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By Roman S. INGARDEN, Michiaki KawagucHr and Yoshiharu Sato.

A systematic introduction of the local Riemannian geometrical structure into the parameter
space of classical thermodynamical systems (statistically defined) is given. The Riemannian metric
has the physical meaning of the entropy gain of Rényi-Kullback, and therefore 1s closely
connected with the Glansdorff-Prigogine principle of irreversible thermodyvnamics as interpreted,
e.g.. by Schlogl. Two simplest classical examples are discussed in detail (the ideal gas and
generalized oscillator), both giving the Euclidean metric of the space of thermodynamical
parameters. For the ideal gas the normal coordinates (the Euclidean representation) are
introduced and discussed.

§1. Introduction. The present paper has two independent origins: attempts of geometrical
formulation of information thermodynamics [4]", and developments of geometrical methods in
statistics, especially, in multivariative analysis [20]. It was a happy circumstance that, because of
the invitation of one of the authors (R.S.1.) to the Hokkaido University. these two lines of the
research crossed. In 1977 the first results of the common investigations have been presented (by
R.S.1.) in 3 lectures in different universities in Japan (in the Hokkaido University on Sept. 8, in the
Sagami Institute of Technology on Sept. 16. and in the Tsukuba University on Sept. 24), cf. [5],
and at the 10th Symposium on Math. Phys. in Torun on Dec. 5. The present publication gives the
resulis in a more elaborated and developed form, together with some new results. The main scope
of the investigations is the local Riemannian structure in the parameter space of thermodynamics,
where the latter is constructed as a statistical theory by means of the method of information
thermodynamics ({10}, [9]. [8]). The metric is derived from the Rényi “information gain™ or
“conditional expectation™. Here only general theory and simplest classical examples are discussed.
In the forthcoming publication [6] a discussion of geometry of thermodynamics in the quantum
case, while in [7] an investigation of another classical examples will be given.

§2. Information gain. The concept of information gain has a rather long history and here
we are not able to present it in detail (cf. [14], [25], [3], [1]). where further references can also be
found. The term “gain of information™ has been proposed by Rényi [19] who gave also the most
penetrating analysis of the meaning of this concept. The other authors used the terms “relative
entropy’’, “‘conditional entropy”, “Kullback (or Kullback-Leibler) entropy” (cf.{15]). ““infor-
mation between operators™ (in the quantum case, Umegaki [24]), “directed divergence™ [14]. The
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term “‘divergence” (without the adjective “‘directed”) was applied by Kullback [14] to the
symmetrized gain of information, cf. below, introduced by Jeffreys ({11], [12]). In physics the
concept of information gain was extensively used, especially, by F. Schldgl ([21], [22]) who applied
it for the foundation of thermodynamics, classical and quantum (cf. also [18] where further
references are given).

It seems that the simplest method of introduction the information gain is to begin with a
more general concept, that of the Kerridge inaccuracy [13]

(1) S@lp)=—= 3 plng;20  (v=1,2, - <o or v=+ o)

i=1

in the discrete classical case (¢.g., the Ising model of a spin system [7]}, where
pf’ q1>0 (1=1, 2, Tty V), Z plzz ql:l'
i=1 i=1

In the continuous classical case of a system of r identical particles (r=1, 2, <o)

1

rih3r

{(2) Sglf)=—| flngdu=~ f Sx, y) In g{x, y)d*>xd*y,
2 2

where 4 is the Planck constant (introduced here only because of the dimensional reasons, it comes
from the semiclassical theory), £ is the phase space of the system (a 6-dimensional simplectic
manifold), and x=(x', .-, x¥), coordinates, y=(¥i. -, )¥3,). momenta. are canonical
symplectic coordinates, while

(3) Vix, p)eQ,  flx, y), glx, )20, deu=f gdu=1.
0 n

Now assuming all the conditions of existence and regularity (e.g., in the continuous case that
functionsfan_d g are mutually and with respect to u absolutely continuous (cf. [14], p. 3}, we may
connect the Kerridge inaccuracy with other “Inaccuraties™ (“uncertainties”, “informations” or
“entropies’; for the sake of simplicity we shall use here the same symbol S for all these quantities,
distinguishing them only by the arguments which cannot be dropped if any ambiguity is possible).
Namely, in discrete case we may write

