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ON COMPARISON OF ORLICZ SPACES AND ORLICZ CLASSES
by
ANNA KAMINSKA

AnsTrRACT. In the paper [3] were investigated spaces Ly of Orlicz type. Here there are given
necessary and sufficient conditions for inclusions of such Otlicz spaces and Orlicz classes genera-
ted by different .4#”-functions @ and . In the first part of this paper it is considered the case.of
nonatomic submeasure vy, in the second one the case of purely atomic vy. This note is also a
partial generalization of the results obtained by A. Kozek in [4] and I. V. Sragin in [7].

Let R be the set of real numbers, NV the set of integers, X a real Banach space and
(7, @, M) a measure space, where Q is a g-algebra of subsets of 7, M is a family of
countably additive measures y : Q—[0, oc]. The set function vy, : @—[0, o] defined
by

vy (A)=sup u(A)

pne M
is a submeasure ([2], [3]).
Let Q. be the ring of all subsets from Q on which the submeasure vy, is order
continuous, i.e. if 4 € Q, then vy(A4,)—0 for all sequences (4,)< A such that 4,>

w
S>A,>...and (4,=4¢.
i=1

We say that 4 € Q is an atom of any submeasure #: Q—[0, o0] iff #(4)>0 and
7n(B)=0or n(7\B)=0 for all Bc A, Be Q. The submeasure 7 is called nonatomic if
the set 7 contains no atoms of #. In the following we always suppose that there

exists a sequence (7) such that T, Q,, T,=T,c<... and vM(T\U T))=0. In the
i=1
case of vy nonatomic it is vy (7)< o0, by Theorem 5.5 in [2). We say that a property
holds almost everywhere (a.e.) in 7T if it occurs for all re T\A, where v, (A4)=0.
A function @ : X x T—[0, o] is called A"'-function if
(a) @ is # x Q-measurable, where Z# is the Borel g-algebra in X,
(b) the function @(-, r): X—[0, o] is lower semicontinuous, convex, even
(le. &(—x, t)=d(x, 1) for all x e X) and &(0, 1)=0, for a.e. teT.
In the sequel, we will assume occasionally the following conditions about the .#'~func-
tion @
(c) (see [3]) lim @&(x, 1)=co, fora.e. te T,

1]
(d) (see [3]) inf @(x, 1)>0, for ecach r>0and ae. te T
IIxll=r
{e) sup @(x,t)<ow, forall r>0and ae. reT.
lxll=r
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We denote by S(X) the set of all measurable [3] functions x : 7— X. The functional

Io(x)=sup [ D(x(1),t)du,
peM T '
is defined on the whole S(X) and it is a pseudomodular [5]. The modular space L,
called the Orlicz space, it is the following set

Ly={xeS(X):I,(kx)<w for some keR}.

On the space Lg one can define the Luxemburg norm [3], i.e. for all xe Lg

||x||e=inf{e>0: I4(x/e)<1}.
Next, we introduce the following classes of functions

domIg={xeS(X): Io(x)< 0},

(®@)y={xeS(X) : I,(bx)<m}

for b e (0, o). The set dom [y is called the Orlicz class. We also define for re T
dom® (-, )={xeX : P(x,1)<w}.

1. LemMA 1.1. Suppose X is separable, @, ¥ are .4 '-functions and b is any posi-
tive number. Moreover, let dom ¥(-, t)=2X a.e. in 7. Then there exists a family (x;)
of measurable functions such that

(1) x;(t)edom &(-, 1) ae. ineT,

(ii) ¢/(xi(t))=dom @(-, t) in the norm of X for a.e. e T,

(iii) for all i e N, the set function A —1u(bx;y,) is vy-absolutely continuous, i.c.
for every £>0 there is a >0 such that

Ly (bx;zp) <&
if vy (B)<d.

Proor. By Theorem 1 in [6], there is a family (),,) of measurable functions such
that y,(t) e dom @(-, t) and cl(y,(1))=dom @(-, 1) for a.e. te T. Let for m, ke N
be

Cpi=11eT: ¥(by, (1), 1)<k}.

Putting (x)=0rmxc,, ) We get easily the desired conditions.

