ON COMPARISON OF ORLICZ SPACES AND ORLICZ CLASSES

by

ANNA KAMIŃSKA

ABSTRACT. In the paper [3] were investigated spaces L_{Φ} of Orlicz type. Here there are given necessary and sufficient conditions for inclusions of such Orlicz spaces and Orlicz classes generated by different \mathcal{N}' -functions Φ and Ψ . In the first part of this paper it is considered the case of nonatomic submeasure v_M , in the second one the case of purely atomic v_M . This note is also a partial generalization of the results obtained by A. Kozek in [4] and I. V. Šragin in [7].

Let R be the set of real numbers, N the set of integers, X a real Banach space and (T, Q, M) a measure space, where Q is a σ -algebra of subsets of T, M is a family of countably additive measures $\mu: Q \to [0, \infty]$. The set function $v_M: Q \to [0, \infty]$ defined by

$$v_M(A) = \sup_{\mu \in M} \mu(A)$$

is a submeasure ([2], [3]).

Let Q_c be the ring of all subsets from Q on which the submeasure v_M is order continuous, i.e. if $A \in Q_c$ then $v_M(A_n) \to 0$ for all sequences $(A_n) \subset A$ such that $A_1 \supset \infty$

$$\supset A_2 \supset \dots$$
 and $\bigcap_{i=1}^{\infty} A_i = \phi$.

We say that $A \in Q$ is an atom of any submeasure $\eta: Q \to [0, \infty]$ iff $\eta(A) > 0$ and $\eta(B) = 0$ or $\eta(T \setminus B) = 0$ for all $B \subset A$, $B \in Q$. The submeasure η is called nonatomic if the set T contains no atoms of η . In the following we always suppose that there exists a sequence (T_j) such that $T_j \in Q_c$, $T_1 \subset T_2 \subset \ldots$ and $v_M(T \setminus \bigcup_{j=1}^{\infty} T_j) = 0$. In the

case of v_M nonatomic it is $v_M(T_j) < \infty$, by Theorem 5.5 in [2]. We say that a property holds almost everywhere (a.e.) in T if it occurs for all $t \in T \setminus A$, where $v_M(A) = 0$.

A function $\Phi: X \times T \rightarrow [0, \infty]$ is called \mathcal{N}' -function if

- (a) Φ is $\mathcal{B} \times Q$ -measurable, where \mathcal{B} is the Borel σ -algebra in X,
- (b) the function $\Phi(\cdot, t): X \to [0, \infty]$ is lower semicontinuous, convex, even (i.e. $\Phi(-x, t) = \Phi(x, t)$ for all $x \in X$) and $\Phi(0, t) = 0$, for a.e. $t \in T$.

In the sequel, we will assume occasionally the following conditions about the \mathcal{N}' -function Φ

- (c) (see [3]) $\lim_{t\to t} \Phi(x, t) = \infty$, for a.e. $t \in T$,
- (d) (see [3]) $\inf_{\|x\|=r} \Phi(x, t) > 0$, for each r > 0 and a.e. $t \in T$
- (e) $\sup_{\|x\|=r} \Phi(x, t) < \infty$, for all r > 0 and a.e. $t \in T$.

We denote by S(X) the set of all measurable [3] functions $x: T \rightarrow X$. The functional

$$I_{\Phi}(x) = \sup_{\mu \in M} \int_{T} \Phi(x(t), t) d\mu,$$

is defined on the whole S(X) and it is a pseudomodular [5]. The modular space L_{Φ} , called the Orlicz space, it is the following set

$$L_{\Phi} = \{x \in S(X) : I_{\Phi}(kx) < \infty \text{ for some } k \in R\}.$$

On the space L_{Φ} one can define the Luxemburg norm [3], i.e. for all $x \in L_{\Phi}$

$$|x||_{\Phi} = \inf \{ \varepsilon > 0 : I_{\Phi}(x/\varepsilon) \leq 1 \}.$$

Next, we introduce the following classes of functions

$$\operatorname{dom} I_{\Phi} = \left\{ x \in S(X) : I_{\Phi}(x) < \infty \right\},\,$$

$$(\Phi)_b = \{ x \in S(X) : I_{\Phi}(bx) < \infty \}$$

for $b \in (0, \infty)$. The set dom I_{Φ} is called the Orlicz class. We also define for $t \in T$

$$\operatorname{dom} \Phi(\cdot, t) = \{x \in X : \Phi(x, t) < \infty\}.$$

- 1. Lemma 1.1. Suppose X is separable, Φ , Ψ are \mathcal{N}' -functions and b is any positive number. Moreover, let dom $\Psi(\cdot, t) = X$ a.e. in T. Then there exists a family (x_t) of measurable functions such that
 - (i) $x_i(t) \in \text{dom } \Phi(\cdot, t) \text{ a.e. } in \in T$,
 - (ii) $cl(x_i(t)) = \text{dom } \Phi(\cdot, t)$ in the norm of X for a.e. $t \in T$,
- (iii) for all $i \in N$, the set function $A \mapsto I_{\Psi}(bx_i\chi_A)$ is v_M -absolutely continuous, i.e. for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$I_{\Psi}(bx_i\chi_B) < \varepsilon$$

if $v_M(B) < \delta$.

PROOF. By Theorem 1 in [6], there is a family (y_m) of measurable functions such that $y_m(t) \in \text{dom } \Phi(\cdot, t)$ and $cl(y_m(t)) = \text{dom } \Phi(\cdot, t)$ for a.e. $t \in T$. Let for $m, k \in N$ be

$$C_{m,k} = \left\{ t \in T : \Psi(by_m(t), t) \leq k \right\}.$$

Putting $(x_i) = (y_m \chi_{C_{m,k}})$ we get easily the desired conditions.