(4) S(qlp)=S(p)+ S| p),

where S(p)=-3r_ 17210 p; 20 is the Shannon information (entropy) and

(5) Salp)= % pln p— q.-)=_§jl piln >0
is the Rényi gain of information. In the classical continuous case we obtain respectively
(6) S@|N=SN+S@| N,
where
(7) S(f)= —jf Infdu is the Boltzman-Gibbs entropy ,
0

(8) Slg If)=Jf(ln S=Ing)du is the Kullback entropy .
n
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To get a physical interpretation let us now imagine that we like to fix experimentally a definite
statistical state p or f, respectively (we shall call it simply stare and denote by one symbol a, say).
Measuring a, we actually obtain, in view of unavoidable errors of measurement and in-
strumentation. some other near state 5 (denoted above by ¢ or g). Looking at formulae (4), (6} we
may say that S(a) is the absolute uncertainty of state a, while S(b | a) is the relative uncertainty of a
with respect to b. The Kerridge entropy S (b”a) 18 then the total uncertainty of a with respect to b,
taking also into account the “inner™ or “own’ uncertainty, its absolute entropy, in the situation
where q is actually represented by . Therefore, S(b | a) can be considered as an “‘error”’ connected
with position of @ by measuring entropy, or an “information distance™ of a and .

The discrete classical case is, of course, a special case of the general classical case, and in
mathematics there is no need of considering it separately. (cf. [14] or [16], [17], in the latter papers
the entropy is called the Boltzman-Gibbs-Shannon entropy). The discrete case may be also obtained
from arbitrary continuous case by introducing “quantum cells” 4,cQ. i=1, - - -, v such that

Ain A= (i#)), U 4=, j du=1
i=1 A
and putting p,=[, fdp (i=1_---.v).

§3. Symmetrization and local metric properties. The Rényi-Kullback entropy S(bia) is
not, in general. a distance function in the sense of the Fréchet merric. Indeed, of the three

Fréchet axioms

(9) db,a)20 and d(b, a)=0 iff b=a,
(10} d{b, a)y=d(a, b) .
(1 d(e, ay<d(c, BY+d(b, a),

only the first one is always satisfied (cf. [14] and [25]). Instead of (11) we have the so-called joint
convexity, i.e. (cf. [25]),

S(b|a)<iS(by|a)+(1-2)S(b,|ay),

where b=4b, +(1 —A)b,, a=4Aa; +(1—A)a,, 0< A<, To realize the second axiom (i0) Jeffreys
({11}, [12]) proposed the symmetrization of S(b|a), as is mentioned above,

(12) I(a, b)=1[S(b|a)+S(a|b)].

This definition, however, does not guarantee the axiom (11). On the other hand, when we are
interested in local properties only, in the spirit of differential geometry (as Riemannian geometry,
etc.) we obtain (10) and (11) without (12) in exactly the same form for S(b]a) as for I(b, a). (The
difference by factor 1/2 in [14] is caused by omitting this factor in (12).)

In order to speak about differential manifolds with local metric defined by S(b|a), we have to
assume that S(b | a) is of the class C* (or C*, or at least C?) with respect to the local coordinates.