Lemma 1.2, Let X be separable, @, ¥ be 4”'-functions where @ is continuous
at zero and dom @(-, f)=X for a.c. t € T. Moreover, let (¢,) be an arbitrary sequence
of positive numbers and let the functions f; be given as follows f,(1)=sup{¥(c,x 1)—

xeX
—=2"®(x, 1)}. Then f,(1)=sup {¥(c,xi(t), 1)—2"D(x,(t), 1)}, where x; are the functions
ieN
from the above lemma for any b.
The proof is analogous to that of Lemma 1.7.2 in [4].
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LemmA 1.3, Let us assume the submeasure vy, be nonatomic. Let (%) be a sequence
of positive numbers and a; : T— R be measurable, nonnegative and finite functions
such that

(i) sup _l,‘ a,-(f)d;t?.'!ﬁ,- for all ie N,
peMT

(ii) the set functions A v, (4)=sup [ a;(t)du, A € Q, are vy-absolutely con-
neMA

tinuous.
Then there exist an increasing sequence (i) of integers and the family (A4,) of pairwise
disjoint sets from Q such that

sup [a; ()du=uw,

e M Ay

for all ke V.

ProOOF. By (ii), the submeasures vj, are order continuous on every T(jeN).
Moreover, vy, are nonatomic as vy-absolutely continuous, where vy, is nonatomic
(Theorem 9 in [1]). Hence and by Theorem 10 in [1], the submeasures v}, have the
Darboux property, i.e. for every 0<b <V}, (T) one can choose a set Be Q such that
"i!(B)=b-

Now, we will find the desired sequences (A4,) and (i,) by induction. In the follow-
ing we will show only two steps of this induction. Let i=1. Then we choose Be Q
such that -

vy (By)=2,.
Ifi=2 then »

W(B)Z1)2  or v (T \ B)=(3)2%.

Therefore, there exists an infinite subsequence (a;) of (a;);~, and the respective
subsequence (¢}) of (2'a;); - » such that

sup [ al ()du=()o

nweM B, (11)
or
sup [ al(Ddu=(1) o . (1.2)
ueM T\ By

I (1.2) is satisfied then we put 4, = B,, whereas if the condition (1.1) is fulfilled then
we find A4, = T\ B, such that v}(4,)=«,. Thus we found the set 4, and i, =1.

In the second step we repeat the above construction replacing 7, (a,), (2°x;) by
T\A,, (@), ((1/2)z}). Thus, by construction of A, it follows

sup | ag(Ddp=(3) (1.3)

peM T\A,

for all ke N. Let 2"“‘1.35,-u be the first element of the sequence ((1/2)z:). we have
in=2. Hence there is a set B, € T\ A4, such that

sup [a; (Ddp=o,,.
neM bHa

§*
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By (1.3), there exist infinite subsequences (a7) of (a;) and (o) of («)) such that

sup [ai()du=(}) o (1.4)

neM Ba
or

sup [ almdu=)af. (1.5)
peM (T\A )\ B2
The first elements of (4}), (¢f) can’t be smaller than as, o5. Now, if (1.5) is fulfilled
then we put 4, =B,. while if (1.4) is satisfied then one can choose A, c(T\A)\B>
such that

sup [a
neM A

w(dp=a, .

Putting i, =i, we finish the second step of our induction. The thesis is now easily
obtained by induction. .

THEOREM 1.4. Let X be separable, v, nonatomic submeasure, and let & and ¥
be .4""-functions, where @ is continuous at zero and dom ¥(-, {)=X a.e. in 7. Under
these assumptions, if B is an arbitrary subset of (0, c0) and dom I, U (¥),, then

there are constants b, k and a nonnegative function f: 7— R such that sup I S(Hdu<
neM T
< oo and the following inequality

Y(bx,t)skd(x,t)+f(1) (1.6)

is satisfied for all xe X and a.e. re T.