LEMMA 1.2. Let X be separable, Φ , Ψ be \mathcal{N}' -functions where Φ is continuous at zero and dom $\Phi(\cdot, t) = X$ for a.e. $t \in T$. Moreover, let (c_n) be an arbitrary sequence of positive numbers and let the functions f_n be given as follows $f_n(t) = \sup_{x \in X} \{\Psi(c_n x, t) - \sum_{x \in X}$

 $-2^n \Phi(x, t)$. Then $f_n(t) = \sup_{i \in N} \{ \Psi(c_n x_i(t), t) - 2^n \Phi(x_i(t), t) \}$, where x_i are the functions

from the above lemma for any b.

The proof is analogous to that of Lemma 1.7.2 in [4].

LEMMA 1.3. Let us assume the submeasure v_M be nonatomic. Let (α_i) be a sequence of positive numbers and $a_i: T \rightarrow R$ be measurable, nonnegative and finite functions such that

- (i) $\sup_{\mu \in M} \int_{T} a_i(t) d\mu \geqslant 2^i \alpha_i$ for all $i \in N$,
- (ii) the set functions $A \mapsto v_M^i(A) = \sup_{\mu \in M} \int_A a_i(t) d\mu$, $A \in Q$, are v_M -absolutely continuous.

Then there exist an increasing sequence (i_k) of integers and the family (A_k) of pairwise disjoint sets from Q such that

$$\sup_{\mu \in M} \int_{A_k} a_{i_k}(t) d\mu = \alpha_{i_k}$$

for all $k \in N$.

PROOF. By (ii), the submeasures v_M^i are order continuous on every $T_j(j \in N)$. Moreover, v_M^i are nonatomic as v_M -absolutely continuous, where v_M is nonatomic (Theorem 9 in [1]). Hence and by Theorem 10 in [1], the submeasures v_M^i have the Darboux property, i.e. for every $0 < b < v_M^i(T)$ one can choose a set $B \in Q$ such that $v_M^i(B) = b$.

Now, we will find the desired sequences (A_k) and (i_k) by induction. In the following we will show only two steps of this induction. Let i=1. Then we choose $B \in Q$ such that

$$v_M^1(B_1) = \alpha_1.$$

If $i \ge 2$ then

$$v_M^i(B_1) \geqslant (\frac{1}{2}) 2^i \alpha_i$$
 or $v_M^i(T \setminus B_1) \geqslant (\frac{1}{2}) 2^i \alpha_i$.

Therefore, there exists an infinite subsequence (a_k^1) of $(a_i)_{i \ge 2}$ and the respective subsequence (α_k^1) of $(2^i\alpha_i)_{i \ge 2}$ such that

$$\sup_{\mu \in M} \int_{B_1} a_k^1(t) d\mu \geqslant \left(\frac{1}{2}\right) \alpha_k^1 \tag{1.1}$$

or

$$\sup_{\mu \in M} \int_{T \setminus B_1} a_k^1(t) d\mu \geqslant \left(\frac{1}{2}\right) \alpha_k^1. \tag{1.2}$$

If (1.2) is satisfied then we put $A_1 = B_1$, whereas if the condition (1.1) is fulfilled then we find $A_1 \subset T \setminus B_1$ such that $v_M^1(A_1) = \alpha_1$. Thus we found the set A_1 and $i_1 = 1$.

In the second step we repeat the above construction replacing T, (a_i) , $(2^i\alpha_i)$ by $T \setminus A_1$, (a_k^1) , $((1/2)\alpha_k^1)$. Thus, by construction of A_1 it follows

$$\sup_{\mu \in M} \int_{T \setminus A_1} a_k^1(t) d\mu \geqslant (\frac{1}{2}) \alpha_k^1$$
 (1.3)

for all $k \in \mathbb{N}$. Let $2^{i_0-1}\alpha_{i_0}$ be the first element of the sequence $((1/2)\alpha_k^1)$, we have $i_0 \ge 2$. Hence there is a set $B_2 \in T \setminus A_1$ such that

$$\sup_{\mu \in M} \int_{B_2} a_{i_0}(t) d\mu = \alpha_{i_0}.$$

By (1.3), there exist infinite subsequences (a_k^2) of (a_k^1) and (α_k^2) of (α_k^1) such that

$$\sup_{\mu \in M} \int_{B_2} a_k^2(t) d\mu \geqslant \left(\frac{1}{4}\right) \alpha_k^2 \tag{1.4}$$

01

$$\sup_{\mu \in M} \int_{(T \setminus A_1) \setminus B_2} a_k^2(t) d\mu \geqslant \left(\frac{1}{4}\right) \alpha_k^2. \tag{1.5}$$

The first elements of (a_k^2) , (α_k^2) can't be smaller than a_3 , α_3 . Now, if (1.5) is fulfilled then we put $A_2 = B_2$, while if (1.4) is satisfied then one can choose $A_2 \subset (T \setminus A_1) \setminus B_2$ such that

$$\sup_{\mu \in M} \int_{A_2} a_{i_0}(t) d\mu = \alpha_{i_0}.$$

Putting $i_2 = i_0$ we finish the second step of our induction. The thesis is now easily obtained by induction.

THEOREM 1.4. Let X be separable, v_M nonatomic submeasure, and let Φ and Ψ be \mathcal{N}' -functions, where Φ is continuous at zero and dom $\Psi(\cdot, t) = X$ a.e. in T. Under these assumptions, if B is an arbitrary subset of $(0, \infty)$ and dom $I_{\Phi} \subset \bigcup_{b \in B} (\Psi)_b$, then there are constants b, k and a nonnegative function $f: T \to R$ such that $\sup_{\mu \in M} \int_T f(t) d\mu < \sup_{\mu \in M} \int_T f(t) d\mu < \lim_{n \in M} \int_T f(t) dn < \lim_{n \in M} f(t) dn < \lim_{n \to \infty} \int_T f(t) dn < \lim_{n \to \infty} f(t) dn < \lim_{n \to \infty$

 $< \infty$ and the following inequality

$$\Psi(bx,t) \leqslant k\Phi(x,t) + f(t) \tag{1.6}$$

is satisfied for all $x \in X$ and a.e. $t \in T$.