Let us now assume that we have a differentiable manifold of thermodynamically regular
states {9]. The manifold, called a thermodynamical space and denoted by M = M ¥, may be infinite-
or finite-dimensional (K=1, 2, --- or K=oc), and in the limit may also contain all the
thermodynamically regular states, i.e., in the classical case we take the set A4(Q) of all probability
measures on £ with finite entropy. or a differentiable submanifold of A(£2). But, as a rule, in
thermodynamics we usually consider thermodynamical spaces of a finite and rather small number
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of dimensions defined by independent thermodyamical parameters such as temperature, volume,
mass, number of particles etc. Some simple concrete examples of M will be discussed below.
Introducing in M a local or global coordinate system u=(u', -+, u¥) (we assume below K < o)
we have for any me M such a neighbourhood V< M of m that (ue US RX)

Sf@=fet, o u®y, frUSVEA9),

where fis a function of C* class.
Denoting for simplicity by 7 the integration over all the phase space M we may write (3) and

(8) (denoting f—= f(w). g— f(v)) as
(13) T/wi=T(»]=1,
S(v, ) =S/ ()| f@)]=T[f(u)In f()—In f)].

From (13) we directly obtain by differentiation with respect to « the identities (it is sufficient to
write only those for u)

(14) TS cu)=0, T(e* fleueuhy=0 (o, B=1, -+, K).

Using (14) we obtain finally for
) GEAY élnf éln ¢lnf oln

(15) - :0’ - - =T[f.( - j. o j)]: -~ fTi =2gﬁﬂ=zgﬁ.‘l'
eut |, ducul |, . cut  cuf ut ouf

Therefore, we can write down to be second order of accuracy in du=(du', - --. du®), a “‘small”

vector in the tangent space T, M, -

1 =

(16) Slu+du, uy=

z,

Gaplldi?dub + - - - 20 .
=1

A=

Because of the positive definiteness property (8) of S(u, v) we obtain the very important result that
the symmetric matrix g = (945 18 positive definite, so in particular det (g}>0, or rank (g)= K. Since
by diffeomorphisms of coordinates g behaves as a tensor, as s directly seen, we have all the
conditions required for the Riemannian metric. Thus we may write locally ds®=g_sdu*di’ >0
(since now we adapt the Einsteinian summation convention for x. B=1, - -+, K) where ds is by
definition an information distance between the states parametrized by v and u+du in the K-
dimensional state manifold MX. In such a way we transform M locally into a Riemannian
manifold. Of course, for ds, “in the small”, locally the axioms (10) and (11) are fulfilled since by a
suitable coordinate transformation we obtain locally just a Euclidean metric. For larger du the
higher order terms in du have to be considered in (16), and globally A/ is not Riemannian.
Since the first derivatives of S(u, v) disappear identically in any point of the parameter space
(cf. (15)), and the next leading term of the Taylor expansion is symmetric in du, the symmetriza-
tion (16) cannot change anything locally, and here we are not interested in the non-local distance.
That (16) gives the same first and second derivatives can be also checked directly by calculation.

§4. The classical ideal gas of identical particles. The first example which we shall discuss is,
naturally, the classical ideal gas of r identical particles of mass m in volume V. Applying the
method of information thermodynamics, as mentioned above. we take the total energy in ¥ as

A i
(17) H=H(x, ))=K(y)+Px)=K(y)=—=) =,
2m I 2m
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Then the maximum entropy solution for fis in the form of (7)

2 r

¥yl

y

2 T 3rf2,
T (2mmT)

(18) f=Z YT, V)exp (—2 ) Z(T, V)=

T being the absolute temperature connected with the mean energy U=<{(H> by

(19) - InZ(T, Vy 3r T T 2 U
=T — = or =—
aT 2 3r

(T is here expressed in the energy units, so the Boltzmann constant k=1). Calculating the
Boltzmann-Gibbs entropy (7) for the equilibrium state (18) we obtain

(20) S(H=rin[A3CamTP2V]—1In (rN+3r/2.
Assuming, as usually, that r» | we use the approximation

21 In(rN=xrinr (r>1)

following from the Stirling formula. Then

(22) S(N=rin[h2QRemmTY2V-r N=rin[h 3EemnU/ry*2V/r].