Proor. First we choose a decreasing sequence (b,) of elements from B in such
a manner that for every b € B there is n’ € N such that b,<b for all n>n". Let (x;)
be the family of functions from Lemma 1.1 under b=5,. Denoting

*

L =sup{¥(b,x, )-2"®(x, 1)}

xeX

we have
fu()y=sup {¥(b,x;(1), 1)=2"® (x;(1), 1)} .
ieN
by Lemma 1.2 where we put ¢,=b,.
It can be easily proved that the thesis of our theorem is satisfied iff there exists
n e N such that
sup [ f,(D)du<oo.

neMT
Suppose, for a contrary, sup j f,()du=o00. Then, for all ne N
peMT
_U;u(f) dp,>2"n
T

for some g, € M. Let now

Lo (O=max {0, ¥(b,x;{), =2"P{x;(1), 1): i=1, ..., k}.
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Since 1, (1)1 £,(t) a.e. in T, then there is an index N(n) such that, denoting I,(¢)=
= J'I,N(J’I')(’) chget
_[ "ln {_.’)dﬂ";z"” (1?)
-

for cach n € N. Let for k=1, ..., N(n)
B, h={teT: ¥(b,x,(1), )=2"®(x,(1), 1)=1,(1)} .

Putting
[x,(t) 1eB,,
k=1
x(={x() teB, \|J B,;. k=2,...N(n)
i=1
0 otherwise
we obtain

W (b, %,(1). 1) = 2" (%,(1), 1)=1,(1)>0. (1.8)
Hence and by (1.7) we have '

sup | (b, x,(1), t)du=2"n.

HeM T
From the definition of X, and the condition (iii) of Lemma 1.1 it is seen that the set
function 4 =1,(b,x,7,), (4 € Q). is vy-absolutely continuous. Therefore taking a,(1) =
=W¥(b,x,(1), 1) and &,=n in Lemma 1.3, we find a family of pairwise disjoint sets
(A4y) and a sequence (n,) of integers such that

Ty( by, X, La) =1k - (1.9)
Now, we define for tre T
x(N= Y X, (0)7.(0). 2
k=1

Since (1.8) is satisfied, so

B (x,(1), r)s(zl"-) Y(b,x,(1),1)

forallne Nand ae. re T.
Thus

o

If(x)< Y To(Xp 24)< Y B™Ip(b, X, 14)= Y, m 2™ <o,
k=1 k=1 k=1

by (1.9). So xedom I,,.
Let now b € B be arbitrary. We find k" € N such that b, <b for all k= k', Hence
and by (1.9) we get '
!'I’(b"') ; SUP Z J- w(bnk '_\‘nk(l) 3 I) d}" ? !'P'(bnk '\Trrk Zﬁk) = ”k

neM k=k' Ay

for each k>k'. Therefore I, (bx)= oo and so x ¢ (] (¥),. This contradiction finishes
beB

the proof of our theorem.
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COROLLARY 1.5. Let @, ¥ be .4"-functions and let the following conditions be
satisfied: ’
(i) The relation ¥ < @ s fulfilled, i.c. there exist a constant ¢ and a nonnegative
function /i : T R such that sup [ h(t)du<co and
neM T

Viex, )<@(x, )+ h(1)

forallxe Xand ac. teT.
(ii) There is a number > 0 such that

Ielle <]l
for all x e S(X).

(iii) Lo Ly.

There holds (i)=(i)=(iii).

If we aditionally assume vy, is a nonatomic submeasure, X is separable, @(-, f)
is continuous at zero and dom ¥(-, )= X for a.e. t € T, then (iii)=-(i).

ProOF. (i)=(ii). Suppose k=sup [ /i(t)du=1. Then for >0 and x e S(X) we

peM T
get

Lp((e/k) (x[e)) < (1/k) T o(x[e)+1.
If I(x/e)< 1 then Iy((c/k+1)) (x/e))<1. Hence -
et ) [ <l
Now, putting d=(k+1)/c we get the condition (ii). The implication (ii)==(iii) is
evident. To prove (iii)=>(i) let us notice dom lpc Ly iff LycLy and if B=(0, 0)
then L,?,:bLé)B(YJ),,. So, if we put B=(0, o) in Theorem 1.4 then we get the inequality

(1.6) with some constants b, k and a function f. Hence and by convexity of ¥ we
get (i) immediately, taking c=5b min (1/k, 1) and i=/f min (1/k, 1).
Putting B={1} in Theorem 1.4, we get immediately the next corollary.
CoroLLARY 1.6. Let @, ¥ be 4”'-functions. Let following conditions be satisfied:
(i) There are a constant & and a nonnegative: function /: T— R such that
sup | h(t) du<co and

nreM T
tor all xe X, ae. teT

Yix,N<kd(x, 1)+h(D)

(ii) dom /,=dom 1.

