The construction is thus universal for
any point of state space. According to the general formulae of the Riemannian spaces of constant
curvature [7] we have for the scalar Riemann curvature R=n(n—K=n(n— 1)/2, and for the full
Riemann curvature tensor R ;. = — K(9,,9p5— 92695,) = — 192,906 — 9.595,)- Geodesics and any
other geometrical constructions can be easily traced as the constructions on a sphere.

The exact coincidence of (9) with (1) does not mean, however that the information distance is
calculated exactly. The exact formula is precisely (4) for any global distances, while (5)(6) is only
a differential or infinitesimal approximation of the second (the first non-vanishing one) and is
valid only locally. How big these discrepancies can be for finite distances can be seen from the
following example:

p=M=(l/n, -, I n), g=A=(1,0, --+,0),
S(gip)=S(4|M)== . Sp|g=SM|4)=ln,
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while the Riemann distance is always finite. For n=3 In 3=1.0986122 - - = S(M| A) while in the
Riemannian (or 2nd) approximation we obtain

S(M|4)=5,(4|M)=1.3510217- - - .

The last number has been calculated by observing that the angle between vectors M and A is
54°.73561- - - and is a 6.5770711- - --th part of the circle with radius /22,

The question may be raised why we use an approximation when the exact formula is known.
The answer is that the geometry of the general case (the so-called asymmetric Pythagorean
geometry [4]) is not yet sufficiently known and therefore it is easier to use the Riemannian one as
an approximation. The latter is good enough when we confine ourselves to a small vicinity of some
state, €.g., an equilibrium state. When we are interested only in the shape of the curve in the state
space and not in the absolute value of the length of the curve, it is sufficient to discuss local
geometry since changes of direction of the curve are determined by the latter. (We mean only one
direction, e.g., only left or only right, and do not consider topological properties of curves which
may be essentially of non-local character.)

§3. A system with two temperatures of different order.  Let us now consider a classical
statistical system with two temperatures of different order [8]. For simplicity we consider only a
system with one degree of freedom, cf. [9] (without potential energy and in a one-dimensional
“volume™ V=1; parameter ¥ has no influence on the curvature of the Riemannian space
considered here). Further simplification can be made by confining oneself only to the cases when
the partition function Z (sum over states) can be exactly calculated by well-known special
functions. In one set of these cases a state can be represented by density functions (we denote x=
p(2m)~!, where p is momentum and m is mass)

S)=Z" o, Pexp(—ax"— ™), n=1.2 ... —x<a<+%, B>0, —x<x<4o.

Then we have.

(10)  Z(a, B fm (= ax" = i = /) [H ( i )+H ((_”"“)]
o B)= eXp(—ax"—fxdx=—0u—H_,, — ~im — ||,
. nB LTI, g " \2./8
where H,(z) is a Hermite function connected with the Weber function D (=) of parabolic cyclinder
by

H(2)=2""2exp (=%2)D(/ 2 2),
cf. [10]-{13]. In particular, denoting Z(x, f)=Z (a, B) we obtain
Zy(a, B)=exp («*/4B) \/n/B ,

(% VB exp (/8K (a*/8)  for a>0,

s G ol | rasa
Z(a, ﬁ)_Wexp 7 D_,,, Z/? =4 I'(1/4)/28 for «=0,

%—n./—a/ﬁ exp («?/8B).F | ,(«*/88) for <O,

2) This is in accordance with the Bhattacharyya formula s(p | gq) =\/-2_ arccos (37, \/ p.g; ) quoted in [16]
equ. (6) (we renormalized this formula by factor 1 /\/7 because of the difference in the definition of ).
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where K,(z) is the MacDonald (Kelvin) function or modified Bessel function of the 2nd order,
while

F()={_ )+ (@)}fcosyn, |argz|<m,

where 7,(z) is the modified Bessel function of the 1st order (cf. {11}, [12]). Denoting
+ o
U=<x“)=Z'1J x"f(x)dx , W=(x*y,

we obtain

1 06Z ¢lnZ 1 62 dImZ 1&Z

(11) = ——— = , -t _Loz

Z op op  Z du?’

Since §Z/0f= —d*Z/¢a?, we also have
(12) W=U?—aUjéa, OW|éa=3U/op.

Calculating the components of the metric tensor from the general formula analogous to (7)
(2]-[6]) we get

G =3 (EIn foa)?y=HW - U= —-10U/Cu,
Gp:=0ap=3(C In fléa, E1In f]OB)=3((x*"> = WU)= —}dW/[0a= —$2U/cB,
gpp =10 In f13B)*) =H((x*"> — W)= —1oW/3p .
This gives g =det (g,,)=4{(3U/da)@W/2B) — (GU/GB)@W/da)} and
gi=gglg=—4g 'oWep, g =g,lg=—1g97"'8U/0a,
g =" = —gylg=49 " 0U/Ap=}4g o W|0a.