PROOF. First we choose a decreasing sequence (b_n) of elements from B in such a manner that for every $b \in B$ there is $n' \in N$ such that $b_n \le b$ for all $n \ge n'$. Let (x_i) be the family of functions from Lemma 1.1 under $b = b_1$. Denoting

$$f_n(t) = \sup_{x \in X} \{ \Psi(b_n x, t) - 2^n \Phi(x, t) \}$$

we have

$$f_n(t) = \sup_{i \in N} \{ \Psi(b_n x_i(t), t) - 2^n \Phi(x_i(t), t) \},$$

by Lemma 1.2 where we put $c_n = b_n$.

It can be easily proved that the thesis of our theorem is satisfied iff there exists $n \in N$ such that

$$\sup_{\mu \in M} \int_{T} f_n(t) d\mu < \infty.$$

Suppose, for a contrary, $\sup_{\mu \in M} \int_{T} f_n(t) d\mu = \infty$. Then, for all $n \in N$

$$\int_{T} f_n(t) d\mu_n > 2^n n$$

for some $\mu_n \in M$. Let now

$$l_{n,k}(t) = \max\{0, \Psi(b_n x_i(t), t) - 2^n \Phi(x_i(t), t) : i = 1, ..., k\}.$$

Since $l_{n,k}(t) \uparrow f_n(t)$ a.e. in T, then there is an index N(n) such that, denoting $l_n(t) = l_{n,N(n)}(t)$ we get

$$\int_{T} l_n(t) d\mu_n \geqslant 2^n n \tag{1.7}$$

for each $n \in \mathbb{N}$. Let for $k = 1, ..., \mathbb{N}(n)$

$$B_{n,k} = \{ t \in T : \Psi(b_n x_k(t), t) - 2^n \Phi(x_k(t), t) = l_n(t) \}.$$

Putting

$$\overline{x}_n(t) = \begin{cases} x_1(t) & t \in B_{n, 1} \\ x_k(t) & t \in B_{n, k} \setminus \bigcup_{i=1}^{k-1} B_{n, i}, \quad k = 2, \dots, N(n) \\ 0 & \text{otherwise} \end{cases}$$

we obtain

$$\Psi(b_n \bar{x}_n(t), t) - 2^n \Phi(\bar{x}_n(t), t) = l_n(t) \ge 0.$$
 (1.8)

Hence and by (1.7) we have

$$\sup_{\mu \in M} \int_{T} \Psi(b_n \overline{x}_n(t), t) d\mu \geqslant 2^n n.$$

From the definition of \bar{x}_n and the condition (iii) of Lemma 1.1 it is seen that the set function $A \mapsto I_{\Psi}(b_n \bar{x}_n \chi_A)$, $(A \in Q)$, is v_M -absolutely continuous. Therefore taking $a_n(t) = \Psi(b_n \bar{x}_n(t), t)$ and $\alpha_n = n$ in Lemma 1.3, we find a family of pairwise disjoint sets (A_k) and a sequence (n_k) of integers such that

$$I_{\Psi}(b_{n_k}\overline{x}_{n_k}\chi_{A_k}) = n_k. \tag{1.9}$$

Now, we define for $t \in T$

$$x(t) = \sum_{k=1}^{\infty} \overline{x}_{n_k}(t) \chi_{A_k}(t).$$

Since (1.8) is satisfied, so

$$\Phi(\overline{x}_n(t), t) \leq \left(\frac{1}{2^n}\right) \Psi(b_n \overline{x}_n(t), t)$$

for all $n \in N$ and a.e. $t \in T$.

Thus

$$I_{\Phi}(x) \leqslant \sum_{k=1}^{\infty} I_{\Phi}(\overline{x}_{n_k} \chi_{A_k}) \leqslant \sum_{k=1}^{\infty} (\frac{1}{2})^{n_k} I_{\Psi}(b_{n_k} \overline{x}_{n_k} \chi_{A_k}) = \sum_{k=1}^{\infty} n_k / 2^{n_k} < \infty ,$$

by (1.9). So $x \in \text{dom } I_{\Phi}$.

Let now $b \in B$ be arbitrary. We find $k' \in N$ such that $b_{n_k} \leq b$ for all $k \geq k'$. Hence and by (1.9) we get

$$I_{\Psi}(bx) \geqslant \sup_{\mu \in M} \sum_{k=k'}^{\infty} \int_{A_k} \Psi(b_{n_k} \overline{x}_{n_k}(t), t) d\mu \geqslant I_{\Psi}(b_{n_k} \overline{x}_{n_k} \chi_{A_k}) = n_k$$

for each $k \ge k'$. Therefore $I_{\Psi}(bx) = \infty$ and so $x \notin \bigcup_{b \in B} (\Psi)_b$. This contradiction finishes the proof of our theorem.

COROLLARY 1.5. Let Φ , Ψ be \mathcal{N}' -functions and let the following conditions be satisfied:

(i) The relation $\Psi < \Phi$ is fulfilled, i.e. there exist a constant c and a nonnegative function $h: T \to R$ such that $\sup_{x \in M} \int_{T}^{h} h(t) d\mu < \infty$ and

$$\Psi(cx,t) \leqslant \Phi(x,t) + h(t)$$

for all $x \in X$ and a.e. $t \in T$.

(ii) There is a number d > 0 such that

$$||x||_{\Psi} \leq d||x||_{\Phi}$$

for all $x \in S(X)$.

(iii) $L_{\phi} \subset L_{\psi}$.

There holds (i)⇒(ii)⇒(iii).

If we aditionally assume v_M is a nonatomic submeasure, X is separable, $\Phi(\cdot, t)$ is continuous at zero and dom $\Psi(\cdot, t) = X$ for a.e. $t \in T$, then (iii) \Rightarrow (i).