Then (i)==(ii) holds. Moreover, if we supposc that the submeasure vy 1S nonatomic,
X is separable, @(-, t) is continuous at zero and dom ¥(-,t)=X a.c. in T, then the
conditions (i) and (ii) are equivalent.

LemMMA 1.7. Let @, ¥ be 4 '-functions, X be separable and (T <oo. If
dom /p=dom /, then there is a family (w,) of measurable functions satisfying the
conditions (i) - (iii) of Lemma 1.1 under b=1.

Proor. Let us take a sequence (r,) of measurable functions such that yu(t) €
edom &(-, t) for each me N and cl(y,(1))=dom®(-, ¢) for all te T\A, where
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vp(A)=0. First, let
D, jx={teT;: ®(y, (1), )<k}.

Since z;=Yuip,, ;. & dom Iy, so z; € dom /. Hence there is a set B such that vy (B)=
=0 and ¥(z,(t), 1)< o for all r € T\B and every i € N. Now, put

m, j.ksz, ik M {f € T; : 'P'(ym(f}, I)“{H‘t‘} ]

Take the family (yuxc,., ;. " s j.keN) as (w)). It is enough to show that w; satisfy
the condition (ii). Let then t, € T\(4UB) and me N be arbitrary. Hence 7, €T}
for some j e N and one can choose / € N such that t, € D, ; ;. Since yuxp,, , ,is some
~ function z;, s0 ¥(y,(to), to)<n for some n € N. Next, taking k=max (/, n) we have
to € Cp j.x- S0, we found a function w;=yuxc,, ;. such that x;(¢,)=p.(f). Hence
cl(x(t))=dom @®(-, t) forae. rteT.

REMARK 1.8. The above lemma allows us to prove the implication (ii)=(i) of
Corollary 1.6, omitting the assumption dom ¥#(-, 1)=X.

Indeed, replacing in the proof of Theorem 1.4 the sequence (x;) from Lemma 1.1
by the family (w;) from Lemma 1.7 and taking B={1} we obtain this implication
easily.

We say that @ satisfies the 4,-condition [3], if there are a constant k and a non-

negative function /i : T— Rsuch that sup | h()dp<oo and @(2x, )<kP (x, )+ (1)
neM T

C

forallxe X and ae. teT.

Taking ¥(x, ) as @(2x, t) in Corollary 1.6 and Remark 1.8 we obtain immediately

COROLLARY 1.9. Assume X be separable, vy, be a nonatomic submeasure and @
be 4'-function continuous at zero. Then the 4,-condition is necessary and sufficient
for linearity of the Orlicz class dom Ig, that is for equality dom /= L.

2. Let now the submeasure vy, be purely atomic, with countably many atoms of
finite v,-submeasure. As easily seen, we may simply assume that 7=0N, 0=2" and
each singleton {n} is an atom of vy. By assumption, 0<p,= vyin}<co forallne N.
If pe M, we write u(n) instead of p({n}). We shall identify every function @ X %
x N—[0, c0] with the sequence (@,)={®,}, .y, Where @, : X—[0, o] is defined by
@,(x)=d(x, n). If x : N- X then x=(x,) and

[ ]
Io(xJ=sup Y ®,(x,)pu(n).
peM n=1
If @ is an 4" '-function then

o
(@)0={x=(x,): sup Y. P, (ax,)u(n)<oo for some ke N}.
neM n=k

Now, let @ and ¥ be A"'-functions, Denote
E(x, B,7,0)={xe X : @ax)<min(5/p,, LLBx)/7)}, (2.1)
Fa, B,7,8)=sup{¥(Bx): xeE(a, B,7,9)}, (2.2)
for arbitrary «, f8, y, 6>0.
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From (2.1) and (2.2) we get immediately