Then we calculate the Christoffel symbols

{!}_i(gzaz_u_gga:aw) {ﬁ}_i(f”ﬂ &w oW aZU)
“Tgg\op dd 8f da? )’ A Tgg \da 9B oa 9/
(s =i(a_qazw_aw azv) {z}zi(ﬂaz_v_a_ualw)
' Teg\ 8 da B o0t )’ PP "gg \ 6B op* op ap* )’
o] (aU PW oW 62U) gy 1 (aU o*W  aU a-’-w)
{“"}_s_g B dE  da 08%) {“‘*}_@ N A

In the two dimensional case the Riemann curvature tensor has only one independent component

i azga‘e_azga“_azgﬁﬂ) 21faYy __falfa
2 ( 60{63 aﬁz aaz +gaa({aﬂ}{¢ﬂ} {ﬁﬂ}{aa}]

+ .S E (B HEN + 9l (B} — {BHaD +9al{H —Ha

In our case the sum of the first three terms vanishes because of (12) and after some calculation we
finally obtain for the scalar curvature

Raﬁaﬂ =
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13) R.—_R“‘““ﬁz 1 {BW [aZU U _(GZW)T_I_&_U I:E)‘zW &rw _(EPU)Z]
g 329 ép Lap?* oo do’ da | 8B* éa? op?
ou [GZU oW EW é‘zU:'}
T8 Lo i T e )

We above said that the introduction of general volume ¥ (not necessarily=1) has no
influence on the curvature. More specifically, the problem looks as follows. We have Z—-VZ, g,,,
91> 9 do not change, while the only non-zero new component of the metric tensor is gyp=
1;V2. Also all the Christoffel symbols given above do not change, while the only non-zero new
symbol is {,”,}=~1/V. No new components of the Riemann curvature tensor appear, and
there is no change in R, Therefore, also R is not changed.

To get the explicit expression for R as function of « and f, the function Z (10) has to be put
into (11) and then into (13) and the corresponding differentiations have to be performed. The
result, however, is so complicated in the general case that is not worth while reproducing it here.
The complete discussion is easy to perform only in the case n=1 (which is actually known from
elsewhere). To get a first orientation for n=2 we calculate the curvature in the asymptotic case in
the first approximation of the dimensionless parameter f/«?.

§4. The case n=1. In this case we obtain from (11)
U= —a/2F. W=a?/48+1/28=U?+1/28.
and solving with respect to « and f§
a=—U(W-=U?), B=12W-U?%.

Physically, the problem can be interpreted as that of “‘signal plus noise™ in the classical case. The
quantum analogue of this problem has been discussed in the book of Louisell ([14] sections 6.11).
The signal is represented by the mean value U and its “temperature” (or “inverse temperature’) «,
while the noise by the mean value ¥ and its temperature coefficient £ (being connected with the
usual thermal inverse temperature). In mathematical statistics the case n=1 corresponds simply to
the general Gauss distribution (normal probability law) with an arbitrary shift m= —x/2f and its
interpretation i1s obvious.

Performing all calculations as given in the previous section we finally obtain R=—1,1¢.,a
space of constant negative curvature, as well known in mathematical statistics {(cf. e.g. [5] where
further references are given).

§5. The case n=2. In thiscase U can be interpreted as a mean energy of thermal noise and
W as a controlled value of fluctuation of energy. Therefore, ¢ has interpretation as a “thermat
inverse temperature’ and S as a “"control inverse temperature’ or “control parameter™ (for more
thorough discussion cf. 8] and [15]).

We shall discuss the asymptotic case x>0 and x?/88> 1 or 88/«? < 1. This corresponds to a
small control by given thermal temperature (noise). Making all calculations systematically in the
linear approximation of the dimensionless parameter ¢ =88/a?, we finally obtain

Z=/nja(l+38/4a?), U=1/20+3p/24>, W==3/da®+6f8/a*,
Gu= /42 +9B/4a* | g,,=3/40> +120)u,  gpp=3j2*+297f/da’ .
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Then we have in this approximation R.5.0=9/8x%—373.258/a®, and for the scalar curvature
R=6-2181.38/a%. We see that for ¢ =0 the scalar curvature is positive, but for £=(8.6)/2181.3=
0.0220052 <1, the curvature R vanishes, while for greater ¢ it becomes negative. So the control
parameter (anyhow in this approximation) can essentially influence the Riemannian curvature of
the state space.
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