PROOF. (i) \Rightarrow (ii). Suppose $k = \sup_{\mu \in M} \int_{T} h(t) d\mu \geqslant 1$. Then for $\varepsilon > 0$ and $x \in S(X)$ we

get

$$I_{\Psi}((c/k)(x/\varepsilon)) \leq (1/k) I_{\Phi}(x/\varepsilon) + 1$$
.

If $I_{\Psi}(x/\varepsilon) \leq 1$ then $I_{\Psi}((c/k+1))(x/\varepsilon) \leq 1$. Hence

$$||(c/k+1)|x||_{\Psi} \leq ||x||_{\Phi}$$
.

Now, putting d=(k+1)/c we get the condition (ii). The implication (ii) \Rightarrow (iii) is evident. To prove (iii) \Rightarrow (i) let us notice dom $I_{\phi} \subset L_{\psi}$ iff $L_{\phi} \subset L_{\psi}$ and if $B=(0, \infty)$ then $L_{\psi} = \bigcup_{b \in B} (\Psi)_b$. So, if we put $B=(0, \infty)$ in Theorem 1.4 then we get the inequality

(1.6) with some constants b, k and a function f. Hence and by convexity of Ψ we get (i) immediately, taking $c=b \min (1/k, 1)$ and $h=f \min (1/k, 1)$.

Putting $B = \{1\}$ in Theorem 1.4, we get immediately the next corollary.

Corollary 1.6. Let Φ , Ψ be \mathcal{N}' -functions. Let following conditions be satisfied:

(i) There are a constant k and a nonnegative function $h: T \to R$ such that $\sup_{\mu \in M} \int_T h(t) d\mu < \infty$ and

for all $x \in X$, a.e. $t \in T$.

$$\Psi(x,t) \leq k\Phi(x,t) + h(t)$$

(ii) dom $I_{\varphi} \subset \text{dom } I_{\varphi}$.

Then (i) \Rightarrow (ii) holds. Moreover, if we suppose that the submeasure ν_M is nonatomic, X is separable, $\Phi(\cdot, t)$ is continuous at zero and dom $\Psi(\cdot, t) = X$ a.e. in T, then the conditions (i) and (ii) are equivalent.

LEMMA 1.7. Let Φ , Ψ be \mathcal{N}' -functions, X be separable and $\nu_M(T_j) < \infty$. If dom $I_{\Phi} \subset \text{dom } I_{\Psi}$ then there is a family (w_i) of measurable functions satisfying the conditions (i) - (iii) of Lemma 1.1 under b=1.

PROOF. Let us take a sequence (y_m) of measurable functions such that $y_m(t) \in \text{dom } \Phi(\cdot, t)$ for each $m \in N$ and $cl(y_m(t)) = \text{dom } \Phi(\cdot, t)$ for all $t \in T \setminus A$, where

 $v_M(A) = 0$. First, let

$$D_{m,i,k} = \{t \in T_i : \Phi(y_m(t), t) \leq k\}.$$

Since $z_i = y_m \chi_{D_{m,J,k}} \in \text{dom } I_{\Phi}$, so $z_i \in \text{dom } I_{\Psi}$. Hence there is a set B such that $v_M(B) = 0$ and $\Psi(z_i(t), t) < \infty$ for all $t \in T \setminus B$ and every $i \in N$. Now, put

$$C_{m,j,k} = D_{m,j,k} \cap \{t \in T_j : \Psi(y_m(t), t) \leq k\}.$$

Take the family $(y_m \chi_{C_{m,j,k}}: m, j, k \in N)$ as (w_i) . It is enough to show that w_i satisfy the condition (ii). Let then $t_0 \in T \setminus (A \cup B)$ and $m \in N$ be arbitrary. Hence $t_0 \in T_j$ for some $j \in N$ and one can choose $l \in N$ such that $t_0 \in D_{m,j,l}$. Since $y_m \chi_{D_{m,j,l}}$ is some function z_i , so $\Psi(y_m(t_0), t_0) < n$ for some $n \in N$. Next, taking $k = \max(l, n)$ we have $t_0 \in C_{m,j,k}$. So, we found a function $w_i = y_m \chi_{C_{m,j,k}}$ such that $x_i(t_0) = y_m(t_0)$. Hence $cl(x_i(t)) = \text{dom } \Phi(\cdot, t)$ for a.e. $t \in T$.

REMARK 1.8. The above lemma allows us to prove the implication (ii) \Rightarrow (i) of Corollary 1.6, omitting the assumption dom $\Psi(\cdot, t) = X$.

Indeed, replacing in the proof of Theorem 1.4 the sequence (x_i) from Lemma 1.1 by the family (w_i) from Lemma 1.7 and taking $B = \{1\}$ we obtain this implication easily.

We say that Φ satisfies the Δ_2 -condition [3], if there are a constant k and a non-negative function $h: T \to R$ such that $\sup_{\mu \in M} \int_T h(t) d\mu < \infty$ and $\Phi(2x, t) \leqslant k\Phi(x, t) + h(t)$ for all $x \in X$ and a.e. $t \in T$.

Taking $\Psi(x, t)$ as $\Phi(2x, t)$ in Corollary 1.6 and Remark 1.8 we obtain immediately COROLLARY 1.9. Assume X be separable, v_M be a nonatomic submeasure and Φ be \mathcal{N}' -function continuous at zero. Then the Δ_2 -condition is necessary and sufficient for linearity of the Orlicz class dom I_{Φ} , that is for equality dom $I_{\Phi} = L_{\Phi}$.