Formula (22) gives the correct macroscopic behaviour of entropy of perfect gases (for sufficient
high temperatures, of course. since for T7—0, S(f)— — x against the Nernst-Planck principle) cf.
e.g. [23] p. 53, [2], which can be also checked immediately. Indeed, (22) gives (when S is expressed
by U, V and r} the so-called fundamental equation [2] for an ideal gas in the entropy representation,

(23) U= {3h*r*3/dnemV*?} exp (25/3r)

and hence by differentiation the three so-called equations of state 2] for temperature
(24) T'=c¢cU/oS=(2/3nU,

for pressure

(25) P=0U/cV=2U/3V=rT/V,

and for chemical potential

E‘U_SU 28U 5 ST U+4pV-—-ST
&r 3r 3 2 ro r '

p’,:

Eq. (24) is identical with (19); (25) gives the well-known equation of state of the ideal gas
expressing the experimental laws of Boyle, Charles and Avogadro; and (26) is equivalent to the
Euler equation corresponding to the first order positive homogeneity of the fundamental equation
(23) with respect to S, U, V and r (expressing the extensive character of entropy, internal energy
and volume in thermodynamical equilibrium, cf. (2], p. 48), S=U/T+pV/T—ur/T.

As is well-known, from (23) or (26) it follows that the equations for 7, p and u are zero order
positive homogeneous and these three quantities are intensive ones (actually, only asymptoti-
cally for large r, cf. (20)). On the other hand. the homonogeneity properties allow the elimination
of r and u from the macroscopic theory and consideration of r as a scaling factor, cf. {2].
Therefore, only T and ¥ (or any two quantities from the five ones: S, U, V, T, p) are considered as
independent thermodynamical degrees of freedom. Strictly speaking, for small values r cannot be a
coordinate of a differentiable manifold, being not a continuous variable, and therefore one can-
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not differentiate with respect to it. But for very large r, r» 1, the difference between the real
continuous and the positive integer parameter is not physically perceptible, especially, when we go
over to the macroscopically measurable mole numbers (2]

27 N=r/R, R=Avogadro’s number=6.0225 x 10?3,

In our units (k=1) R is also the gas constant, as is seen from the equation of state (25) pV'=RNT.
In our geometrical theory we consider N (or r) as a fixed parameter, while T and V as (continuous)
positive real variables

(28) O<T<, 0<V<x.
In order to eliminate N we introduce, as usually in thermodynamics [2], mole densities
(29) s=S/N, u=UIN, t=VIN,

while 7 and p, as intensive quantities, remain the same. We remark that, s, 4, v are no more
extensive, and are formally intensive. For convenience, however, in our calculations we shall use N
as a fixed macroscopical parameter, not necessarily large, but definitely not very small, i.e., RN =
r»1 or N> 1/R~107%¢ Nevertheless, to be precise, the obtained formulae are valid only in the
thermodynamical limit, 1.e., for

lim U=oc, lim V=, lIimN=wx,
but lim U/N=u=const. <o,
) and lim V/IN=v=const. <o ,

then by (22) also
lim S/N=R In [(V/RPX4rnemU/3R)*?|=s=const. < ¢ .

Only at the end of our calculation we shall use (29) and express our results in densities.
Calculating g according to the formula (15) for f given by (18) and «!' =T, u? =V, r=RN,

we obtain finally
(3RN2"1T‘2, 0 ) (5’11 gu)
9= 0, RNWT\g, gy

_1_(2T23—1(RN)—1 , 0 )_<g11 912)
g 0 , VZ(RN)—Z g21 922 )
Thus

(30) det (g)=3R3N3/T?V?>0.

and, in consequence,

Now we obtain for Christoffel symbols as coefficients of a Riemannian connection
riz=ri1=0a F{1=—1/T, I"‘;'1=0,
F%2=_1/V’ f§2=0, r§1=r§2=0.

This gives for all the components of the curvature tensor R,;,;=0, Vo, f, y, =1, 2. Thus, the
Riemannian and Gauss curvature disappear R=K=0. In such a way we obtain geometry of a
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space developable into a Euclidean space, in this case a Euclidean plane. Introducing the “normail
coordinates” (x,, x,)

T=exp [(2/3RN)2x,], V=exp [x,/RN],
X =3BRM¥™InT, X;=RNInV,
we have from (24) and (30)
—co<x, <+x, — X<, <+00,
(31) Vx,.x,eR*, Vo, f=1, 2, Gag(X1s X;)=0,5=Kronecker’s delta .
If we use the mole densities (29), we obtain

3RN2T?, 0O 3 b3 2002
g= 0 RYp)" det(g)=3 R3N/T¥?*>0.