Y(Bx)<y®,(ax)+ F(x, .7, 0) (2.3)
if @, (ex)p,<9.
We say that the sequence (x;), where x; : N— X for all /e N, is Iy-modular con-
vergent to x : N= X if Iy(A(x—x,))—0 for some Le R, as [— 0.
THeoreM 2.1. 1. [7] Let 4 and B be nonempty subsets of R. If () (®)2< ) (¥))

@ aed BebB

then there exist numbers « € 4, ff € B, y and d such that sup Y F,(a, f, y, d)u(n) <o

pneM n=m
for some m e N.
II. Let /g-modular convergence imply Iy-modular convergence. Then there are

constants p, d such that

=7}

sup Y F,(1,1,7,8)u(n)<ow

neM n=m

for some m e N,
PrOOF. I. Let the thesis be not fulfilled. We choose sequences (x,) < A4, ()< B

such that
vV 3 Vv x=2and y 3 kvk“ﬁkéﬁ.

2eAd k" k=k' fieB &k
Denoting b, = F,(o, fi, 2°, k/2*) we have
sup Y. buu(n)=ow
neM n=m

for all k, m e N. Using this fact, we can find a sequence (N,) of subsets of N with the
following properties: Ny ={1, 2, ..., ni}, ..., Ny={n_,+1, ..., m} ... and

sup Y. buu(n)>k, (2.4)
neM ne Ng
Sl.lp Z bnk.u (”)“"-(-k 3 (2'5)

neMn c-Nk\[nk}

where sup Y b,u(n)=0, by definition.

neM ne =
By (2.2) and (2.4), we will choose X, € E, (o, fi2* k/2%) such that
sup ) YU(Bx)pu(n)>k. (2.6)
neM ne Ny

Moreover, we have
(b"(ﬁk '?n}"‘{'- ylu(ﬁk '\_."”2'1 'd.nd ¢n{zk :\:n] gk!(zip") .
Hence we obtain

sup Z qbn(dkfn).u(n}é sup Z (l’un(ﬁk'?Jl)fzk)ﬂ(ll)+kl2k"g

peM ne Ng peMne N [ng)

Ssup ) (bu/2Y)u(m)+ k<K, (2.7)

peMne N Ingd
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We define x as x(n)=X, for each ne N. Let x € A be an arbitrary number. There.
exists k' € N such that o, >« for all k=k’. Then we have

o

sup Y @ (ax)p(m)< Y sup Y @ (o x,) u(n)< Z k¥ ig
K=k’

peM k=k" ne Ny k=k'peM ne Ny

by (2.7). Hence X € J (®);.

aEA

Let now ffe B, me N. We will choose k" € N such that f=f, and n,_,+1=m-
for each# =k"". Then

sup i YABx ) p(n)= sup Y P (BiX,)>k

neM n=m neM ne N
for all k>k', by (2.6). Thus x ¢ | J ('}’)g. This contradiction finishes the proof of I..
feB

II. Contrary, assume that

sup Z by p(n)=o0

neM n=m

for all m, k € N, where b, =F,(1, 1, 2, k/2".
Analogically as in part I we find a sequence (N,) of subsets of N and a sequence
(x,) of elements of X such that

sup Y YU(xX)u(n)>k,

neM ne N {2.8)
sup Y D (x,)u(n)<k/24 ! (2.9)
neM ne Ny 2
holds for all k € N. Put
> 0 for n<l
M=% for >,

where /, ne N. Let us denote x,=(X,,), . - Choosing for every /€ N an mteger m(l)
such that /e N,,;, and using (2.9) we get

Io(x)=sup ) @ (x)u(m< Y sup Y &(X,)u(n)<
neM n=| k=nmpyneM neNg

¥ kj2*"1'=0 as I-»o0.
k=nmcn

Now, by (2.8) we obtain

Iy(xp=sup 3 3 ¥ (X)u(n)=sup Y W(x,)u(n)>k
' peMEk=nmqyne Ny neM ne Ny
for all k=n,,,. So Iy(x))= o for every / € N.
Thus we found a sequence (x;) such that it is /z-modular convergent but it is not
Iy-modular convergent, a contradiction.
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CoroLLARY 2.2. If (@) < (%)} then there exist a nonnegative sequence (c,) and
oh -