2. Let now the submeasure v_M be purely atomic, with countably many atoms of finite v_M -submeasure. As easily seen, we may simply assume that T=N, $Q=2^N$ and each singleton $\{n\}$ is an atom of v_M . By assumption, $0 < p_n = v_M \{n\} < \infty$ for all $n \in N$. If $\mu \in M$, we write $\mu(n)$ instead of $\mu(\{n\})$. We shall identify every function $\Phi: X \times X \to [0, \infty]$ with the sequence $(\Phi_n) = \{\Phi_n\}_{n \in N}$, where $\Phi_n: X \to [0, \infty]$ is defined by $\Phi_n(x) = \Phi(x, n)$. If $x: N \to X$ then $x = (x_n)$ and

$$I_{\Phi}(x) = \sup_{\mu \in M} \sum_{n=1}^{\infty} \Phi_n(x_n) \mu(n).$$

If Φ is an \mathcal{N}' -function then

$$(\Phi)_{\alpha}^{0} = \left\{ x = (x_{n}) : \sup_{\mu \in M} \sum_{n=k}^{\infty} \Phi_{n}(\alpha x_{n}) \, \mu(n) < \infty \text{ for some } k \in N \right\}.$$

Now, let Φ and Ψ be \mathcal{N}' -functions. Denote

$$E_n(\alpha, \beta, \gamma, \delta) = \{ x \in X : \Phi_n(\alpha x) \leq \min(\delta/p_n, \Psi_n(\beta x)/\gamma) \}, \tag{2.1}$$

$$F_n(\alpha, \beta, \gamma, \delta) = \sup \{ \Psi_n(\beta x) : x \in E_n(\alpha, \beta, \gamma, \delta) \},$$
 (2.2)

for arbitrary α , β , γ , $\delta > 0$.

From (2.1) and (2.2) we get immediately

$$\Psi_n(\beta x) \leq \gamma \Phi_n(\alpha x) + F_n(\alpha, \beta, \gamma, \delta) \tag{2.3}$$

if $\Phi_n(\alpha x)p_n \leq \delta$.

We say that the sequence (x_l) , where $x_l: N \to X$ for all $l \in N$, is I_{Φ} -modular convergent to $x: N \to X$ if $I_{\Phi}(\lambda(x-x_l)) \to 0$ for some $\lambda \in R$, as $l \to \infty$.

THEOREM 2.1. I. [7] Let A and B be nonempty subsets of R. If $\bigcap_{\alpha \in A} (\Phi)_{\alpha}^{0} \subset \bigcup_{\beta \in B} (\Psi)_{\beta}^{0}$ then there exist numbers $\alpha \in A$, $\beta \in B$, γ and δ such that $\sup_{\mu \in M} \sum_{n=m}^{\infty} F_{n}(\alpha, \beta, \gamma, \delta) \mu(n) < \infty$ for some $m \in N$.

II. Let I_{Φ} -modular convergence imply I_{Ψ} -modular convergence. Then there are constants γ , δ such that

$$\sup_{\mu \in M} \sum_{n=m}^{\infty} F_n(1, 1, \gamma, \delta) \mu(n) < \infty$$

for some $m \in N$.

PROOF. I. Let the thesis be not fulfilled. We choose sequences $(\alpha_k) \subset A$, $(\beta_k) \subset B$ such that

$$\bigvee_{\alpha\in A}\quad \underset{k'}{\exists}\quad \bigvee_{k\geqslant k'}\alpha_k\geqslant \alpha \text{ and }\bigvee_{\beta\in B}\quad \underset{k''}{\exists}\quad \bigvee_{k\geqslant k''}\beta_k\leqslant \beta.$$

Denoting $b_{nk} = F_n(\alpha_k, \beta_k, 2^k, k/2^k)$ we have

$$\sup_{\mu \in M} \sum_{n=m}^{\infty} b_{nk} \mu(n) = \infty$$

for all $k, m \in N$. Using this fact, we can find a sequence (N_k) of subsets of N with the following properties: $N_1 = \{1, 2, ..., n_1\}, ..., N_k = \{n_{k-1} + 1, ..., n_k\}$... and

$$\sup_{\mu \in M} \sum_{n \in N_k} b_{nk} \mu(n) > k , \qquad (2.4)$$

$$\sup_{\mu \in M} \sum_{n \in N_k \setminus \{n_k\}} b_{nk} \mu(n) \leq k, \qquad (2.5)$$

where $\sup_{\mu \in M} \sum_{n \in \emptyset} b_{nk}\mu(n) = 0$, by definition.

By (2.2) and (2.4), we will choose $\bar{x}_n \in E_n(\alpha_k, \beta_k, 2^k, k/2^k)$ such that

$$\sup_{\mu \in M} \sum_{n \in N_k} \Psi_n(\beta_k \overline{x}_n) \mu(n) > k.$$
 (2.6)

Moreover, we have

$$\Phi_n(\alpha_k \overline{x}_n) \leq \Psi_n(\beta_k \overline{x}_n)/2^k$$
 and $\Phi_n(\alpha_k \overline{x}_n) \leq k/(2^k p_n)$.

Hence we obtain

$$\sup_{\mu \in M} \sum_{n \in N_k} \Phi_n(\alpha_k \overline{x}_n) \mu(n) \leqslant \sup_{\mu \in M} \sum_{n \in N_k \setminus \{n_k\}} (\Psi_n(\beta_k \overline{x}_n)/2^k) \mu(n) + k/2^k \leqslant$$

$$\leqslant \sup_{\mu \in M} \sum_{n \in N_k \setminus \{n_k\}} (b_{nk}/2^k) \mu(n) + k/2^k \leqslant k/2^{k-1}. \tag{2.7}$$

We define \overline{x} as $\overline{x}(n) = \overline{x}_n$ for each $n \in \mathbb{N}$. Let $\alpha \in A$ be an arbitrary number. There exists $k' \in \mathbb{N}$ such that $\alpha_k \ge \alpha$ for all $k \ge k'$. Then we have

$$\sup_{\mu \in M} \sum_{k=k'}^{\infty} \sum_{n \in N_k} \Phi_n(\alpha \overline{x}_n) \mu(n) \leqslant \sum_{k=k'}^{\infty} \sup_{n \in M_k} \sum_{n \in N_k} \Phi_n(\alpha_k \overline{x}_n) \mu(n) \leqslant \sum_{k=k'}^{\infty} k/2^{k-1} < \infty,.$$

by (2.7). Hence $\bar{x} \in \bigcup_{\alpha \in A} (\Phi)_{\alpha}^{0}$.