(7 is an intensive parameter, so it does not change), and the normal coordinates (£ ) e R? (we
call them the Euclidean coordinates of T and V or T and v in the Euclidean representarion)

(32) T=exp[(2/3RN)' 2], V=exp (y/R),
(33) $r=GRNY2InT=x,, & =RlnV=x,/N—RIn Y,
—wo<ir<+x, —w<{y<+a0,

in which the metric is Euclidean as in (31)

(34) v({]"a éV) ERZ ] va’ ﬁ= I’ 2 L] g:B(éT! éV):'aaﬂ -

The most general coordinate or point transformation preserving (34) is an inhomonogeous
orthogonal mapping (Euclidean motion in the plane) u', u* being some thermodynamical
parameters,

x x 2 2 1

Co=ayCr+a;¢.+a,, ay+ap=1, a1 812, 4, €R7
(35) 2

- - 2 2 .

Cwr=a3 S r+ay¢,+a, . a;+a;=1, 1. dyy, A€ RY
(36) @181 + 1285, =0 .

Hence we may easily calculate the following coefficients for the respective Euclidean coordinates
for entropy density s, internal energy density u and pressure P, cf, (22), (19), (25), (29). (27):

E=clBRIIN 2 Er 4+ &y 1+ ¢ R In [(Benm) 2 RA¥| = 5,
(37) Su=C,(2RIINY ¢+, RIN3RN=c,RInu,
Cp=Cp[(2R/I3NY2E  — ¢, 14 cpRIn R= cpRIn P.
We obtan from (335)
c;=(2N/(3R+2NN? | c,=(3N2R)' 2, cp=(3N/(ZR+3IN))'2

therefore,
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3R\ IN\2 IN O\ Qenmpr?
a) fs=(—) §T+(—w——) ‘fv-l—(—) In-———,
3R+2N 3R+2N 3R+2N Rh

(38) b) ¢,=¢r+@ENR)In(RN),

R\ IN\U2 IN 2
I B A " ) RmR.
) e (2R+3N> ér (2R+3N) §V+(2R+3N) n

We see that in this representation al!l the essential physical properties of the gas, entropy, energy,
temperature, volume and pressure are linearly connected, and the theory becomes rather simple
and nice. We have not only rotations, but also translations (shifts) of coordinates. Of course, if we
like to take any two of quantities (38). as a new coordinate system, we have yet to check (36). E.¢.,
we see that if we take the pair (&p, &), the condition (36) gives with (38)b) and (38)c)

JE (RN—1)/(3RN+2)3RN+3)!?=0, so RN=r=1,

against our assumption (21) that r» 1. Since ¢, is only translated but non rotated with respect to
&, we have also an orthogonal system (<,. .}, while the systems

(‘:w ‘;;s) v(i;-- 55) ’ (éT' ‘:s) N (ép, éu) ’ (ij év)a (ép: ET)

are not orthogonal (so the metri¢ is not of the form (34) in these coordinate systems), and the
svstem (&5, €,) is impossible since ¢, is parallel to {1 and the Jacobian of the transformatron is 0.
In such a way we obtained a nice geometrical classification of the different thermodynamical
coordinate systems in which the systems (I, &) and ({,. £,) appeared to be distinguished as
orthogonal, and therefore especially convenient. Of course, there is an infinite number of other
orthogonal systems.