.constants y, J such that sup ) c,u(n)<co for some me N and
peM n=1

q’"(‘\") g }‘(p"(x) + ('i]
holds for every n € N and x € X satisfying &, (x)p,<d.
Proor. This follows immediately from the inequality (2.3) and the above theorem,
taking A={1}, B={1} and ¢,=F,(1, 1, y, d) for allne N.
THEOREM 2.3, Let @ satisfy the condition (¢) and let ¥ fulfil the condition (e).
If dom I,=dom I.P then there exist constants y, d and a nonnegative sequence
(c,) such that sup Z ct(n) < oo and

neM n=1
(A)  YUx)syP,(x)+c,
is satisfied as n e N and @,(x)p,<0.
ProOF. The inclusion dom Igcdom I, implies (@) <(¥)]. Then, by Corollary
2.2. it is enough to show that ¢, < oo for ecach n € N. We have

C"=F"(.l 3l s 1 (s)x.{.,SU]J {q)‘;l('}‘) : GD"(,\‘) pnéa} .

Since the set {xe X: @,(x)p,<d} is bounded and ¥ fulfils the condition (e), so
e,<w forallne N.

THEOREM 2.4, Let @ and ¥ be .4 "~functions and let the set dom 7 include only

- ]

the elements with the property sup Y @,(x,)u(n)—0 as m— co. Under these assump-
pHeM n=m

tions, if the condition (4) from the above theorem is satisfied and dom @,(+)=
cdom %,(-), ne N, then dom I,=dom /.
ProOOF. Let x=(x,) € dom /4. Then there exists an integer / such that @,(x,)p, <
for each n=/. Now, by the (4) condition, we obtain
-1
Ly(x)< sup Y, W (x,) p(n)+7lg(x)+ sup Z cup(n)<oo.

_ peM n=1 HeM n=
So x e dom [.

By 2.2 and 2.4, we get immediately

CorOLLARY 2.5. Let M = {y} where u(n)=1 for all n € N and let @, ¥ be arbitra-
ry A4"'-functions without parameter, i.e. @,(x)= ¢(x) and ¥ (x)=w(x) for all ne N,
x € X. Then there holds dom /,=dom / ifl dom ¢(-)=dom w(-) and there exist
constants y, d such that

w(x)<ye(x)

is fulfilled as p(x)<d.

REMARK. Suppose sup p,<o0 and inf u(n)>0 for some pe M. Then for any

n n

. A7-function @, we have

sup Y D (x,)p(n)<oo iff Z D (x)pu(n)<om.

neM n=m n=m
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Under these assumptions, if @ satisfies the condition (¢) and ¥ satisfies the condition
(¢), then the conditions (4) and dom @,(-)=dom ¥,(-) are necessary and sufficient
for the inclusion dom Jp=dom Jy.

We say that ¥ < @ if there exist constants f,  and a nonnegative sequence (c,)

such that sup Y ¢,u(n)<co and
peM n=1

¥ (Bx)< P (x)+c, (2.10)

holds for all 7€ N and x € X with @,(x)p,<9.

THEOREM 2.6. Let @ and ¥ be .A47-functions such that @ satisfies the condition
(¢). Then the following statements are equivalent:

(i) ¥< o,

(ii) for all x=(x,): N— X and some k>0 we have

|[x[le <k ||x[fo
(iii) LocLy.
[ v]

PrOOF. (i)=(ii). Suppose d= sup Y c,u(m)>1. Let x=(x,) be an arbitrary

neM n=1
element from Lg. Then Iy(xx)<6 for some a>0. Hence @,(ox,)p, <o for each
n e N. Now, using the inequality (2.10), we obtain

Im(.'{mx;:) < Idi(g'\-u) T d.
Therefore, we get

(x|l <@alB) ||[|o

and putting k=2d/f we have (ii). The implication (ii)=>(iii) is evident. (iii)==(i).
First, we show that the inclusion Lgs<L, implies (D)) e U (W}g. Indeed, let x=
fi=0