Let now $\beta \in B$, $m \in N$. We will choose $k'' \in N$ such that $\beta \geqslant \beta_k$ and $n_{k-1} + 1 \geqslant m^{-1}$ for each $k \geqslant k''$. Then

$$\sup_{\mu \in M} \sum_{n=m}^{\infty} \Psi_n(\beta \overline{x}_n) \mu(n) \geqslant \sup_{\mu \in M} \sum_{n \in N_k} \Psi_n(\beta_k \overline{x}_n) > k$$

for all $k \ge k'$, by (2.6). Thus $\bar{x} \notin \bigcup_{\beta \in B} (\Psi)^0_{\beta}$. This contradiction finishes the proof of I...

II. Contrary, assume that

$$\sup_{\mu \in M} \sum_{n=m}^{\infty} b_{nk} \mu(n) = \infty$$

for all $m, k \in \mathbb{N}$, where $b_{nk} = F_n(1, 1, 2^k, k/2^k)$.

Analogically as in part I we find a sequence (N_k) of subsets of N and a sequence (\bar{x}_n) of elements of X such that

$$\sup_{\mu \in M} \sum_{n \in N_k} \Psi_n(\overline{x}_n) \mu(n) > k, \qquad (2.8)$$

$$\sup_{\mu \in M} \sum_{n \in N_k} \Phi_n(\overline{x}_n) \mu(n) \leqslant k/2^{k-1}$$
(2.9)

holds for all $k \in \mathbb{N}$. Put

$$\overline{x}_{ln} = \begin{cases} 0 & \text{for} & n < l \\ \overline{x}_n & \text{for} & n \ge l \end{cases},$$

where $l, n \in \mathbb{N}$. Let us denote $x_l = (\overline{x}_{ln})_{n \in \mathbb{N}}$. Choosing for every $l \in \mathbb{N}$ an integer m(l) such that $l \in \mathbb{N}_{m(l)}$ and using (2.9) we get

$$I_{\Phi}(x_l) = \sup_{\mu \in M} \sum_{n=1}^{\infty} \Phi_n(\overline{x}_n) \mu(n) \leqslant \sum_{k=n_{m(1)}}^{\infty} \sup_{\mu \in M} \sum_{n \in N_k} \Phi_n(\overline{x}_n) \mu(n) \leqslant$$

$$\leq \sum_{k=n_{m(l)}}^{\infty} k/2^{k-1} \to 0 \text{ as } l \to \infty.$$

Now, by (2.8) we obtain

$$I_{\Psi}(x_l) = \sup_{\mu \in M} \sum_{k=n_{m(l)}}^{\infty} \sum_{n \in N_k} \Psi_n(\overline{x}_n) \mu(n) \geqslant \sup_{\mu \in M} \sum_{n \in N_k} \Psi_n(\overline{x}_n) \mu(n) > k$$

for all $k \ge n_{m(l)}$. So $I_{\Psi}(x_l) = \infty$ for every $l \in N$.

Thus we found a sequence (x_l) such that it is I_{φ} -modular convergent but it is not I_{Ψ} -modular convergent, a contradiction.

COROLLARY 2.2. If $(\Phi)_1^0 \subset (\Psi)_1^0$ then there exist a nonnegative sequence (c_n) and constants γ , δ such that $\sup_{\mu \in M} \sum_{n=1}^{\infty} c_n \mu(n) < \infty$ for some $m \in N$ and

$$\Psi_n(x) \leq \gamma \Phi_n(x) + c_n$$

holds for every $n \in N$ and $x \in X$ satisfying $\Phi_n(x)p_n \leq \delta$.

PROOF. This follows immediately from the inequality (2.3) and the above theorem, taking $A = \{1\}$, $B = \{1\}$ and $c_n = F_n(1, 1, \gamma, \delta)$ for all $n \in N$.

THEOREM 2.3. Let Φ satisfy the condition (c) and let Ψ fulfil the condition (e). If dom $I_{\Phi} \subset \text{dom } I_{\Psi}$ then there exist constants γ , δ and a nonnegative sequence

$$c(c_n)$$
 such that $\sup_{\mu \in M} \sum_{n=1}^{\infty} c_n \mu(n) < \infty$ and

(Δ) $\Psi_n(x) \leq \gamma \Phi_n(x) + c_n$ is satisfied as $n \in N$ and $\Phi_n(x) \rho_n \leq \delta$.

PROOF. The inclusion dom $I_{\Phi} \subset \text{dom } I_{\Psi}$ implies $(\Phi)_1^0 \subset (\Psi)_1^0$. Then, by Corollary 2.2, it is enough to show that $c_n < \infty$ for each $n \in N$. We have

$$c_n = F_n(1, 1, \gamma, \delta) \leqslant \sup \{ \Psi_n(x) : \Phi_n(x) p_n \leqslant \delta \}.$$

Since the set $\{x \in X : \Phi_n(x)p_n \leq \delta\}$ is bounded and Ψ fulfils the condition (e), so $c_n < \infty$ for all $n \in \mathbb{N}$.

THEOREM 2.4. Let Φ and Ψ be \mathcal{N}' -functions and let the set dom I_{Φ} include only the elements with the property $\sup_{\mu \in M} \sum_{n=m}^{\infty} \Phi_n(x_n)\mu(n) \to 0$ as $m \to \infty$. Under these assumptions, if the condition (Δ) from the above theorem is satisfied and dom $\Phi_n(\cdot) \subset \text{dom } \Psi_n(\cdot)$, $n \in \mathbb{N}$, then dom $I_{\Phi} \subset \text{dom } I_{\Psi}$.