Parameters (33), (37) are the Euclidean representations of the 5 basic thermodynamical
properties of the ideal gas. We also say that these properties are then represented in the
logarithmical scale, except for the entropy which contains the logarithm in the original definition
(7) (and this was just the reason why in the Euclidean representation all the parameters are linearly
connected and can be treated on the same footing and with the same unit). In our above formulae
the unit of all the parameters in the Euclidean representation is that of R (27), i.e., a pure number.
For completeness we have to add, however. that in (32) we tacitly used two dimensional constants
of numerical value 1. Namely, in an explicitly unit-covariant way we actually should write instead
of (32)

T=T,exp [(2/3RN)' *{1/R],  v=1voexp(/R).

and therefore instead of (38)a) (formulae for &,)

: ( 3R )”lv +( 2N )sz +( 2N )le [(29an0)3’2v0]
={— —_— —_— n|l——————1,
ST\3rR+2n/ "T\3Rt+2n/ T \3Rt2N RE

where we have in SI units ([4] denotes the physical dimension or unit of a quantity 4}
[T,]=1kgm?s~%,  [p]=1m®, [m]=1kg, [h]=1kgm?s™'.

Needless to say that the expression of all these physical properties of the gas by the dimensionless
Euclidean parameters enables their geometrical treatment on the same footing, as well as
introduction of other possible coordinates in the Euclidean representation for all the thermo-
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dynamical (equilibrium) states of the gas.

§5. A classical model of the solid state. We have above discussed the example of the ideal
gas with considerable detail in view of the importance of this case for thermodynamics, in spite of
its idealisation. Now we present rather shortly the results of similar calculation for some other
simple examples which allow a rigorous treatment. All these cases will be also ““ideal™, i.e., without
mutual interactions of particles, but we assume more general forms of Hamiltonian than (17), as
well as more general types of equilibrium. First of all we shall consider particles in an external field
with the potential quadratic (and then with other powers) in x. The most important ones are those
which are easy to integrate. In other words, they will be the cases of harmonic and then
generalized oscillators, or of a set of non-interacting oscillators. The latter set may be considered
as a (classical) model of the solid state (the oscillators correspond to the normal vibrations of
an elastic body). For simplicity, however. we shall put here r=1 (one particle).

In general, if we have a particle with an electric charge e in an external electromagnetic field
with an electric (scalar) potential ®(x), x=(x', x%, x*). and a magnetic (vector) potential A(x)=
(4'(x), A%(x), A*(x)), we obtain in place of (17) the Hamiltonian

(39 Hix, 3)=(1/2m)}p —(e:c)A(x)]* + e®(x) =(1/2m}y* +eD(x) ,

where c=the velocity of light, a constant connected with chosen units, p=(p*.p". p®) is the
generalized (canonical) momentum, and

(40} ' y=p—(e/c)A(x)=mv

is the kinetical momentum (v= (¢!, v?, v*) is the velocity of the particle).

From (39) we see that H depends only on the square of the velocity v=y/m which according
to the Lorentz equation is independent of the magnetic field. Thus we obtain the same results with
and without magnetic field if we consider the kinetic phase space (x, y) and not the canonical
phase space (x, p). Since the transformation between them has the Jacobian equal to 1 (cf. (40)),
the partition function Z (which fixes thermodynamics) and the metric g (which fixes geometry) can be
calculated over (x,y) as below. We remark that only y has a direct physical meaning,
while p is fixed only up to an arbitrary gauge of 4(x).

SO, =Z(T, V) texp (= Hx, yYT)=Z T, V) exp(—y*/2mT —ed(x)/T),
(41)

+ 2 3
Z(T, V)=;_3J exp (_m_xj_’@)d%dﬁr:k‘?’f d*x exp (—e?x))[j dy exp (_Z;m)J
o v e

2 T 32
=(—1rm3 ) J exp (— e@(x))d3x .
h v T
Now we obtain from (15)

L (alnf)2>_1 2fnZ % 2
g11=9rr= T —?:4—< — T +§;+e¢(x):|>,

912=91=0,  gra=g,r={[—¢ln Z2/3V]*).