=(x,) € (9)). So sup Z &, (x,)u(n)< oo for some m e N. If we put

peM n=m

= )% for nzm
_ Y0 for o n<m,
then ¥=(x,) € Ly. Therefore X € Ly. However, Ly= 1) (P),< | (¥)g,sox el (¥)5,
fi=0 fi=0 fi=0
too. - .
Now, by the above and by Theorem 2.1 part I, we get the existence of constants
S, ¢ and of a sequence (d,)< [0, o) such that sup E dp(n)< oo for some me N

peMn=m

and that
Y () x) < D,(x)+d, (2.11)

is satisfied for all ne N and x € X with @,(x)p,<d. Fix n<m and denote
C.={xeX: &,(x)p,<5},
Dy={xe X : ¥,(px)p.,<1}.
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We have C,c U Dy, beacause Ly < Ly. Therefore .

f=0
Co= D,nC,).
},JO( s G (2.12)
Since C, is a closed subset of X then it can be treated as a complete metric space.
So in virtue of (2.12) and Baire theorem we find an open ball K(x,, r) such that
K(xq, r)nC,c Dy, nC, for some ff,>0. By convexity and evenness of @ and ¥ we
get
K(0,r)nC,cDy,nC,.

Since ¢ satisfies the condition (¢), so the set C, is bounded in X. Thus 2 S
< K(0, r)nC, for some O0<ea,<1. Hence

C.c(l/a,)Dy,={xe X : ¥(Bra,x)p,<1} . (2.13)
Now, putting '
for n=m
for n<m,

1<n<m

d
f= min (f,, f,o,) and ¢,=1 "
/ By Baroty) /e

we obtain the inequality (2.10), by (2.11) and (2.13).

ReMArK. The implications (i)=-(ii), (ii)=>(iii) need not the assumption of the
condition (c) about .

We say that the fusction @& satisfies the d3-condition if there exist constants

[+ 4]
a, k and a sequence (¢,)< [0, <) such that sup ) c¢u(n)< oo for some me N and

neM n=m
that
®,(2x)<kP,(x)+c,

holds for all ne N and x € X with @, (x)p,<a.
ProposITION 2.8. Let @ be continuous at zero and let it satisly the conditions

oo .
(d) and 69 with such ¢=(c,) that sup Y ¢ u(m)—0as m— oo, Under these assumptions
HeM n=m

the norm and modular convergence are equivalent in Lg, i.e. if x,:(x;,,)é[.q, then
||x,] o= 0<=Ia(kx,) =0 for some & € R.

Prook. It is known that ||.\:£”¢—>0¢-l.,,(kx,)—>0 for every k € R. So, it is enough
to show that /,(x;)—0 implies /o(2x)—0. Let I4(x)—0 as /- . Hence we have
@, (x1,)u(n)—0 for all ue M, ne N, as [-co. From this fact and by (d), we get x,,—0
for all ne N, as [-o0. Then @,(2x,,)—0, by continuity of @& at zero. Let now £>0
be given. First we choose j € N such that

sup Y c,u(n)<e/3,

peM n=j

then we find N >0 such that

Io(x)<e/3k and @, (2x,)<e/3(—1)p,



L

On comparison of Orlicz spaces 12

for all />N and n<j. Hence and by the d3-condition, we get

i1 o

12x)< Y 8,C2x) putklo(x)+ sup Y ¢,u(n)<e
n=1 neM n=j
for /> N. So, the thesis of our proposition is obtained.
' The above proposition has a partial converse.

ProposiTioN 2.9. If the modular convergence is equivalent to the norm con-
vergence in Ly, then the condition 67 holds. Moreover, if we additionaly suppose
that & satisfies the condition (c), then it satisfies the condition (d), too.

ProoF. The condition 9 follows immediately from the second part of Theorem
2.1 in which we put ¥,(x)= @,(2x).

Now, assume the condition (d) is not satisfied, i.e.

inf @,(x)=0

Il =r
for some r>0 and ne N. Then we find a sequence (x;)= X such that [|x,||=r for
every /e N and lim @,(x)=0. Hence and by the assumption of equivalence of

1=+

modular and norm convergence, we have lim @, (kx;)=0 for every k € N. Thus,
1=+ a0

an increasing sequence (/) of integers can be choosen such that

lim &,(kx,)=0

k=
However, ||kx,,||=kr, then by the condition (c) it holds

lim @, (kx, )=cC.

k= w

This contradiction concludes the proof.
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