PROOF. Let $x = (x_n) \in \text{dom } I_{\Phi}$. Then there exists an integer l such that $\Phi_n(x_n)p_n \leq \delta$ for each $n \geq l$. Now, by the (Δ) condition, we obtain

$$I_{\Psi}(x) \leqslant \sup_{n \in M} \sum_{n=1}^{l-1} \Psi_n(x_n) \mu(n) + \gamma I_{\Phi}(x) + \sup_{n \in M} \sum_{n=1}^{\infty} c_n \mu(n) < \infty.$$

So $x \in \text{dom } I_{\Psi}$.

By 2.2 and 2.4, we get immediately

COROLLARY 2.5. Let $M = \{\mu\}$ where $\mu(n) = 1$ for all $n \in N$ and let Φ , Ψ be arbitrary \mathcal{N}' -functions without parameter, i.e. $\Phi_n(x) = \varphi(x)$ and $\Psi_n(x) = \psi(x)$ for all $n \in N$, $x \in X$. Then there holds dom $I_{\varphi} \subset \text{dom } I_{\Psi}$ iff dom $\varphi(\cdot) \subset \text{dom } \psi(\cdot)$ and there exist constants γ , δ such that

$$\psi(x) \leqslant \gamma \varphi(x)$$

is fulfilled as $\varphi(x) \leq \delta$.

REMARK. Suppose $\sup_{n} p_n < \infty$ and $\inf_{n} \mu(n) > 0$ for some $\mu \in M$. Then for any \mathcal{N}' -function Φ , we have

$$\sup_{n \in \mathcal{M}} \sum_{n=m}^{\infty} \Phi_n(x_n) \mu(n) < \infty \text{ iff } \sum_{n=m}^{\infty} \Phi_n(x_n) \mu(n) < \infty.$$

Under these assumptions, if Φ satisfies the condition (c) and Ψ satisfies the condition (e), then the conditions (Δ) and dom $\Phi_n(\cdot) \subset \text{dom } \Psi_n(\cdot)$ are necessary and sufficient for the inclusion dom $I_{\varphi} \subset \text{dom } I_{\varphi}$.

We say that $\Psi \stackrel{\circ}{\sim} \Phi$ if there exist constants β , δ and a nonnegative sequence (c_n)

such that $\sup_{\mu \in M} \sum_{n=1}^{\infty} c_n \mu(n) < \infty$ and

$$\Psi_n(\beta x) \leqslant \Phi_n(x) + c_n \tag{2.10}$$

holds for all $n \in N$ and $x \in X$ with $\Phi_n(x)p_n \leq \delta$.

THEOREM 2.6. Let Φ and Ψ be \mathcal{N}' -functions such that Φ satisfies the condition (c). Then the following statements are equivalent:

- (i) $\Psi \stackrel{\circ}{<} \Phi$,
- (ii) for all $x = (x_n) : N \rightarrow X$ and some k > 0 we have

$$||x||_{\Psi} \leqslant k ||x||_{\Phi}$$

(iii) $L_{\phi} \subset L_{\psi}$.

PROOF. (i) \Rightarrow (ii). Suppose $d = \sup_{\mu \in M} \sum_{n=1}^{\infty} c_n \mu(n) > 1$. Let $x = (x_n)$ be an arbitrary element from L_{Φ} . Then $I_{\Phi}(\alpha x) \leq \delta$ for some $\alpha > 0$. Hence $\Phi_n(\alpha x_n)p_n \leq \delta$ for each $n \in \mathbb{N}$. Now, using the inequality (2.10), we obtain

$$I_{\Phi}(\beta \alpha x_n) \leq I_{\Phi}(\alpha x_n) + d$$
.

Therefore, we get

$$||x||_{\Psi} \leq (2d/\beta) ||x||_{\Phi}$$

and putting $k=2d/\beta$ we have (ii). The implication (ii) \Rightarrow (iii) is evident. (iii) \Rightarrow (i). First, we show that the inclusion $L_{\Phi} \subset L_{\Psi}$ implies $(\Phi)_{1}^{0} \subset \bigcup_{\beta>0} (\Psi)_{\beta}^{0}$. Indeed, let $x = = (x_{n}) \in (\Phi)_{1}^{0}$. So $\sup_{\mu \in M} \sum_{n=m}^{\infty} \Phi_{n}(x_{n})\mu(n) < \infty$ for some $m \in N$. If we put $\overline{x}_{n} = \begin{cases} x_{n} & \text{for } n \geq m \\ 0 & \text{for } n < m \end{cases}$

$$\overline{x}_n = \begin{cases} x_n & \text{for} & n \ge m \\ 0 & \text{for} & n < m \end{cases},$$

then $\overline{x} = (\overline{x}_n) \in L_{\Phi}$. Therefore $\overline{x} \in L_{\Psi}$. However, $L_{\Psi} = \bigcup_{\beta > 0} (\Psi)_{\beta} \subset \bigcup_{\beta > 0} (\Psi)_{\beta}^0$, so $\overline{x} \in \bigcup_{\beta > 0} (\Psi)_{\beta}^0$, too.

Now, by the above and by Theorem 2.1 part I, we get the existence of constants β_1 , δ and of a sequence $(d_n) \subset [0, \infty)$ such that $\sup_{n \in M} \sum_{n=m}^{\infty} d_n \mu(n) < \infty$ for some $m \in N$ and that

$$\Psi_n(\beta_1 x) \leqslant \Phi_n(x) + d_n \tag{2.11}$$

is satisfied for all $n \in N$ and $x \in X$ with $\Phi_n(x)p_n \le \delta$. Fix n < m and denote

$$C_n = \left\{ x \in X : \Phi_n(x) \, p_n \leq \delta \right\},\,$$

$$D_{\beta} = \{x \in X : \Psi_n(\beta x) p_n \leq 1\}.$$

We have $C_n \subset \bigcup_{\beta>0} D_{\beta}$, because $L_{\phi} \subset L_{\psi}$. Therefore

$$C_n = \bigcup_{\beta > 0} (D_\beta \cap C_n). \tag{2.12}$$

Since C_n is a closed subset of X then it can be treated as a complete metric space. So in virtue of (2.12) and Baire theorem we find an open ball $K(x_0, r)$ such that $K(x_0, r) \cap C_n \subset D_{\beta_2} \cap C_n$ for some $\beta_2 > 0$. By convexity and evenness of Φ and Ψ we get

$$K(0,r) \cap C_n \subset D_{\beta_2} \cap C_n$$
.