(42)

Confining ourselves now only to @(x), we first consider the most important integrable case

(43) P(x)=mw’x?/2e . H(x. »)=1*2m+mw*x?/2
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where we replaced the coupling constant, electric charge, e by the circular frequency w of the
resulting (3-dimensional isotropic) harmonic oscillator {which may occur not necessarily from the
direct charge interaction, but rather indirectly, through elastic forces in the solid state, e.g., where
also quantum exchange forces etc. may be active). Thus we obtain from (41) where we put V— o0?

_(2amT)32 U"'“ ( maw?x? 3 /2aT\3
(44) Z(T, m)—T » exp| — 3T )dx] =(-IE-) .

We now remark that the potential (43) can be generalized to infinite many other cases which
are also integrable for calculation of metric (42), but which do not have so important physical
interpretation and application as (43). Starting from the Euler formula for the I-function

F(z)=J exp{—)* " tdr, zeC, Rez>0,
0
we put
z=(p+lig, 1=gx*, di=agx"'dx, a>0, p>-1, g>0,

and obtain

J exp(—ax")x"dx:a“P+U/qq‘ll"((p-i-1)/q).
4]
If we introduce the potential
a 3 .
Pr)=—Ixl", |xF=3% |x|7, a>0, g¢>0,
e i=1

we may call the potential of a generalized oscillator of order g/2 (g >0) (the usual oscillator being
of order 1; 1f g/2=1, 2, 3, - - -, the oscillator is regular, analytic for x=0, otherwise the deriva-
tives of the potential have singularities at x=0). Then we obtain in place of (44) (for the latter

case g=2, a=mw?*j2)

2emT)y2 [ = ax®\ P [2Qmm)tATY2 v NP
Zg(Ts a}:—-—s— 2 exp| ——— dx = Il — s
h 0 T hga'/ q

and for the metric tensor components we have, finally,
(Z’)/Tzq—i—?’/if'2 , 3aTy
\ YaTy, el

_15<TV3, —aT/3
“\=aT/3, a¥(1+¢)3

(45) ), det (9)=9/a*T?g>0, and

), det (9™ ) =a2T2g/9>0.

Calculating the curvature we finally obtain (1! = T, 12 =q)
I'y=-Yr, rf1=riz=ré1=rfz=f§1=ré2=0» F§2=—1/a,
R,,=0, R=K=0.

So, as for the ideal gas, we obtained a flat Euclidean space as the thermodynamical space.
Similarly as in the previous section, we may then introduce normal coordinates and Euclidean

2) This is a rare thermodynamically regular case in the infinite space, Just because of the sufficiently strong
repulsive potential at infinity which actually makes the volume of the motion finite, but depending on the
energy, as in magnetic bottle, Parameter V is therefore replaced by as a parameter of the repulsive potential.
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representation of thermodynamical parameters, as weli as generalize this theory for r>1. We
resign here from these developments because of the lack of space.

§6. Conclusions and acknowledgements. Concluding, we may say that the method of
information geometry gives a natural mathematical frame for statistical thermodynamics. In the
simplest cases. as the both discussed above, we obtain the simplest geometry possible, the
Euclidean one. In this geometry the usual thermodynamical parameters, as temperature, volume,
pressure etc., appear to be curvilinear, and only entropy as information becomes rectilinear from
the beginning. But it is easy to introduce special *scales” for parameters (e.g., logarithmic) in
which they appear as Euclidean or Cartesian coordinates (we call this the Euclidean representa-
tion). As is seen from (45), in the case of oscillators there are more involved combinations of
the original parameters, than in case of the ideal gas, as the natural coordinates. Then we may
rotate and translate the natural coordinates according to the Euclidean group of motions.

In Euclidean or curved Riemannian spaces we obtain the principle of the shortest way (the
movement along geodesics) as the simplest principle for thermodynamical processes, in general,
irreversible (when entropy is changed). Because of the meaning of our information metric, we
naturally obtain the principle of minimum information gain or the Glansdorff-Prigogine principle
of irreversible thermodynamics, as was also formulated by Schlogl ([21], [22]) and others, <f. (18],
although without our geometrical interpretation.

The authors thank Dr. Henryk Janyszek for his valuable remarks and discussion which help
to improve some of our results.
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