Since Φ satisfies the condition (c), so the set C_n is bounded in X. Thus $\alpha_n C_n \subset K(0, r) \cap C_n$ for some $0 < \alpha_n \le 1$. Hence

$$C_n \subset (1/\alpha_n) D_{\beta_2} = \{ x \in X : \Psi_n(\beta_2 \alpha_n x) p_n \leq 1 \}.$$
 (2.13)

Now, putting

$$\beta = \min_{1 \le n < m} (\beta_1, \beta_2 \alpha_n) \text{ and } c_n = \begin{cases} d_n & \text{for } n \ge m \\ 1/p_n & \text{for } n < m \end{cases},$$

we obtain the inequality (2.10), by (2.11) and (2.13).

REMARK. The implications (i) \Rightarrow (ii), (ii) \Rightarrow (iii) need not the assumption of the condition (c) about Φ .

We say that the function Φ satisfies the δ_2^0 -condition if there exist constants a, k and a sequence $(c_n) \subset [0, \infty)$ such that $\sup_{\mu \in M} \sum_{n=m}^{\infty} c_n \mu(n) < \infty$ for some $m \in N$ and that

$$\Phi_n(2x) \leq k\Phi_n(x) + c_n$$

holds for all $n \in N$ and $x \in X$ with $\Phi_n(x)p_n \leq a$.

PROPOSITION 2.8. Let Φ be continuous at zero and let it satisfy the conditions (d) and δ_2^0 with such $c = (c_n)$ that $\sup_{\mu \in M} \sum_{n=m}^{\infty} c_n \mu(n) \to 0$ as $m \to \infty$. Under these assumptions the norm and modular convergence are equivalent in L_{Φ} , i.e. if $x_l = (x_{ln}) \in L_{\Phi}$ then $||x_l||_{\Phi} \to 0 \Leftrightarrow I_{\Phi}(kx_l) \to 0$ for some $k \in R$.

PROOF. It is known that $||x_l||_{\Phi} \to 0 \Leftrightarrow I_{\Phi}(kx_l) \to 0$ for every $k \in R$. So, it is enough to show that $I_{\Phi}(x_l) \to 0$ implies $I_{\Phi}(2x_l) \to 0$. Let $I_{\Phi}(x_l) \to 0$ as $l \to \infty$. Hence we have $\Phi_n(x_{ln})\mu(n) \to 0$ for all $\mu \in M$, $n \in N$, as $l \to \infty$. From this fact and by (d), we get $x_{ln} \to 0$ for all $n \in N$, as $l \to \infty$. Then $\Phi_n(2x_{ln}) \to 0$, by continuity of Φ at zero. Let now $\varepsilon > 0$ be given. First we choose $j \in N$ such that

$$\sup_{\mu \in M} \sum_{n=j}^{\infty} c_n \mu(n) < \varepsilon/3,$$

then we find N > 0 such that

$$I_{\Phi}(x_l) < \varepsilon/3k$$
 and $\Phi_n(2x_{ln}) < \varepsilon/3(j-1)p_n$

for all l > N and n < j. Hence and by the δ_2^0 -condition, we get

$$I_{\Phi}(2x_l) \le \sum_{n=1}^{j-1} \Phi_n(2x_{ln}) p_n + kI_{\Phi}(x_l) + \sup_{\mu \in M} \sum_{n=j}^{\infty} c_n \mu(n) < \varepsilon$$

for l > N. So, the thesis of our proposition is obtained.

The above proposition has a partial converse.

Proposition 2.9. If the modular convergence is equivalent to the norm convergence in L_{Φ} , then the condition δ_{2}^{0} holds. Moreover, if we additionally suppose that Φ satisfies the condition (c), then it satisfies the condition (d), too.

PROOF. The condition δ_2^0 follows immediately from the second part of Theorem 2.1 in which we put $\Psi_n(x) = \Phi_n(2x)$.

Now, assume the condition (d) is not satisfied, i.e.

$$\inf_{||x||=r} \Phi_n(x) = 0$$

for some r>0 and $n \in N$. Then we find a sequence $(x_l) \subset X$ such that $||x_l|| = r$ for every $l \in N$ and $\lim_{l \to \infty} \Phi_n(x_l) = 0$. Hence and by the assumption of equivalence of modular and norm convergence, we have $\lim_{l \to \infty} \Phi_n(kx_l) = 0$ for every $k \in N$. Thus, an increasing sequence (l_k) of integers can be choosen such that

$$\lim_{k\to\infty} \Phi_n(kx_{l_k}) = 0 .$$

However, $||kx_{l_k}|| = kr$, then by the condition (c) it holds

$$\lim_{k\to\infty}\Phi_n(kx_{l_k})=\infty.$$

This contradiction concludes the proof.

REFERENCES

- [1] Dobrakov I., On submeasures I, Dissert. Math. CXII (1974).
- [2] Drewnowski L., Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. et Phys. 20 (1972), 277 286.
- [3] Drewnowski L., Kamińska A., Orlicz spaces of vector functions generated by a family of measures, Comment. Math. 22 (1980).
- [4] KOZEK A., Convex integral functionals on Orlicz spaces, Comment. Math. 21 (1980), 109 135.
 - [5] MUSIELAK J., ORLICZ W., On modular spaces, Studia Math. 18 (1959), 49 65.
- [6] Иоффе А. Д., Левин В. Л., Субдифференциалы выпуклых функций, Труды ММО, 26 (1972), 3 73.
- [7] Шрагин И. В., Условия вложений классов последовательностей и следствия из них, Мат. Заметки, 20, 5 (1976), 681 - 692.